sched.c 258.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
496
	int overloaded;
497
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
498
#endif
P
Peter Zijlstra 已提交
499
	int rt_throttled;
P
Peter Zijlstra 已提交
500
	u64 rt_time;
P
Peter Zijlstra 已提交
501
	u64 rt_runtime;
I
Ingo Molnar 已提交
502
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
503
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
504

505
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
506 507
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
508 509 510 511 512
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
513 514
};

G
Gregory Haskins 已提交
515 516 517 518
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
519 520
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
521 522 523 524 525 526
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
527 528
	cpumask_var_t span;
	cpumask_var_t online;
529

I
Ingo Molnar 已提交
530
	/*
531 532 533
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
534
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
535
	atomic_t rto_count;
536 537 538
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
539 540 541 542 543 544 545 546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
547 548
};

549 550 551 552
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
553 554 555 556
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
557 558 559 560 561 562 563
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
564
struct rq {
565 566
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
567 568 569 570 571 572

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
573 574
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575
#ifdef CONFIG_NO_HZ
576
	unsigned long last_tick_seen;
577 578
	unsigned char in_nohz_recently;
#endif
579 580
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
581 582
	unsigned long nr_load_updates;
	u64 nr_switches;
583
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
584 585

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
586 587
	struct rt_rq rt;

I
Ingo Molnar 已提交
588
#ifdef CONFIG_FAIR_GROUP_SCHED
589 590
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
591 592
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
593
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
594 595 596 597 598 599 600 601 602 603
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

604
	struct task_struct *curr, *idle;
605
	unsigned long next_balance;
L
Linus Torvalds 已提交
606
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
607

608
	u64 clock;
I
Ingo Molnar 已提交
609

L
Linus Torvalds 已提交
610 611 612
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
613
	struct root_domain *rd;
L
Linus Torvalds 已提交
614 615
	struct sched_domain *sd;

616
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
617 618 619
	/* For active balancing */
	int active_balance;
	int push_cpu;
620 621
	/* cpu of this runqueue: */
	int cpu;
622
	int online;
L
Linus Torvalds 已提交
623

624
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
625

626
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
627 628 629
	struct list_head migration_queue;
#endif

630 631 632 633
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
634
#ifdef CONFIG_SCHED_HRTICK
635 636 637 638
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
639 640 641
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
642 643 644
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
645 646
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
647 648

	/* sys_sched_yield() stats */
649
	unsigned int yld_count;
L
Linus Torvalds 已提交
650 651

	/* schedule() stats */
652 653 654
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
655 656

	/* try_to_wake_up() stats */
657 658
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
659 660

	/* BKL stats */
661
	unsigned int bkl_count;
L
Linus Torvalds 已提交
662 663 664
#endif
};

665
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
666

667
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
668
{
669
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
670 671
}

672 673 674 675 676 677 678 679 680
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
681 682
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
684 685 686 687
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
688 689
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
690 691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
696
inline void update_rq_clock(struct rq *rq)
697 698 699 700
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
701 702 703 704 705 706 707 708 709
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
728 729 730
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
731 732 733 734

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
735
enum {
P
Peter Zijlstra 已提交
736
#include "sched_features.h"
I
Ingo Molnar 已提交
737 738
};

P
Peter Zijlstra 已提交
739 740 741 742 743
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
744
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

754
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
755 756 757 758 759 760
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
761
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
762 763 764 765
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
766 767 768
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
769
	}
L
Li Zefan 已提交
770
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
771

L
Li Zefan 已提交
772
	return 0;
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
792
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
817 818 819 820 821
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
822
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
823 824 825 826 827
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
842

843 844 845 846 847 848
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
849 850
/*
 * ratelimit for updating the group shares.
851
 * default: 0.25ms
P
Peter Zijlstra 已提交
852
 */
853
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
854

855 856 857 858 859 860 861
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
862
/*
P
Peter Zijlstra 已提交
863
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
864 865
 * default: 1s
 */
P
Peter Zijlstra 已提交
866
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
867

868 869
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
870 871 872 873 874
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
875

876 877 878 879 880 881 882
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
883
	if (sysctl_sched_rt_runtime < 0)
884 885 886 887
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
888

L
Linus Torvalds 已提交
889
#ifndef prepare_arch_switch
890 891 892 893 894 895
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

896 897 898 899 900
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

901
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903
{
904
	return task_current(rq, p);
905 906
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910
{
}

911
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912
{
913 914 915 916
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
917 918 919 920 921 922 923
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

924 925 926 927
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
928
static inline int task_running(struct rq *rq, struct task_struct *p)
929 930 931 932
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
933
	return task_current(rq, p);
934 935 936
#endif
}

937
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

954
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 956 957 958 959 960 961 962 963 964 965 966
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
967
#endif
968 969
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
970

971 972 973 974
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
975
static inline struct rq *__task_rq_lock(struct task_struct *p)
976 977
	__acquires(rq->lock)
{
978 979 980 981 982
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
983 984 985 986
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
987 988
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
989
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
990 991
 * explicitly disabling preemption.
 */
992
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
993 994
	__acquires(rq->lock)
{
995
	struct rq *rq;
L
Linus Torvalds 已提交
996

997 998 999 1000 1001 1002
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1007 1008 1009 1010 1011 1012 1013 1014
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1015
static void __task_rq_unlock(struct rq *rq)
1016 1017 1018 1019 1020
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1021
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1028
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1029
 */
A
Alexey Dobriyan 已提交
1030
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1031 1032
	__acquires(rq->lock)
{
1033
	struct rq *rq;
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1063
	if (!cpu_active(cpu_of(rq)))
1064
		return 0;
P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1085
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1092
#ifdef CONFIG_SMP
1093 1094 1095 1096
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1097
{
1098
	struct rq *rq = arg;
1099

1100 1101 1102 1103
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1104 1105
}

1106 1107 1108 1109 1110 1111
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1112
{
1113 1114
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115

1116
	hrtimer_set_expires(timer, time);
1117 1118 1119 1120

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1121
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 1123
		rq->hrtick_csd_pending = 1;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1138
		hrtick_clear(cpu_rq(cpu));
1139 1140 1141 1142 1143 1144
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1145
static __init void init_hrtick(void)
1146 1147 1148
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1149 1150 1151 1152 1153 1154 1155 1156
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1157
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158
			HRTIMER_MODE_REL_PINNED, 0);
1159
}
1160

A
Andrew Morton 已提交
1161
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1162 1163
{
}
1164
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1165

1166
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1167
{
1168 1169
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1170

1171 1172 1173 1174
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1175

1176 1177
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1178
}
A
Andrew Morton 已提交
1179
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1180 1181 1182 1183 1184 1185 1186 1187
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1188 1189 1190
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1191
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1192

I
Ingo Molnar 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1206
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1212
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1213 1214
		return;

1215
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1271
	set_tsk_need_resched(rq->idle);
1272 1273 1274 1275 1276 1277

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1278
#endif /* CONFIG_NO_HZ */
1279

1280
#else /* !CONFIG_SMP */
1281
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1282 1283
{
	assert_spin_locked(&task_rq(p)->lock);
1284
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1285
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1430 1431
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 1433
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1434 1435
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 1437
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1438 1439
#endif

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1450
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1451
typedef int (*tg_visitor)(struct task_group *, void *);
1452 1453 1454 1455 1456

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1457
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 1459
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1460
	int ret;
1461 1462 1463 1464

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1465 1466 1467
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1468 1469 1470 1471 1472 1473 1474
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1475 1476 1477
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1483
out_unlock:
1484
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1485 1486

	return ret;
1487 1488
}

P
Peter Zijlstra 已提交
1489 1490 1491
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1492
}
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1503
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1504

1505 1506
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1507 1508
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1514 1515 1516 1517 1518 1519 1520

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1521 1522
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1523
{
1524 1525 1526
	unsigned long shares;
	unsigned long rq_weight;

1527
	if (!tg->se[cpu])
1528 1529
		return;

1530
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531

1532 1533 1534 1535 1536 1537
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1538
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1539
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540

1541 1542 1543 1544
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1545

1546
		spin_lock_irqsave(&rq->lock, flags);
1547
		tg->cfs_rq[cpu]->shares = shares;
1548

1549 1550 1551
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1552
}
1553 1554

/*
1555 1556 1557
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1558
 */
P
Peter Zijlstra 已提交
1559
static int tg_shares_up(struct task_group *tg, void *data)
1560
{
1561
	unsigned long weight, rq_weight = 0;
1562
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1563
	struct sched_domain *sd = data;
1564
	int i;
1565

1566
	for_each_cpu(i, sched_domain_span(sd)) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1578
		shares += tg->cfs_rq[i]->shares;
1579 1580
	}

1581 1582 1583 1584 1585
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1586

1587
	for_each_cpu(i, sched_domain_span(sd))
1588
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1589 1590

	return 0;
1591 1592 1593
}

/*
1594 1595 1596
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1597
 */
P
Peter Zijlstra 已提交
1598
static int tg_load_down(struct task_group *tg, void *data)
1599
{
1600
	unsigned long load;
P
Peter Zijlstra 已提交
1601
	long cpu = (long)data;
1602

1603 1604 1605 1606 1607 1608 1609
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1610

1611
	tg->cfs_rq[cpu]->h_load = load;
1612

P
Peter Zijlstra 已提交
1613
	return 0;
1614 1615
}

1616
static void update_shares(struct sched_domain *sd)
1617
{
P
Peter Zijlstra 已提交
1618 1619 1620 1621 1622
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1623
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1624
	}
1625 1626
}

1627 1628 1629 1630 1631 1632 1633
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1634
static void update_h_load(long cpu)
1635
{
P
Peter Zijlstra 已提交
1636
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 1638 1639 1640
}

#else

1641
static inline void update_shares(struct sched_domain *sd)
1642 1643 1644
{
}

1645 1646 1647 1648
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1649 1650
#endif

1651 1652
#ifdef CONFIG_PREEMPT

1653
/*
1654 1655 1656 1657 1658 1659
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1660
 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1715 1716 1717 1718 1719 1720
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1721 1722
#endif

V
Vegard Nossum 已提交
1723
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1724 1725
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1726
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1727 1728 1729
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1730
#endif
1731

1732 1733
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1734 1735
#include "sched_stats.h"
#include "sched_idletask.c"
1736 1737
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1738 1739 1740 1741 1742
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1743 1744
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1745

1746
static void inc_nr_running(struct rq *rq)
1747 1748 1749 1750
{
	rq->nr_running++;
}

1751
static void dec_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running--;
}

1756 1757 1758
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1759 1760 1761 1762
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1763

I
Ingo Molnar 已提交
1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1772

I
Ingo Molnar 已提交
1773 1774
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 1776
}

1777 1778 1779 1780 1781 1782
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1783
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784
{
P
Peter Zijlstra 已提交
1785 1786 1787
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1788
	sched_info_queued(p);
1789
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1790
	p->se.on_rq = 1;
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794
{
P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1804 1805
	}

1806
	sched_info_dequeued(p);
1807
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1808
	p->se.on_rq = 0;
1809 1810
}

1811
/*
I
Ingo Molnar 已提交
1812
 * __normal_prio - return the priority that is based on the static prio
1813 1814 1815
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1816
	return p->static_prio;
1817 1818
}

1819 1820 1821 1822 1823 1824 1825
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1826
static inline int normal_prio(struct task_struct *p)
1827 1828 1829
{
	int prio;

1830
	if (task_has_rt_policy(p))
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1844
static int effective_prio(struct task_struct *p)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1857
/*
I
Ingo Molnar 已提交
1858
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1859
 */
I
Ingo Molnar 已提交
1860
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1861
{
1862
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1863
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1864

1865
	enqueue_task(rq, p, wakeup);
1866
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1872
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1873
{
1874
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1875 1876
		rq->nr_uninterruptible++;

1877
	dequeue_task(rq, p, sleep);
1878
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1885
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1886 1887 1888 1889
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1890 1891
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1892
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1893
#ifdef CONFIG_SMP
1894 1895 1896 1897 1898 1899
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1900 1901
	task_thread_info(p)->cpu = cpu;
#endif
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1916
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1917

1918 1919 1920 1921 1922 1923
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1924 1925 1926
/*
 * Is this task likely cache-hot:
 */
1927
static int
1928 1929 1930 1931
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1932 1933 1934
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1935 1936 1937
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1938 1939
		return 1;

1940 1941 1942
	if (p->sched_class != &fair_sched_class)
		return 0;

1943 1944 1945 1946 1947
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1948 1949 1950 1951 1952 1953
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1954
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1955
{
I
Ingo Molnar 已提交
1956 1957
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 1959
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960
	u64 clock_offset;
I
Ingo Molnar 已提交
1961 1962

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1963

1964
	trace_sched_migrate_task(p, new_cpu);
1965

I
Ingo Molnar 已提交
1966 1967 1968
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1969 1970 1971 1972
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1973
#endif
1974
	if (old_cpu != new_cpu) {
1975
		p->se.nr_migrations++;
1976
		new_rq->nr_migrations_in++;
1977
#ifdef CONFIG_SCHEDSTATS
1978 1979
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1980
#endif
1981 1982
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
1983
	}
1984 1985
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1986 1987

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1988 1989
}

1990
struct migration_req {
L
Linus Torvalds 已提交
1991 1992
	struct list_head list;

1993
	struct task_struct *task;
L
Linus Torvalds 已提交
1994 1995 1996
	int dest_cpu;

	struct completion done;
1997
};
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2003
static int
2004
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2005
{
2006
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2012
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2021

L
Linus Torvalds 已提交
2022 2023 2024
	return 1;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2068 2069 2070
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2071 2072 2073 2074 2075 2076 2077
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2084
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2085 2086
{
	unsigned long flags;
I
Ingo Molnar 已提交
2087
	int running, on_rq;
R
Roland McGrath 已提交
2088
	unsigned long ncsw;
2089
	struct rq *rq;
L
Linus Torvalds 已提交
2090

2091 2092 2093 2094 2095 2096 2097 2098
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2111 2112 2113
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2114
			cpu_relax();
R
Roland McGrath 已提交
2115
		}
2116

2117 2118 2119 2120 2121 2122
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2123
		trace_sched_wait_task(rq, p);
2124 2125
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2126
		ncsw = 0;
2127
		if (!match_state || p->state == match_state)
2128
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2129
		task_rq_unlock(rq, &flags);
2130

