sched.c 165.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
211

I
Ingo Molnar 已提交
212 213 214 215 216 217 218
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
219 220 221 222 223 224 225
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
226
struct rq {
I
Ingo Molnar 已提交
227
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
228 229 230 231 232 233

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
234 235
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
236
	unsigned char idle_at_tick;
237 238 239
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
240 241 242 243 244 245 246
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
247
#endif
I
Ingo Molnar 已提交
248
	struct rt_rq  rt;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

258
	struct task_struct *curr, *idle;
259
	unsigned long next_balance;
L
Linus Torvalds 已提交
260
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
261 262 263 264 265

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
266 267
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
268
	u64 tick_timestamp;
I
Ingo Molnar 已提交
269

L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
278
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
279

280
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
303
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
304 305
};

306
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
307
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
308

I
Ingo Molnar 已提交
309 310 311 312 313
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

314 315 316 317 318 319 320 321 322
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
323
/*
I
Ingo Molnar 已提交
324 325
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
326
 */
I
Ingo Molnar 已提交
327
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
328 329 330 331 332 333
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
334 335 336
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
337 338 339 340 341 342 343 344 345 346
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
347 348 349 350 351
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
352 353 354 355 356 357 358 359 360 361
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
362
}
I
Ingo Molnar 已提交
363

I
Ingo Molnar 已提交
364 365 366 367
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
368 369
}

N
Nick Piggin 已提交
370 371
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
372
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
373 374 375 376
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
377 378
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
379 380 381 382 383 384

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

385 386 387 388 389 390 391 392
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
393
	struct rq *rq;
394

395
	local_irq_save(flags);
I
Ingo Molnar 已提交
396 397 398
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
399
	local_irq_restore(flags);
400 401 402 403

	return now;
}

I
Ingo Molnar 已提交
404 405 406 407 408 409 410 411 412 413 414 415
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
416
#ifndef prepare_arch_switch
417 418 419 420 421 422 423
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
424
static inline int task_running(struct rq *rq, struct task_struct *p)
425 426 427 428
{
	return rq->curr == p;
}

429
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
430 431 432
{
}

433
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
434
{
435 436 437 438
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
439 440 441 442 443 444 445
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

446 447 448 449
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
450
static inline int task_running(struct rq *rq, struct task_struct *p)
451 452 453 454 455 456 457 458
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

459
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

476
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
477 478 479 480 481 482 483 484 485 486 487 488
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
489
#endif
490 491
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
492

493 494 495 496
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
497
static inline struct rq *__task_rq_lock(struct task_struct *p)
498 499
	__acquires(rq->lock)
{
500
	struct rq *rq;
501 502 503 504 505 506 507 508 509 510 511

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
512 513 514 515 516
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
517
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
518 519
	__acquires(rq->lock)
{
520
	struct rq *rq;
L
Linus Torvalds 已提交
521 522 523 524 525 526 527 528 529 530 531 532

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

533
static inline void __task_rq_unlock(struct rq *rq)
534 535 536 537 538
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

539
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
540 541 542 543 544 545
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
546
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
547
 */
548
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
549 550
	__acquires(rq->lock)
{
551
	struct rq *rq;
L
Linus Torvalds 已提交
552 553 554 555 556 557 558 559

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

560
/*
561
 * We are going deep-idle (irqs are disabled):
562
 */
563
void sched_clock_idle_sleep_event(void)
564
{
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
581

582 583 584 585 586 587 588 589 590 591 592
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
593
}
594
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
595

I
Ingo Molnar 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
669 670 671
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
672
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
673

674
static unsigned long
675 676 677 678 679 680
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
681
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
682 683 684 685 686

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
687
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
688
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
689 690
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
691
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
692

693
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

714 715 716 717 718 719 720 721 722
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
723 724 725 726 727 728 729 730 731 732 733
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 735 736
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
737 738
 */
static const int prio_to_weight[40] = {
739 740 741 742 743 744 745 746
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
747 748
};

749 750 751 752 753 754 755
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
756
static const u32 prio_to_wmult[40] = {
757 758 759 760 761 762 763 764
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
765
};
766

I
Ingo Molnar 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
784
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
785 786 787 788 789 790 791 792 793 794 795

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
820
static void update_curr_load(struct rq *rq)
821 822 823 824 825
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
826 827
	ls->load_update_start = rq->clock;
	ls->delta_stat += rq->clock - start;
828 829 830 831 832 833 834 835
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

836
static inline void inc_load(struct rq *rq, const struct task_struct *p)
837
{
838
	update_curr_load(rq);
839 840 841
	update_load_add(&rq->ls.load, p->se.load.weight);
}

842
static inline void dec_load(struct rq *rq, const struct task_struct *p)
843
{
844
	update_curr_load(rq);
845 846 847
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

848
static void inc_nr_running(struct task_struct *p, struct rq *rq)
849 850
{
	rq->nr_running++;
851
	inc_load(rq, p);
852 853
}

854
static void dec_nr_running(struct task_struct *p, struct rq *rq)
855 856
{
	rq->nr_running--;
857
	dec_load(rq, p);
858 859
}

860 861
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
862 863
	p->se.wait_runtime = 0;

864
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
865 866 867 868
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
869

I
Ingo Molnar 已提交
870 871 872 873 874 875 876 877
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
878

I
Ingo Molnar 已提交
879 880
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 882
}

883
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884
{
I
Ingo Molnar 已提交
885
	sched_info_queued(p);
886
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
887
	p->se.on_rq = 1;
888 889
}

890
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891
{
892
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
893
	p->se.on_rq = 0;
894 895
}

896
/*
I
Ingo Molnar 已提交
897
 * __normal_prio - return the priority that is based on the static prio
898 899 900
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
901
	return p->static_prio;
902 903
}

904 905 906 907 908 909 910
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
911
static inline int normal_prio(struct task_struct *p)
912 913 914
{
	int prio;

915
	if (task_has_rt_policy(p))
916 917 918 919 920 921 922 923 924 925 926 927 928
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
929
static int effective_prio(struct task_struct *p)
930 931 932 933 934 935 936 937 938 939 940 941
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
942
/*
I
Ingo Molnar 已提交
943
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
944
 */
I
Ingo Molnar 已提交
945
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
946
{
I
Ingo Molnar 已提交
947 948
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
949

950
	enqueue_task(rq, p, wakeup);
951
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
952 953 954
}

/*
I
Ingo Molnar 已提交
955
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
956
 */
I
Ingo Molnar 已提交
957
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
958
{
I
Ingo Molnar 已提交
959
	update_rq_clock(rq);
L
Linus Torvalds 已提交
960

I
Ingo Molnar 已提交
961 962
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
963

964
	enqueue_task(rq, p, 0);
965
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
966 967 968 969 970
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
971
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
972
{
I
Ingo Molnar 已提交
973 974 975
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

976
	dequeue_task(rq, p, sleep);
977
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
978 979 980 981 982 983
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
984
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
985 986 987 988
{
	return cpu_curr(task_cpu(p)) == p;
}

989 990 991
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
992 993 994 995 996 997 998 999 1000
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1001 1002
}

L
Linus Torvalds 已提交
1003
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1004

I
Ingo Molnar 已提交
1005
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1006
{
I
Ingo Molnar 已提交
1007 1008 1009 1010 1011
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1012 1013
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1014 1015
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1016 1017 1018 1019 1020 1021
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1022 1023 1024 1025
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1026
#endif
I
Ingo Molnar 已提交
1027 1028

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1029 1030
}

1031
struct migration_req {
L
Linus Torvalds 已提交
1032 1033
	struct list_head list;