R
Roland McGrath 已提交
2131 2132 2133 2134 2135 2136
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2147

2148 2149 2150 2151 2152
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2153
		 * So if it was still runnable (but just not actively
2154 2155 2156 2157 2158 2159 2160
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2161

2162 2163 2164 2165 2166 2167 2168
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2169 2170

	return ncsw;
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2186
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2196
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2197 2198

/*
2199 2200
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2201 2202 2203 2204
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2205
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2206
{
2207
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2208
	unsigned long total = weighted_cpuload(cpu);
2209

2210
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2211
		return total;
2212

I
Ingo Molnar 已提交
2213
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2214 2215 2216
}

/*
2217 2218
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2219
 */
A
Alexey Dobriyan 已提交
2220
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2221
{
2222
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2223
	unsigned long total = weighted_cpuload(cpu);
2224

2225
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2226
		return total;
2227

I
Ingo Molnar 已提交
2228
	return max(rq->cpu_load[type-1], total);
2229 2230
}

N
Nick Piggin 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2248
		/* Skip over this group if it has no CPUs allowed */
2249 2250
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2251
			continue;
2252

2253 2254
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2255 2256 2257 2258

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2259
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2270 2271
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2272 2273 2274 2275 2276 2277 2278 2279

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2280
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2281 2282 2283 2284 2285 2286 2287

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2288
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2289
 */
I
Ingo Molnar 已提交
2290
static int
2291
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2292 2293 2294 2295 2296
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2297
	/* Traverse only the allowed CPUs */
2298
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2299
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2325

2326
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2327 2328 2329
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2330 2331
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2332 2333
		if (tmp->flags & flag)
			sd = tmp;
2334
	}
N
Nick Piggin 已提交
2335

2336 2337 2338
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2339 2340
	while (sd) {
		struct sched_group *group;
2341 2342 2343 2344 2345 2346
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2347 2348

		group = find_idlest_group(sd, t, cpu);
2349 2350 2351 2352
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2353

2354
		new_cpu = find_idlest_cpu(group, t, cpu);
2355 2356 2357 2358 2359
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2360

2361
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2362
		cpu = new_cpu;
2363
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2364 2365
		sd = NULL;
		for_each_domain(cpu, tmp) {
2366
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2378

T
Thomas Gleixner 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2414
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2415
{
2416
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2417 2418
	unsigned long flags;
	long old_state;
2419
	struct rq *rq;
L
Linus Torvalds 已提交
2420

2421 2422 2423
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2424
#ifdef CONFIG_SMP
2425
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2426 2427 2428 2429 2430 2431
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2432
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2433 2434 2435 2436 2437 2438 2439
				update_shares(sd);
				break;
			}
		}
	}
#endif

2440
	smp_wmb();
L
Linus Torvalds 已提交
2441
	rq = task_rq_lock(p, &flags);
2442
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2443 2444 2445 2446
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2447
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2448 2449 2450
		goto out_running;

	cpu = task_cpu(p);
2451
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2458 2459 2460
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2461 2462 2463 2464 2465 2466
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2467
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2474 2475 2476 2477 2478 2479 2480
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2481
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2482 2483 2484 2485 2486
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2487
#endif /* CONFIG_SCHEDSTATS */
2488

L
Linus Torvalds 已提交
2489 2490
out_activate:
#endif /* CONFIG_SMP */
2491 2492 2493 2494 2495 2496 2497 2498 2499
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2500
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2501 2502
	success = 1;

P
Peter Zijlstra 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2519
out_running:
2520
	trace_sched_wakeup(rq, p, success);
2521
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2522

L
Linus Torvalds 已提交
2523
	p->state = TASK_RUNNING;
2524 2525 2526 2527
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2545
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2546
{
2547
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2548 2549 2550
}
EXPORT_SYMBOL(wake_up_process);

2551
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2559 2560 2561 2562 2563 2564 2565
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2566
	p->se.prev_sum_exec_runtime	= 0;
2567
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2568 2569
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2570 2571
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2572 2573 2574

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2575 2576 2577 2578 2579 2580
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2581
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2582
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2583
#endif
N
Nick Piggin 已提交
2584

P
Peter Zijlstra 已提交
2585
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2586
	p->se.on_rq = 0;
2587
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2588

2589 2590 2591 2592
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2614
	set_task_cpu(p, cpu);
2615 2616

	/*
2617
	 * Make sure we do not leak PI boosting priority to the child.
2618
	 */
2619
	p->prio = current->normal_prio;
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2631 2632 2633 2634 2635
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2636 2637 2638 2639 2640 2641
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2642

H
Hiroshi Shimamoto 已提交
2643 2644
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2645

2646
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2647
	if (likely(sched_info_on()))
2648
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2649
#endif
2650
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2651 2652
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2653
#ifdef CONFIG_PREEMPT
2654
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2655
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2656
#endif
2657 2658
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2659
	put_cpu();
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2669
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2670 2671
{
	unsigned long flags;
I
Ingo Molnar 已提交
2672
	struct rq *rq;
L
Linus Torvalds 已提交
2673 2674

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2675
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2676
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2677 2678 2679

	p->prio = effective_prio(p);

2680
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2681
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2682 2683
	} else {
		/*
I
Ingo Molnar 已提交
2684 2685
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2686
		 */
2687
		p->sched_class->task_new(rq, p);
2688
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2689
	}
2690
	trace_sched_wakeup_new(rq, p, 1);
2691
	check_preempt_curr(rq, p, 0);
2692 2693 2694 2695
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2696
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2697 2698
}

2699 2700 2701
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2702
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2703
 * @notifier: notifier struct to register
2704 2705 2706 2707 2708 2709 2710 2711 2712
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2713
 * @notifier: notifier struct to unregister
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2743
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2755
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2756

2757 2758 2759
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2760
 * @prev: the current task that is being switched out
2761 2762 2763 2764 2765 2766 2767 2768 2769
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2770 2771 2772
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2773
{
2774
	fire_sched_out_preempt_notifiers(prev, next);
2775 2776 2777 2778
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2779 2780
/**
 * finish_task_switch - clean up after a task-switch
2781
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2782 2783
 * @prev: the thread we just switched away from.
 *
2784 2785 2786 2787
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2788 2789
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2790
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2791 2792 2793
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2794
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2795 2796 2797
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2798
	long prev_state;
2799 2800 2801 2802 2803 2804
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2810
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2811 2812
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2813
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2819
	prev_state = prev->state;
2820
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2821
	perf_counter_task_sched_in(current, cpu_of(rq));
2822
	finish_lock_switch(rq, prev);
2823
#ifdef CONFIG_SMP
2824
	if (post_schedule)
2825 2826
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2827

2828
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2829 2830
	if (mm)
		mmdrop(mm);
2831
	if (unlikely(prev_state == TASK_DEAD)) {
2832 2833 2834
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2835
		 */
2836
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2837
		put_task_struct(prev);
2838
	}
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2845
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2846 2847
	__releases(rq->lock)
{
2848 2849
	struct rq *rq = this_rq();

2850 2851 2852 2853 2854
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2855
	if (current->set_child_tid)
2856
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2863
static inline void
2864
context_switch(struct rq *rq, struct task_struct *prev,
2865
	       struct task_struct *next)
L
Linus Torvalds 已提交
2866
{
I
Ingo Molnar 已提交
2867
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2868

2869
	prepare_task_switch(rq, prev, next);
2870
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2871 2872
	mm = next->mm;
	oldmm = prev->active_mm;
2873 2874 2875 2876 2877
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2878
	arch_start_context_switch(prev);
2879

I
Ingo Molnar 已提交
2880
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2887
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2888 2889 2890
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2891 2892 2893 2894 2895 2896 2897
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2898
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2899
#endif
L
Linus Torvalds 已提交
2900 2901 2902 2903

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2904 2905 2906 2907 2908 2909 2910
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2934
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2949 2950
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2951

2952
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2962
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2968 2969 2970 2971 2972 2973
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2989 2990
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991
{
2992 2993 2994 2995
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3008

3009 3010
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3045
/*
I
Ingo Molnar 已提交
3046 3047
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3048
 */
I
Ingo Molnar 已提交
3049
static void update_cpu_load(struct rq *this_rq)
3050
{
3051
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3064 3065 3066 3067 3068 3069 3070
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3071 3072
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3073 3074 3075 3076 3077

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3078 3079
}

I
Ingo Molnar 已提交
3080 3081
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3088
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3089 3090 3091
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3092
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3093 3094 3095 3096
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3097
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3098
			spin_lock(&rq1->lock);
3099
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3100 3101
		} else {
			spin_lock(&rq2->lock);
3102
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3103 3104
		}
	}
3105 3106
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112 3113 3114
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3115
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3129
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3130 3131
 * the cpu_allowed mask is restored.
 */
3132
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3133
{
3134
	struct migration_req req;
L
Linus Torvalds 已提交
3135
	unsigned long flags;
3136
	struct rq *rq;
L
Linus Torvalds 已提交
3137 3138

	rq = task_rq_lock(p, &flags);
3139
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3140
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3147

L
Linus Torvalds 已提交
3148 3149 3150 3151 3152
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3153

L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3161 3162
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3163 3164 3165 3166
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3167
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3168
	put_cpu();
N
Nick Piggin 已提交
3169 3170
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3177 3178
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3179
{
3180
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3181
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3182
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3183 3184 3185 3186
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3187
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3193
static
3194
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3195
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3196
		     int *all_pinned)
L
Linus Torvalds 已提交
3197
{
3198
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3205
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3206
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3207
		return 0;
3208
	}
3209 3210
	*all_pinned = 0;

3211 3212
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3213
		return 0;
3214
	}
L
Linus Torvalds 已提交
3215

3216 3217 3218 3219 3220 3221
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3222 3223 3224
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3225
#ifdef CONFIG_SCHEDSTATS
3226
		if (tsk_cache_hot) {
3227
			schedstat_inc(sd, lb_hot_gained[idle]);
3228 3229
			schedstat_inc(p, se.nr_forced_migrations);
		}
3230 3231 3232 3233
#endif
		return 1;
	}

3234
	if (tsk_cache_hot) {
3235
		schedstat_inc(p, se.nr_failed_migrations_hot);
3236
		return 0;
3237
	}
L
Linus Torvalds 已提交
3238 3239 3240
	return 1;
}

3241 3242 3243 3244 3245
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3246
{
3247
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3248 3249
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3250

3251
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3252 3253
		goto out;

3254 3255
	pinned = 1;

L
Linus Torvalds 已提交
3256
	/*
I
Ingo Molnar 已提交
3257
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3258
	 */
I
Ingo Molnar 已提交
3259 3260
	p = iterator->start(iterator->arg);
next:
3261
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3262
		goto out;
3263 3264

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3265 3266 3267
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3268 3269
	}

I
Ingo Molnar 已提交
3270
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3271
	pulled++;
I
Ingo Molnar 已提交
3272
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3284
	/*
3285
	 * We only want to steal up to the prescribed amount of weighted load.
3286
	 */
3287
	if (rem_load_move > 0) {
3288 3289
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3290 3291
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3292 3293 3294
	}
out:
	/*
3295
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3296 3297 3298 3299
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3300 3301 3302

	if (all_pinned)
		*all_pinned = pinned;
3303 3304

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3305 3306
}

I
Ingo Molnar 已提交
3307
/*
P
Peter Williams 已提交
3308 3309 3310
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3311 3312 3313 3314
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3315
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3316 3317 3318
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3319
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3320
	unsigned long total_load_moved = 0;
3321
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3322 3323

	do {
P
Peter Williams 已提交
3324 3325
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3326
				max_load_move - total_load_moved,
3327
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3328
		class = class->next;
3329

3330 3331 3332 3333 3334 3335
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3336 3337
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3338
#endif
P
Peter Williams 已提交
3339
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3340

P
Peter Williams 已提交
3341 3342 3343
	return total_load_moved > 0;
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3380
	const struct sched_class *class;
P
Peter Williams 已提交
3381 3382

	for (class = sched_class_highest; class; class = class->next)
3383
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3384 3385 3386
			return 1;

	return 0;
I
Ingo Molnar 已提交
3387
}
3388
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3389
/*
3390 3391
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3392
 */
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3411
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3412 3413 3414 3415 3416 3417
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3418
#endif
3419
};
L
Linus Torvalds 已提交
3420

3421
/*
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3454
		load_idx = sd->busy_idx;
3455 3456 3457
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3458
		load_idx = sd->newidle_idx;
3459 3460
		break;
	default:
N
Nick Piggin 已提交
3461
		load_idx = sd->idle_idx;
3462 3463
		break;
	}
L
Linus Torvalds 已提交
3464

3465 3466
	return load_idx;
}
L
Linus Torvalds 已提交
3467 3468


3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3507

3508 3509
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3510

3511 3512 3513 3514 3515 3516 3517
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3518

3519 3520 3521 3522 3523 3524 3525 3526
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3541

3542 3543 3544 3545 3546 3547 3548
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3549

3550 3551 3552 3553 3554 3555 3556
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3557

3558
/**
3559
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3560 3561 3562 3563 3564
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3565 3566 3567 3568 3569
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3570 3571 3572 3573 3574 3575 3576 3577
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3578

3579 3580 3581
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3582

3583 3584
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3585

3586 3587 3588 3589 3590 3591
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3592

3593 3594 3595 3596 3597 3598 3599
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3645

3646 3647
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3648

3649 3650
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3651

3652
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3653
		if (local_group) {
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3666
		}
3667

3668 3669 3670
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3671

3672 3673
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3686

3687 3688 3689
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3690

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3720
 */
3721 3722 3723 3724
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3725
{
3726
	struct sched_group *group = sd->groups;
3727
	struct sg_lb_stats sgs;
3728 3729
	int load_idx;

3730
	init_sd_power_savings_stats(sd, sds, idle);
3731
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3732 3733 3734 3735

	do {
		int local_group;

3736 3737
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3738
		memset(&sgs, 0, sizeof(sgs));
3739 3740
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3741

3742 3743
		if (local_group && balance && !(*balance))
			return;
3744

3745 3746
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3747 3748

		if (local_group) {
3749 3750 3751 3752 3753
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3754 3755
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3756 3757 3758 3759 3760
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3761
		}
3762

3763
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3764 3765 3766
		group = group->next;
	} while (group != sd->groups);

3767
}
L
Linus Torvalds 已提交
3768

3769 3770
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3771 3772
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3791

3792 3793 3794 3795 3796
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3797

L
Linus Torvalds 已提交
3798
	/*
3799 3800 3801
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3802
	 */
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3845 3846 3847 3848 3849
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3850
	if (sds->max_load < sds->avg_load) {
3851
		*imbalance = 0;
3852
		return fix_small_imbalance(sds, this_cpu, imbalance);
3853
	}
3854 3855

	/* Don't want to pull so many tasks that a group would go idle */
3856 3857
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3858

L
Linus Torvalds 已提交
3859
	/* How much load to actually move to equalise the imbalance */
3860 3861
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3862 3863
			/ SCHED_LOAD_SCALE;

3864 3865 3866 3867 3868 3869
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3870 3871
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3872

3873
}
3874
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3875

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3900 3901 3902 3903 3904 3905 3906
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3907

3908
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3909

3910 3911 3912 3913 3914 3915 3916
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3927 3928
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3929

3930 3931
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3932

3933
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3934 3935
		goto out_balanced;

3936
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3937

3938 3939 3940 3941
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3942 3943
		goto out_balanced;

3944 3945 3946 3947
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3948

L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955 3956
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3957
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3958 3959
	 * appear as very large values with unsigned longs.
	 */
3960
	if (sds.max_load <= sds.busiest_load_per_task)
3961 3962
		goto out_balanced;

3963 3964
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3965
	return sds.busiest;
L
Linus Torvalds 已提交
3966 3967

out_balanced:
3968 3969 3970 3971 3972 3973
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3974
ret:
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3982
static struct rq *
I
Ingo Molnar 已提交
3983
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3984
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3985
{
3986
	struct rq *busiest = NULL, *rq;
3987
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3988 3989
	int i;

3990
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3991
		unsigned long wl;
3992

3993
		if (!cpumask_test_cpu(i, cpus))
3994 3995
			continue;

3996
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3997
		wl = weighted_cpuload(i);
3998

I
Ingo Molnar 已提交
3999
		if (rq->nr_running == 1 && wl > imbalance)
4000
			continue;
L
Linus Torvalds 已提交
4001

I
Ingo Molnar 已提交
4002 4003
		if (wl > max_load) {
			max_load = wl;
4004
			busiest = rq;
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010
		}
	}

	return busiest;
}

4011 4012 4013 4014 4015 4016
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4017 4018 4019
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4020 4021 4022 4023
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4024
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4025
			struct sched_domain *sd, enum cpu_idle_type idle,
4026
			int *balance)
L
Linus Torvalds 已提交
4027
{
P
Peter Williams 已提交
4028
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4029 4030
	struct sched_group *group;
	unsigned long imbalance;
4031
	struct rq *busiest;
4032
	unsigned long flags;
4033
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4034

4035
	cpumask_setall(cpus);
4036

4037 4038 4039
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4040
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4041
	 * portraying it as CPU_NOT_IDLE.
4042
	 */
I
Ingo Molnar 已提交
4043
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4044
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4045
		sd_idle = 1;
L
Linus Torvalds 已提交
4046

4047
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4048

4049
redo:
4050
	update_shares(sd);
4051
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4052
				   cpus, balance);
4053

4054
	if (*balance == 0)
4055 4056
		goto out_balanced;

L
Linus Torvalds 已提交
4057 4058 4059 4060 4061
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4062
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4068
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4069 4070 4071

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4072
	ld_moved = 0;
L
Linus Torvalds 已提交
4073 4074 4075 4076
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4077
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4078 4079
		 * correctly treated as an imbalance.
		 */
4080
		local_irq_save(flags);
N
Nick Piggin 已提交
4081
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4082
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4083
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4084
		double_rq_unlock(this_rq, busiest);
4085
		local_irq_restore(flags);
4086

4087 4088 4089
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4090
		if (ld_moved && this_cpu != smp_processor_id())
4091 4092
			resched_cpu(this_cpu);

4093
		/* All tasks on this runqueue were pinned by CPU affinity */
4094
		if (unlikely(all_pinned)) {
4095 4096
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4097
				goto redo;
4098
			goto out_balanced;
4099
		}
L
Linus Torvalds 已提交
4100
	}
4101

P
Peter Williams 已提交
4102
	if (!ld_moved) {
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4108
			spin_lock_irqsave(&busiest->lock, flags);
4109 4110 4111 4112

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4113 4114
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4115
				spin_unlock_irqrestore(&busiest->lock, flags);
4116 4117 4118 4119
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4120 4121 4122
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4123
				active_balance = 1;
L
Linus Torvalds 已提交
4124
			}
4125
			spin_unlock_irqrestore(&busiest->lock, flags);
4126
			if (active_balance)
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4133
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4134
		}
4135
	} else
L
Linus Torvalds 已提交
4136 4137
		sd->nr_balance_failed = 0;

4138
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4139 4140
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4141 4142 4143 4144 4145 4146 4147 4148 4149
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4150 4151
	}

P
Peter Williams 已提交
4152
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4153
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4154 4155 4156
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4157 4158 4159 4160

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4161
	sd->nr_balance_failed = 0;
4162 4163

out_one_pinned:
L
Linus Torvalds 已提交
4164
	/* tune up the balancing interval */
4165 4166
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4167 4168
		sd->balance_interval *= 2;

4169
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4170
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 4172 4173 4174
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4175 4176
	if (ld_moved)
		update_shares(sd);
4177
	return ld_moved;
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4184
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4185 4186
 * this_rq is locked.
 */
4187
static int
4188
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4189 4190
{
	struct sched_group *group;
4191
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4192
	unsigned long imbalance;
P
Peter Williams 已提交
4193
	int ld_moved = 0;
N
Nick Piggin 已提交
4194
	int sd_idle = 0;
4195
	int all_pinned = 0;
4196
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4197

4198
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4199

4200 4201 4202 4203
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4204
	 * portraying it as CPU_NOT_IDLE.
4205 4206 4207
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4208
		sd_idle = 1;
L
Linus Torvalds 已提交
4209

4210
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4211
redo:
4212
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4213
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4214
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4215
	if (!group) {
I
Ingo Molnar 已提交
4216
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4217
		goto out_balanced;
L
Linus Torvalds 已提交
4218 4219
	}

4220
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4221
	if (!busiest) {
I
Ingo Molnar 已提交
4222
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4223
		goto out_balanced;
L
Linus Torvalds 已提交
4224 4225
	}

N
Nick Piggin 已提交
4226 4227
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4228
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4229

P
Peter Williams 已提交
4230
	ld_moved = 0;
4231 4232 4233
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4234 4235
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4236
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4237 4238
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4239
		double_unlock_balance(this_rq, busiest);
4240

4241
		if (unlikely(all_pinned)) {
4242 4243
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4244 4245
				goto redo;
		}
4246 4247
	}

P
Peter Williams 已提交
4248
	if (!ld_moved) {
4249
		int active_balance = 0;
4250

I
Ingo Molnar 已提交
4251
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4252 4253
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4254
			return -1;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4291
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4304 4305 4306 4307
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4308 4309
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4310
		spin_lock(&this_rq->lock);
4311

N
Nick Piggin 已提交
4312
	} else
4313
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4314

4315
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4316
	return ld_moved;
4317 4318

out_balanced:
I
Ingo Molnar 已提交
4319
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4320
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4321
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4322
		return -1;
4323
	sd->nr_balance_failed = 0;
4324

4325
	return 0;
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4332
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4333 4334
{
	struct sched_domain *sd;
4335
	int pulled_task = 0;
I
Ingo Molnar 已提交
4336
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4337 4338

	for_each_domain(this_cpu, sd) {
4339 4340 4341 4342 4343 4344
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4345
			/* If we've pulled tasks over stop searching: */
4346
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4347
							   sd);
4348 4349 4350 4351 4352 4353

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4354
	}
I
Ingo Molnar 已提交
4355
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4356 4357 4358 4359 4360
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4361
	}
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4372
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4373
{
4374
	int target_cpu = busiest_rq->push_cpu;
4375 4376
	struct sched_domain *sd;
	struct rq *target_rq;
4377

4378
	/* Is there any task to move? */
4379 4380 4381 4382
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4383 4384

	/*
4385
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4386
	 * we need to fix it. Originally reported by
4387
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4388
	 */
4389
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4390

4391 4392
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4393 4394
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4395 4396

	/* Search for an sd spanning us and the target CPU. */
4397
	for_each_domain(target_cpu, sd) {
4398
		if ((sd->flags & SD_LOAD_BALANCE) &&
4399
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4400
				break;
4401
	}
4402

4403
	if (likely(sd)) {
4404
		schedstat_inc(sd, alb_count);
4405

P
Peter Williams 已提交
4406 4407
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4408 4409 4410 4411
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4412
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4413 4414
}

4415 4416 4417
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4418
	cpumask_var_t cpu_mask;
4419
	cpumask_var_t ilb_grp_nohz_mask;
4420 4421 4422 4423
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4424 4425 4426 4427 4428
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4540
	return cpumask_first(nohz.cpu_mask);
4541 4542 4543
}
#endif

4544
/*
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4555
 *
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4571 4572 4573 4574 4575 4576 4577 4578
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4579 4580
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4581

4582 4583 4584
			return 0;
		}

4585 4586
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4587
		/* time for ilb owner also to sleep */
4588
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4589 4590 4591 4592 4593 4594 4595 4596 4597
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4614
			return 1;
4615
		}
4616
	} else {
4617
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4618 4619
			return 0;

4620
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4633 4634 4635 4636 4637
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4638
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4639
{
4640 4641
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4642 4643
	unsigned long interval;
	struct sched_domain *sd;
4644
	/* Earliest time when we have to do rebalance again */
4645
	unsigned long next_balance = jiffies + 60*HZ;
4646
	int update_next_balance = 0;
4647
	int need_serialize;
L
Linus Torvalds 已提交
4648

4649
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4650 4651 4652 4653
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4654
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4661 4662 4663
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4664
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4665

4666
		if (need_serialize) {
4667 4668 4669 4670
			if (!spin_trylock(&balancing))
				goto out;
		}

4671
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4672
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4673 4674
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4675 4676 4677
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4678
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4679
			}
4680
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4681
		}
4682
		if (need_serialize)
4683 4684
			spin_unlock(&balancing);
out:
4685
		if (time_after(next_balance, sd->last_balance + interval)) {
4686
			next_balance = sd->last_balance + interval;
4687 4688
			update_next_balance = 1;
		}
4689 4690 4691 4692 4693 4694 4695 4696

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4697
	}
4698 4699 4700 4701 4702 4703 4704 4705

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4706 4707 4708 4709 4710 4711 4712 4713 4714
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4715 4716 4717 4718
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4719

I
Ingo Molnar 已提交
4720
	rebalance_domains(this_cpu, idle);
4721 4722 4723 4724 4725 4726 4727

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4728 4729
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4730 4731 4732
		struct rq *rq;
		int balance_cpu;

4733 4734 4735 4736
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4737 4738 4739 4740 4741 4742 4743 4744
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4745
			rebalance_domains(balance_cpu, CPU_IDLE);
4746 4747

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4748 4749
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4750 4751 4752 4753 4754
		}
	}
#endif
}

4755 4756 4757 4758 4759
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4760 4761 4762 4763 4764 4765 4766
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4767
static inline void trigger_load_balance(struct rq *rq, int cpu)
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4779
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4780 4781 4782 4783
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4784
			int ilb = find_new_ilb(cpu);
4785

4786
			if (ilb < nr_cpu_ids)
4787 4788 4789 4790 4791 4792 4793 4794 4795
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4796
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4797 4798 4799 4800 4801 4802 4803 4804 4805
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4806
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4807 4808
		return;
#endif
4809 4810 4811
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4812
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4813
}
I
Ingo Molnar 已提交
4814 4815 4816

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4817 4818 4819
/*
 * on UP we do not need to balance between CPUs:
 */
4820
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4821 4822
{
}
I
Ingo Molnar 已提交
4823

L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4831
 * Return any ns on the sched_clock that have not yet been accounted in
4832
 * @p in case that task is currently running.
4833 4834
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4835
 */
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4850
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4851 4852
{
	unsigned long flags;
4853
	struct rq *rq;
4854
	u64 ns = 0;
4855

4856
	rq = task_rq_lock(p, &flags);
4857 4858
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4859

4860 4861
	return ns;
}
4862

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4880

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4900
	task_rq_unlock(rq, &flags);
4901

L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4909
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4910
 */
4911 4912
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4913 4914 4915 4916
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4917
	/* Add user time to process. */
L
Linus Torvalds 已提交
4918
	p->utime = cputime_add(p->utime, cputime);
4919
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4920
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926 4927

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4928 4929

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4930 4931
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4932 4933
}

4934 4935 4936 4937
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4938
 * @cputime_scaled: cputime scaled by cpu frequency
4939
 */
4940 4941
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4942 4943 4944 4945 4946 4947
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4948
	/* Add guest time to process. */
4949
	p->utime = cputime_add(p->utime, cputime);
4950
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4951
	account_group_user_time(p, cputime);
4952 4953
	p->gtime = cputime_add(p->gtime, cputime);

4954
	/* Add guest time to cpustat. */
4955 4956 4957 4958
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4959 4960 4961 4962 4963
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4964
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4965 4966
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4967
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4968 4969 4970 4971
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4972
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4973
		account_guest_time(p, cputime, cputime_scaled);
4974 4975
		return;
	}
4976

4977
	/* Add system time to process. */
L
Linus Torvalds 已提交
4978
	p->stime = cputime_add(p->stime, cputime);
4979
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4980
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987 4988

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4989 4990
		cpustat->system = cputime64_add(cpustat->system, tmp);

4991 4992
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4993 4994 4995 4996
	/* Account for system time used */
	acct_update_integrals(p);
}

4997
/*
L
Linus Torvalds 已提交
4998 4999
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5000
 */
5001
void account_steal_time(cputime_t cputime)
5002
{
5003 5004 5005 5006
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5007 5008
}

L
Linus Torvalds 已提交
5009
/*
5010 5011
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5012
 */
5013
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5014 5015
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5016
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5017
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5018

5019 5020 5021 5022
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5023 5024
}

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5040
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5064 5065
}

5066 5067
#endif

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5138
	struct task_struct *curr = rq->curr;
5139 5140

	sched_clock_tick();
I
Ingo Molnar 已提交
5141 5142

	spin_lock(&rq->lock);
5143
	update_rq_clock(rq);
5144
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5145
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5146
	spin_unlock(&rq->lock);
5147