1034
	struct task_struct *task;
L
Linus Torvalds 已提交
1035 1036 1037
	int dest_cpu;

	struct completion done;
1038
};
L
Linus Torvalds 已提交
1039 1040 1041 1042 1043

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1044
static int
1045
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1046
{
1047
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1053
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1054 1055 1056 1057 1058 1059 1060 1061
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1062

L
Linus Torvalds 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1075
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1076 1077
{
	unsigned long flags;
I
Ingo Molnar 已提交
1078
	int running, on_rq;
1079
	struct rq *rq;
L
Linus Torvalds 已提交
1080 1081

repeat:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1109
	rq = task_rq_lock(p, &flags);
1110
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1111
	on_rq = p->se.on_rq;
1112 1113 1114 1115 1116 1117 1118 1119 1120
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1121 1122 1123
		cpu_relax();
		goto repeat;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1134
	if (unlikely(on_rq)) {
1135 1136 1137 1138 1139 1140 1141 1142 1143
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1159
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1171 1172
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1173 1174 1175 1176
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1177
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1178
{
1179
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1180
	unsigned long total = weighted_cpuload(cpu);
1181

1182
	if (type == 0)
I
Ingo Molnar 已提交
1183
		return total;
1184

I
Ingo Molnar 已提交
1185
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1186 1187 1188
}

/*
1189 1190
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1191
 */
N
Nick Piggin 已提交
1192
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1193
{
1194
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1195
	unsigned long total = weighted_cpuload(cpu);
1196

N
Nick Piggin 已提交
1197
	if (type == 0)
I
Ingo Molnar 已提交
1198
		return total;
1199

I
Ingo Molnar 已提交
1200
	return max(rq->cpu_load[type-1], total);
1201 1202 1203 1204 1205 1206 1207
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1208
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1209
	unsigned long total = weighted_cpuload(cpu);
1210 1211
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1212
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1213 1214
}

N
Nick Piggin 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1232 1233 1234 1235
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1252 1253
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1254 1255 1256 1257 1258 1259 1260 1261

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1262
nextgroup:
N
Nick Piggin 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1272
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1273
 */
I
Ingo Molnar 已提交
1274 1275
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1276
{
1277
	cpumask_t tmp;
N
Nick Piggin 已提交
1278 1279 1280 1281
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1282 1283 1284 1285
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1286
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1312

1313
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1314 1315 1316
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1317 1318
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1319 1320
		if (tmp->flags & flag)
			sd = tmp;
1321
	}
N
Nick Piggin 已提交
1322 1323 1324 1325

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1326 1327 1328 1329 1330 1331
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1332 1333 1334

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1335 1336 1337 1338
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1339

1340
		new_cpu = find_idlest_cpu(group, t, cpu);
1341 1342 1343 1344 1345
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1346

1347
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1390 1391 1392 1393
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1394
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1395 1396 1397 1398
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1399
		} else {
N
Nick Piggin 已提交
1400
			break;
I
Ingo Molnar 已提交
1401
		}
L
Linus Torvalds 已提交
1402 1403 1404 1405
	}
	return cpu;
}
#else
1406
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1426
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1427 1428 1429 1430
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1431
	struct rq *rq;
L
Linus Torvalds 已提交
1432
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1433
	struct sched_domain *sd, *this_sd = NULL;
1434
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1443
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1453 1454
	new_cpu = cpu;

L
Linus Torvalds 已提交
1455 1456 1457
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1458 1459 1460 1461 1462 1463 1464 1465
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1466 1467 1468
		}
	}

N
Nick Piggin 已提交
1469
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1470 1471 1472
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1473
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1474
	 */
N
Nick Piggin 已提交
1475 1476 1477
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1478

1479 1480
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1481 1482
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1483

N
Nick Piggin 已提交
1484 1485
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1486 1487
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1488 1489 1490
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1491

L
Linus Torvalds 已提交
1492
			/*
1493 1494 1495
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1496
			 */
1497
			if (sync)
I
Ingo Molnar 已提交
1498
				tl -= current->se.load.weight;
1499 1500

			if ((tl <= load &&
1501
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1502
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1536
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1545
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1546
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1555 1556
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1567
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1574
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1582 1583 1584 1585 1586 1587 1588 1589
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1590
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1591 1592 1593 1594
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1595 1596 1597 1598
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1609
#endif
N
Nick Piggin 已提交
1610

I
Ingo Molnar 已提交
1611 1612
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1613

1614 1615 1616 1617
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1640 1641 1642 1643 1644 1645

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1646
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1647
	if (likely(sched_info_on()))
1648
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1649
#endif
1650
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1651 1652
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1653
#ifdef CONFIG_PREEMPT
1654
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1655
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1656
#endif
N
Nick Piggin 已提交
1657
	put_cpu();
L
Linus Torvalds 已提交
1658 1659
}

I
Ingo Molnar 已提交
1660 1661 1662 1663 1664 1665
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1673
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1674 1675
{
	unsigned long flags;
I
Ingo Molnar 已提交
1676 1677
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1678 1679

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1680
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1681
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1682
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1683 1684 1685

	p->prio = effective_prio(p);

1686 1687 1688 1689 1690
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1691 1692
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1693
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1694 1695
	} else {
		/*
I
Ingo Molnar 已提交
1696 1697
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1698
		 */
1699
		p->sched_class->task_new(rq, p);
1700
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1701
	}
I
Ingo Molnar 已提交
1702 1703
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1704 1705
}

1706 1707 1708
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1709 1710
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1711 1712 1713 1714 1715 1716 1717 1718 1719
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1720
 * @notifier: notifier struct to unregister
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1764 1765 1766
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1767
 * @prev: the current task that is being switched out
1768 1769 1770 1771 1772 1773 1774 1775 1776
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1777 1778 1779
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1780
{
1781
	fire_sched_out_preempt_notifiers(prev, next);
1782 1783 1784 1785
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1786 1787
/**
 * finish_task_switch - clean up after a task-switch
1788
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1789 1790
 * @prev: the thread we just switched away from.
 *
1791 1792 1793 1794
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1795 1796 1797 1798 1799 1800
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1801
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1802 1803 1804
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1805
	long prev_state;
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1811
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1812 1813
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1814
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1820
	prev_state = prev->state;
1821 1822
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1823
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1824 1825
	if (mm)
		mmdrop(mm);
1826
	if (unlikely(prev_state == TASK_DEAD)) {
1827 1828 1829
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1830
		 */
1831
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1832
		put_task_struct(prev);
1833
	}
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1840
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1841 1842
	__releases(rq->lock)
{
1843 1844
	struct rq *rq = this_rq();

1845 1846 1847 1848 1849
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855 1856 1857
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1858
static inline void
1859
context_switch(struct rq *rq, struct task_struct *prev,
1860
	       struct task_struct *next)
L
Linus Torvalds 已提交
1861
{
I
Ingo Molnar 已提交
1862
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1863

1864
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1865 1866
	mm = next->mm;
	oldmm = prev->active_mm;
1867 1868 1869 1870 1871 1872 1873
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1874
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879 1880
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1881
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1882 1883 1884
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1885 1886 1887 1888 1889 1890 1891
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1892
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1893
#endif
L
Linus Torvalds 已提交
1894 1895 1896 1897

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1898 1899 1900 1901 1902 1903 1904
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1928
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1943 1944
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1945

1946
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1956
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1977
/*
I
Ingo Molnar 已提交
1978 1979
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1980
 */
I
Ingo Molnar 已提交
1981
static void update_cpu_load(struct rq *this_rq)
1982
{
I
Ingo Molnar 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
1994
	update_curr_load(this_rq);
I
Ingo Molnar 已提交
1995 1996 1997 1998 1999 2000 2001

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

2002 2003
	sample_interval64 = this_rq->clock - ls->load_update_last;
	ls->load_update_last = this_rq->clock;
I
Ingo Molnar 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2031 2032
}

I
Ingo Molnar 已提交
2033 2034
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2041
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2042 2043 2044
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2045
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2046 2047 2048 2049
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2050
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056 2057
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2058 2059
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065 2066 2067
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2068
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2082
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2083 2084 2085 2086
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2087 2088 2089 2090 2091
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2092
	if (unlikely(!spin_trylock(&busiest->lock))) {
2093
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2108
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2109
{
2110
	struct migration_req req;
L
Linus Torvalds 已提交
2111
	unsigned long flags;
2112
	struct rq *rq;
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2123

L
Linus Torvalds 已提交
2124 2125 2126 2127 2128
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2129

L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2137 2138
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2139 2140 2141 2142
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2143
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2144
	put_cpu();
N
Nick Piggin 已提交
2145 2146
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2153 2154
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2155
{
2156
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2157
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2158
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2159 2160 2161 2162
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2163
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2169
static
2170
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2171
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2172
		     int *all_pinned)
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2182 2183 2184 2185
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2186 2187 2188 2189

	return 1;
}

I
Ingo Molnar 已提交
2190
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2191
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2192
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2193
		      int *all_pinned, unsigned long *load_moved,
2194
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2195
{
I
Ingo Molnar 已提交
2196 2197 2198
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2199

2200
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2201 2202
		goto out;

2203 2204
	pinned = 1;

L
Linus Torvalds 已提交
2205
	/*
I
Ingo Molnar 已提交
2206
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2207
	 */
I
Ingo Molnar 已提交
2208 2209 2210
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2211
		goto out;
2212 2213 2214 2215 2216
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2217 2218
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2219
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2220 2221 2222
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2223 2224
	}

I
Ingo Molnar 已提交
2225
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2226
	pulled++;
I
Ingo Molnar 已提交
2227
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2228

2229 2230 2231 2232 2233
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2234 2235
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2236 2237
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243 2244 2245
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2246 2247 2248

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2249
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2250 2251 2252
	return pulled;
}

I
Ingo Molnar 已提交
2253
/*
P
Peter Williams 已提交
2254 2255 2256
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2257 2258 2259 2260
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2261
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2262 2263 2264 2265
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2266
	unsigned long total_load_moved = 0;
2267
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2268 2269

	do {
P
Peter Williams 已提交
2270 2271 2272
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2273
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2274
		class = class->next;
P
Peter Williams 已提交
2275
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2276

P
Peter Williams 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2291
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2292 2293 2294

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2295 2296
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2297 2298 2299
			return 1;

	return 0;
I
Ingo Molnar 已提交
2300 2301
}

L
Linus Torvalds 已提交
2302 2303
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2304 2305
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2306 2307 2308
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2309 2310
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2311 2312 2313
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2314
	unsigned long max_pull;
2315 2316
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2317
	int load_idx;
2318 2319 2320 2321 2322 2323
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2324 2325

	max_load = this_load = total_load = total_pwr = 0;
2326 2327
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2328
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2329
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2330
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2331 2332 2333
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2334 2335

	do {
2336
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2337 2338
		int local_group;
		int i;
2339
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2340
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2341 2342 2343

		local_group = cpu_isset(this_cpu, group->cpumask);

2344 2345 2346
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2347
		/* Tally up the load of all CPUs in the group */
2348
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2349 2350

		for_each_cpu_mask(i, group->cpumask) {
2351 2352 2353 2354 2355 2356
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2357

2358
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2359 2360
				*sd_idle = 0;

L
Linus Torvalds 已提交
2361
			/* Bias balancing toward cpus of our domain */
2362 2363 2364 2365 2366 2367
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2368
				load = target_load(i, load_idx);
2369
			} else
N
Nick Piggin 已提交
2370
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2371 2372

			avg_load += load;
2373
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2374
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2375 2376
		}

2377 2378 2379
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2380 2381
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2382
		 */
2383 2384
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2385 2386 2387 2388
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2389
		total_load += avg_load;
2390
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2391 2392

		/* Adjust by relative CPU power of the group */
2393 2394
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2395

2396
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2397

L
Linus Torvalds 已提交
2398 2399 2400
		if (local_group) {
			this_load = avg_load;
			this = group;
2401 2402 2403
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2404
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2405 2406
			max_load = avg_load;
			busiest = group;
2407 2408
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2409
		}
2410 2411 2412 2413 2414 2415

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2416 2417 2418
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2419 2420 2421 2422 2423 2424 2425 2426 2427

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2428
		/*
2429 2430
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2431 2432
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2433
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2434
			goto group_next;
2435

I
Ingo Molnar 已提交
2436
		/*
2437
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2438 2439 2440 2441 2442
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2443 2444
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2445 2446
			group_min = group;
			min_nr_running = sum_nr_running;
2447 2448
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2449
		}
2450

I
Ingo Molnar 已提交
2451
		/*
2452
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2464
		}
2465 2466
group_next:
#endif
L
Linus Torvalds 已提交
2467 2468 2469
		group = group->next;
	} while (group != sd->groups);

2470
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2471 2472 2473 2474 2475 2476 2477 2478
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2479
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2503 2504

	/* Don't want to pull so many tasks that a group would go idle */
2505
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2506

L
Linus Torvalds 已提交
2507
	/* How much load to actually move to equalise the imbalance */
2508 2509
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2510 2511
			/ SCHED_LOAD_SCALE;

2512 2513 2514 2515 2516 2517
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2518
	if (*imbalance < busiest_load_per_task) {
2519
		unsigned long tmp, pwr_now, pwr_move;
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2531

I
Ingo Molnar 已提交
2532 2533
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2534
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2544 2545 2546 2547
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2548 2549 2550
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2551 2552
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2553
		if (max_load > tmp)
2554
			pwr_move += busiest->__cpu_power *
2555
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2556 2557

		/* Amount of load we'd add */
2558
		if (max_load * busiest->__cpu_power <
2559
				busiest_load_per_task * SCHED_LOAD_SCALE)
2560 2561
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2562
		else
2563 2564 2565 2566
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2567 2568 2569
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2570 2571
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576
	}

	return busiest;

out_balanced:
2577
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2578
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2579
		goto ret;
L
Linus Torvalds 已提交
2580

2581 2582 2583 2584 2585
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2586
ret:
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2594
static struct rq *
I
Ingo Molnar 已提交
2595
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2596
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2597
{
2598
	struct rq *busiest = NULL, *rq;
2599
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2600 2601 2602
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2603
		unsigned long wl;
2604 2605 2606 2607

		if (!cpu_isset(i, *cpus))
			continue;

2608
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2609
		wl = weighted_cpuload(i);
2610

I
Ingo Molnar 已提交
2611
		if (rq->nr_running == 1 && wl > imbalance)
2612
			continue;
L
Linus Torvalds 已提交
2613

I
Ingo Molnar 已提交
2614 2615
		if (wl > max_load) {
			max_load = wl;
2616
			busiest = rq;
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622
		}
	}

	return busiest;
}

2623 2624 2625 2626 2627 2628
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2629 2630 2631 2632
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2633
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2634
			struct sched_domain *sd, enum cpu_idle_type idle,
2635
			int *balance)
L
Linus Torvalds 已提交
2636
{
P
Peter Williams 已提交
2637
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2638 2639
	struct sched_group *group;
	unsigned long imbalance;
2640
	struct rq *busiest;
2641
	cpumask_t cpus = CPU_MASK_ALL;
2642
	unsigned long flags;
N
Nick Piggin 已提交
2643