5148 5149
	perf_counter_task_tick(curr, cpu);

5150
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5151 5152
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5153
#endif
L
Linus Torvalds 已提交
5154 5155
}

5156
notrace unsigned long get_parent_ip(unsigned long addr)
5157 5158 5159 5160 5161 5162 5163 5164
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5165

5166 5167 5168
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5169
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5170
{
5171
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5172 5173 5174
	/*
	 * Underflow?
	 */
5175 5176
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5177
#endif
L
Linus Torvalds 已提交
5178
	preempt_count() += val;
5179
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5180 5181 5182
	/*
	 * Spinlock count overflowing soon?
	 */
5183 5184
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5185 5186 5187
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5188 5189 5190
}
EXPORT_SYMBOL(add_preempt_count);

5191
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5192
{
5193
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5194 5195 5196
	/*
	 * Underflow?
	 */
5197
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5198
		return;
L
Linus Torvalds 已提交
5199 5200 5201
	/*
	 * Is the spinlock portion underflowing?
	 */
5202 5203 5204
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5205
#endif
5206

5207 5208
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5216
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5217
 */
I
Ingo Molnar 已提交
5218
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5219
{
5220 5221 5222 5223 5224
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5225
	debug_show_held_locks(prev);
5226
	print_modules();
I
Ingo Molnar 已提交
5227 5228
	if (irqs_disabled())
		print_irqtrace_events(prev);
5229 5230 5231 5232 5233

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5234
}
L
Linus Torvalds 已提交
5235

I
Ingo Molnar 已提交
5236 5237 5238 5239 5240
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5241
	/*
I
Ingo Molnar 已提交
5242
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5243 5244 5245
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5246
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5247 5248
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5249 5250
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5251
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5252 5253
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5254 5255
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5256 5257
	}
#endif
I
Ingo Molnar 已提交
5258 5259
}

M
Mike Galbraith 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5282 5283 5284 5285
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5286
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5287
{
5288
	const struct sched_class *class;
I
Ingo Molnar 已提交
5289
	struct task_struct *p;
L
Linus Torvalds 已提交
5290 5291

	/*
I
Ingo Molnar 已提交
5292 5293
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5294
	 */
I
Ingo Molnar 已提交
5295
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5296
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5297 5298
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5299 5300
	}

I
Ingo Molnar 已提交
5301 5302
	class = sched_class_highest;
	for ( ; ; ) {
5303
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5313

I
Ingo Molnar 已提交
5314 5315 5316
/*
 * schedule() is the main scheduler function.
 */
5317
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5318 5319
{
	struct task_struct *prev, *next;
5320
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5321
	struct rq *rq;
5322
	int cpu;
I
Ingo Molnar 已提交
5323

5324 5325
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5336

5337
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5338
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5339

5340
	spin_lock_irq(&rq->lock);
5341
	update_rq_clock(rq);
5342
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5343 5344

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5345
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5346
			prev->state = TASK_RUNNING;
5347
		else
5348
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5349
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5350 5351
	}

5352 5353 5354 5355
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5356

I
Ingo Molnar 已提交
5357
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5358 5359
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5360
	put_prev_task(rq, prev);
5361
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5362 5363

	if (likely(prev != next)) {
5364
		sched_info_switch(prev, next);
5365
		perf_counter_task_sched_out(prev, next, cpu);
5366

L
Linus Torvalds 已提交
5367 5368 5369 5370
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5371
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5372 5373 5374 5375 5376 5377
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5378 5379 5380
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5381
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5382
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5383

L
Linus Torvalds 已提交
5384
	preempt_enable_no_resched();
5385
	if (need_resched())
L
Linus Torvalds 已提交
5386 5387 5388 5389
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5451 5452
#ifdef CONFIG_PREEMPT
/*
5453
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5454
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5455 5456 5457 5458 5459
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5460

L
Linus Torvalds 已提交
5461 5462
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5463
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5464
	 */
N
Nick Piggin 已提交
5465
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5466 5467
		return;

5468 5469 5470 5471
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5472

5473 5474 5475 5476 5477
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5478
	} while (need_resched());
L
Linus Torvalds 已提交
5479 5480 5481 5482
}
EXPORT_SYMBOL(preempt_schedule);

/*
5483
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5491

5492
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5493 5494
	BUG_ON(ti->preempt_count || !irqs_disabled());

5495 5496 5497 5498 5499 5500
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5501

5502 5503 5504 5505 5506
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5507
	} while (need_resched());
L
Linus Torvalds 已提交
5508 5509 5510 5511
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5512 5513
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5514
{
5515
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5516 5517 5518 5519
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5520 5521
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5522 5523 5524
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5525
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5526 5527
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5528
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5529
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5530
{
5531
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5532

5533
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5534 5535
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5536
		if (curr->func(curr, mode, sync, key) &&
5537
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5547
 * @key: is directly passed to the wakeup function
5548 5549 5550
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5551
 */
5552
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5553
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5566
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5567 5568 5569 5570
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5571 5572 5573 5574 5575
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5576
/**
5577
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5578 5579 5580
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5581
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5589 5590 5591
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5592
 */
5593 5594
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5606
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5607 5608
	spin_unlock_irqrestore(&q->lock, flags);
}
5609 5610 5611 5612 5613 5614 5615 5616 5617
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5618 5619
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5620 5621 5622 5623 5624 5625 5626 5627
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5628 5629 5630
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5631
 */
5632
void complete(struct completion *x)
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5638
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5639 5640 5641 5642
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5643 5644 5645 5646 5647
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5648 5649 5650
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5651
 */
5652
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5658
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5659 5660 5661 5662
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5663 5664
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669 5670 5671
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5672
			if (signal_pending_state(state, current)) {
5673 5674
				timeout = -ERESTARTSYS;
				break;
5675 5676
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5677 5678 5679
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5680
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5681
		__remove_wait_queue(&x->wait, &wait);
5682 5683
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5684 5685
	}
	x->done--;
5686
	return timeout ?: 1;
L
Linus Torvalds 已提交
5687 5688
}

5689 5690
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5691 5692 5693 5694
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5695
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5696
	spin_unlock_irq(&x->wait.lock);
5697 5698
	return timeout;
}
L
Linus Torvalds 已提交
5699

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5710
void __sched wait_for_completion(struct completion *x)
5711 5712
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5713
}
5714
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5715

5716 5717 5718 5719 5720 5721 5722 5723 5724
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5725
unsigned long __sched
5726
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5727
{
5728
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5729
}
5730
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5731

5732 5733 5734 5735 5736 5737 5738
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5739
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5740
{
5741 5742 5743 5744
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5745
}
5746
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5747

5748 5749 5750 5751 5752 5753 5754 5755
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5756
unsigned long __sched
5757 5758
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5759
{
5760
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5761
}
5762
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5763

5764 5765 5766 5767 5768 5769 5770
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5826 5827
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5828
{
I
Ingo Molnar 已提交
5829 5830 5831 5832
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5833

5834
	__set_current_state(state);
L
Linus Torvalds 已提交
5835

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5850 5851 5852
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5853
long __sched
I
Ingo Molnar 已提交
5854
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5855
{
5856
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5857 5858 5859
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5860
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5861
{
5862
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5863 5864 5865
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5866
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5867
{
5868
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5869 5870 5871
}
EXPORT_SYMBOL(sleep_on_timeout);

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5884
void rt_mutex_setprio(struct task_struct *p, int prio)
5885 5886
{
	unsigned long flags;
5887
	int oldprio, on_rq, running;
5888
	struct rq *rq;
5889
	const struct sched_class *prev_class = p->sched_class;
5890 5891 5892 5893

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5894
	update_rq_clock(rq);
5895

5896
	oldprio = p->prio;
I
Ingo Molnar 已提交
5897
	on_rq = p->se.on_rq;
5898
	running = task_current(rq, p);
5899
	if (on_rq)
5900
		dequeue_task(rq, p, 0);
5901 5902
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5903 5904 5905 5906 5907 5908

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5909 5910
	p->prio = prio;

5911 5912
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5913
	if (on_rq) {
5914
		enqueue_task(rq, p, 0);
5915 5916

		check_class_changed(rq, p, prev_class, oldprio, running);
5917 5918 5919 5920 5921 5922
	}
	task_rq_unlock(rq, &flags);
}

#endif

5923
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5924
{
I
Ingo Molnar 已提交
5925
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5926
	unsigned long flags;
5927
	struct rq *rq;
L
Linus Torvalds 已提交
5928 5929 5930 5931 5932 5933 5934 5935

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5936
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5937 5938 5939 5940
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5941
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5942
	 */
5943
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5944 5945 5946
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5947
	on_rq = p->se.on_rq;
5948
	if (on_rq)
5949
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5950 5951

	p->static_prio = NICE_TO_PRIO(nice);
5952
	set_load_weight(p);
5953 5954 5955
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5956

I
Ingo Molnar 已提交
5957
	if (on_rq) {
5958
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5959
		/*
5960 5961
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5962
		 */
5963
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5964 5965 5966 5967 5968 5969 5970
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5971 5972 5973 5974 5975
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5976
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5977
{
5978 5979
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5980

M
Matt Mackall 已提交
5981 5982 5983 5984
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5994
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5995
{
5996
	long nice, retval;
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6003 6004
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6005 6006 6007
	if (increment > 40)
		increment = 40;

6008
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6014 6015 6016
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6035
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6036 6037 6038 6039 6040 6041 6042 6043
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6044
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6045 6046 6047
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6048
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6063
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6064 6065 6066 6067 6068 6069 6070 6071
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6072
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6073
{
6074
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6075 6076 6077
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6078 6079
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6080
{
I
Ingo Molnar 已提交
6081
	BUG_ON(p->se.on_rq);
6082

L
Linus Torvalds 已提交
6083
	p->policy = policy;
I
Ingo Molnar 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6096
	p->rt_priority = prio;
6097 6098 6099
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6100
	set_load_weight(p);
L
Linus Torvalds 已提交
6101 6102
}

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6119 6120
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6121
{
6122
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6123
	unsigned long flags;
6124
	const struct sched_class *prev_class = p->sched_class;
6125
	struct rq *rq;
6126
	int reset_on_fork;
L
Linus Torvalds 已提交
6127

6128 6129
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6130 6131
recheck:
	/* double check policy once rq lock held */
6132 6133
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6134
		policy = oldpolicy = p->policy;
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6145 6146
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6147 6148
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6149 6150
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6151
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6152
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6153
		return -EINVAL;
6154
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6155 6156
		return -EINVAL;

6157 6158 6159
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6160
	if (user && !capable(CAP_SYS_NICE)) {
6161
		if (rt_policy(policy)) {
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6178 6179 6180 6181 6182 6183
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6184

6185
		/* can't change other user's priorities */
6186
		if (!check_same_owner(p))
6187
			return -EPERM;
6188 6189 6190 6191

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6192
	}
L
Linus Torvalds 已提交
6193

6194
	if (user) {
6195
#ifdef CONFIG_RT_GROUP_SCHED
6196 6197 6198 6199
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6200 6201
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6202
			return -EPERM;
6203 6204
#endif

6205 6206 6207 6208 6209
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6210 6211 6212 6213 6214
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6215 6216 6217 6218
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6219
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6220 6221 6222
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6223 6224
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6225 6226
		goto recheck;
	}
I
Ingo Molnar 已提交
6227
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6228
	on_rq = p->se.on_rq;
6229
	running = task_current(rq, p);
6230
	if (on_rq)
6231
		deactivate_task(rq, p, 0);
6232 6233
	if (running)
		p->sched_class->put_prev_task(rq, p);
6234

6235 6236
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6237
	oldprio = p->prio;
I
Ingo Molnar 已提交
6238
	__setscheduler(rq, p, policy, param->sched_priority);
6239

6240 6241
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6242 6243
	if (on_rq) {
		activate_task(rq, p, 0);
6244 6245

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6246
	}
6247 6248 6249
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6250 6251
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6252 6253
	return 0;
}
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6268 6269
EXPORT_SYMBOL_GPL(sched_setscheduler);

6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6287 6288
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6289 6290 6291
{
	struct sched_param lparam;
	struct task_struct *p;
6292
	int retval;
L
Linus Torvalds 已提交
6293 6294 6295 6296 6297

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6298 6299 6300

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6301
	p = find_process_by_pid(pid);
6302 6303 6304
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6305

L
Linus Torvalds 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6315 6316
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6317
{
6318 6319 6320 6321
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6322 6323 6324 6325 6326 6327 6328 6329
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6330
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6331 6332 6333 6334 6335 6336 6337 6338
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6339
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6340
{
6341
	struct task_struct *p;
6342
	int retval;
L
Linus Torvalds 已提交
6343 6344

	if (pid < 0)
6345
		return -EINVAL;
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350 6351 6352

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6353 6354
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6355 6356 6357 6358 6359 6360
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6361
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6362 6363 6364
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6365
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6366 6367
{
	struct sched_param lp;
6368
	struct task_struct *p;
6369
	int retval;
L
Linus Torvalds 已提交
6370 6371

	if (!param || pid < 0)
6372
		return -EINVAL;
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6399
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6400
{
6401
	cpumask_var_t cpus_allowed, new_mask;
6402 6403
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6404

6405
	get_online_cpus();
L
Linus Torvalds 已提交
6406 6407 6408 6409 6410
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6411
		put_online_cpus();
L
Linus Torvalds 已提交
6412 6413 6414 6415 6416
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6417
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6423 6424 6425 6426 6427 6428 6429 6430
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6431
	retval = -EPERM;
6432
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6433 6434
		goto out_unlock;

6435 6436 6437 6438
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6439 6440
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6441
 again:
6442
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6443

P
Paul Menage 已提交
6444
	if (!retval) {
6445 6446
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6447 6448 6449 6450 6451
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6452
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6453 6454 6455
			goto again;
		}
	}
L
Linus Torvalds 已提交
6456
out_unlock:
6457 6458 6459 6460
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6461
	put_task_struct(p);
6462
	put_online_cpus();
L
Linus Torvalds 已提交
6463 6464 6465 6466
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6467
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6468
{
6469 6470 6471 6472 6473
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6483 6484
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6485
{
6486
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6487 6488
	int retval;

6489 6490
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6491

6492 6493 6494 6495 6496
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6497 6498
}