2644 2645 2646
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2647
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2648
	 * portraying it as CPU_NOT_IDLE.
2649
	 */
I
Ingo Molnar 已提交
2650
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2651
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2652
		sd_idle = 1;
L
Linus Torvalds 已提交
2653 2654 2655

	schedstat_inc(sd, lb_cnt[idle]);

2656 2657
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2658 2659
				   &cpus, balance);

2660
	if (*balance == 0)
2661 2662
		goto out_balanced;

L
Linus Torvalds 已提交
2663 2664 2665 2666 2667
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2668
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2674
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2675 2676 2677

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2678
	ld_moved = 0;
L
Linus Torvalds 已提交
2679 2680 2681 2682
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2683
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2684 2685
		 * correctly treated as an imbalance.
		 */
2686
		local_irq_save(flags);
N
Nick Piggin 已提交
2687
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2688
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2689
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2690
		double_rq_unlock(this_rq, busiest);
2691
		local_irq_restore(flags);
2692

2693 2694 2695
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2696
		if (ld_moved && this_cpu != smp_processor_id())
2697 2698
			resched_cpu(this_cpu);

2699
		/* All tasks on this runqueue were pinned by CPU affinity */
2700 2701 2702 2703
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2704
			goto out_balanced;
2705
		}
L
Linus Torvalds 已提交
2706
	}
2707

P
Peter Williams 已提交
2708
	if (!ld_moved) {
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2714
			spin_lock_irqsave(&busiest->lock, flags);
2715 2716 2717 2718 2719

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2720
				spin_unlock_irqrestore(&busiest->lock, flags);
2721 2722 2723 2724
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2725 2726 2727
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2728
				active_balance = 1;
L
Linus Torvalds 已提交
2729
			}
2730
			spin_unlock_irqrestore(&busiest->lock, flags);
2731
			if (active_balance)
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2738
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2739
		}
2740
	} else
L
Linus Torvalds 已提交
2741 2742
		sd->nr_balance_failed = 0;

2743
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2744 2745
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2746 2747 2748 2749 2750 2751 2752 2753 2754
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2755 2756
	}

P
Peter Williams 已提交
2757
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2758
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2759
		return -1;
P
Peter Williams 已提交
2760
	return ld_moved;
L
Linus Torvalds 已提交
2761 2762 2763 2764

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2765
	sd->nr_balance_failed = 0;
2766 2767

out_one_pinned:
L
Linus Torvalds 已提交
2768
	/* tune up the balancing interval */
2769 2770
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2771 2772
		sd->balance_interval *= 2;

2773
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2774
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2775
		return -1;
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780 2781 2782
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2783
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2784 2785
 * this_rq is locked.
 */
2786
static int
2787
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2788 2789
{
	struct sched_group *group;
2790
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2791
	unsigned long imbalance;
P
Peter Williams 已提交
2792
	int ld_moved = 0;
N
Nick Piggin 已提交
2793
	int sd_idle = 0;
2794
	int all_pinned = 0;
2795
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2796

2797 2798 2799 2800
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2801
	 * portraying it as CPU_NOT_IDLE.
2802 2803 2804
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2805
		sd_idle = 1;
L
Linus Torvalds 已提交
2806

I
Ingo Molnar 已提交
2807
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2808
redo:
I
Ingo Molnar 已提交
2809
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2810
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2811
	if (!group) {
I
Ingo Molnar 已提交
2812
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2813
		goto out_balanced;
L
Linus Torvalds 已提交
2814 2815
	}

I
Ingo Molnar 已提交
2816
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2817
				&cpus);
N
Nick Piggin 已提交
2818
	if (!busiest) {
I
Ingo Molnar 已提交
2819
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2820
		goto out_balanced;
L
Linus Torvalds 已提交
2821 2822
	}

N
Nick Piggin 已提交
2823 2824
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2825
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2826

P
Peter Williams 已提交
2827
	ld_moved = 0;
2828 2829 2830
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2831 2832
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2833
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2834 2835
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2836
		spin_unlock(&busiest->lock);
2837

2838
		if (unlikely(all_pinned)) {
2839 2840 2841 2842
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2843 2844
	}

P
Peter Williams 已提交
2845
	if (!ld_moved) {
I
Ingo Molnar 已提交
2846
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2847 2848
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2849 2850
			return -1;
	} else
2851
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2852

P
Peter Williams 已提交
2853
	return ld_moved;
2854 2855

out_balanced:
I
Ingo Molnar 已提交
2856
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2857
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2858
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2859
		return -1;
2860
	sd->nr_balance_failed = 0;
2861

2862
	return 0;
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2869
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2870 2871
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2872 2873
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2874 2875

	for_each_domain(this_cpu, sd) {
2876 2877 2878 2879 2880 2881
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2882
			/* If we've pulled tasks over stop searching: */
2883
			pulled_task = load_balance_newidle(this_cpu,
2884 2885 2886 2887 2888 2889 2890
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2891
	}
I
Ingo Molnar 已提交
2892
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2893 2894 2895 2896 2897
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2898
	}
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2909
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2910
{
2911
	int target_cpu = busiest_rq->push_cpu;
2912 2913
	struct sched_domain *sd;
	struct rq *target_rq;
2914

2915
	/* Is there any task to move? */
2916 2917 2918 2919
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2920 2921

	/*
2922 2923 2924
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2925
	 */
2926
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2927

2928 2929
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2930 2931
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2932 2933

	/* Search for an sd spanning us and the target CPU. */
2934
	for_each_domain(target_cpu, sd) {
2935
		if ((sd->flags & SD_LOAD_BALANCE) &&
2936
		    cpu_isset(busiest_cpu, sd->span))
2937
				break;
2938
	}
2939

2940 2941
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2942

P
Peter Williams 已提交
2943 2944
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2945 2946 2947 2948
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2949
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2950 2951
}

2952 2953 2954 2955 2956 2957 2958 2959 2960
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2961
/*
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2972
 *
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3029 3030 3031 3032 3033
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3034
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3035
{
3036 3037
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3038 3039
	unsigned long interval;
	struct sched_domain *sd;
3040
	/* Earliest time when we have to do rebalance again */
3041
	unsigned long next_balance = jiffies + 60*HZ;
3042
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3043

3044
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3045 3046 3047 3048
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3049
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054 3055
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3056 3057 3058
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3059

3060 3061 3062 3063 3064
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3065
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3066
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3067 3068
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3069 3070 3071
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3072
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3073
			}
3074
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3075
		}
3076 3077 3078
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3079
		if (time_after(next_balance, sd->last_balance + interval)) {
3080
			next_balance = sd->last_balance + interval;
3081 3082
			update_next_balance = 1;
		}
3083 3084 3085 3086 3087 3088 3089 3090

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3091
	}
3092 3093 3094 3095 3096 3097 3098 3099

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3100 3101 3102 3103 3104 3105 3106 3107 3108
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3109 3110 3111 3112
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3113

I
Ingo Molnar 已提交
3114
	rebalance_domains(this_cpu, idle);
3115 3116 3117 3118 3119 3120 3121

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3122 3123
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3124 3125 3126 3127
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3128
		cpu_clear(this_cpu, cpus);
3129 3130 3131 3132 3133 3134 3135 3136 3137
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3138
			rebalance_domains(balance_cpu, CPU_IDLE);
3139 3140

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3141 3142
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3155
static inline void trigger_load_balance(struct rq *rq, int cpu)
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3207
}
I
Ingo Molnar 已提交
3208 3209 3210

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3211 3212 3213
/*
 * on UP we do not need to balance between CPUs:
 */
3214
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3215 3216
{
}
I
Ingo Molnar 已提交
3217 3218 3219 3220 3221 3222

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3223
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3224 3225 3226 3227 3228 3229
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3230 3231 3232 3233 3234 3235 3236
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3237 3238
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3239
 */
3240
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3241 3242
{
	unsigned long flags;
3243 3244
	u64 ns, delta_exec;
	struct rq *rq;
3245

3246 3247 3248
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3249 3250
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3251 3252 3253 3254
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3255

L
Linus Torvalds 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3290
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3320
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3343
	struct task_struct *curr = rq->curr;
3344
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3345 3346

	spin_lock(&rq->lock);
3347
	__update_rq_clock(rq);
3348 3349 3350 3351 3352 3353
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3354
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3355 3356 3357
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3358

3359
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3360 3361
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3362
#endif
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3372 3373
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3374 3375 3376 3377
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3378 3379
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3380 3381 3382 3383 3384 3385 3386 3387
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3388 3389
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3390 3391 3392
	/*
	 * Is the spinlock portion underflowing?
	 */
3393 3394 3395 3396
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3397 3398 3399 3400 3401 3402 3403
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3404
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3405
 */
I
Ingo Molnar 已提交
3406
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3407
{
I
Ingo Molnar 已提交
3408 3409 3410 3411 3412 3413 3414
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3415

I
Ingo Molnar 已提交
3416 3417 3418 3419 3420
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3421 3422 3423 3424 3425
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3426 3427 3428
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3429 3430
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3431 3432 3433 3434 3435 3436 3437
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3438
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3439 3440 3441
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3442 3443

	/*
I
Ingo Molnar 已提交
3444 3445
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3446
	 */
I
Ingo Molnar 已提交
3447
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3448
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3449 3450
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3451 3452
	}

I
Ingo Molnar 已提交
3453 3454
	class = sched_class_highest;
	for ( ; ; ) {
3455
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3465

I
Ingo Molnar 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3488 3489

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3490
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3491
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3492 3493 3494

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3495
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3496
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3497
		} else {
3498
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3499
		}
I
Ingo Molnar 已提交
3500
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3501 3502
	}

I
Ingo Molnar 已提交
3503
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3504 3505
		idle_balance(cpu, rq);

3506
	prev->sched_class->put_prev_task(rq, prev);
3507
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3508 3509

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3510

L
Linus Torvalds 已提交
3511 3512 3513 3514 3515
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3516
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3517 3518 3519
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3520 3521 3522
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3523
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3524
	}
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531 3532
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3533
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3548
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3576
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3588
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3618 3619
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3620
{
3621
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3640 3641 3642
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3643
		if (curr->func(curr, mode, sync, key) &&
3644
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3654
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3655 3656
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3657
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3676
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3688 3689
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3733

L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3852 3853 3854 3855 3856
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3857
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3858
}
L
Linus Torvalds 已提交
3859

I
Ingo Molnar 已提交
3860 3861 3862 3863 3864 3865 3866
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3867

I
Ingo Molnar 已提交
3868
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3869
{
I
Ingo Molnar 已提交
3870 3871 3872 3873
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3874 3875 3876

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3877
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3878
	schedule();
I
Ingo Molnar 已提交
3879
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3880 3881 3882
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3883
long __sched
I
Ingo Molnar 已提交
3884
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3885
{
I
Ingo Molnar 已提交
3886 3887 3888 3889
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3890 3891 3892

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3893
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3894
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3895
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3896 3897 3898 3899 3900

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3901
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3902
{
I
Ingo Molnar 已提交
3903 3904 3905 3906
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3907 3908 3909

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3910
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3911
	schedule();
I
Ingo Molnar 已提交
3912
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3913 3914 3915
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3916
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3917
{
I
Ingo Molnar 已提交
3918 3919 3920 3921
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3922 3923 3924

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3925
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3926
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3927
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3928 3929 3930 3931 3932

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3945
void rt_mutex_setprio(struct task_struct *p, int prio)
3946 3947
{
	unsigned long flags;
I
Ingo Molnar 已提交
3948
	int oldprio, on_rq;
3949
	struct rq *rq;
3950 3951 3952 3953

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3954
	update_rq_clock(rq);
3955

3956
	oldprio = p->prio;
I
Ingo Molnar 已提交
3957 3958
	on_rq = p->se.on_rq;
	if (on_rq)
3959
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3960 3961 3962 3963 3964 3965

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3966 3967
	p->prio = prio;

I
Ingo Molnar 已提交
3968
	if (on_rq) {
3969
		enqueue_task(rq, p, 0);
3970 3971
		/*
		 * Reschedule if we are currently running on this runqueue and
3972 3973
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3974
		 */
3975 3976 3977
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3978 3979 3980
		} else {
			check_preempt_curr(rq, p);
		}
3981 3982 3983 3984 3985 3986
	}
	task_rq_unlock(rq, &flags);
}

#endif

3987
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3988
{
I
Ingo Molnar 已提交
3989
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3990
	unsigned long flags;
3991
	struct rq *rq;
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4000
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4001 4002 4003 4004
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4005
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4006
	 */
4007
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4008 4009 4010
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4011 4012
	on_rq = p->se.on_rq;
	if (on_rq) {
4013
		dequeue_task(rq, p, 0);
4014
		dec_load(rq, p);
4015
	}
L
Linus Torvalds 已提交
4016 4017

	p->static_prio = NICE_TO_PRIO(nice);
4018
	set_load_weight(p);
4019 4020 4021
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4022

I
Ingo Molnar 已提交
4023
	if (on_rq) {
4024
		enqueue_task(rq, p, 0);
4025
		inc_load(rq, p);
L
Linus Torvalds 已提交
4026
		/*
4027 4028
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4029
		 */
4030
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4038 4039 4040 4041 4042
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4043
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4044
{
4045 4046
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4047

M
Matt Mackall 已提交
4048 4049 4050 4051
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4063
	long nice, retval;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068 4069

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4070 4071
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4081 4082 4083
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4102
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109 4110
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4111
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4130
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4139
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4145 4146
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4147
{
I
Ingo Molnar 已提交
4148
	BUG_ON(p->se.on_rq);
4149

L
Linus Torvalds 已提交
4150
	p->policy = policy;
I
Ingo Molnar 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4163
	p->rt_priority = prio;
4164 4165 4166
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4167
	set_load_weight(p);
L
Linus Torvalds 已提交
4168 4169 4170
}

/**
4171
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4172 4173 4174
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4175
 *
4176
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4177
 */
I
Ingo Molnar 已提交
4178 4179
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4180
{
I
Ingo Molnar 已提交
4181
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4182
	unsigned long flags;
4183
	struct rq *rq;
L
Linus Torvalds 已提交
4184

4185 4186
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4192 4193
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4194
		return -EINVAL;
L
Linus Torvalds 已提交
4195 4196
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4197 4198
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4199 4200
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4201
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4202
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4203
		return -EINVAL;
4204
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4205 4206
		return -EINVAL;

4207 4208 4209 4210
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4211
		if (rt_policy(policy)) {
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4228 4229 4230 4231 4232 4233
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4234

4235 4236 4237 4238 4239
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4240 4241 4242 4243