6499
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6500
{
6501
	struct task_struct *p;
L
Linus Torvalds 已提交
6502 6503
	int retval;

6504
	get_online_cpus();
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509 6510 6511
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6512 6513 6514 6515
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6516
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6517 6518 6519

out_unlock:
	read_unlock(&tasklist_lock);
6520
	put_online_cpus();
L
Linus Torvalds 已提交
6521

6522
	return retval;
L
Linus Torvalds 已提交
6523 6524 6525 6526 6527 6528 6529 6530
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6531 6532
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6533 6534
{
	int ret;
6535
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6536

6537
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6538 6539
		return -EINVAL;

6540 6541
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6542

6543 6544 6545 6546 6547 6548 6549 6550
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6551

6552
	return ret;
L
Linus Torvalds 已提交
6553 6554 6555 6556 6557
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6558 6559
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6560
 */
6561
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6562
{
6563
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6564

6565
	schedstat_inc(rq, yld_count);
6566
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6567 6568 6569 6570 6571 6572

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6573
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6574 6575 6576 6577 6578 6579 6580 6581
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6582
static void __cond_resched(void)
L
Linus Torvalds 已提交
6583
{
6584 6585 6586
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6587 6588 6589 6590 6591
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6592 6593 6594 6595 6596 6597 6598
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6599
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6600
{
6601 6602
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607
		__cond_resched();
		return 1;
	}
	return 0;
}
6608
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6609 6610 6611 6612 6613

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6614
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6615 6616 6617
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6618
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6619
{
N
Nick Piggin 已提交
6620
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6621 6622
	int ret = 0;

N
Nick Piggin 已提交
6623
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6624
		spin_unlock(lock);
N
Nick Piggin 已提交
6625 6626 6627 6628
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6629
		ret = 1;
L
Linus Torvalds 已提交
6630 6631
		spin_lock(lock);
	}
J
Jan Kara 已提交
6632
	return ret;
L
Linus Torvalds 已提交
6633 6634 6635 6636 6637 6638 6639
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6640
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6641
		local_bh_enable();
L
Linus Torvalds 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6653
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6664
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6665 6666 6667 6668 6669 6670 6671
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6672
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6673

6674
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6675 6676 6677
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6678
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6679 6680 6681 6682 6683
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6684
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6685 6686
	long ret;

6687
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6688 6689 6690
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6691
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6702
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6703 6704 6705 6706 6707 6708 6709 6710 6711
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6712
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6713
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6727
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6728 6729 6730 6731 6732 6733 6734 6735 6736
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6737
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6738
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6752
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6753
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6754
{
6755
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6756
	unsigned int time_slice;
6757
	int retval;
L
Linus Torvalds 已提交
6758 6759 6760
	struct timespec t;

	if (pid < 0)
6761
		return -EINVAL;
L
Linus Torvalds 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6773 6774 6775 6776 6777 6778
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6779
		time_slice = DEF_TIMESLICE;
6780
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6781 6782 6783 6784 6785
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6786 6787
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6788 6789
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6790
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6791
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6792 6793
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6794

L
Linus Torvalds 已提交
6795 6796 6797 6798 6799
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6800
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6801

6802
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6803 6804
{
	unsigned long free = 0;
6805
	unsigned state;
L
Linus Torvalds 已提交
6806 6807

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6808
	printk(KERN_INFO "%-13.13s %c", p->comm,
6809
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6810
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6811
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6812
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6813
	else
I
Ingo Molnar 已提交
6814
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6815 6816
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6817
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6818
	else
I
Ingo Molnar 已提交
6819
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6820 6821
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6822
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6823
#endif
6824 6825 6826
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6827

6828
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6829 6830
}

I
Ingo Molnar 已提交
6831
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6832
{
6833
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6834

6835 6836 6837
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6838
#else
6839 6840
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6841 6842 6843 6844 6845 6846 6847 6848
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6849
		if (!state_filter || (p->state & state_filter))
6850
			sched_show_task(p);
L
Linus Torvalds 已提交
6851 6852
	} while_each_thread(g, p);

6853 6854
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6855 6856 6857
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6858
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6859 6860 6861 6862 6863
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6864 6865
}

I
Ingo Molnar 已提交
6866 6867
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6868
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6869 6870
}

6871 6872 6873 6874 6875 6876 6877 6878
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6879
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6880
{
6881
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6882 6883
	unsigned long flags;

6884 6885
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6886 6887 6888
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6889
	idle->prio = idle->normal_prio = MAX_PRIO;
6890
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6891
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6892 6893

	rq->curr = rq->idle = idle;
6894 6895 6896
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6897 6898 6899
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6900 6901 6902
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6903
	task_thread_info(idle)->preempt_count = 0;
6904
#endif
I
Ingo Molnar 已提交
6905 6906 6907 6908
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6909
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6910 6911 6912 6913 6914 6915 6916
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6917
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6918
 */
6919
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6920

I
Ingo Molnar 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6944 6945

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6946 6947
}

L
Linus Torvalds 已提交
6948 6949 6950 6951
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6952
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6971
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6972 6973
 * call is not atomic; no spinlocks may be held.
 */
6974
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6975
{
6976
	struct migration_req req;
L
Linus Torvalds 已提交
6977
	unsigned long flags;
6978
	struct rq *rq;
6979
	int ret = 0;
L
Linus Torvalds 已提交
6980 6981

	rq = task_rq_lock(p, &flags);
6982
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6983 6984 6985 6986
		ret = -EINVAL;
		goto out;
	}

6987
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6988
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6989 6990 6991 6992
		ret = -EINVAL;
		goto out;
	}

6993
	if (p->sched_class->set_cpus_allowed)
6994
		p->sched_class->set_cpus_allowed(p, new_mask);
6995
	else {
6996 6997
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6998 6999
	}

L
Linus Torvalds 已提交
7000
	/* Can the task run on the task's current CPU? If so, we're done */
7001
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7002 7003
		goto out;

R
Rusty Russell 已提交
7004
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7005 7006 7007 7008 7009 7010 7011 7012 7013
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7014

L
Linus Torvalds 已提交
7015 7016
	return ret;
}
7017
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7018 7019

/*
I
Ingo Molnar 已提交
7020
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7021 7022 7023 7024 7025 7026
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7027 7028
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7029
 */
7030
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7031
{
7032
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7033
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7034

7035
	if (unlikely(!cpu_active(dest_cpu)))
7036
		return ret;
L
Linus Torvalds 已提交
7037 7038 7039 7040 7041 7042 7043

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7044
		goto done;
L
Linus Torvalds 已提交
7045
	/* Affinity changed (again). */
7046
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7047
		goto fail;
L
Linus Torvalds 已提交
7048

I
Ingo Molnar 已提交
7049
	on_rq = p->se.on_rq;
7050
	if (on_rq)
7051
		deactivate_task(rq_src, p, 0);
7052

L
Linus Torvalds 已提交
7053
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7054 7055
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7056
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7057
	}
L
Linus Torvalds 已提交
7058
done:
7059
	ret = 1;
L
Linus Torvalds 已提交
7060
fail:
L
Linus Torvalds 已提交
7061
	double_rq_unlock(rq_src, rq_dest);
7062
	return ret;
L
Linus Torvalds 已提交
7063 7064 7065 7066 7067 7068 7069
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7070
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7071 7072
{
	int cpu = (long)data;
7073
	struct rq *rq;
L
Linus Torvalds 已提交
7074 7075 7076 7077 7078 7079

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7080
		struct migration_req *req;
L
Linus Torvalds 已提交
7081 7082 7083 7084 7085 7086
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7087
			break;
L
Linus Torvalds 已提交
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7103
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7104 7105
		list_del_init(head->next);

N
Nick Piggin 已提交
7106 7107 7108
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7129
/*
7130
 * Figure out where task on dead CPU should go, use force if necessary.
7131
 */
7132
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7133
{
7134
	int dest_cpu;
7135
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7152

7153 7154 7155 7156 7157 7158 7159 7160 7161
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7162
		}
7163 7164 7165 7166 7167 7168
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7169 7170 7171 7172 7173 7174 7175 7176 7177
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7178
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7179
{
R
Rusty Russell 已提交
7180
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7194
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7195

7196
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7197

7198 7199
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7200 7201
			continue;

7202 7203 7204
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7205

7206
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7207 7208
}

I
Ingo Molnar 已提交
7209 7210
/*
 * Schedules idle task to be the next runnable task on current CPU.
7211 7212
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7213 7214 7215
 */
void sched_idle_next(void)
{
7216
	int this_cpu = smp_processor_id();
7217
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7218 7219 7220 7221
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7222
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7223

7224 7225 7226
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7227 7228 7229
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7230
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7231

7232 7233
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7234 7235 7236 7237

	spin_unlock_irqrestore(&rq->lock, flags);
}

7238 7239
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7253
/* called under rq->lock with disabled interrupts */
7254
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7255
{
7256
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7257 7258

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7259
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7260 7261

	/* Cannot have done final schedule yet: would have vanished. */
7262
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7263

7264
	get_task_struct(p);
L
Linus Torvalds 已提交
7265 7266 7267

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7268
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7269 7270
	 * fine.
	 */
7271
	spin_unlock_irq(&rq->lock);
7272
	move_task_off_dead_cpu(dead_cpu, p);
7273
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7274

7275
	put_task_struct(p);
L
Linus Torvalds 已提交
7276 7277 7278 7279 7280
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7281
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7282
	struct task_struct *next;
7283

I
Ingo Molnar 已提交
7284 7285 7286
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7287
		update_rq_clock(rq);
7288
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7289 7290
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7291
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7292
		migrate_dead(dead_cpu, next);
7293

L
Linus Torvalds 已提交
7294 7295
	}
}
7296 7297 7298 7299 7300 7301 7302 7303

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7304 7305
#endif /* CONFIG_HOTPLUG_CPU */

7306 7307 7308
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7309 7310
	{
		.procname	= "sched_domain",
7311
		.mode		= 0555,
7312
	},
I
Ingo Molnar 已提交
7313
	{0, },
7314 7315 7316
};

static struct ctl_table sd_ctl_root[] = {
7317
	{
7318
		.ctl_name	= CTL_KERN,
7319
		.procname	= "kernel",
7320
		.mode		= 0555,
7321 7322
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7323
	{0, },
7324 7325 7326 7327 7328
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7329
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7330 7331 7332 7333

	return entry;
}

7334 7335
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7336
	struct ctl_table *entry;
7337

7338 7339 7340
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7341
	 * will always be set. In the lowest directory the names are
7342 7343 7344
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7345 7346
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7347 7348 7349
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7350 7351 7352 7353 7354

	kfree(*tablep);
	*tablep = NULL;
}

7355
static void
7356
set_table_entry(struct ctl_table *entry,
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7370
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7371

7372 7373 7374
	if (table == NULL)
		return NULL;

7375
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7376
		sizeof(long), 0644, proc_doulongvec_minmax);
7377
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7378
		sizeof(long), 0644, proc_doulongvec_minmax);
7379
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7380
		sizeof(int), 0644, proc_dointvec_minmax);
7381
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7382
		sizeof(int), 0644, proc_dointvec_minmax);
7383
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7384
		sizeof(int), 0644, proc_dointvec_minmax);
7385
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7386
		sizeof(int), 0644, proc_dointvec_minmax);
7387
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7388
		sizeof(int), 0644, proc_dointvec_minmax);
7389
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7390
		sizeof(int), 0644, proc_dointvec_minmax);
7391
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7392
		sizeof(int), 0644, proc_dointvec_minmax);
7393
	set_table_entry(&table[9], "cache_nice_tries",
7394 7395
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7396
	set_table_entry(&table[10], "flags", &sd->flags,
7397
		sizeof(int), 0644, proc_dointvec_minmax);
7398 7399 7400
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7401 7402 7403 7404

	return table;
}

7405
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7406 7407 7408 7409 7410 7411 7412 7413 7414
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7415 7416
	if (table == NULL)
		return NULL;
7417 7418 7419 7420 7421

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7422
		entry->mode = 0555;
7423 7424 7425 7426 7427 7428 7429 7430
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7431
static void register_sched_domain_sysctl(void)
7432 7433 7434 7435 7436
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7437 7438 7439
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7440 7441 7442
	if (entry == NULL)
		return;

7443
	for_each_online_cpu(i) {
7444 7445
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7446
		entry->mode = 0555;
7447
		entry->child = sd_alloc_ctl_cpu_table(i);
7448
		entry++;
7449
	}
7450 7451

	WARN_ON(sd_sysctl_header);
7452 7453
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7454

7455
/* may be called multiple times per register */
7456 7457
static void unregister_sched_domain_sysctl(void)
{
7458 7459
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7460
	sd_sysctl_header = NULL;
7461 7462
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7463
}
7464
#else
7465 7466 7467 7468
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7469 7470 7471 7472
{
}
#endif

7473 7474 7475 7476 7477
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7478
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7498
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7499 7500 7501 7502
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7503 7504 7505 7506
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7507 7508
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7509 7510
{
	struct task_struct *p;
7511
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7512
	unsigned long flags;
7513
	struct rq *rq;
L
Linus Torvalds 已提交
7514 7515

	switch (action) {
7516

L
Linus Torvalds 已提交
7517
	case CPU_UP_PREPARE:
7518
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7519
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7520 7521 7522 7523 7524
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7525
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7526
		task_rq_unlock(rq, &flags);
7527
		get_task_struct(p);
L
Linus Torvalds 已提交
7528 7529
		cpu_rq(cpu)->migration_thread = p;
		break;
7530

L
Linus Torvalds 已提交
7531
	case CPU_ONLINE:
7532
	case CPU_ONLINE_FROZEN:
7533
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7534
		wake_up_process(cpu_rq(cpu)->migration_thread);
7535 7536 7537 7538

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7539 7540
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7541
		if (rq->rd) {
7542
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7543 7544

			set_rq_online(rq);
7545 7546
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7547
		break;
7548

L
Linus Torvalds 已提交
7549 7550
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7551
	case CPU_UP_CANCELED_FROZEN:
7552 7553
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7554
		/* Unbind it from offline cpu so it can run. Fall thru. */
7555
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7556
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7557
		kthread_stop(cpu_rq(cpu)->migration_thread);
7558
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7559 7560
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7561