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4244 4245 4246 4247 4248
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4249 4250 4251 4252
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4253
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4254 4255 4256
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4257 4258
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4259 4260
		goto recheck;
	}
I
Ingo Molnar 已提交
4261
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4262
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4263
	if (on_rq)
4264
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4265
	oldprio = p->prio;
I
Ingo Molnar 已提交
4266 4267 4268
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4269 4270
		/*
		 * Reschedule if we are currently running on this runqueue and
4271 4272
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4273
		 */
4274 4275 4276
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4277 4278 4279
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4280
	}
4281 4282 4283
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4284 4285
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4286 4287 4288 4289
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4290 4291
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4292 4293 4294
{
	struct sched_param lparam;
	struct task_struct *p;
4295
	int retval;
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4301 4302 4303

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4304
	p = find_process_by_pid(pid);
4305 4306 4307
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4308

L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4321 4322 4323 4324
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4344
	struct task_struct *p;
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4372
	struct task_struct *p;
L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4407 4408
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4409

4410
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4416
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4433 4434 4435 4436
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4437 4438 4439 4440 4441 4442
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4443
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4484
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4485 4486 4487
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4488
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4489 4490
EXPORT_SYMBOL(cpu_online_map);

4491
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4492
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4493 4494 4495 4496
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4497
	struct task_struct *p;
L
Linus Torvalds 已提交
4498 4499
	int retval;

4500
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4508 4509 4510 4511
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4512
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4513 4514 4515

out_unlock:
	read_unlock(&tasklist_lock);
4516
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4517

4518
	return retval;
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4549 4550
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4551 4552 4553
 */
asmlinkage long sys_sched_yield(void)
{
4554
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4555 4556

	schedstat_inc(rq, yld_cnt);
4557
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4564
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569 4570 4571 4572
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4573
static void __cond_resched(void)
L
Linus Torvalds 已提交
4574
{
4575 4576 4577
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4578 4579 4580 4581 4582
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4592 4593
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4609
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4610
{
J
Jan Kara 已提交
4611 4612
	int ret = 0;

L
Linus Torvalds 已提交
4613 4614 4615
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4616
		ret = 1;
L
Linus Torvalds 已提交
4617 4618
		spin_lock(lock);
	}
4619
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4620
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4621 4622 4623
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4624
		ret = 1;
L
Linus Torvalds 已提交
4625 4626
		spin_lock(lock);
	}
J
Jan Kara 已提交
4627
	return ret;
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632 4633 4634
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4635
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4636
		local_bh_enable();
L
Linus Torvalds 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4648
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4667
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4668

4669
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4670 4671 4672
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4673
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4679
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4680 4681
	long ret;

4682
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4683 4684 4685
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4686
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4707
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4708
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4732
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4733
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4750
	struct task_struct *p;
L
Linus Torvalds 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4767
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4768
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4778
static const char stat_nam[] = "RSDTtZX";
4779 4780

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4781 4782
{
	unsigned long free = 0;
4783
	unsigned state;
L
Linus Torvalds 已提交
4784 4785

	state = p->state ? __ffs(p->state) + 1 : 0;
4786 4787
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4788
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4789
	if (state == TASK_RUNNING)
4790
		printk(" running  ");
L
Linus Torvalds 已提交
4791
	else
4792
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4793 4794
#else
	if (state == TASK_RUNNING)
4795
		printk("  running task    ");
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4801
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4802 4803
		while (!*n)
			n++;
4804
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4805 4806
	}
#endif
4807
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4808 4809 4810 4811 4812

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4813
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4814
{
4815
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4816

4817 4818 4819
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4820
#else
4821 4822
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829 4830
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4831
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4832
			show_task(p);
L
Linus Torvalds 已提交
4833 4834
	} while_each_thread(g, p);

4835 4836
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4837 4838 4839
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4840
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4841 4842 4843 4844 4845
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4846 4847
}

I
Ingo Molnar 已提交
4848 4849
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4850
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4851 4852
}

4853 4854 4855 4856 4857 4858 4859 4860
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4861
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4862
{
4863
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4864 4865
	unsigned long flags;

I
Ingo Molnar 已提交
4866 4867 4868
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4869
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4870
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4871
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4872 4873 4874

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4875 4876 4877
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4878 4879 4880 4881
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4882
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4883
#else
A
Al Viro 已提交
4884
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4885
#endif
I
Ingo Molnar 已提交
4886 4887 4888 4889
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4913
	const unsigned long limit = 100000000;
I
Ingo Molnar 已提交
4914

4915 4916 4917
	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;
I
Ingo Molnar 已提交
4918

4919 4920 4921 4922
	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

4923 4924
	sysctl_sched_runtime_limit = sysctl_sched_latency;
	sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
I
Ingo Molnar 已提交
4925 4926
}

L
Linus Torvalds 已提交
4927 4928 4929 4930
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4931
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4953
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4954
{
4955
	struct migration_req req;
L
Linus Torvalds 已提交
4956
	unsigned long flags;
4957
	struct rq *rq;
4958
	int ret = 0;
L
Linus Torvalds 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4981

L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4994 4995
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4996
 */
4997
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4998
{
4999
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5000
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5001 5002

	if (unlikely(cpu_is_offline(dest_cpu)))
5003
		return ret;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5016
	on_rq = p->se.on_rq;
5017
	if (on_rq)
5018
		deactivate_task(rq_src, p, 0);
5019

L
Linus Torvalds 已提交
5020
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5021 5022 5023
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5024
	}
5025
	ret = 1;
L
Linus Torvalds 已提交
5026 5027
out:
	double_rq_unlock(rq_src, rq_dest);
5028
	return ret;
L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5036
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5037 5038
{
	int cpu = (long)data;
5039
	struct rq *rq;
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5046
		struct migration_req *req;
L
Linus Torvalds 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5069
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5070 5071
		list_del_init(head->next);

N
Nick Piggin 已提交
5072 5073 5074
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5093 5094 5095 5096
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5097
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5098
{
5099
	unsigned long flags;
L
Linus Torvalds 已提交
5100
	cpumask_t mask;
5101 5102
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5103

5104
restart:
L
Linus Torvalds 已提交
5105 5106
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5107
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5108 5109 5110 5111
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5112
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5113 5114 5115

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5116 5117 5118
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5119
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5120 5121 5122 5123 5124 5125

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5126
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5127 5128
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5129
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5130
	}
5131
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5132
		goto restart;
L
Linus Torvalds 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5142
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5143
{
5144
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5158
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5159 5160 5161

	write_lock_irq(&tasklist_lock);

5162 5163
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5164 5165
			continue;

5166 5167 5168
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5169 5170 5171 5172

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5173 5174
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5175
 * It does so by boosting its priority to highest possible and adding it to
5176
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5177 5178 5179
 */
void sched_idle_next(void)
{
5180
	int this_cpu = smp_processor_id();
5181
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5182 5183 5184 5185
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5186
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5187

5188 5189 5190
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5191 5192 5193
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5194
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5195 5196

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5197
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5198 5199 5200 5201

	spin_unlock_irqrestore(&rq->lock, flags);
}

5202 5203
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5217
/* called under rq->lock with disabled interrupts */
5218
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5219
{
5220
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5221 5222

	/* Must be exiting, otherwise would be on tasklist. */
5223
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5224 5225

	/* Cannot have done final schedule yet: would have vanished. */
5226
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5227

5228
	get_task_struct(p);
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5234
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5235
	 */
5236
	spin_unlock(&rq->lock);
5237
	move_task_off_dead_cpu(dead_cpu, p);
5238
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5239