L
Linus Torvalds 已提交
7562
	case CPU_DEAD:
7563
	case CPU_DEAD_FROZEN:
7564
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7565 7566 7567
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7568
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7569 7570
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7571
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7572
		update_rq_clock(rq);
7573
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7574
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7575 7576
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7577
		migrate_dead_tasks(cpu);
7578
		spin_unlock_irq(&rq->lock);
7579
		cpuset_unlock();
L
Linus Torvalds 已提交
7580 7581
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7582
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7583 7584 7585 7586 7587
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7588 7589
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7590 7591
			struct migration_req *req;

L
Linus Torvalds 已提交
7592
			req = list_entry(rq->migration_queue.next,
7593
					 struct migration_req, list);
L
Linus Torvalds 已提交
7594
			list_del_init(&req->list);
B
Brian King 已提交
7595
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7596
			complete(&req->done);
B
Brian King 已提交
7597
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7598 7599 7600
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7601

7602 7603
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7604 7605 7606 7607
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7608
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7609
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7610 7611 7612
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7613 7614 7615 7616 7617
#endif
	}
	return NOTIFY_OK;
}

7618 7619 7620 7621
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7622
 */
7623
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7624 7625 7626 7627
	.notifier_call = migration_call,
	.priority = 10
};

7628
static int __init migration_init(void)
L
Linus Torvalds 已提交
7629 7630
{
	void *cpu = (void *)(long)smp_processor_id();
7631
	int err;
7632 7633

	/* Start one for the boot CPU: */
7634 7635
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7636 7637
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7638 7639

	return err;
L
Linus Torvalds 已提交
7640
}
7641
early_initcall(migration_init);
L
Linus Torvalds 已提交
7642 7643 7644
#endif

#ifdef CONFIG_SMP
7645

7646
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7647

7648
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7649
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7650
{
I
Ingo Molnar 已提交
7651
	struct sched_group *group = sd->groups;
7652
	char str[256];
L
Linus Torvalds 已提交
7653

R
Rusty Russell 已提交
7654
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7655
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7656 7657 7658 7659 7660 7661 7662 7663 7664

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7665 7666
	}

7667
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7668

7669
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7670 7671 7672
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7673
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7674 7675 7676
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7677

I
Ingo Molnar 已提交
7678
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7679
	do {
I
Ingo Molnar 已提交
7680 7681 7682
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7683 7684 7685
			break;
		}

I
Ingo Molnar 已提交
7686 7687 7688 7689 7690 7691
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7692

7693
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7694 7695 7696 7697
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7698

7699
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7700 7701 7702 7703
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7704

7705
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7706

R
Rusty Russell 已提交
7707
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7708 7709 7710 7711 7712 7713

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7714

I
Ingo Molnar 已提交
7715 7716 7717
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7718

7719
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7720
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7721

7722 7723
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7724 7725 7726 7727
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7728

I
Ingo Molnar 已提交
7729 7730
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7731
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7732
	int level = 0;
L
Linus Torvalds 已提交
7733

I
Ingo Molnar 已提交
7734 7735 7736 7737
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7738

I
Ingo Molnar 已提交
7739 7740
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7741
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7742 7743 7744 7745
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7746
	for (;;) {
7747
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7748
			break;
L
Linus Torvalds 已提交
7749 7750
		level++;
		sd = sd->parent;
7751
		if (!sd)
I
Ingo Molnar 已提交
7752 7753
			break;
	}
7754
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7755
}
7756
#else /* !CONFIG_SCHED_DEBUG */
7757
# define sched_domain_debug(sd, cpu) do { } while (0)
7758
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7759

7760
static int sd_degenerate(struct sched_domain *sd)
7761
{
7762
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7763 7764 7765 7766 7767 7768
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7769 7770 7771
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7785 7786
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7787 7788 7789 7790 7791 7792
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7793
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7805 7806 7807
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7808 7809
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7810 7811 7812 7813 7814 7815 7816
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7817 7818
static void free_rootdomain(struct root_domain *rd)
{
7819 7820
	cpupri_cleanup(&rd->cpupri);

7821 7822 7823 7824 7825 7826
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7827 7828
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7829
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7830 7831 7832 7833 7834
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7835
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7836

7837
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7838
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7839

7840
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7841

I
Ingo Molnar 已提交
7842 7843 7844 7845 7846 7847 7848
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7849 7850 7851 7852 7853
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7854 7855
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7856
		set_rq_online(rq);
G
Gregory Haskins 已提交
7857 7858

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7859 7860 7861

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7862 7863
}

L
Li Zefan 已提交
7864
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7865
{
7866 7867
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7868 7869
	memset(rd, 0, sizeof(*rd));

7870 7871
	if (bootmem)
		gfp = GFP_NOWAIT;
7872

7873
	if (!alloc_cpumask_var(&rd->span, gfp))
7874
		goto out;
7875
	if (!alloc_cpumask_var(&rd->online, gfp))
7876
		goto free_span;
7877
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7878
		goto free_online;
7879

P
Pekka Enberg 已提交
7880
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7881
		goto free_rto_mask;
7882
	return 0;
7883

7884 7885
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7886 7887 7888 7889
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7890
out:
7891
	return -ENOMEM;
G
Gregory Haskins 已提交
7892 7893 7894 7895
}

static void init_defrootdomain(void)
{
7896 7897
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7898 7899 7900
	atomic_set(&def_root_domain.refcount, 1);
}

7901
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7902 7903 7904 7905 7906 7907 7908
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7909 7910 7911 7912
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7913 7914 7915 7916

	return rd;
}

L
Linus Torvalds 已提交
7917
/*
I
Ingo Molnar 已提交
7918
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7919 7920
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7921 7922
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7923
{
7924
	struct rq *rq = cpu_rq(cpu);
7925 7926 7927
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7928
	for (tmp = sd; tmp; ) {
7929 7930 7931
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7932

7933
		if (sd_parent_degenerate(tmp, parent)) {
7934
			tmp->parent = parent->parent;
7935 7936
			if (parent->parent)
				parent->parent->child = tmp;
7937 7938
		} else
			tmp = tmp->parent;
7939 7940
	}

7941
	if (sd && sd_degenerate(sd)) {
7942
		sd = sd->parent;
7943 7944 7945
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7946 7947 7948

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7949
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7950
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7951 7952 7953
}

/* cpus with isolated domains */
7954
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7955 7956 7957 7958

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7959
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7960 7961 7962
	return 1;
}

I
Ingo Molnar 已提交
7963
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7964 7965

/*
7966 7967
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7968 7969
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7970 7971 7972 7973 7974
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7975
static void
7976 7977 7978
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7979
					struct sched_group **sg,
7980 7981
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7982 7983 7984 7985
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7986
	cpumask_clear(covered);
7987

7988
	for_each_cpu(i, span) {
7989
		struct sched_group *sg;
7990
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7991 7992
		int j;

7993
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7994 7995
			continue;

7996
		cpumask_clear(sched_group_cpus(sg));
7997
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7998

7999
		for_each_cpu(j, span) {
8000
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8001 8002
				continue;

8003
			cpumask_set_cpu(j, covered);
8004
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8015
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8016

8017
#ifdef CONFIG_NUMA
8018

8019 8020 8021 8022 8023
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8024
 * Find the next node to include in a given scheduling domain. Simply
8025 8026 8027 8028
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8029
static int find_next_best_node(int node, nodemask_t *used_nodes)
8030 8031 8032 8033 8034
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8035
	for (i = 0; i < nr_node_ids; i++) {
8036
		/* Start at @node */
8037
		n = (node + i) % nr_node_ids;
8038 8039 8040 8041 8042

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8043
		if (node_isset(n, *used_nodes))
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8055
	node_set(best_node, *used_nodes);
8056 8057 8058 8059 8060 8061
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8062
 * @span: resulting cpumask
8063
 *
I
Ingo Molnar 已提交
8064
 * Given a node, construct a good cpumask for its sched_domain to span. It
8065 8066 8067
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8068
static void sched_domain_node_span(int node, struct cpumask *span)
8069
{
8070
	nodemask_t used_nodes;
8071
	int i;
8072

8073
	cpumask_clear(span);
8074
	nodes_clear(used_nodes);
8075

8076
	cpumask_or(span, span, cpumask_of_node(node));
8077
	node_set(node, used_nodes);
8078 8079

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8080
		int next_node = find_next_best_node(node, &used_nodes);
8081

8082
		cpumask_or(span, span, cpumask_of_node(next_node));
8083 8084
	}
}
8085
#endif /* CONFIG_NUMA */
8086

8087
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8088

8089 8090
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8091 8092 8093
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8105
/*
8106
 * SMT sched-domains:
8107
 */
L
Linus Torvalds 已提交
8108
#ifdef CONFIG_SCHED_SMT
8109 8110
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8111

I
Ingo Molnar 已提交
8112
static int
8113 8114
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8115
{
8116
	if (sg)
8117
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8118 8119
	return cpu;
}
8120
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8121

8122 8123 8124
/*
 * multi-core sched-domains:
 */
8125
#ifdef CONFIG_SCHED_MC
8126 8127
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8128
#endif /* CONFIG_SCHED_MC */
8129 8130

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8131
static int
8132 8133
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8134
{
8135
	int group;
8136

8137
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8138
	group = cpumask_first(mask);
8139
	if (sg)
8140
		*sg = &per_cpu(sched_group_core, group).sg;
8141
	return group;
8142 8143
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8144
static int
8145 8146
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8147
{
8148
	if (sg)
8149
		*sg = &per_cpu(sched_group_core, cpu).sg;
8150 8151 8152 8153
	return cpu;
}
#endif

8154 8155
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8156

I
Ingo Molnar 已提交
8157
static int
8158 8159
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8160
{
8161
	int group;
8162
#ifdef CONFIG_SCHED_MC
8163
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8164
	group = cpumask_first(mask);
8165
#elif defined(CONFIG_SCHED_SMT)
8166
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8167
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8168
#else
8169
	group = cpu;
L
Linus Torvalds 已提交
8170
#endif
8171
	if (sg)
8172
		*sg = &per_cpu(sched_group_phys, group).sg;
8173
	return group;
L
Linus Torvalds 已提交
8174 8175 8176 8177
}

#ifdef CONFIG_NUMA
/*
8178 8179 8180
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8181
 */
8182
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8183
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8184

8185
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8186
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8187

8188 8189 8190
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8191
{
8192 8193
	int group;

8194
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8195
	group = cpumask_first(nodemask);
8196 8197

	if (sg)
8198
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8199
	return group;
L
Linus Torvalds 已提交
8200
}
8201

8202 8203 8204 8205 8206 8207 8208
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8209
	do {
8210
		for_each_cpu(j, sched_group_cpus(sg)) {
8211
			struct sched_domain *sd;
8212

8213
			sd = &per_cpu(phys_domains, j).sd;
8214
			if (j != group_first_cpu(sd->groups)) {
8215 8216 8217 8218 8219 8220
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8221

8222 8223 8224 8225
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8226
}
8227
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8228

8229
#ifdef CONFIG_NUMA
8230
/* Free memory allocated for various sched_group structures */
8231 8232
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8233
{
8234
	int cpu, i;
8235

8236
	for_each_cpu(cpu, cpu_map) {
8237 8238 8239 8240 8241 8242
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8243
		for (i = 0; i < nr_node_ids; i++) {
8244 8245
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8246
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8247
			if (cpumask_empty(nodemask))
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8264
#else /* !CONFIG_NUMA */
8265 8266
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8267 8268
{
}
8269
#endif /* CONFIG_NUMA */
8270

8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8292
	if (cpu != group_first_cpu(sd->groups))
8293 8294 8295 8296
		return;

	child = sd->child;

8297 8298
	sd->groups->__cpu_power = 0;

8299 8300 8301 8302 8303 8304 8305 8306 8307 8308
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8309
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8310 8311 8312 8313 8314 8315 8316 8317
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8318
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8319 8320 8321 8322
		group = group->next;
	} while (group != child->groups);
}

8323 8324 8325 8326 8327
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8328 8329 8330 8331 8332 8333
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8334
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8335

8336 8337 8338 8339 8340
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8341
	sd->level = SD_LV_##type;				\
8342
	SD_INIT_NAME(sd, type);					\
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8357 8358 8359 8360
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8361 8362 8363 8364 8365 8366
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8392
/*
8393 8394
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8395
 */
8396
static int __build_sched_domains(const struct cpumask *cpu_map,
8397
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8398
{
8399
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8400
	struct root_domain *rd;
8401 8402
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8403
#ifdef CONFIG_NUMA
8404
	cpumask_var_t domainspan, covered, notcovered;
8405
	struct sched_group **sched_group_nodes = NULL;
8406
	int sd_allnodes = 0;
8407

8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8428 8429 8430
	/*
	 * Allocate the per-node list of sched groups
	 */
8431
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8432
				    GFP_KERNEL);
8433 8434
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8435
		goto free_tmpmask;
8436 8437
	}
#endif
L
Linus Torvalds 已提交
8438

8439
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8440 8441
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8442
		goto free_sched_groups;
G
Gregory Haskins 已提交
8443 8444
	}

8445
#ifdef CONFIG_NUMA
8446
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8447 8448
#endif

L
Linus Torvalds 已提交
8449
	/*
8450
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8451
	 */
8452
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8453 8454
		struct sched_domain *sd = NULL, *p;

8455
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8456 8457

#ifdef CONFIG_NUMA
8458 8459
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8460
			sd = &per_cpu(allnodes_domains, i).sd;
8461
			SD_INIT(sd, ALLNODES);
8462
			set_domain_attribute(sd, attr);
8463
			cpumask_copy(sched_domain_span(sd), cpu_map);
8464
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8465
			p = sd;
8466
			sd_allnodes = 1;
8467 8468 8469
		} else
			p = NULL;

8470
		sd = &per_cpu(node_domains, i).sd;
8471
		SD_INIT(sd, NODE);
8472
		set_domain_attribute(sd, attr);
8473
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8474
		sd->parent = p;
8475 8476
		if (p)
			p->child = sd;
8477 8478
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8479 8480 8481
#endif

		p = sd;
8482
		sd = &per_cpu(phys_domains, i).sd;
8483
		SD_INIT(sd, CPU);
8484
		set_domain_attribute(sd, attr);
8485
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8486
		sd->parent = p;
8487 8488
		if (p)
			p->child = sd;
8489
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8490

8491 8492
#ifdef CONFIG_SCHED_MC
		p = sd;
8493
		sd = &per_cpu(core_domains, i).sd;
8494
		SD_INIT(sd, MC);
8495
		set_domain_attribute(sd, attr);
8496 8497
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8498
		sd->parent = p;
8499
		p->child = sd;
8500
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8501 8502
#endif

L
Linus Torvalds 已提交
8503 8504
#ifdef CONFIG_SCHED_SMT
		p = sd;
8505
		sd = &per_cpu(cpu_domains, i).sd;
8506
		SD_INIT(sd, SIBLING);
8507
		set_domain_attribute(sd, attr);
8508
		cpumask_and(sched_domain_span(sd),
8509
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8510
		sd->parent = p;
8511
		p->child = sd;
8512
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8513 8514 8515 8516 8517
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8518
	for_each_cpu(i, cpu_map) {
8519
		cpumask_and(this_sibling_map,
8520
			    topology_thread_cpumask(i), cpu_map);
8521
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8522 8523
			continue;

I
Ingo Molnar 已提交
8524
		init_sched_build_groups(this_sibling_map, cpu_map,
8525 8526
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8527 8528 8529
	}
#endif

8530 8531
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8532
	for_each_cpu(i, cpu_map) {
8533
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8534
		if (i != cpumask_first(this_core_map))
8535
			continue;
8536

I
Ingo Molnar 已提交
8537
		init_sched_build_groups(this_core_map, cpu_map,
8538 8539
					&cpu_to_core_group,
					send_covered, tmpmask);
8540 8541 8542
	}
#endif

L
Linus Torvalds 已提交
8543
	/* Set up physical groups */
8544
	for (i = 0; i < nr_node_ids; i++) {
8545
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8546
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8547 8548
			continue;

8549 8550 8551
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8552 8553 8554 8555
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8556 8557 8558 8559 8560
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8561

8562
	for (i = 0; i < nr_node_ids; i++) {
8563 8564 8565 8566
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8567
		cpumask_clear(covered);
8568
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8569
		if (cpumask_empty(nodemask)) {
8570
			sched_group_nodes[i] = NULL;
8571
			continue;
8572
		}
8573

8574
		sched_domain_node_span(i, domainspan);
8575
		cpumask_and(domainspan, domainspan, cpu_map);
8576

8577 8578
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8579 8580 8581 8582 8583
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8584
		sched_group_nodes[i] = sg;
8585
		for_each_cpu(j, nodemask) {
8586
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8587

8588
			sd = &per_cpu(node_domains, j).sd;
8589 8590
			sd->groups = sg;
		}
8591
		sg->__cpu_power = 0;
8592
		cpumask_copy(sched_group_cpus(sg), nodemask);
8593
		sg->next = sg;
8594
		cpumask_or(covered, covered, nodemask);
8595 8596
		prev = sg;

8597 8598
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8599

8600 8601 8602 8603
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8604 8605
				break;

8606
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8607
			if (cpumask_empty(tmpmask))
8608 8609
				continue;

8610 8611
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8612
					  GFP_KERNEL, i);
8613 8614 8615
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8616
				goto error;
8617
			}
8618
			sg->__cpu_power = 0;
8619
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8620
			sg->next = prev->next;
8621
			cpumask_or(covered, covered, tmpmask);
8622 8623 8624 8625
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8626 8627 8628
#endif

	/* Calculate CPU power for physical packages and nodes */
8629
#ifdef CONFIG_SCHED_SMT
8630
	for_each_cpu(i, cpu_map) {
8631
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8632

8633
		init_sched_groups_power(i, sd);
8634
	}
L
Linus Torvalds 已提交
8635
#endif
8636
#ifdef CONFIG_SCHED_MC
8637
	for_each_cpu(i, cpu_map) {
8638
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8639

8640
		init_sched_groups_power(i, sd);
8641 8642
	}
#endif
8643

8644
	for_each_cpu(i, cpu_map) {
8645
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8646

8647
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8648 8649
	}

8650
#ifdef CONFIG_NUMA
8651
	for (i = 0; i < nr_node_ids; i++)
8652
		init_numa_sched_groups_power(sched_group_nodes[i]);
8653

8654 8655
	if (sd_allnodes) {
		struct sched_group *sg;
8656

8657
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8658
								tmpmask);
8659 8660
		init_numa_sched_groups_power(sg);
	}
8661 8662
#endif

L
Linus Torvalds 已提交
8663
	/* Attach the domains */
8664
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8665 8666
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8667
		sd = &per_cpu(cpu_domains, i).sd;
8668
#elif defined(CONFIG_SCHED_MC)
8669
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8670
#else
8671
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8672
#endif
G
Gregory Haskins 已提交
8673
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8674
	}
8675

8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8704

8705
#ifdef CONFIG_NUMA
8706
error:
8707
	free_sched_groups(cpu_map, tmpmask);
8708
	free_rootdomain(rd);
8709
	goto free_tmpmask;
8710
#endif
L
Linus Torvalds 已提交
8711
}
P
Paul Jackson 已提交
8712

8713
static int build_sched_domains(const struct cpumask *cpu_map)
8714 8715 8716 8717
{
	return __build_sched_domains(cpu_map, NULL);
}

8718
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8719
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8720 8721
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8722 8723 8724

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8725 8726
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8727
 */
8728
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8729

8730 8731 8732 8733 8734 8735
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8736
{
8737
	return 0;
8738 8739
}

8740
/*
I
Ingo Molnar 已提交
8741
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8742 8743
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8744
 */
8745
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8746
{
8747 8748
	int err;

8749
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8750
	ndoms_cur = 1;
8751
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8752
	if (!doms_cur)
8753
		doms_cur = fallback_doms;
8754
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8755
	dattr_cur = NULL;
8756
	err = build_sched_domains(doms_cur);
8757
	register_sched_domain_sysctl();
8758 8759

	return err;
8760 8761
}

8762 8763
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8764
{
8765
	free_sched_groups(cpu_map, tmpmask);
8766
}
L
Linus Torvalds 已提交
8767

8768 8769 8770 8771
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8772
static void detach_destroy_domains(const struct cpumask *cpu_map)
8773
{
8774 8775
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8776 8777
	int i;

8778
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8779
		cpu_attach_domain(NULL, &def_root_domain, i);
8780
	synchronize_sched();
8781
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8782 8783
}

8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8800 8801
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8802
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8803 8804 8805
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8806
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8807 8808 8809
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8810 8811 8812
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8813 8814
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8815 8816 8817 8818
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8819
 *
8820
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8821 8822
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8823
 *
P
Paul Jackson 已提交
8824 8825
 * Call with hotplug lock held
 */
8826 8827
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8828
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8829
{
8830
	int i, j, n;
8831
	int new_topology;
P
Paul Jackson 已提交
8832

8833
	mutex_lock(&sched_domains_mutex);
8834

8835 8836 8837
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8838 8839 8840
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8841
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8842 8843 8844

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8845
		for (j = 0; j < n && !new_topology; j++) {
8846
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8847
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8848 8849 8850 8851 8852 8853 8854 8855
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8856 8857
	if (doms_new == NULL) {
		ndoms_cur = 0;
8858
		doms_new = fallback_doms;
8859
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8860
		WARN_ON_ONCE(dattr_new);
8861 8862
	}

P
Paul Jackson 已提交
8863 8864
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8865
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8866
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8867
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8868 8869 8870
				goto match2;
		}
		/* no match - add a new doms_new */
8871 8872
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8873 8874 8875 8876 8877
match2:
		;
	}

	/* Remember the new sched domains */
8878
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8879
		kfree(doms_cur);
8880
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8881
	doms_cur = doms_new;
8882
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8883
	ndoms_cur = ndoms_new;
8884 8885

	register_sched_domain_sysctl();
8886

8887
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8888 8889
}

8890
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8891
static void arch_reinit_sched_domains(void)
8892
{
8893
	get_online_cpus();
8894 8895 8896 8897

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8898
	rebuild_sched_domains();
8899
	put_online_cpus();
8900 8901 8902 8903
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8904
	unsigned int level = 0;
8905

8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8917 8918 8919
		return -EINVAL;

	if (smt)
8920
		sched_smt_power_savings = level;
8921
	else
8922
		sched_mc_power_savings = level;
8923

8924
	arch_reinit_sched_domains();
8925

8926
	return count;
8927 8928 8929
}

#ifdef CONFIG_SCHED_MC
8930 8931
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8932 8933 8934
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8935
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8936
					    const char *buf, size_t count)
8937 8938 8939
{
	return sched_power_savings_store(buf, count, 0);
}
8940 8941 8942
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8943 8944 8945
#endif

#ifdef CONFIG_SCHED_SMT
8946 8947
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8948 8949 8950
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8951
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8952
					     const char *buf, size_t count)
8953 8954 8955
{
	return sched_power_savings_store(buf, count, 1);
}
8956 8957
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8958 8959 8960
		   sched_smt_power_savings_store);
#endif

8961
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8977
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8978

8979
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8980
/*
8981 8982
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8983 8984 8985
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8986 8987 8988 8989 8990 8991
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8992
		partition_sched_domains(1, NULL, NULL);
8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9003
{
P
Peter Zijlstra 已提交
9004 9005
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9006 9007
	switch (action) {
	case CPU_DOWN_PREPARE:
9008
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9009
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9010 9011 9012
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9013
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9014
	case CPU_ONLINE:
9015
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9016
		enable_runtime(cpu_rq(cpu));
9017 9018
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9019 9020 9021 9022 9023 9024 9025
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9026 9027 9028
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9029

9030 9031 9032 9033 9034
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9035
	get_online_cpus();
9036
	mutex_lock(&sched_domains_mutex);
9037 9038 9039 9040
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9041
	mutex_unlock(&sched_domains_mutex);
9042
	put_online_cpus();
9043 9044

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9045 9046
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9047 9048 9049 9050 9051
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9052
	init_hrtick();
9053 9054

	/* Move init over to a non-isolated CPU */
9055
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9056
		BUG();
I
Ingo Molnar 已提交
9057
	sched_init_granularity();
9058
	free_cpumask_var(non_isolated_cpus);
9059 9060

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9061
	init_sched_rt_class();
L
Linus Torvalds 已提交
9062 9063 9064 9065
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9066
	sched_init_granularity();
L
Linus Torvalds 已提交
9067 9068 9069
}
#endif /* CONFIG_SMP */

9070 9071
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9072 9073 9074 9075 9076 9077 9078
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9079
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9080 9081
{
	cfs_rq->tasks_timeline = RB_ROOT;
9082
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9083 9084 9085
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9086
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9087 9088
}

P
Peter Zijlstra 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9102
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9103
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9104
#ifdef CONFIG_SMP
9105
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9106 9107
#endif
#endif
P
Peter Zijlstra 已提交
9108 9109 9110
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9111
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9112 9113 9114 9115
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9116 9117
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9118

9119
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9120
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9121 9122
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9123 9124
}

P
Peter Zijlstra 已提交
9125
#ifdef CONFIG_FAIR_GROUP_SCHED
9126 9127 9128
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9129
{
9130
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9131 9132 9133 9134 9135 9136 9137
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9138 9139 9140 9141
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9142 9143 9144 9145 9146
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9147 9148
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9149
	se->load.inv_weight = 0;
9150
	se->parent = parent;
P
Peter Zijlstra 已提交
9151
}
9152
#endif
P
Peter Zijlstra 已提交
9153

9154
#ifdef CONFIG_RT_GROUP_SCHED
9155 9156 9157
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9158
{
9159 9160
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9161 9162 9163 9164
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9165
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9166 9167 9168 9169
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9170 9171 9172
	if (!rt_se)
		return;

9173 9174 9175 9176 9177
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9178
	rt_se->my_q = rt_rq;
9179
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9180 9181 9182 9183
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9184 9185
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9186
	int i, j;
9187 9188 9189 9190 9191 9192 9193
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9194 9195 9196
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9197 9198
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9199
	alloc_size += num_possible_cpus() * cpumask_size();
9200 9201 9202 9203 9204 9205
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9206
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9207 9208 9209 9210 9211 9212 9213

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9214 9215 9216 9217 9218 9219 9220

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9221 9222
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9223 9224 9225 9226 9227
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9228 9229 9230 9231 9232 9233 9234 9235
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9236 9237
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9238 9239 9240 9241 9242 9243
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9244
	}
I
Ingo Molnar 已提交
9245

G
Gregory Haskins 已提交
9246 9247 9248 9249
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9250 9251 9252 9253 9254 9255
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9256 9257 9258
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9259 9260
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9261

9262
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9263
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9264 9265 9266 9267 9268 9269
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9270 9271
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9272

9273
	for_each_possible_cpu(i) {
9274
		struct rq *rq;
L
Linus Torvalds 已提交
9275 9276 9277

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9278
		rq->nr_running = 0;
9279 9280
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9281
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9282
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9283
#ifdef CONFIG_FAIR_GROUP_SCHED
9284
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9285
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9301
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9302 9303 9304 9305
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9306
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9307
#elif defined CONFIG_USER_SCHED
9308 9309
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9321
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9322
				&per_cpu(init_cfs_rq, i),
9323 9324
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9325

9326
#endif
D
Dhaval Giani 已提交
9327 9328 9329
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9331
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9332
#ifdef CONFIG_CGROUP_SCHED
9333
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9334
#elif defined CONFIG_USER_SCHED
9335
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9336
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9337
				&per_cpu(init_rt_rq, i),
9338 9339
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9340
#endif
I
Ingo Molnar 已提交
9341
#endif
L
Linus Torvalds 已提交
9342

I
Ingo Molnar 已提交
9343 9344
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9345
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9346
		rq->sd = NULL;
G
Gregory Haskins 已提交
9347
		rq->rd = NULL;
L
Linus Torvalds 已提交
9348
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9349
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9350
		rq->push_cpu = 0;
9351
		rq->cpu = i;
9352
		rq->online = 0;
L
Linus Torvalds 已提交
9353 9354
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9355
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9356
#endif
P
Peter Zijlstra 已提交
9357
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9358 9359 9360
		atomic_set(&rq->nr_iowait, 0);
	}

9361
	set_load_weight(&init_task);
9362

9363 9364 9365 9366
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9367
#ifdef CONFIG_SMP
9368
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9369 9370
#endif

9371 9372 9373 9374
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9388 9389 9390

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9391 9392 9393 9394
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9395

9396
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9397
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9398
#ifdef CONFIG_SMP
9399
#ifdef CONFIG_NO_HZ
9400 9401
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9402
#endif
9403
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9404
#endif /* SMP */
9405