5240
	put_task_struct(p);
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5246
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5247
	struct task_struct *next;
5248

I
Ingo Molnar 已提交
5249 5250 5251
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5252
		update_rq_clock(rq);
5253
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5254 5255 5256
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5257

L
Linus Torvalds 已提交
5258 5259 5260 5261
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5262 5263 5264
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5265 5266
	{
		.procname	= "sched_domain",
5267
		.mode		= 0555,
5268
	},
5269 5270 5271 5272
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5273
	{
5274
		.ctl_name	= CTL_KERN,
5275
		.procname	= "kernel",
5276
		.mode		= 0555,
5277 5278
		.child		= sd_ctl_dir,
	},
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5294
set_table_entry(struct ctl_table *entry,
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5310
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5311
		sizeof(long), 0644, proc_doulongvec_minmax);
5312
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5313
		sizeof(long), 0644, proc_doulongvec_minmax);
5314
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5315
		sizeof(int), 0644, proc_dointvec_minmax);
5316
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5317
		sizeof(int), 0644, proc_dointvec_minmax);
5318
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5319
		sizeof(int), 0644, proc_dointvec_minmax);
5320
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5321
		sizeof(int), 0644, proc_dointvec_minmax);
5322
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5323
		sizeof(int), 0644, proc_dointvec_minmax);
5324
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5325
		sizeof(int), 0644, proc_dointvec_minmax);
5326
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5327
		sizeof(int), 0644, proc_dointvec_minmax);
5328
	set_table_entry(&table[10], "cache_nice_tries",
5329 5330
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5331
	set_table_entry(&table[12], "flags", &sd->flags,
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5352
		entry->mode = 0555;
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5372
		entry->mode = 0555;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5383 5384 5385 5386
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5387 5388
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5389 5390
{
	struct task_struct *p;
5391
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5392
	unsigned long flags;
5393
	struct rq *rq;
L
Linus Torvalds 已提交
5394 5395

	switch (action) {
5396 5397 5398 5399
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5400
	case CPU_UP_PREPARE:
5401
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5402
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5408
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5409 5410 5411
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5412

L
Linus Torvalds 已提交
5413
	case CPU_ONLINE:
5414
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5415 5416 5417
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5418

L
Linus Torvalds 已提交
5419 5420
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5421
	case CPU_UP_CANCELED_FROZEN:
5422 5423
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5424
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5425 5426
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5427 5428 5429
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5430

L
Linus Torvalds 已提交
5431
	case CPU_DEAD:
5432
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5439
		update_rq_clock(rq);
5440
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5441
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5442 5443
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448 5449
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5450
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5451 5452 5453
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5454 5455
			struct migration_req *req;

L
Linus Torvalds 已提交
5456
			req = list_entry(rq->migration_queue.next,
5457
					 struct migration_req, list);
L
Linus Torvalds 已提交
5458 5459 5460 5461 5462 5463
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5464 5465 5466
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5467 5468 5469 5470 5471 5472 5473
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5474
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5482
	int err;
5483 5484

	/* Start one for the boot CPU: */
5485 5486
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5487 5488
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5489

L
Linus Torvalds 已提交
5490 5491 5492 5493 5494
	return 0;
}
#endif

#ifdef CONFIG_SMP
5495 5496 5497 5498 5499

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5500
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5506 5507 5508 5509 5510
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5530 5531
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5538 5539
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5540
		if (!cpu_isset(cpu, group->cpumask))
5541 5542
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5555
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5556
				printk("\n");
5557 5558
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5581 5582
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5583 5584 5585

		level++;
		sd = sd->parent;
5586 5587
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5588

5589 5590 5591
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5592 5593 5594 5595

	} while (sd);
}
#else
5596
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5597 5598
#endif

5599
static int sd_degenerate(struct sched_domain *sd)
5600 5601 5602 5603 5604 5605 5606 5607
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5608 5609 5610
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5624 5625
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5644 5645 5646
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5647 5648 5649 5650 5651 5652 5653
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5654 5655 5656 5657
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5658
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5659
{
5660
	struct rq *rq = cpu_rq(cpu);
5661 5662 5663 5664 5665 5666 5667
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5668
		if (sd_parent_degenerate(tmp, parent)) {
5669
			tmp->parent = parent->parent;
5670 5671 5672
			if (parent->parent)
				parent->parent->child = tmp;
		}
5673 5674
	}

5675
	if (sd && sd_degenerate(sd)) {
5676
		sd = sd->parent;
5677 5678 5679
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5680 5681 5682

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5683
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5684 5685 5686
}

/* cpus with isolated domains */
5687
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5705 5706 5707 5708
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5714
static void
5715 5716 5717
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5724 5725
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5732
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5733 5734

		for_each_cpu_mask(j, span) {
5735
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5750
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5751

5752
#ifdef CONFIG_NUMA
5753

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5806 5807
	cpumask_t span, nodemask;
	int i;
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5818

5819 5820 5821 5822 5823 5824 5825 5826
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5827
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5828

5829
/*
5830
 * SMT sched-domains:
5831
 */
L
Linus Torvalds 已提交
5832 5833
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5834
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5835

5836 5837
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5838
{
5839 5840
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5841 5842 5843 5844
	return cpu;
}
#endif

5845 5846 5847
/*
 * multi-core sched-domains:
 */
5848 5849
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5850
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5851 5852 5853
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5854 5855
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5856
{
5857
	int group;
5858 5859
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5860 5861 5862 5863
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5864 5865
}
#elif defined(CONFIG_SCHED_MC)
5866 5867
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5868
{
5869 5870
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5871 5872 5873 5874
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5875
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5876
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5877

5878 5879
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5880
{
5881
	int group;
5882
#ifdef CONFIG_SCHED_MC
5883
	cpumask_t mask = cpu_coregroup_map(cpu);
5884
	cpus_and(mask, mask, *cpu_map);
5885
	group = first_cpu(mask);
5886
#elif defined(CONFIG_SCHED_SMT)
5887 5888
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5889
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5890
#else
5891
	group = cpu;
L
Linus Torvalds 已提交
5892
#endif
5893 5894 5895
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5896 5897 5898 5899
}

#ifdef CONFIG_NUMA
/*
5900 5901 5902
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5903
 */
5904
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5905
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5906

5907
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5908
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5909

5910 5911
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5912
{
5913 5914 5915 5916 5917 5918 5919 5920 5921
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5922
}
5923

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5944
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5945 5946 5947 5948 5949
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5950 5951
#endif

5952
#ifdef CONFIG_NUMA
5953 5954 5955
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5956
	int cpu, i;
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5987 5988 5989 5990 5991
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5992

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6019 6020
	sd->groups->__cpu_power = 0;

6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6031
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6032 6033 6034 6035 6036 6037 6038 6039
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6040
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6041 6042 6043 6044
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6045
/*
6046 6047
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6048
 */
6049
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6050 6051
{
	int i;
6052 6053
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6054
	int sd_allnodes = 0;
6055 6056 6057 6058

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6059
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6060
					   GFP_KERNEL);
6061 6062
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6063
		return -ENOMEM;
6064 6065 6066
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6067 6068

	/*
6069
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6070
	 */
6071
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6072 6073 6074
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6075
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6076 6077

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6078 6079
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6080 6081 6082
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6083
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6084
			p = sd;
6085
			sd_allnodes = 1;
6086 6087 6088
		} else
			p = NULL;

L
Linus Torvalds 已提交
6089 6090
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6091 6092
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6093 6094
		if (p)
			p->child = sd;
6095
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6096 6097 6098 6099 6100 6101 6102
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6103 6104
		if (p)
			p->child = sd;
6105
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6106

6107 6108 6109 6110 6111 6112 6113
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6114
		p->child = sd;
6115
		cpu_to_core_group(i, cpu_map, &sd->groups);
6116 6117
#endif

L
Linus Torvalds 已提交
6118 6119 6120 6121 6122
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6123
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6124
		sd->parent = p;
6125
		p->child = sd;
6126
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6127 6128 6129 6130 6131
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6132
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6133
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6134
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6135 6136 6137
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6138 6139
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6140 6141 6142
	}
#endif

6143 6144 6145 6146 6147 6148 6149
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6150 6151
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6152 6153 6154
	}
#endif

L
Linus Torvalds 已提交
6155 6156 6157 6158
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6159
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6160 6161 6162
		if (cpus_empty(nodemask))
			continue;

6163
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6164 6165 6166 6167
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6168
	if (sd_allnodes)
I
Ingo Molnar 已提交
6169 6170
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6181 6182
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6183
			continue;
6184
		}
6185 6186 6187 6188

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6189
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6190 6191 6192 6193 6194
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6195 6196 6197
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6198

6199 6200 6201
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6202
		sg->__cpu_power = 0;
6203
		sg->cpumask = nodemask;
6204
		sg->next = sg;
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6223 6224
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6225 6226 6227
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6228
				goto error;
6229
			}
6230
			sg->__cpu_power = 0;
6231
			sg->cpumask = tmp;
6232
			sg->next = prev->next;
6233 6234 6235 6236 6237
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6238 6239 6240
#endif

	/* Calculate CPU power for physical packages and nodes */
6241
#ifdef CONFIG_SCHED_SMT
6242
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6243 6244
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6245
		init_sched_groups_power(i, sd);
6246
	}
L
Linus Torvalds 已提交
6247
#endif
6248
#ifdef CONFIG_SCHED_MC
6249
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6250 6251
		struct sched_domain *sd = &per_cpu(core_domains, i);

6252
		init_sched_groups_power(i, sd);
6253 6254
	}
#endif
6255

6256
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6257 6258
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6259
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6260 6261
	}

6262
#ifdef CONFIG_NUMA
6263 6264
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6265

6266 6267
	if (sd_allnodes) {
		struct sched_group *sg;
6268

6269
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6270 6271
		init_numa_sched_groups_power(sg);
	}
6272 6273
#endif

L
Linus Torvalds 已提交
6274
	/* Attach the domains */
6275
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6276 6277 6278
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6279 6280
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6281 6282 6283 6284 6285
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6286 6287 6288

	return 0;

6289
#ifdef CONFIG_NUMA
6290 6291 6292
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6293
#endif
L
Linus Torvalds 已提交
6294
}
6295 6296 6297
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6298
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6299 6300
{
	cpumask_t cpu_default_map;
6301
	int err;
L
Linus Torvalds 已提交
6302

6303 6304 6305 6306 6307 6308 6309
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6310 6311 6312
	err = build_sched_domains(&cpu_default_map);

	return err;
6313 6314 6315
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6316
{
6317
	free_sched_groups(cpu_map);
6318
}
L
Linus Torvalds 已提交
6319

6320 6321 6322 6323
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6324
static void detach_destroy_domains(const cpumask_t *cpu_map)
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6342
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6343 6344
{
	cpumask_t change_map;
6345
	int err = 0;
6346 6347 6348 6349 6350 6351 6352 6353

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6354 6355 6356 6357 6358
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6359 6360
}

6361
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6362
static int arch_reinit_sched_domains(void)
6363 6364 6365
{
	int err;

6366
	mutex_lock(&sched_hotcpu_mutex);
6367 6368
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6369
	mutex_unlock(&sched_hotcpu_mutex);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6396 6397
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6398 6399 6400
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6401 6402
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6403 6404 6405 6406 6407 6408 6409
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6410 6411
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6412 6413 6414
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6435 6436
#endif

L
Linus Torvalds 已提交
6437 6438 6439
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6440
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6441 6442 6443 6444 6445 6446 6447
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6448
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6449
	case CPU_DOWN_PREPARE:
6450
	case CPU_DOWN_PREPARE_FROZEN:
6451
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6452 6453 6454
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6455
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6456
	case CPU_DOWN_FAILED:
6457
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6458
	case CPU_ONLINE:
6459
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6460
	case CPU_DEAD:
6461
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6471
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6472 6473 6474 6475 6476 6477

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6478 6479
	cpumask_t non_isolated_cpus;

6480
	mutex_lock(&sched_hotcpu_mutex);
6481
	arch_init_sched_domains(&cpu_online_map);
6482
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6483 6484
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6485
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6486 6487
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6488

6489 6490
	init_sched_domain_sysctl();

6491 6492 6493
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6494
	sched_init_granularity();
L
Linus Torvalds 已提交
6495 6496 6497 6498
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6499
	sched_init_granularity();
L
Linus Torvalds 已提交
6500 6501 6502 6503 6504 6505 6506
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6507

L
Linus Torvalds 已提交
6508 6509 6510 6511 6512
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6522 6523
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6524
	u64 now = sched_clock();
6525
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6526 6527 6528 6529 6530 6531 6532 6533
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6534

6535
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6536
		struct rt_prio_array *array;
6537
		struct rq *rq;
L
Linus Torvalds 已提交
6538 6539 6540

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6541
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6542
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6543 6544 6545 6546 6547 6548 6549 6550
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6551

I
Ingo Molnar 已提交
6552 6553
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6554
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6555
		rq->sd = NULL;
L
Linus Torvalds 已提交
6556
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6557
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6558
		rq->push_cpu = 0;
6559
		rq->cpu = i;
L
Linus Torvalds 已提交
6560 6561 6562 6563 6564
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6565 6566 6567 6568
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6569
		}
6570
		highest_cpu = i;
I
Ingo Molnar 已提交
6571 6572
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6573 6574
	}

6575
	set_load_weight(&init_task);
6576

6577 6578 6579 6580
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6581
#ifdef CONFIG_SMP
6582
	nr_cpu_ids = highest_cpu + 1;
6583 6584 6585
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6586 6587 6588 6589
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6603 6604 6605 6606
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6607 6608 6609 6610 6611
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6612
#ifdef in_atomic
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617 6618 6619
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6620
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6621 6622 6623
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6624
		debug_show_held_locks(current);
6625 6626
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6637
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6638
	unsigned long flags;
6639
	struct rq *rq;
I
Ingo Molnar 已提交
6640
	int on_rq;
L
Linus Torvalds 已提交
6641 6642

	read_lock_irq(&tasklist_lock);
6643
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6644 6645
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6646
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6647
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6648 6649
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6650 6651 6652
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6653
#endif
I
Ingo Molnar 已提交
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6664
			continue;
I
Ingo Molnar 已提交
6665
		}
L
Linus Torvalds 已提交
6666

6667 6668
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6669 6670 6671 6672 6673 6674 6675
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6676

I
Ingo Molnar 已提交
6677
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6678
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6679 6680
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6681 6682
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6683
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6684 6685
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6686 6687 6688
#ifdef CONFIG_SMP
 out_unlock:
#endif
6689 6690
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6691 6692
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6693 6694 6695 6696
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6715
struct task_struct *curr_task(int cpu)
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6735
void set_curr_task(int cpu, struct task_struct *p)
6736 6737 6738 6739 6740
{
	cpu_curr(cpu) = p;
}

#endif