9406 9407
	perf_counter_init();

9408
	scheduler_running = 1;
L
Linus Torvalds 已提交
9409 9410 9411 9412 9413
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9414
#ifdef in_atomic
L
Linus Torvalds 已提交
9415 9416
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9436 9437 9438 9439 9440 9441
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9442 9443 9444
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9445

9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9457 9458
void normalize_rt_tasks(void)
{
9459
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9460
	unsigned long flags;
9461
	struct rq *rq;
L
Linus Torvalds 已提交
9462

9463
	read_lock_irqsave(&tasklist_lock, flags);
9464
	do_each_thread(g, p) {
9465 9466 9467 9468 9469 9470
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9471 9472
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9473 9474 9475
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9476
#endif
I
Ingo Molnar 已提交
9477 9478 9479 9480 9481 9482 9483 9484

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9485
			continue;
I
Ingo Molnar 已提交
9486
		}
L
Linus Torvalds 已提交
9487

9488
		spin_lock(&p->pi_lock);
9489
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9490

9491
		normalize_task(rq, p);
9492

9493
		__task_rq_unlock(rq);
9494
		spin_unlock(&p->pi_lock);
9495 9496
	} while_each_thread(g, p);

9497
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9498 9499 9500
}

#endif /* CONFIG_MAGIC_SYSRQ */
9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9519
struct task_struct *curr_task(int cpu)
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9530 9531
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9532 9533 9534 9535 9536 9537 9538
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9539
void set_curr_task(int cpu, struct task_struct *p)
9540 9541 9542 9543 9544
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9545

9546 9547
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9562 9563
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9564 9565
{
	struct cfs_rq *cfs_rq;
9566
	struct sched_entity *se;
9567
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9568 9569
	int i;

9570
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9571 9572
	if (!tg->cfs_rq)
		goto err;
9573
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9574 9575
	if (!tg->se)
		goto err;
9576 9577

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9578 9579

	for_each_possible_cpu(i) {
9580
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9581

9582 9583
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9584 9585 9586
		if (!cfs_rq)
			goto err;

9587 9588
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9589 9590 9591
		if (!se)
			goto err;

9592
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9611
#else /* !CONFG_FAIR_GROUP_SCHED */
9612 9613 9614 9615
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9616 9617
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9629
#endif /* CONFIG_FAIR_GROUP_SCHED */
9630 9631

#ifdef CONFIG_RT_GROUP_SCHED
9632 9633 9634 9635
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9636 9637
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9649 9650
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9651 9652
{
	struct rt_rq *rt_rq;
9653
	struct sched_rt_entity *rt_se;
9654 9655 9656
	struct rq *rq;
	int i;

9657
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9658 9659
	if (!tg->rt_rq)
		goto err;
9660
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9661 9662 9663
	if (!tg->rt_se)
		goto err;

9664 9665
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9666 9667 9668 9669

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9670 9671
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9672 9673
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9674

9675 9676
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9677 9678
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9679

9680
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9681 9682
	}

9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9699
#else /* !CONFIG_RT_GROUP_SCHED */
9700 9701 9702 9703
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9704 9705
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9717
#endif /* CONFIG_RT_GROUP_SCHED */
9718

9719
#ifdef CONFIG_GROUP_SCHED
9720 9721 9722 9723 9724 9725 9726 9727
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9728
struct task_group *sched_create_group(struct task_group *parent)
9729 9730 9731 9732 9733 9734 9735 9736 9737
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9738
	if (!alloc_fair_sched_group(tg, parent))
9739 9740
		goto err;

9741
	if (!alloc_rt_sched_group(tg, parent))
9742 9743
		goto err;

9744
	spin_lock_irqsave(&task_group_lock, flags);
9745
	for_each_possible_cpu(i) {
9746 9747
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9748
	}
P
Peter Zijlstra 已提交
9749
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9750 9751 9752 9753 9754

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9755
	list_add_rcu(&tg->siblings, &parent->children);
9756
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9757

9758
	return tg;
S
Srivatsa Vaddagiri 已提交
9759 9760

err:
P
Peter Zijlstra 已提交
9761
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9762 9763 9764
	return ERR_PTR(-ENOMEM);
}

9765
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9766
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9767 9768
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9769
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9770 9771
}

9772
/* Destroy runqueue etc associated with a task group */
9773
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9774
{
9775
	unsigned long flags;
9776
	int i;
S
Srivatsa Vaddagiri 已提交
9777

9778
	spin_lock_irqsave(&task_group_lock, flags);
9779
	for_each_possible_cpu(i) {
9780 9781
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9782
	}
P
Peter Zijlstra 已提交
9783
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9784
	list_del_rcu(&tg->siblings);
9785
	spin_unlock_irqrestore(&task_group_lock, flags);
9786 9787

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9788
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9789 9790
}

9791
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9792 9793 9794
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9795 9796
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9797 9798 9799 9800 9801 9802 9803 9804 9805
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9806
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9807 9808
	on_rq = tsk->se.on_rq;

9809
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9810
		dequeue_task(rq, tsk, 0);
9811 9812
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9813

P
Peter Zijlstra 已提交
9814
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9815

P
Peter Zijlstra 已提交
9816 9817 9818 9819 9820
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9821 9822 9823
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9824
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9825 9826 9827

	task_rq_unlock(rq, &flags);
}
9828
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9829

9830
#ifdef CONFIG_FAIR_GROUP_SCHED
9831
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9832 9833 9834 9835 9836
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9837
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9838 9839 9840
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9841
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9842

9843
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9844
		enqueue_entity(cfs_rq, se, 0);
9845
}
9846

9847 9848 9849 9850 9851 9852 9853 9854 9855
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9856 9857
}

9858 9859
static DEFINE_MUTEX(shares_mutex);

9860
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9861 9862
{
	int i;
9863
	unsigned long flags;
9864

9865 9866 9867 9868 9869 9870
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9871 9872
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9873 9874
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9875

9876
	mutex_lock(&shares_mutex);
9877
	if (tg->shares == shares)
9878
		goto done;
S
Srivatsa Vaddagiri 已提交
9879

9880
	spin_lock_irqsave(&task_group_lock, flags);
9881 9882
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9883
	list_del_rcu(&tg->siblings);
9884
	spin_unlock_irqrestore(&task_group_lock, flags);
9885 9886 9887 9888 9889 9890 9891 9892

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9893
	tg->shares = shares;
9894 9895 9896 9897 9898
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9899
		set_se_shares(tg->se[i], shares);
9900
	}
S
Srivatsa Vaddagiri 已提交
9901

9902 9903 9904 9905
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9906
	spin_lock_irqsave(&task_group_lock, flags);
9907 9908
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9909
	list_add_rcu(&tg->siblings, &tg->parent->children);
9910
	spin_unlock_irqrestore(&task_group_lock, flags);
9911
done:
9912
	mutex_unlock(&shares_mutex);
9913
	return 0;
S
Srivatsa Vaddagiri 已提交
9914 9915
}

9916 9917 9918 9919
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9920
#endif
9921

9922
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9923
/*
P
Peter Zijlstra 已提交
9924
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9925
 */
P
Peter Zijlstra 已提交
9926 9927 9928 9929 9930
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9931
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9932

P
Peter Zijlstra 已提交
9933
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9934 9935
}

P
Peter Zijlstra 已提交
9936 9937
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9938
{
P
Peter Zijlstra 已提交
9939
	struct task_struct *g, *p;
9940

P
Peter Zijlstra 已提交
9941 9942 9943 9944
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9945

P
Peter Zijlstra 已提交
9946 9947
	return 0;
}
9948

P
Peter Zijlstra 已提交
9949 9950 9951 9952 9953
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9954

P
Peter Zijlstra 已提交
9955 9956 9957 9958 9959 9960
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9961

P
Peter Zijlstra 已提交
9962 9963
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9964

P
Peter Zijlstra 已提交
9965 9966 9967
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9968 9969
	}

9970 9971 9972 9973 9974 9975 9976
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9977 9978 9979 9980 9981
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9982

9983 9984 9985
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9986 9987
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9988

P
Peter Zijlstra 已提交
9989
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9990

9991 9992 9993 9994 9995
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9996

9997 9998 9999
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10000 10001 10002
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10003

P
Peter Zijlstra 已提交
10004 10005 10006 10007
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10008

P
Peter Zijlstra 已提交
10009
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10010
	}
P
Peter Zijlstra 已提交
10011

P
Peter Zijlstra 已提交
10012 10013 10014 10015
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10016 10017
}

P
Peter Zijlstra 已提交
10018
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10019
{
P
Peter Zijlstra 已提交
10020 10021 10022 10023 10024 10025 10026
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10027 10028
}

10029 10030
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10031
{
P
Peter Zijlstra 已提交
10032
	int i, err = 0;
P
Peter Zijlstra 已提交
10033 10034

	mutex_lock(&rt_constraints_mutex);
10035
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10036 10037
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10038
		goto unlock;
P
Peter Zijlstra 已提交
10039 10040

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10041 10042
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10043 10044 10045 10046 10047 10048 10049 10050 10051

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10052
 unlock:
10053
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10054 10055 10056
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10057 10058
}

10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10071 10072 10073 10074
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10075
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10076 10077
		return -1;

10078
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10079 10080 10081
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10082 10083 10084 10085 10086 10087 10088 10089

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10090 10091 10092
	if (rt_period == 0)
		return -EINVAL;

10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10107
	u64 runtime, period;
10108 10109
	int ret = 0;

10110 10111 10112
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10113 10114 10115 10116 10117 10118 10119 10120
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10121

10122
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10123
	read_lock(&tasklist_lock);
10124
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10125
	read_unlock(&tasklist_lock);
10126 10127 10128 10129
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10130 10131 10132 10133 10134 10135 10136 10137 10138 10139

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10140
#else /* !CONFIG_RT_GROUP_SCHED */
10141 10142
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10143 10144 10145
	unsigned long flags;
	int i;

10146 10147 10148
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10149 10150 10151 10152 10153 10154 10155
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10156 10157 10158 10159 10160 10161 10162 10163 10164 10165
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10166 10167
	return 0;
}
10168
#endif /* CONFIG_RT_GROUP_SCHED */
10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10199

10200
#ifdef CONFIG_CGROUP_SCHED
10201 10202

/* return corresponding task_group object of a cgroup */
10203
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10204
{
10205 10206
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10207 10208 10209
}

static struct cgroup_subsys_state *
10210
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10211
{
10212
	struct task_group *tg, *parent;
10213

10214
	if (!cgrp->parent) {
10215 10216 10217 10218
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10219 10220
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10221 10222 10223 10224 10225 10226
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10227 10228
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10229
{
10230
	struct task_group *tg = cgroup_tg(cgrp);
10231 10232 10233 10234

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10235 10236 10237
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10238
{
10239
#ifdef CONFIG_RT_GROUP_SCHED
10240
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10241 10242
		return -EINVAL;
#else
10243 10244 10245
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10246
#endif
10247 10248 10249 10250 10251

	return 0;
}

static void
10252
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10253 10254 10255 10256 10257
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10258
#ifdef CONFIG_FAIR_GROUP_SCHED
10259
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10260
				u64 shareval)
10261
{
10262
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10263 10264
}

10265
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10266
{
10267
	struct task_group *tg = cgroup_tg(cgrp);
10268 10269 10270

	return (u64) tg->shares;
}
10271
#endif /* CONFIG_FAIR_GROUP_SCHED */
10272

10273
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10274
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10275
				s64 val)
P
Peter Zijlstra 已提交
10276
{
10277
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10278 10279
}

10280
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10281
{
10282
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10283
}
10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10295
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10296

10297
static struct cftype cpu_files[] = {
10298
#ifdef CONFIG_FAIR_GROUP_SCHED
10299 10300
	{
		.name = "shares",
10301 10302
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10303
	},
10304 10305
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10306
	{
P
Peter Zijlstra 已提交
10307
		.name = "rt_runtime_us",
10308 10309
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10310
	},
10311 10312
	{
		.name = "rt_period_us",
10313 10314
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10315
	},
10316
#endif
10317 10318 10319 10320
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10321
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10322 10323 10324
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10325 10326 10327 10328 10329 10330 10331
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10332 10333 10334
	.early_init	= 1,
};

10335
#endif	/* CONFIG_CGROUP_SCHED */
10336 10337 10338 10339 10340 10341 10342 10343 10344 10345

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10346
/* track cpu usage of a group of tasks and its child groups */
10347 10348 10349 10350
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10351
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10352
	struct cpuacct *parent;
10353 10354 10355 10356 10357
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10358
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10359
{
10360
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10373
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10374 10375
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10376
	int i;
10377 10378

	if (!ca)
10379
		goto out;
10380 10381

	ca->cpuusage = alloc_percpu(u64);
10382 10383 10384 10385 10386 10387
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10388

10389 10390 10391
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10392
	return &ca->css;
10393 10394 10395 10396 10397 10398 10399 10400 10401

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10402 10403 10404
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10405
static void
10406
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10407
{
10408
	struct cpuacct *ca = cgroup_ca(cgrp);
10409
	int i;
10410

10411 10412
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10413 10414 10415 10416
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10417 10418
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10419
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10438
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10452
/* return total cpu usage (in nanoseconds) of a group */
10453
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10454
{
10455
	struct cpuacct *ca = cgroup_ca(cgrp);
10456 10457 10458
	u64 totalcpuusage = 0;
	int i;

10459 10460
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10461 10462 10463 10464

	return totalcpuusage;
}

10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10477 10478
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10479 10480 10481 10482 10483

out:
	return err;
}

10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10518 10519 10520
static struct cftype files[] = {
	{
		.name = "usage",
10521 10522
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10523
	},
10524 10525 10526 10527
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10528 10529 10530 10531
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10532 10533
};

10534
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10535
{
10536
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10537 10538 10539 10540 10541 10542 10543 10544 10545 10546
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10547
	int cpu;
10548

L
Li Zefan 已提交
10549
	if (unlikely(!cpuacct_subsys.active))
10550 10551
		return;

10552
	cpu = task_cpu(tsk);
10553 10554 10555

	rcu_read_lock();

10556 10557
	ca = task_ca(tsk);

10558
	for (; ca; ca = ca->parent) {
10559
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10560 10561
		*cpuusage += cputime;
	}
10562 10563

	rcu_read_unlock();
10564 10565
}

10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10587 10588 10589 10590 10591 10592 10593 10594
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */