sched.c 223.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
238
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
	struct cgroup_subsys_state css;
249

250
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251 252 253 254 255
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
256 257 258 259 260 261
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

262
	struct rt_bandwidth rt_bandwidth;
263
#endif
264

265
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
266
	struct list_head list;
P
Peter Zijlstra 已提交
267 268 269 270

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
271 272
};

273
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
274

275
/* task_group_lock serializes add/remove of task groups and also changes to
276 277
 * a task group's cpu shares.
 */
278
static DEFINE_SPINLOCK(task_group_lock);
279

280 281
#ifdef CONFIG_FAIR_GROUP_SCHED

282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

289 290
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

291
/*
292 293 294 295
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
296 297 298
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
299
#define MIN_SHARES	2
300
#define MAX_SHARES	(1UL << 18)
301

302 303 304
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
305
/* Default task group.
I
Ingo Molnar 已提交
306
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
307
 */
308
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
309

D
Dhaval Giani 已提交
310
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
311

I
Ingo Molnar 已提交
312 313 314 315 316 317
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
318
	u64 min_vruntime;
I
Ingo Molnar 已提交
319 320 321

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
322 323 324 325 326 327

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
328 329
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
330
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
333

334
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
335 336
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
337 338
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
339 340 341 342 343 344
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
345 346
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
347 348 349

#ifdef CONFIG_SMP
	/*
350
	 * the part of load.weight contributed by tasks
351
	 */
352
	unsigned long task_weight;
353

354 355 356 357 358 359 360
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
361

362 363 364 365
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
366 367 368 369 370

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
371
#endif
I
Ingo Molnar 已提交
372 373
#endif
};
L
Linus Torvalds 已提交
374

I
Ingo Molnar 已提交
375 376 377
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
378
	unsigned long rt_nr_running;
379
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 381
	struct {
		int curr; /* highest queued rt task prio */
382
#ifdef CONFIG_SMP
383
		int next; /* next highest */
384
#endif
385
	} highest_prio;
P
Peter Zijlstra 已提交
386
#endif
P
Peter Zijlstra 已提交
387
#ifdef CONFIG_SMP
388
	unsigned long rt_nr_migratory;
389
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
390
	int overloaded;
391
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
392
#endif
P
Peter Zijlstra 已提交
393
	int rt_throttled;
P
Peter Zijlstra 已提交
394
	u64 rt_time;
P
Peter Zijlstra 已提交
395
	u64 rt_runtime;
I
Ingo Molnar 已提交
396
	/* Nests inside the rq lock: */
397
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
398

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
402 403 404 405
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
406 407
};

G
Gregory Haskins 已提交
408 409 410 411
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
412 413
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
414 415 416 417 418 419
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
420 421
	cpumask_var_t span;
	cpumask_var_t online;
422

I
Ingo Molnar 已提交
423
	/*
424 425 426
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
427
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
428
	atomic_t rto_count;
429
	struct cpupri cpupri;
G
Gregory Haskins 已提交
430 431
};

432 433 434 435
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
436 437
static struct root_domain def_root_domain;

438
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
439

L
Linus Torvalds 已提交
440 441 442 443 444 445 446
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
447
struct rq {
448
	/* runqueue lock: */
449
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
450 451 452 453 454 455

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
456 457
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458
	unsigned long last_load_update_tick;
459
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
460
	u64 nohz_stamp;
461
	unsigned char nohz_balance_kick;
462
#endif
463 464
	unsigned int skip_clock_update;

465 466
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
467 468 469 470
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
471 472
	struct rt_rq rt;

I
Ingo Molnar 已提交
473
#ifdef CONFIG_FAIR_GROUP_SCHED
474 475
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
476 477
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
478
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
479 480 481 482 483 484 485 486 487 488
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

489
	struct task_struct *curr, *idle, *stop;
490
	unsigned long next_balance;
L
Linus Torvalds 已提交
491
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
492

493
	u64 clock;
I
Ingo Molnar 已提交
494

L
Linus Torvalds 已提交
495 496 497
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
498
	struct root_domain *rd;
L
Linus Torvalds 已提交
499 500
	struct sched_domain *sd;

501 502
	unsigned long cpu_power;

503
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
504
	/* For active balancing */
505
	int post_schedule;
L
Linus Torvalds 已提交
506 507
	int active_balance;
	int push_cpu;
508
	struct cpu_stop_work active_balance_work;
509 510
	/* cpu of this runqueue: */
	int cpu;
511
	int online;
L
Linus Torvalds 已提交
512

513
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
514

515 516
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
517 518
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
519 520
#endif

521 522 523 524
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
525
#ifdef CONFIG_SCHED_HRTICK
526 527 528 529
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
530 531 532
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
533 534 535
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
536 537
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
538 539

	/* sys_sched_yield() stats */
540
	unsigned int yld_count;
L
Linus Torvalds 已提交
541 542

	/* schedule() stats */
543 544 545
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
546 547

	/* try_to_wake_up() stats */
548 549
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
550 551

	/* BKL stats */
552
	unsigned int bkl_count;
L
Linus Torvalds 已提交
553 554 555
#endif
};

556
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
557

P
Peter Zijlstra 已提交
558 559
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
560
{
P
Peter Zijlstra 已提交
561
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
562 563 564 565 566 567 568

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
569 570
}

571 572 573 574 575 576 577 578 579
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

580
#define rcu_dereference_check_sched_domain(p) \
581 582 583 584
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
585 586
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
588 589 590 591
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
592
#define for_each_domain(cpu, __sd) \
593
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
594 595 596 597 598

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
599
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
	return container_of(css, struct task_group, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

I
Ingo Molnar 已提交
644
inline void update_rq_clock(struct rq *rq)
645
{
646 647
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
648 649
}

I
Ingo Molnar 已提交
650 651 652 653 654 655 656 657 658
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
659 660
/**
 * runqueue_is_locked
661
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
662 663 664 665 666
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
667
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
668
{
669
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
670 671
}

I
Ingo Molnar 已提交
672 673 674
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
675 676 677 678

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
679
enum {
P
Peter Zijlstra 已提交
680
#include "sched_features.h"
I
Ingo Molnar 已提交
681 682
};

P
Peter Zijlstra 已提交
683 684 685 686 687
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
688
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
689 690 691 692 693 694 695 696 697
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

698
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
699 700 701 702 703 704
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
705
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
706 707 708 709
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
710 711 712
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
713
	}
L
Li Zefan 已提交
714
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
715

L
Li Zefan 已提交
716
	return 0;
P
Peter Zijlstra 已提交
717 718 719 720 721 722 723
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
724
	char *cmp;
P
Peter Zijlstra 已提交
725 726 727 728 729 730 731 732 733 734
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
735
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
736

I
Ingo Molnar 已提交
737
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
738 739 740 741 742
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
743
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
744 745 746 747 748 749 750 751 752 753 754
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

755
	*ppos += cnt;
P
Peter Zijlstra 已提交
756 757 758 759

	return cnt;
}

L
Li Zefan 已提交
760 761 762 763 764
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

765
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
766 767 768 769 770
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
785

786 787 788 789 790 791
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
792 793
/*
 * ratelimit for updating the group shares.
794
 * default: 0.25ms
P
Peter Zijlstra 已提交
795
 */
796
unsigned int sysctl_sched_shares_ratelimit = 250000;
797
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
798

799 800 801 802 803 804 805
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

806 807 808 809 810 811 812 813
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
814
/*
P
Peter Zijlstra 已提交
815
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
816 817
 * default: 1s
 */
P
Peter Zijlstra 已提交
818
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
819

820 821
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
822 823 824 825 826
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
827

828 829 830 831 832 833 834
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
835
	if (sysctl_sched_rt_runtime < 0)
836 837 838 839
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
840

L
Linus Torvalds 已提交
841
#ifndef prepare_arch_switch
842 843 844 845 846 847
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

848 849 850 851 852
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

853
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
854
static inline int task_running(struct rq *rq, struct task_struct *p)
855
{
856
	return task_current(rq, p);
857 858
}

859
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 861 862
{
}

863
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864
{
865 866 867 868
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
869 870 871 872 873 874 875
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

876
	raw_spin_unlock_irq(&rq->lock);
877 878 879
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
880
static inline int task_running(struct rq *rq, struct task_struct *p)
881 882 883 884
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
885
	return task_current(rq, p);
886 887 888
#endif
}

889
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 891 892 893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900
	raw_spin_unlock_irq(&rq->lock);
901
#else
902
	raw_spin_unlock(&rq->lock);
903 904 905
#endif
}

906
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
919
#endif
920 921
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
922

923
/*
P
Peter Zijlstra 已提交
924 925
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
926 927 928
 */
static inline int task_is_waking(struct task_struct *p)
{
929
	return unlikely(p->state == TASK_WAKING);
930 931
}

932 933 934 935
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
936
static inline struct rq *__task_rq_lock(struct task_struct *p)
937 938
	__acquires(rq->lock)
{
939 940
	struct rq *rq;

941
	for (;;) {
942
		rq = task_rq(p);
943
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
944
		if (likely(rq == task_rq(p)))
945
			return rq;
946
		raw_spin_unlock(&rq->lock);
947 948 949
	}
}

L
Linus Torvalds 已提交
950 951
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
952
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
953 954
 * explicitly disabling preemption.
 */
955
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959

960 961 962
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
963
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
964
		if (likely(rq == task_rq(p)))
965
			return rq;
966
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
967 968 969
	}
}

A
Alexey Dobriyan 已提交
970
static void __task_rq_unlock(struct rq *rq)
971 972
	__releases(rq->lock)
{
973
	raw_spin_unlock(&rq->lock);
974 975
}

976
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
977 978
	__releases(rq->lock)
{
979
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
980 981 982
}

/*
983
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
984
 */
A
Alexey Dobriyan 已提交
985
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
986 987
	__acquires(rq->lock)
{
988
	struct rq *rq;
L
Linus Torvalds 已提交
989 990 991

	local_irq_disable();
	rq = this_rq();
992
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
993 994 995 996

	return rq;
}

P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1018
	if (!cpu_active(cpu_of(rq)))
1019
		return 0;
P
Peter Zijlstra 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1039
	raw_spin_lock(&rq->lock);
1040
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1041
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1043 1044 1045 1046

	return HRTIMER_NORESTART;
}

1047
#ifdef CONFIG_SMP
1048 1049 1050 1051
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1052
{
1053
	struct rq *rq = arg;
1054

1055
	raw_spin_lock(&rq->lock);
1056 1057
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1058
	raw_spin_unlock(&rq->lock);
1059 1060
}

1061 1062 1063 1064 1065 1066
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1067
{
1068 1069
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070

1071
	hrtimer_set_expires(timer, time);
1072 1073 1074 1075

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1076
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 1078
		rq->hrtick_csd_pending = 1;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1093
		hrtick_clear(cpu_rq(cpu));
1094 1095 1096 1097 1098 1099
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1100
static __init void init_hrtick(void)
1101 1102 1103
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1104 1105 1106 1107 1108 1109 1110 1111
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1112
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113
			HRTIMER_MODE_REL_PINNED, 0);
1114
}
1115

A
Andrew Morton 已提交
1116
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1117 1118
{
}
1119
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1120

1121
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1122
{
1123 1124
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1125

1126 1127 1128 1129
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1130

1131 1132
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1133
}
A
Andrew Morton 已提交
1134
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141 1142
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1143 1144 1145
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1146
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1147

I
Ingo Molnar 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1161
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1162 1163 1164
{
	int cpu;

1165
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1166

1167
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1168 1169
		return;

1170
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1187
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1188 1189
		return;
	resched_task(cpu_curr(cpu));
1190
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1191
}
1192 1193

#ifdef CONFIG_NO_HZ
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1247
	set_tsk_need_resched(rq->idle);
1248 1249 1250 1251 1252 1253

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1254

1255
#endif /* CONFIG_NO_HZ */
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 1268 1269 1270 1271 1272
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1284
#else /* !CONFIG_SMP */
1285
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1286
{
1287
	assert_raw_spin_locked(&task_rq(p)->lock);
1288
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1289
}
1290 1291 1292 1293

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1294 1295 1296 1297

static void sched_avg_update(struct rq *rq)
{
}
1298
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1308 1309 1310
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1311
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1312

1313 1314 1315
/*
 * delta *= weight / lw
 */
1316
static unsigned long
1317 1318 1319 1320 1321
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1322 1323 1324 1325 1326 1327 1328
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1329 1330 1331 1332 1333

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1334
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1335
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1336 1337
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1338
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339

1340
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 1342
}

1343
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 1345
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 1351
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1352
	lw->inv_weight = 0;
1353 1354
}

1355 1356 1357 1358
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1359
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1360 1361 1362 1363
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1364 1365
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1375 1376 1377
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1378 1379
 */
static const int prio_to_weight[40] = {
1380 1381 1382 1383 1384 1385 1386 1387
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1388 1389
};

1390 1391 1392 1393 1394 1395 1396
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1397
static const u32 prio_to_wmult[40] = {
1398 1399 1400 1401 1402 1403 1404 1405
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1406
};
1407

1408 1409 1410 1411 1412 1413 1414 1415
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1416 1417
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418 1419
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1420 1421
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1422 1423
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1424 1425
#endif

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1436
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1437
typedef int (*tg_visitor)(struct task_group *, void *);
1438 1439 1440 1441 1442

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1443
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1444 1445
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1446
	int ret;
1447 1448 1449 1450

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1451 1452 1453
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1454 1455 1456 1457 1458 1459 1460
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1461 1462 1463
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1464 1465 1466 1467 1468

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1469
out_unlock:
1470
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1471 1472

	return ret;
1473 1474
}

P
Peter Zijlstra 已提交
1475 1476 1477
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1478
}
P
Peter Zijlstra 已提交
1479 1480 1481
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1521 1522
static unsigned long power_of(int cpu)
{
1523
	return cpu_rq(cpu)->cpu_power;
1524 1525
}

P
Peter Zijlstra 已提交
1526 1527 1528 1529 1530
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1531
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1532

1533 1534
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1535 1536
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1537 1538 1539 1540 1541

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1542

1543
static __read_mostly unsigned long __percpu *update_shares_data;
1544

1545 1546 1547 1548 1549
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1550 1551 1552
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1553
				    unsigned long *usd_rq_weight)
1554
{
1555
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1556
	int boost = 0;
1557

1558
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1559 1560 1561 1562
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1563

1564
	/*
P
Peter Zijlstra 已提交
1565 1566 1567
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1568
	 */
1569
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1570
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1571

1572 1573 1574 1575
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1576

1577
		raw_spin_lock_irqsave(&rq->lock, flags);
1578
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1579
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1580
		__set_se_shares(tg->se[cpu], shares);
1581
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1582
	}
1583
}
1584 1585

/*
1586 1587 1588
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1589
 */
P
Peter Zijlstra 已提交
1590
static int tg_shares_up(struct task_group *tg, void *data)
1591
{
1592
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1593
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1594
	struct sched_domain *sd = data;
1595
	unsigned long flags;
1596
	int i;
1597

1598 1599 1600 1601
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1602
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1603

1604
	for_each_cpu(i, sched_domain_span(sd)) {
1605
		weight = tg->cfs_rq[i]->load.weight;
1606
		usd_rq_weight[i] = weight;
1607

1608
		rq_weight += weight;
1609 1610 1611 1612 1613 1614 1615 1616
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1617
		sum_weight += weight;
1618
		shares += tg->cfs_rq[i]->shares;
1619 1620
	}

1621 1622 1623
	if (!rq_weight)
		rq_weight = sum_weight;

1624 1625 1626 1627 1628
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1629

1630
	for_each_cpu(i, sched_domain_span(sd))
1631
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1632 1633

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1634 1635

	return 0;
1636 1637 1638
}

/*
1639 1640 1641
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1642
 */
P
Peter Zijlstra 已提交
1643
static int tg_load_down(struct task_group *tg, void *data)
1644
{
1645
	unsigned long load;
P
Peter Zijlstra 已提交
1646
	long cpu = (long)data;
1647

1648 1649 1650 1651 1652 1653 1654
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1655

1656
	tg->cfs_rq[cpu]->h_load = load;
1657

P
Peter Zijlstra 已提交
1658
	return 0;
1659 1660
}

1661
static void update_shares(struct sched_domain *sd)
1662
{
1663 1664 1665 1666 1667 1668
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

1669
	now = local_clock();
1670
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1671 1672 1673

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1674
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1675
	}
1676 1677
}

P
Peter Zijlstra 已提交
1678
static void update_h_load(long cpu)
1679
{
P
Peter Zijlstra 已提交
1680
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1681 1682 1683 1684
}

#else

1685
static inline void update_shares(struct sched_domain *sd)
1686 1687 1688
{
}

1689 1690
#endif

1691 1692
#ifdef CONFIG_PREEMPT

1693 1694
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1695
/*
1696 1697 1698 1699 1700 1701
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1702
 */
1703 1704 1705 1706 1707
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1708
	raw_spin_unlock(&this_rq->lock);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1723 1724 1725 1726 1727 1728
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1729
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1730
		if (busiest < this_rq) {
1731 1732 1733 1734
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1735 1736
			ret = 1;
		} else
1737 1738
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1739 1740 1741 1742
	}
	return ret;
}

1743 1744 1745 1746 1747 1748 1749 1750 1751
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1752
		raw_spin_unlock(&this_rq->lock);
1753 1754 1755 1756 1757 1758
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1759 1760 1761
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1762
	raw_spin_unlock(&busiest->lock);
1763 1764
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1808 1809
#endif

V
Vegard Nossum 已提交
1810
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1811 1812
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1813
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1814 1815 1816
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1817
#endif
1818

1819
static void calc_load_account_idle(struct rq *this_rq);
1820
static void update_sysctl(void);
1821
static int get_update_sysctl_factor(void);
1822
static void update_cpu_load(struct rq *this_rq);
1823

P
Peter Zijlstra 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1837

1838
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1839

1840
#define sched_class_highest (&stop_sched_class)
1841 1842
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1843

1844 1845
#include "sched_stats.h"

1846
static void inc_nr_running(struct rq *rq)
1847 1848 1849 1850
{
	rq->nr_running++;
}

1851
static void dec_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running--;
}

1856 1857
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 1870
}

1871
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1872
{
1873
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1874
	sched_info_queued(p);
1875
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1876
	p->se.on_rq = 1;
1877 1878
}

1879
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1880
{
1881
	update_rq_clock(rq);
1882
	sched_info_dequeued(p);
1883
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1884
	p->se.on_rq = 0;
1885 1886
}

1887 1888 1889
/*
 * activate_task - move a task to the runqueue.
 */
1890
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1891 1892 1893 1894
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1895
	enqueue_task(rq, p, flags);
1896 1897 1898 1899 1900 1901
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1902
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1903 1904 1905 1906
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1907
	dequeue_task(rq, p, flags);
1908 1909 1910 1911 1912 1913
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1914
#include "sched_stoptask.c"
1915 1916 1917 1918
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1949
/*
I
Ingo Molnar 已提交
1950
 * __normal_prio - return the priority that is based on the static prio
1951 1952 1953
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1954
	return p->static_prio;
1955 1956
}

1957 1958 1959 1960 1961 1962 1963
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1964
static inline int normal_prio(struct task_struct *p)
1965 1966 1967
{
	int prio;

1968
	if (task_has_rt_policy(p))
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1982
static int effective_prio(struct task_struct *p)
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1995 1996 1997 1998
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1999
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2000 2001 2002 2003
{
	return cpu_curr(task_cpu(p)) == p;
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2016
#ifdef CONFIG_SMP
2017 2018 2019
/*
 * Is this task likely cache-hot:
 */
2020
static int
2021 2022 2023 2024
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2025 2026 2027
	if (p->sched_class != &fair_sched_class)
		return 0;

2028 2029 2030
	/*
	 * Buddy candidates are cache hot:
	 */
2031
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2032 2033
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2034 2035
		return 1;

2036 2037 2038 2039 2040
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2041 2042 2043 2044 2045
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2046
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2047
{
2048 2049 2050 2051 2052
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2053 2054
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2055 2056
#endif

2057
	trace_sched_migrate_task(p, new_cpu);
2058

2059 2060 2061 2062
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2063 2064

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2065 2066
}

2067
struct migration_arg {
2068
	struct task_struct *task;
L
Linus Torvalds 已提交
2069
	int dest_cpu;
2070
};
L
Linus Torvalds 已提交
2071

2072 2073
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2074 2075 2076 2077
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2078
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2079
{
2080
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2081 2082 2083

	/*
	 * If the task is not on a runqueue (and not running), then
2084
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2085
	 */
2086
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2092 2093 2094 2095 2096 2097 2098
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2105
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2106 2107
{
	unsigned long flags;
I
Ingo Molnar 已提交
2108
	int running, on_rq;
R
Roland McGrath 已提交
2109
	unsigned long ncsw;
2110
	struct rq *rq;
L
Linus Torvalds 已提交
2111

2112 2113 2114 2115 2116 2117 2118 2119
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2132 2133 2134
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2135
			cpu_relax();
R
Roland McGrath 已提交
2136
		}
2137

2138 2139 2140 2141 2142 2143
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2144
		trace_sched_wait_task(p);
2145 2146
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2147
		ncsw = 0;
2148
		if (!match_state || p->state == match_state)
2149
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2150
		task_rq_unlock(rq, &flags);
2151

R
Roland McGrath 已提交
2152 2153 2154 2155 2156 2157
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2168

2169 2170 2171 2172 2173
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2174
		 * So if it was still runnable (but just not actively
2175 2176 2177 2178 2179 2180 2181
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2182

2183 2184 2185 2186 2187 2188 2189
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2190 2191

	return ncsw;
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2207
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2217
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2218
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2219

T
Thomas Gleixner 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2241
#ifdef CONFIG_SMP
2242 2243 2244
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2261
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2262
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2278
/*
2279
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2280
 */
2281
static inline
2282
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2283
{
2284
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2297
		     !cpu_online(cpu)))
2298
		cpu = select_fallback_rq(task_cpu(p), p);
2299 2300

	return cpu;
2301
}
2302 2303 2304 2305 2306 2307

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2308 2309
#endif

T
Tejun Heo 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2349 2350 2351
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2352 2353 2354
}

/**
L
Linus Torvalds 已提交
2355
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2356
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2357
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2358
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364 2365
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2366 2367
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2368
 */
P
Peter Zijlstra 已提交
2369 2370
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2371
{
2372
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2373
	unsigned long flags;
2374
	unsigned long en_flags = ENQUEUE_WAKEUP;
2375
	struct rq *rq;
L
Linus Torvalds 已提交
2376

P
Peter Zijlstra 已提交
2377
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2378

2379
	smp_wmb();
2380
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2381
	if (!(p->state & state))
L
Linus Torvalds 已提交
2382 2383
		goto out;

I
Ingo Molnar 已提交
2384
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2385 2386 2387
		goto out_running;

	cpu = task_cpu(p);
2388
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2394 2395 2396
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2397 2398
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2399
	 */
2400 2401 2402 2403 2404 2405
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2406
	p->state = TASK_WAKING;
2407

2408
	if (p->sched_class->task_waking) {
2409
		p->sched_class->task_waking(rq, p);
2410 2411
		en_flags |= ENQUEUE_WAKING;
	}
2412

2413 2414
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2415
		set_task_cpu(p, cpu);
2416
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2417

2418 2419
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2420

2421 2422 2423 2424 2425 2426 2427
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2428
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2429

2430 2431 2432 2433 2434 2435 2436
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2437
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2438 2439 2440 2441 2442
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2443
#endif /* CONFIG_SCHEDSTATS */
2444

L
Linus Torvalds 已提交
2445 2446
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2447 2448
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2449 2450
	success = 1;
out_running:
T
Tejun Heo 已提交
2451
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2452 2453
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2454
	put_cpu();
L
Linus Torvalds 已提交
2455 2456 2457 2458

	return success;
}

T
Tejun Heo 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2501
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2502
{
2503
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2504 2505 2506
}
EXPORT_SYMBOL(wake_up_process);

2507
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520 2521
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2522
	p->se.prev_sum_exec_runtime	= 0;
2523
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2524 2525

#ifdef CONFIG_SCHEDSTATS
2526
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2527
#endif
N
Nick Piggin 已提交
2528

P
Peter Zijlstra 已提交
2529
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2530
	p->se.on_rq = 0;
2531
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2532

2533 2534 2535
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2546
	/*
2547
	 * We mark the process as running here. This guarantees that
2548 2549 2550
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2551
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2552

2553 2554 2555 2556
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2557
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2558
			p->policy = SCHED_NORMAL;
2559 2560
			p->normal_prio = p->static_prio;
		}
2561

2562 2563
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2564
			p->normal_prio = p->static_prio;
2565 2566 2567
			set_load_weight(p);
		}

2568 2569 2570 2571 2572 2573
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2574

2575 2576 2577 2578 2579
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2580 2581
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2582

P
Peter Zijlstra 已提交
2583 2584 2585
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2586 2587 2588 2589 2590 2591 2592 2593
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2594
	set_task_cpu(p, cpu);
2595
	rcu_read_unlock();
2596

2597
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2598
	if (likely(sched_info_on()))
2599
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2600
#endif
2601
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2602 2603
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2604
#ifdef CONFIG_PREEMPT
2605
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2606
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2607
#endif
2608 2609
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2610
	put_cpu();
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2620
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2621 2622
{
	unsigned long flags;
I
Ingo Molnar 已提交
2623
	struct rq *rq;
2624
	int cpu __maybe_unused = get_cpu();
2625 2626

#ifdef CONFIG_SMP
2627 2628 2629
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2630 2631 2632 2633 2634
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2635 2636
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2637
	 */
2638
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2639
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2640

2641
	p->state = TASK_RUNNING;
2642 2643 2644 2645
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2646
	activate_task(rq, p, 0);
2647
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2648
	check_preempt_curr(rq, p, WF_FORK);
2649
#ifdef CONFIG_SMP
2650 2651
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2652
#endif
I
Ingo Molnar 已提交
2653
	task_rq_unlock(rq, &flags);
2654
	put_cpu();
L
Linus Torvalds 已提交
2655 2656
}

2657 2658 2659
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2660
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2661
 * @notifier: notifier struct to register
2662 2663 2664 2665 2666 2667 2668 2669 2670
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2671
 * @notifier: notifier struct to unregister
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2701
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2713
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2714

2715 2716 2717
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2718
 * @prev: the current task that is being switched out
2719 2720 2721 2722 2723 2724 2725 2726 2727
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2728 2729 2730
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2731
{
2732
	fire_sched_out_preempt_notifiers(prev, next);
2733 2734 2735 2736
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2737 2738
/**
 * finish_task_switch - clean up after a task-switch
2739
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2740 2741
 * @prev: the thread we just switched away from.
 *
2742 2743 2744 2745
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2746 2747
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2748
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2749 2750 2751
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2752
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2753 2754 2755
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2756
	long prev_state;
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2762
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2763 2764
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2765
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2771
	prev_state = prev->state;
2772
	finish_arch_switch(prev);
2773 2774 2775
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2776
	perf_event_task_sched_in(current);
2777 2778 2779
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2780
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2781

2782
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2783 2784
	if (mm)
		mmdrop(mm);
2785
	if (unlikely(prev_state == TASK_DEAD)) {
2786 2787 2788
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2789
		 */
2790
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2791
		put_task_struct(prev);
2792
	}
L
Linus Torvalds 已提交
2793 2794
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2810
		raw_spin_lock_irqsave(&rq->lock, flags);
2811 2812
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2813
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2814 2815 2816 2817 2818 2819

		rq->post_schedule = 0;
	}
}

#else
2820

2821 2822 2823 2824 2825 2826
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2827 2828
}

2829 2830
#endif

L
Linus Torvalds 已提交
2831 2832 2833 2834
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2835
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2836 2837
	__releases(rq->lock)
{
2838 2839
	struct rq *rq = this_rq();

2840
	finish_task_switch(rq, prev);
2841

2842 2843 2844 2845 2846
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2847

2848 2849 2850 2851
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2852
	if (current->set_child_tid)
2853
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2860
static inline void
2861
context_switch(struct rq *rq, struct task_struct *prev,
2862
	       struct task_struct *next)
L
Linus Torvalds 已提交
2863
{
I
Ingo Molnar 已提交
2864
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2865

2866
	prepare_task_switch(rq, prev, next);
2867
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2868 2869
	mm = next->mm;
	oldmm = prev->active_mm;
2870 2871 2872 2873 2874
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2875
	arch_start_context_switch(prev);
2876

2877
	if (!mm) {
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882 2883
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2884
	if (!prev->mm) {
L
Linus Torvalds 已提交
2885 2886 2887
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2888 2889 2890 2891 2892 2893 2894
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2895
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2896
#endif
L
Linus Torvalds 已提交
2897 2898 2899 2900

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2901 2902 2903 2904 2905 2906 2907
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2925
}
L
Linus Torvalds 已提交
2926 2927

unsigned long nr_uninterruptible(void)
2928
{
L
Linus Torvalds 已提交
2929
	unsigned long i, sum = 0;
2930

2931
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2932
		sum += cpu_rq(i)->nr_uninterruptible;
2933 2934

	/*
L
Linus Torvalds 已提交
2935 2936
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2937
	 */
L
Linus Torvalds 已提交
2938 2939
	if (unlikely((long)sum < 0))
		sum = 0;
2940

L
Linus Torvalds 已提交
2941
	return sum;
2942 2943
}

L
Linus Torvalds 已提交
2944
unsigned long long nr_context_switches(void)
2945
{
2946 2947
	int i;
	unsigned long long sum = 0;
2948

2949
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2950
		sum += cpu_rq(i)->nr_switches;
2951

L
Linus Torvalds 已提交
2952 2953
	return sum;
}
2954

L
Linus Torvalds 已提交
2955 2956 2957
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2958

2959
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2960
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2961

L
Linus Torvalds 已提交
2962 2963
	return sum;
}
2964

2965
unsigned long nr_iowait_cpu(int cpu)
2966
{
2967
	struct rq *this = cpu_rq(cpu);
2968 2969
	return atomic_read(&this->nr_iowait);
}
2970

2971 2972 2973 2974 2975
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2976

2977

2978 2979 2980 2981 2982
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3052 3053
}

3054 3055
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3056
{
3057 3058 3059 3060
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3061 3062

/*
3063 3064
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3065
 */
3066
void calc_global_load(void)
3067
{
3068 3069
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3070

3071 3072
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3073

3074 3075
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3076

3077 3078 3079
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3080

3081 3082
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3083

3084
/*
3085 3086
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3087 3088 3089
 */
static void calc_load_account_active(struct rq *this_rq)
{
3090
	long delta;
3091

3092 3093
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3094

3095 3096 3097
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3098
		atomic_long_add(delta, &calc_load_tasks);
3099 3100

	this_rq->calc_load_update += LOAD_FREQ;
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3170
/*
I
Ingo Molnar 已提交
3171
 * Update rq->cpu_load[] statistics. This function is usually called every
3172 3173
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3174
 */
I
Ingo Molnar 已提交
3175
static void update_cpu_load(struct rq *this_rq)
3176
{
3177
	unsigned long this_load = this_rq->load.weight;
3178 3179
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3180
	int i, scale;
3181

I
Ingo Molnar 已提交
3182
	this_rq->nr_load_updates++;
3183

3184 3185 3186 3187 3188 3189 3190
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3191
	/* Update our load: */
3192 3193
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3194
		unsigned long old_load, new_load;
3195

I
Ingo Molnar 已提交
3196
		/* scale is effectively 1 << i now, and >> i divides by scale */
3197

I
Ingo Molnar 已提交
3198
		old_load = this_rq->cpu_load[i];
3199
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3200
		new_load = this_load;
I
Ingo Molnar 已提交
3201 3202 3203 3204 3205 3206
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3207 3208 3209
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3210
	}
3211 3212

	sched_avg_update(this_rq);
3213 3214 3215 3216 3217
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3218

3219
	calc_load_account_active(this_rq);
3220 3221
}

I
Ingo Molnar 已提交
3222
#ifdef CONFIG_SMP
3223

3224
/*
P
Peter Zijlstra 已提交
3225 3226
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3227
 */
P
Peter Zijlstra 已提交
3228
void sched_exec(void)
3229
{
P
Peter Zijlstra 已提交
3230
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3231
	unsigned long flags;
3232
	struct rq *rq;
3233
	int dest_cpu;
3234

L
Linus Torvalds 已提交
3235
	rq = task_rq_lock(p, &flags);
3236 3237 3238
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3239

3240
	/*
P
Peter Zijlstra 已提交
3241
	 * select_task_rq() can race against ->cpus_allowed
3242
	 */
3243
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3244 3245
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3246

L
Linus Torvalds 已提交
3247
		task_rq_unlock(rq, &flags);
3248
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3249 3250
		return;
	}
3251
unlock:
L
Linus Torvalds 已提交
3252 3253
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3254

L
Linus Torvalds 已提交
3255 3256 3257 3258 3259 3260 3261
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3262
 * Return any ns on the sched_clock that have not yet been accounted in
3263
 * @p in case that task is currently running.
3264 3265
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3266
 */
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3281
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3282 3283
{
	unsigned long flags;
3284
	struct rq *rq;
3285
	u64 ns = 0;
3286

3287
	rq = task_rq_lock(p, &flags);
3288 3289
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3290

3291 3292
	return ns;
}
3293

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3331
	task_rq_unlock(rq, &flags);
3332

L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3340
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3341
 */
3342 3343
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3344 3345 3346 3347
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3348
	/* Add user time to process. */
L
Linus Torvalds 已提交
3349
	p->utime = cputime_add(p->utime, cputime);
3350
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3351
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3359 3360

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3361 3362
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3363 3364
}

3365 3366 3367 3368
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3369
 * @cputime_scaled: cputime scaled by cpu frequency
3370
 */
3371 3372
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3373 3374 3375 3376 3377 3378
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3379
	/* Add guest time to process. */
3380
	p->utime = cputime_add(p->utime, cputime);
3381
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3382
	account_group_user_time(p, cputime);
3383 3384
	p->gtime = cputime_add(p->gtime, cputime);

3385
	/* Add guest time to cpustat. */
3386 3387 3388 3389 3390 3391 3392
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3393 3394
}

L
Linus Torvalds 已提交
3395 3396 3397 3398 3399
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3400
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3401 3402
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3403
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3404 3405 3406 3407
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3408
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3409
		account_guest_time(p, cputime, cputime_scaled);
3410 3411
		return;
	}
3412

3413
	/* Add system time to process. */
L
Linus Torvalds 已提交
3414
	p->stime = cputime_add(p->stime, cputime);
3415
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3416
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422 3423 3424

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3425 3426
		cpustat->system = cputime64_add(cpustat->system, tmp);

3427 3428
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3429 3430 3431 3432
	/* Account for system time used */
	acct_update_integrals(p);
}

3433
/*
L
Linus Torvalds 已提交
3434 3435
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3436
 */
3437
void account_steal_time(cputime_t cputime)
3438
{
3439 3440 3441 3442
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3443 3444
}

L
Linus Torvalds 已提交
3445
/*
3446 3447
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3448
 */
3449
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3450 3451
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3452
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3453
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3454

3455 3456 3457 3458
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3459 3460
}

3461 3462 3463 3464 3465 3466 3467 3468 3469
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3470
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3471 3472 3473
	struct rq *rq = this_rq();

	if (user_tick)
3474
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3475
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3476
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3477 3478
				    one_jiffy_scaled);
	else
3479
		account_idle_time(cputime_one_jiffy);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3499 3500
}

3501 3502
#endif

3503 3504 3505 3506
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3507
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3508
{
3509 3510
	*ut = p->utime;
	*st = p->stime;
3511 3512
}

3513
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3514
{
3515 3516 3517 3518 3519 3520
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3521 3522
}
#else
3523 3524

#ifndef nsecs_to_cputime
3525
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3526 3527
#endif

3528
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3529
{
3530
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3531 3532 3533 3534

	/*
	 * Use CFS's precise accounting:
	 */
3535
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3536 3537

	if (total) {
3538
		u64 temp = rtime;
3539

3540
		temp *= utime;
3541
		do_div(temp, total);
3542 3543 3544
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3545

3546 3547 3548
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3549
	p->prev_utime = max(p->prev_utime, utime);
3550
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3551

3552 3553
	*ut = p->prev_utime;
	*st = p->prev_stime;
3554 3555
}

3556 3557 3558 3559
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3560
{
3561 3562 3563
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3564

3565
	thread_group_cputime(p, &cputime);
3566

3567 3568
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3569

3570
	if (total) {
3571
		u64 temp = rtime;
3572

3573
		temp *= cputime.utime;
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3585 3586 3587
}
#endif

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3599
	struct task_struct *curr = rq->curr;
3600 3601

	sched_clock_tick();
I
Ingo Molnar 已提交
3602

3603
	raw_spin_lock(&rq->lock);
3604
	update_rq_clock(rq);
3605
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3606
	curr->sched_class->task_tick(rq, curr, 0);
3607
	raw_spin_unlock(&rq->lock);
3608

3609
	perf_event_task_tick(curr);
3610

3611
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3612 3613
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3614
#endif
L
Linus Torvalds 已提交
3615 3616
}

3617
notrace unsigned long get_parent_ip(unsigned long addr)
3618 3619 3620 3621 3622 3623 3624 3625
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3626

3627 3628 3629
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3630
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3631
{
3632
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3633 3634 3635
	/*
	 * Underflow?
	 */
3636 3637
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3638
#endif
L
Linus Torvalds 已提交
3639
	preempt_count() += val;
3640
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3641 3642 3643
	/*
	 * Spinlock count overflowing soon?
	 */
3644 3645
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3646 3647 3648
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3649 3650 3651
}
EXPORT_SYMBOL(add_preempt_count);

3652
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3653
{
3654
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3655 3656 3657
	/*
	 * Underflow?
	 */
3658
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3659
		return;
L
Linus Torvalds 已提交
3660 3661 3662
	/*
	 * Is the spinlock portion underflowing?
	 */
3663 3664 3665
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3666
#endif
3667

3668 3669
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3677
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3678
 */
I
Ingo Molnar 已提交
3679
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3680
{
3681 3682
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3683 3684
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3685

I
Ingo Molnar 已提交
3686
	debug_show_held_locks(prev);
3687
	print_modules();
I
Ingo Molnar 已提交
3688 3689
	if (irqs_disabled())
		print_irqtrace_events(prev);
3690 3691 3692 3693 3694

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3695
}
L
Linus Torvalds 已提交
3696

I
Ingo Molnar 已提交
3697 3698 3699 3700 3701
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3702
	/*
I
Ingo Molnar 已提交
3703
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3704 3705 3706
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3707
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3708 3709
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3710 3711
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3712
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3713 3714
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3715 3716
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3717 3718
	}
#endif
I
Ingo Molnar 已提交
3719 3720
}

P
Peter Zijlstra 已提交
3721
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3722
{
3723 3724 3725
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3726
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3727 3728
}

I
Ingo Molnar 已提交
3729 3730 3731 3732
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3733
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3734
{
3735
	const struct sched_class *class;
I
Ingo Molnar 已提交
3736
	struct task_struct *p;
L
Linus Torvalds 已提交
3737 3738

	/*
I
Ingo Molnar 已提交
3739 3740
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3741
	 */
I
Ingo Molnar 已提交
3742
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3743
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3744 3745
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3746 3747
	}

3748
	for_each_class(class) {
3749
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3750 3751 3752
		if (p)
			return p;
	}
3753 3754

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3755
}
L
Linus Torvalds 已提交
3756

I
Ingo Molnar 已提交
3757 3758 3759
/*
 * schedule() is the main scheduler function.
 */
3760
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3761 3762
{
	struct task_struct *prev, *next;
3763
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3764
	struct rq *rq;
3765
	int cpu;
I
Ingo Molnar 已提交
3766

3767 3768
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3769 3770
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3771
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3772 3773 3774 3775 3776 3777
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3778

3779
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3780
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3781

3782
	raw_spin_lock_irq(&rq->lock);
3783
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3784

3785
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3786
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3787
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3788
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3803
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3804
		}
I
Ingo Molnar 已提交
3805
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3806 3807
	}

3808
	pre_schedule(rq, prev);
3809

I
Ingo Molnar 已提交
3810
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3811 3812
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3813
	put_prev_task(rq, prev);
3814
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3815 3816

	if (likely(prev != next)) {
3817
		sched_info_switch(prev, next);
3818
		perf_event_task_sched_out(prev, next);
3819

L
Linus Torvalds 已提交
3820 3821 3822 3823
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3824
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3825
		/*
3826 3827 3828 3829
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3830 3831 3832
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3833
	} else
3834
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3835

3836
	post_schedule(rq);
L
Linus Torvalds 已提交
3837

3838
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
3839
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3840

L
Linus Torvalds 已提交
3841
	preempt_enable_no_resched();
3842
	if (need_resched())
L
Linus Torvalds 已提交
3843 3844 3845 3846
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3847
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3867
		return 0;
3868 3869 3870 3871 3872 3873 3874 3875 3876
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3877
		return 0;
3878 3879 3880 3881 3882 3883

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3884
		return 0;
3885 3886 3887 3888 3889 3890 3891

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
3892 3893 3894 3895 3896 3897 3898 3899
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
3900
			break;
3901
		}
3902 3903 3904 3905 3906 3907 3908 3909 3910

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3911

3912 3913 3914 3915
	return 1;
}
#endif

L
Linus Torvalds 已提交
3916 3917
#ifdef CONFIG_PREEMPT
/*
3918
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3919
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3920 3921
 * occur there and call schedule directly.
 */
3922
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3923 3924
{
	struct thread_info *ti = current_thread_info();
3925

L
Linus Torvalds 已提交
3926 3927
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3928
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3929
	 */
N
Nick Piggin 已提交
3930
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3931 3932
		return;

3933
	do {
3934
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3935
		schedule();
3936
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3937

3938 3939 3940 3941 3942
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3943
	} while (need_resched());
L
Linus Torvalds 已提交
3944 3945 3946 3947
}
EXPORT_SYMBOL(preempt_schedule);

/*
3948
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3956

3957
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3958 3959
	BUG_ON(ti->preempt_count || !irqs_disabled());

3960 3961 3962 3963 3964 3965
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3966

3967 3968 3969 3970 3971
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3972
	} while (need_resched());
L
Linus Torvalds 已提交
3973 3974 3975 3976
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3977
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3978
			  void *key)
L
Linus Torvalds 已提交
3979
{
P
Peter Zijlstra 已提交
3980
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3981 3982 3983 3984
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3985 3986
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3987 3988 3989
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3990
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3991 3992
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3993
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3994
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3995
{
3996
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3997

3998
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3999 4000
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4001
		if (curr->func(curr, mode, wake_flags, key) &&
4002
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4012
 * @key: is directly passed to the wakeup function
4013 4014 4015
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4016
 */
4017
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4018
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4031
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4032 4033 4034
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4035
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4036

4037 4038 4039 4040 4041
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4042
/**
4043
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4044 4045 4046
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4047
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4055 4056 4057
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4058
 */
4059 4060
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4061 4062
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4063
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4069
		wake_flags = 0;
L
Linus Torvalds 已提交
4070 4071

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4072
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4073 4074
	spin_unlock_irqrestore(&q->lock, flags);
}
4075 4076 4077 4078 4079 4080 4081 4082 4083
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4084 4085
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4086 4087 4088 4089 4090 4091 4092 4093
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4094 4095 4096
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4097
 */
4098
void complete(struct completion *x)
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4104
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4105 4106 4107 4108
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4109 4110 4111 4112 4113
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4114 4115 4116
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4117
 */
4118
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4124
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4125 4126 4127 4128
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4129 4130
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4131 4132 4133 4134
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4135
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4136
		do {
4137
			if (signal_pending_state(state, current)) {
4138 4139
				timeout = -ERESTARTSYS;
				break;
4140 4141
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4142 4143 4144
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4145
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4146
		__remove_wait_queue(&x->wait, &wait);
4147 4148
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4149 4150
	}
	x->done--;
4151
	return timeout ?: 1;
L
Linus Torvalds 已提交
4152 4153
}

4154 4155
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4156 4157 4158 4159
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4160
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4161
	spin_unlock_irq(&x->wait.lock);
4162 4163
	return timeout;
}
L
Linus Torvalds 已提交
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4175
void __sched wait_for_completion(struct completion *x)
4176 4177
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4178
}
4179
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4190
unsigned long __sched
4191
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4192
{
4193
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4194
}
4195
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4196

4197 4198 4199 4200 4201 4202 4203
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4204
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4205
{
4206 4207 4208 4209
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4210
}
4211
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4212

4213 4214 4215 4216 4217 4218 4219 4220
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4221
unsigned long __sched
4222 4223
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4224
{
4225
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4226
}
4227
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4228

4229 4230 4231 4232 4233 4234 4235
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4276
	unsigned long flags;
4277 4278
	int ret = 1;

4279
	spin_lock_irqsave(&x->wait.lock, flags);
4280 4281 4282 4283
	if (!x->done)
		ret = 0;
	else
		x->done--;
4284
	spin_unlock_irqrestore(&x->wait.lock, flags);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4299
	unsigned long flags;
4300 4301
	int ret = 1;

4302
	spin_lock_irqsave(&x->wait.lock, flags);
4303 4304
	if (!x->done)
		ret = 0;
4305
	spin_unlock_irqrestore(&x->wait.lock, flags);
4306 4307 4308 4309
	return ret;
}
EXPORT_SYMBOL(completion_done);

4310 4311
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4312
{
I
Ingo Molnar 已提交
4313 4314 4315 4316
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4317

4318
	__set_current_state(state);
L
Linus Torvalds 已提交
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4334 4335 4336
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4337
long __sched
I
Ingo Molnar 已提交
4338
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4339
{
4340
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4341 4342 4343
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4344
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4345
{
4346
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4347 4348 4349
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4350
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4351
{
4352
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4353 4354 4355
}
EXPORT_SYMBOL(sleep_on_timeout);

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4368
void rt_mutex_setprio(struct task_struct *p, int prio)
4369 4370
{
	unsigned long flags;
4371
	int oldprio, on_rq, running;
4372
	struct rq *rq;
4373
	const struct sched_class *prev_class;
4374 4375 4376 4377 4378

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4379
	trace_sched_pi_setprio(p, prio);
4380
	oldprio = p->prio;
4381
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4382
	on_rq = p->se.on_rq;
4383
	running = task_current(rq, p);
4384
	if (on_rq)
4385
		dequeue_task(rq, p, 0);
4386 4387
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4388 4389 4390 4391 4392 4393

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4394 4395
	p->prio = prio;

4396 4397
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4398
	if (on_rq) {
4399
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4400 4401

		check_class_changed(rq, p, prev_class, oldprio, running);
4402 4403 4404 4405 4406 4407
	}
	task_rq_unlock(rq, &flags);
}

#endif

4408
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4409
{
I
Ingo Molnar 已提交
4410
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4411
	unsigned long flags;
4412
	struct rq *rq;
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4425
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4426
	 */
4427
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4428 4429 4430
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4431
	on_rq = p->se.on_rq;
4432
	if (on_rq)
4433
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4434 4435

	p->static_prio = NICE_TO_PRIO(nice);
4436
	set_load_weight(p);
4437 4438 4439
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4440

I
Ingo Molnar 已提交
4441
	if (on_rq) {
4442
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4443
		/*
4444 4445
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4446
		 */
4447
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453 4454
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4455 4456 4457 4458 4459
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4460
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4461
{
4462 4463
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4464

4465
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4466 4467 4468
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4469 4470 4471 4472 4473 4474 4475 4476 4477
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4478
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4479
{
4480
	long nice, retval;
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4487 4488
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4489 4490 4491
	if (increment > 40)
		increment = 40;

4492
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4498 4499 4500
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4519
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526 4527
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4528
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4529 4530 4531
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4532
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4547
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4556
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4557
{
4558
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4559 4560 4561
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4562 4563
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4564
{
I
Ingo Molnar 已提交
4565
	BUG_ON(p->se.on_rq);
4566

L
Linus Torvalds 已提交
4567 4568
	p->policy = policy;
	p->rt_priority = prio;
4569 4570 4571
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4572 4573 4574 4575
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4576
	set_load_weight(p);
L
Linus Torvalds 已提交
4577 4578
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4595 4596
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4597
{
4598
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4599
	unsigned long flags;
4600
	const struct sched_class *prev_class;
4601
	struct rq *rq;
4602
	int reset_on_fork;
L
Linus Torvalds 已提交
4603

4604 4605
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4606 4607
recheck:
	/* double check policy once rq lock held */
4608 4609
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4610
		policy = oldpolicy = p->policy;
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4621 4622
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4623 4624
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4625 4626
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4627
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4628
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4629
		return -EINVAL;
4630
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4631 4632
		return -EINVAL;

4633 4634 4635
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4636
	if (user && !capable(CAP_SYS_NICE)) {
4637
		if (rt_policy(policy)) {
4638 4639
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4650 4651 4652 4653 4654 4655
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4656

4657
		/* can't change other user's priorities */
4658
		if (!check_same_owner(p))
4659
			return -EPERM;
4660 4661 4662 4663

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4664
	}
L
Linus Torvalds 已提交
4665

4666 4667 4668 4669 4670 4671
	if (user) {
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4672 4673 4674 4675
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4676
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4677 4678 4679 4680
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4681
	rq = __task_rq_lock(p);
4682

4683 4684 4685 4686 4687 4688 4689 4690 4691
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4707 4708 4709
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4710
		__task_rq_unlock(rq);
4711
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4712 4713
		goto recheck;
	}
I
Ingo Molnar 已提交
4714
	on_rq = p->se.on_rq;
4715
	running = task_current(rq, p);
4716
	if (on_rq)
4717
		deactivate_task(rq, p, 0);
4718 4719
	if (running)
		p->sched_class->put_prev_task(rq, p);
4720

4721 4722
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4723
	oldprio = p->prio;
4724
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4725
	__setscheduler(rq, p, policy, param->sched_priority);
4726

4727 4728
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4729 4730
	if (on_rq) {
		activate_task(rq, p, 0);
4731 4732

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4733
	}
4734
	__task_rq_unlock(rq);
4735
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4736

4737 4738
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4739 4740
	return 0;
}
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4755 4756
EXPORT_SYMBOL_GPL(sched_setscheduler);

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4774 4775
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4776 4777 4778
{
	struct sched_param lparam;
	struct task_struct *p;
4779
	int retval;
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4785 4786 4787

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4788
	p = find_process_by_pid(pid);
4789 4790 4791
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4792

L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4802 4803
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4804
{
4805 4806 4807 4808
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4809 4810 4811 4812 4813 4814 4815 4816
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4817
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823 4824 4825
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4826
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4827
{
4828
	struct task_struct *p;
4829
	int retval;
L
Linus Torvalds 已提交
4830 4831

	if (pid < 0)
4832
		return -EINVAL;
L
Linus Torvalds 已提交
4833 4834

	retval = -ESRCH;
4835
	rcu_read_lock();
L
Linus Torvalds 已提交
4836 4837 4838 4839
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4840 4841
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4842
	}
4843
	rcu_read_unlock();
L
Linus Torvalds 已提交
4844 4845 4846 4847
	return retval;
}

/**
4848
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4849 4850 4851
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4852
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4853 4854
{
	struct sched_param lp;
4855
	struct task_struct *p;
4856
	int retval;
L
Linus Torvalds 已提交
4857 4858

	if (!param || pid < 0)
4859
		return -EINVAL;
L
Linus Torvalds 已提交
4860

4861
	rcu_read_lock();
L
Linus Torvalds 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4872
	rcu_read_unlock();
L
Linus Torvalds 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4882
	rcu_read_unlock();
L
Linus Torvalds 已提交
4883 4884 4885
	return retval;
}

4886
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4887
{
4888
	cpumask_var_t cpus_allowed, new_mask;
4889 4890
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4891

4892
	get_online_cpus();
4893
	rcu_read_lock();
L
Linus Torvalds 已提交
4894 4895 4896

	p = find_process_by_pid(pid);
	if (!p) {
4897
		rcu_read_unlock();
4898
		put_online_cpus();
L
Linus Torvalds 已提交
4899 4900 4901
		return -ESRCH;
	}

4902
	/* Prevent p going away */
L
Linus Torvalds 已提交
4903
	get_task_struct(p);
4904
	rcu_read_unlock();
L
Linus Torvalds 已提交
4905

4906 4907 4908 4909 4910 4911 4912 4913
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4914
	retval = -EPERM;
4915
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4916 4917
		goto out_unlock;

4918 4919 4920 4921
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4922 4923
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4924
again:
4925
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4926

P
Paul Menage 已提交
4927
	if (!retval) {
4928 4929
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4930 4931 4932 4933 4934
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4935
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4936 4937 4938
			goto again;
		}
	}
L
Linus Torvalds 已提交
4939
out_unlock:
4940 4941 4942 4943
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4944
	put_task_struct(p);
4945
	put_online_cpus();
L
Linus Torvalds 已提交
4946 4947 4948 4949
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4950
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4951
{
4952 4953 4954 4955 4956
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4966 4967
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4968
{
4969
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4970 4971
	int retval;

4972 4973
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4974

4975 4976 4977 4978 4979
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4980 4981
}

4982
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4983
{
4984
	struct task_struct *p;
4985 4986
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4987 4988
	int retval;

4989
	get_online_cpus();
4990
	rcu_read_lock();
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4997 4998 4999 5000
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5001
	rq = task_rq_lock(p, &flags);
5002
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5003
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5004 5005

out_unlock:
5006
	rcu_read_unlock();
5007
	put_online_cpus();
L
Linus Torvalds 已提交
5008

5009
	return retval;
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014 5015 5016 5017
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5018 5019
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5020 5021
{
	int ret;
5022
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5023

A
Anton Blanchard 已提交
5024
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5025 5026
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5027 5028
		return -EINVAL;

5029 5030
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5031

5032 5033
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5034
		size_t retlen = min_t(size_t, len, cpumask_size());
5035 5036

		if (copy_to_user(user_mask_ptr, mask, retlen))
5037 5038
			ret = -EFAULT;
		else
5039
			ret = retlen;
5040 5041
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5042

5043
	return ret;
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5049 5050
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5051
 */
5052
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5053
{
5054
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5055

5056
	schedstat_inc(rq, yld_count);
5057
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5064
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5065
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5073 5074 5075 5076 5077
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5078
static void __cond_resched(void)
L
Linus Torvalds 已提交
5079
{
5080 5081 5082
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5083 5084
}

5085
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5086
{
P
Peter Zijlstra 已提交
5087
	if (should_resched()) {
L
Linus Torvalds 已提交
5088 5089 5090 5091 5092
		__cond_resched();
		return 1;
	}
	return 0;
}
5093
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5094 5095

/*
5096
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5097 5098
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5099
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5100 5101 5102
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5103
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5104
{
P
Peter Zijlstra 已提交
5105
	int resched = should_resched();
J
Jan Kara 已提交
5106 5107
	int ret = 0;

5108 5109
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5110
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5111
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5112
		if (resched)
N
Nick Piggin 已提交
5113 5114 5115
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5116
		ret = 1;
L
Linus Torvalds 已提交
5117 5118
		spin_lock(lock);
	}
J
Jan Kara 已提交
5119
	return ret;
L
Linus Torvalds 已提交
5120
}
5121
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5122

5123
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5124 5125 5126
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5127
	if (should_resched()) {
5128
		local_bh_enable();
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5135
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5136 5137 5138 5139

/**
 * yield - yield the current processor to other threads.
 *
5140
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5151
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5152 5153 5154 5155
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5156
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5157

5158
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5159
	atomic_inc(&rq->nr_iowait);
5160
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5161
	schedule();
5162
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5163
	atomic_dec(&rq->nr_iowait);
5164
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5170
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5171 5172
	long ret;

5173
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5174
	atomic_inc(&rq->nr_iowait);
5175
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5176
	ret = schedule_timeout(timeout);
5177
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5178
	atomic_dec(&rq->nr_iowait);
5179
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5190
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5200
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5201
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5215
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5225
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5226
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5240
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5241
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5242
{
5243
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5244
	unsigned int time_slice;
5245 5246
	unsigned long flags;
	struct rq *rq;
5247
	int retval;
L
Linus Torvalds 已提交
5248 5249 5250
	struct timespec t;

	if (pid < 0)
5251
		return -EINVAL;
L
Linus Torvalds 已提交
5252 5253

	retval = -ESRCH;
5254
	rcu_read_lock();
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5263 5264 5265
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5266

5267
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5268
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5269 5270
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5271

L
Linus Torvalds 已提交
5272
out_unlock:
5273
	rcu_read_unlock();
L
Linus Torvalds 已提交
5274 5275 5276
	return retval;
}

5277
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5278

5279
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5280 5281
{
	unsigned long free = 0;
5282
	unsigned state;
L
Linus Torvalds 已提交
5283 5284

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5285
	printk(KERN_INFO "%-13.13s %c", p->comm,
5286
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5287
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5288
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5289
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5290
	else
P
Peter Zijlstra 已提交
5291
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5292 5293
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5294
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5295
	else
P
Peter Zijlstra 已提交
5296
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5297 5298
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5299
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5300
#endif
P
Peter Zijlstra 已提交
5301
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5302 5303
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5304

5305
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5306 5307
}

I
Ingo Molnar 已提交
5308
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5309
{
5310
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5311

5312
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5313 5314
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5315
#else
P
Peter Zijlstra 已提交
5316 5317
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5326
		if (!state_filter || (p->state & state_filter))
5327
			sched_show_task(p);
L
Linus Torvalds 已提交
5328 5329
	} while_each_thread(g, p);

5330 5331
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5332 5333 5334
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5335
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5336 5337 5338
	/*
	 * Only show locks if all tasks are dumped:
	 */
5339
	if (!state_filter)
I
Ingo Molnar 已提交
5340
		debug_show_all_locks();
L
Linus Torvalds 已提交
5341 5342
}

I
Ingo Molnar 已提交
5343 5344
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5345
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5346 5347
}

5348 5349 5350 5351 5352 5353 5354 5355
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5356
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5357
{
5358
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5359 5360
	unsigned long flags;

5361
	raw_spin_lock_irqsave(&rq->lock, flags);
5362

I
Ingo Molnar 已提交
5363
	__sched_fork(idle);
5364
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5365 5366
	idle->se.exec_start = sched_clock();

5367
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5368
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5369 5370

	rq->curr = rq->idle = idle;
5371 5372 5373
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5374
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5375 5376

	/* Set the preempt count _outside_ the spinlocks! */
5377 5378 5379
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5380
	task_thread_info(idle)->preempt_count = 0;
5381
#endif
I
Ingo Molnar 已提交
5382 5383 5384 5385
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5386
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5387 5388 5389 5390 5391 5392 5393
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5394
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5395
 */
5396
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5397

I
Ingo Molnar 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5407
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5408
{
5409
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5424

5425 5426
	return factor;
}
I
Ingo Molnar 已提交
5427

5428 5429 5430
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5431

5432 5433 5434 5435 5436 5437 5438 5439
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5440

5441 5442 5443
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5444 5445
}

L
Linus Torvalds 已提交
5446 5447 5448 5449
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5450 5451 5452 5453 5454 5455
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5456
 *    it and puts it into the right queue.
5457 5458
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463 5464 5465 5466
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5467
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5468 5469
 * call is not atomic; no spinlocks may be held.
 */
5470
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5471 5472
{
	unsigned long flags;
5473
	struct rq *rq;
5474
	unsigned int dest_cpu;
5475
	int ret = 0;
L
Linus Torvalds 已提交
5476

P
Peter Zijlstra 已提交
5477 5478 5479 5480 5481 5482 5483
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5484
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5485 5486 5487 5488
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5489

5490
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5491 5492 5493 5494
		ret = -EINVAL;
		goto out;
	}

5495
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5496
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5497 5498 5499 5500
		ret = -EINVAL;
		goto out;
	}

5501
	if (p->sched_class->set_cpus_allowed)
5502
		p->sched_class->set_cpus_allowed(p, new_mask);
5503
	else {
5504 5505
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5506 5507
	}

L
Linus Torvalds 已提交
5508
	/* Can the task run on the task's current CPU? If so, we're done */
5509
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5510 5511
		goto out;

5512 5513 5514
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5515 5516
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5517
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5518 5519 5520 5521 5522
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5523

L
Linus Torvalds 已提交
5524 5525
	return ret;
}
5526
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5527 5528

/*
I
Ingo Molnar 已提交
5529
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5530 5531 5532 5533 5534 5535
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5536 5537
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5538
 */
5539
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5540
{
5541
	struct rq *rq_dest, *rq_src;
5542
	int ret = 0;
L
Linus Torvalds 已提交
5543

5544
	if (unlikely(!cpu_active(dest_cpu)))
5545
		return ret;
L
Linus Torvalds 已提交
5546 5547 5548 5549 5550 5551 5552

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5553
		goto done;
L
Linus Torvalds 已提交
5554
	/* Affinity changed (again). */
5555
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5556
		goto fail;
L
Linus Torvalds 已提交
5557

5558 5559 5560 5561 5562
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5563
		deactivate_task(rq_src, p, 0);
5564
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5565
		activate_task(rq_dest, p, 0);
5566
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5567
	}
L
Linus Torvalds 已提交
5568
done:
5569
	ret = 1;
L
Linus Torvalds 已提交
5570
fail:
L
Linus Torvalds 已提交
5571
	double_rq_unlock(rq_src, rq_dest);
5572
	return ret;
L
Linus Torvalds 已提交
5573 5574 5575
}

/*
5576 5577 5578
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5579
 */
5580
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5581
{
5582
	struct migration_arg *arg = data;
5583

5584 5585 5586 5587
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5588
	local_irq_disable();
5589
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5590
	local_irq_enable();
L
Linus Torvalds 已提交
5591
	return 0;
5592 5593
}

L
Linus Torvalds 已提交
5594
#ifdef CONFIG_HOTPLUG_CPU
5595
/*
5596
 * Figure out where task on dead CPU should go, use force if necessary.
5597
 */
5598
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5599
{
5600 5601 5602
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5603

5604
	local_irq_save(flags);
5605

5606 5607 5608 5609 5610
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5611 5612 5613 5614
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5615
	if (needs_cpu)
5616
		__migrate_task(p, dead_cpu, dest_cpu);
5617
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5627
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5628
{
5629
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5643
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5644

5645
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5646

5647 5648
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5649 5650
			continue;

5651 5652 5653
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5654

5655
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5656 5657
}

I
Ingo Molnar 已提交
5658 5659
/*
 * Schedules idle task to be the next runnable task on current CPU.
5660 5661
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5662 5663 5664
 */
void sched_idle_next(void)
{
5665
	int this_cpu = smp_processor_id();
5666
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5667 5668 5669 5670
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5671
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5672

5673 5674 5675
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5676
	 */
5677
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5678

I
Ingo Molnar 已提交
5679
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5680

5681
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5682

5683
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5684 5685
}

5686 5687
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5701
/* called under rq->lock with disabled interrupts */
5702
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5703
{
5704
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5705 5706

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5707
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5708 5709

	/* Cannot have done final schedule yet: would have vanished. */
5710
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5711

5712
	get_task_struct(p);
L
Linus Torvalds 已提交
5713 5714 5715

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5716
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5717 5718
	 * fine.
	 */
5719
	raw_spin_unlock_irq(&rq->lock);
5720
	move_task_off_dead_cpu(dead_cpu, p);
5721
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5722

5723
	put_task_struct(p);
L
Linus Torvalds 已提交
5724 5725 5726 5727 5728
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5729
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5730
	struct task_struct *next;
5731

I
Ingo Molnar 已提交
5732 5733 5734
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5735
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5736 5737
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5738
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5739
		migrate_dead(dead_cpu, next);
5740

L
Linus Torvalds 已提交
5741 5742
	}
}
5743 5744 5745 5746 5747 5748 5749

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5750
	rq->calc_load_active = 0;
5751
}
L
Linus Torvalds 已提交
5752 5753
#endif /* CONFIG_HOTPLUG_CPU */

5754 5755 5756
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5757 5758
	{
		.procname	= "sched_domain",
5759
		.mode		= 0555,
5760
	},
5761
	{}
5762 5763 5764
};

static struct ctl_table sd_ctl_root[] = {
5765 5766
	{
		.procname	= "kernel",
5767
		.mode		= 0555,
5768 5769
		.child		= sd_ctl_dir,
	},
5770
	{}
5771 5772 5773 5774 5775
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5776
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5777 5778 5779 5780

	return entry;
}

5781 5782
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5783
	struct ctl_table *entry;
5784

5785 5786 5787
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5788
	 * will always be set. In the lowest directory the names are
5789 5790 5791
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5792 5793
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5794 5795 5796
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5797 5798 5799 5800 5801

	kfree(*tablep);
	*tablep = NULL;
}

5802
static void
5803
set_table_entry(struct ctl_table *entry,
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5817
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5818

5819 5820 5821
	if (table == NULL)
		return NULL;

5822
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5823
		sizeof(long), 0644, proc_doulongvec_minmax);
5824
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5825
		sizeof(long), 0644, proc_doulongvec_minmax);
5826
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5827
		sizeof(int), 0644, proc_dointvec_minmax);
5828
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5829
		sizeof(int), 0644, proc_dointvec_minmax);
5830
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5831
		sizeof(int), 0644, proc_dointvec_minmax);
5832
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5833
		sizeof(int), 0644, proc_dointvec_minmax);
5834
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5835
		sizeof(int), 0644, proc_dointvec_minmax);
5836
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5837
		sizeof(int), 0644, proc_dointvec_minmax);
5838
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5839
		sizeof(int), 0644, proc_dointvec_minmax);
5840
	set_table_entry(&table[9], "cache_nice_tries",
5841 5842
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5843
	set_table_entry(&table[10], "flags", &sd->flags,
5844
		sizeof(int), 0644, proc_dointvec_minmax);
5845 5846 5847
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5848 5849 5850 5851

	return table;
}

5852
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5853 5854 5855 5856 5857 5858 5859 5860 5861
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5862 5863
	if (table == NULL)
		return NULL;
5864 5865 5866 5867 5868

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5869
		entry->mode = 0555;
5870 5871 5872 5873 5874 5875 5876 5877
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5878
static void register_sched_domain_sysctl(void)
5879
{
5880
	int i, cpu_num = num_possible_cpus();
5881 5882 5883
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5884 5885 5886
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5887 5888 5889
	if (entry == NULL)
		return;

5890
	for_each_possible_cpu(i) {
5891 5892
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5893
		entry->mode = 0555;
5894
		entry->child = sd_alloc_ctl_cpu_table(i);
5895
		entry++;
5896
	}
5897 5898

	WARN_ON(sd_sysctl_header);
5899 5900
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5901

5902
/* may be called multiple times per register */
5903 5904
static void unregister_sched_domain_sysctl(void)
{
5905 5906
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5907
	sd_sysctl_header = NULL;
5908 5909
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5910
}
5911
#else
5912 5913 5914 5915
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5916 5917 5918 5919
{
}
#endif

5920 5921 5922 5923 5924
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5925
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5945
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5946 5947 5948 5949
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5950 5951 5952 5953
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5954 5955
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5956
{
5957
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5958
	unsigned long flags;
5959
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5960 5961

	switch (action) {
5962

L
Linus Torvalds 已提交
5963
	case CPU_UP_PREPARE:
5964
	case CPU_UP_PREPARE_FROZEN:
5965
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5966
		break;
5967

L
Linus Torvalds 已提交
5968
	case CPU_ONLINE:
5969
	case CPU_ONLINE_FROZEN:
5970
		/* Update our root-domain */
5971
		raw_spin_lock_irqsave(&rq->lock, flags);
5972
		if (rq->rd) {
5973
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5974 5975

			set_rq_online(rq);
5976
		}
5977
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5978
		break;
5979

L
Linus Torvalds 已提交
5980 5981
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5982
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5983 5984
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5985
		raw_spin_lock_irq(&rq->lock);
5986
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5987 5988
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5989
		migrate_dead_tasks(cpu);
5990
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5991 5992
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5993
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5994
		break;
G
Gregory Haskins 已提交
5995

5996 5997
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5998
		/* Update our root-domain */
5999
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6000
		if (rq->rd) {
6001
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6002
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6003
		}
6004
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
6005
		break;
L
Linus Torvalds 已提交
6006 6007 6008 6009 6010
#endif
	}
	return NOTIFY_OK;
}

6011 6012 6013
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6014
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6015
 */
6016
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6017
	.notifier_call = migration_call,
6018
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6019 6020
};

6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6046
static int __init migration_init(void)
L
Linus Torvalds 已提交
6047 6048
{
	void *cpu = (void *)(long)smp_processor_id();
6049
	int err;
6050

6051
	/* Initialize migration for the boot CPU */
6052 6053
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6054 6055
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6056

6057 6058 6059 6060
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6061
	return 0;
L
Linus Torvalds 已提交
6062
}
6063
early_initcall(migration_init);
L
Linus Torvalds 已提交
6064 6065 6066
#endif

#ifdef CONFIG_SMP
6067

6068
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6069

6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6080
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6081
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6082
{
I
Ingo Molnar 已提交
6083
	struct sched_group *group = sd->groups;
6084
	char str[256];
L
Linus Torvalds 已提交
6085

R
Rusty Russell 已提交
6086
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6087
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6088 6089 6090 6091

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6092
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6093
		if (sd->parent)
P
Peter Zijlstra 已提交
6094 6095
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6096
		return -1;
N
Nick Piggin 已提交
6097 6098
	}

P
Peter Zijlstra 已提交
6099
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6100

6101
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6102 6103
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6104
	}
6105
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6106 6107
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6108
	}
L
Linus Torvalds 已提交
6109

I
Ingo Molnar 已提交
6110
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6111
	do {
I
Ingo Molnar 已提交
6112
		if (!group) {
P
Peter Zijlstra 已提交
6113 6114
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6115 6116 6117
			break;
		}

6118
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6119 6120 6121
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6122 6123
			break;
		}
L
Linus Torvalds 已提交
6124

6125
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6126 6127
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6128 6129
			break;
		}
L
Linus Torvalds 已提交
6130

6131
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6132 6133
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6134 6135
			break;
		}
L
Linus Torvalds 已提交
6136

6137
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6138

R
Rusty Russell 已提交
6139
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6140

P
Peter Zijlstra 已提交
6141
		printk(KERN_CONT " %s", str);
6142
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6143 6144
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6145
		}
L
Linus Torvalds 已提交
6146

I
Ingo Molnar 已提交
6147 6148
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6149
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6150

6151
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6152
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6153

6154 6155
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6156 6157
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6158 6159
	return 0;
}
L
Linus Torvalds 已提交
6160

I
Ingo Molnar 已提交
6161 6162
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6163
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6164
	int level = 0;
L
Linus Torvalds 已提交
6165

6166 6167 6168
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6169 6170 6171 6172
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6173

I
Ingo Molnar 已提交
6174 6175
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6176
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6177 6178 6179 6180
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6181
	for (;;) {
6182
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6183
			break;
L
Linus Torvalds 已提交
6184 6185
		level++;
		sd = sd->parent;
6186
		if (!sd)
I
Ingo Molnar 已提交
6187 6188
			break;
	}
6189
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6190
}
6191
#else /* !CONFIG_SCHED_DEBUG */
6192
# define sched_domain_debug(sd, cpu) do { } while (0)
6193
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6194

6195
static int sd_degenerate(struct sched_domain *sd)
6196
{
6197
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6198 6199 6200 6201 6202 6203
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6204 6205 6206
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6207 6208 6209 6210 6211
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6212
	if (sd->flags & (SD_WAKE_AFFINE))
6213 6214 6215 6216 6217
		return 0;

	return 1;
}

6218 6219
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6220 6221 6222 6223 6224 6225
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6226
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6227 6228 6229 6230 6231 6232 6233
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6234 6235 6236
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6237 6238
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6239 6240 6241 6242 6243 6244 6245
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6246 6247
static void free_rootdomain(struct root_domain *rd)
{
6248 6249
	synchronize_sched();

6250 6251
	cpupri_cleanup(&rd->cpupri);

6252 6253 6254 6255 6256 6257
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6258 6259
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6260
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6261 6262
	unsigned long flags;

6263
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6264 6265

	if (rq->rd) {
I
Ingo Molnar 已提交
6266
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6267

6268
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6269
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6270

6271
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6272

I
Ingo Molnar 已提交
6273 6274 6275 6276 6277 6278 6279
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6280 6281 6282 6283 6284
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6285
	cpumask_set_cpu(rq->cpu, rd->span);
6286
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6287
		set_rq_online(rq);
G
Gregory Haskins 已提交
6288

6289
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6290 6291 6292

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6293 6294
}

6295
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6296 6297 6298
{
	memset(rd, 0, sizeof(*rd));

6299
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6300
		goto out;
6301
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6302
		goto free_span;
6303
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6304
		goto free_online;
6305

6306
	if (cpupri_init(&rd->cpupri) != 0)
6307
		goto free_rto_mask;
6308
	return 0;
6309

6310 6311
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6312 6313 6314 6315
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6316
out:
6317
	return -ENOMEM;
G
Gregory Haskins 已提交
6318 6319 6320 6321
}

static void init_defrootdomain(void)
{
6322
	init_rootdomain(&def_root_domain);
6323

G
Gregory Haskins 已提交
6324 6325 6326
	atomic_set(&def_root_domain.refcount, 1);
}

6327
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6328 6329 6330 6331 6332 6333 6334
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6335
	if (init_rootdomain(rd) != 0) {
6336 6337 6338
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6339 6340 6341 6342

	return rd;
}

L
Linus Torvalds 已提交
6343
/*
I
Ingo Molnar 已提交
6344
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6345 6346
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6347 6348
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6349
{
6350
	struct rq *rq = cpu_rq(cpu);
6351 6352
	struct sched_domain *tmp;

6353 6354 6355
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6356
	/* Remove the sched domains which do not contribute to scheduling. */
6357
	for (tmp = sd; tmp; ) {
6358 6359 6360
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6361

6362
		if (sd_parent_degenerate(tmp, parent)) {
6363
			tmp->parent = parent->parent;
6364 6365
			if (parent->parent)
				parent->parent->child = tmp;
6366 6367
		} else
			tmp = tmp->parent;
6368 6369
	}

6370
	if (sd && sd_degenerate(sd)) {
6371
		sd = sd->parent;
6372 6373 6374
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6375 6376 6377

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6378
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6379
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6380 6381 6382
}

/* cpus with isolated domains */
6383
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6384 6385 6386 6387

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6388
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6389
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6390 6391 6392
	return 1;
}

I
Ingo Molnar 已提交
6393
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6394 6395

/*
6396 6397
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6398 6399
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6400 6401 6402 6403 6404
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6405
static void
6406 6407 6408
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6409
					struct sched_group **sg,
6410 6411
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6412 6413 6414 6415
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6416
	cpumask_clear(covered);
6417

6418
	for_each_cpu(i, span) {
6419
		struct sched_group *sg;
6420
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6421 6422
		int j;

6423
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6424 6425
			continue;

6426
		cpumask_clear(sched_group_cpus(sg));
6427
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6428

6429
		for_each_cpu(j, span) {
6430
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6431 6432
				continue;

6433
			cpumask_set_cpu(j, covered);
6434
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6445
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6446

6447
#ifdef CONFIG_NUMA
6448

6449 6450 6451 6452 6453
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6454
 * Find the next node to include in a given scheduling domain. Simply
6455 6456 6457 6458
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6459
static int find_next_best_node(int node, nodemask_t *used_nodes)
6460 6461 6462 6463 6464
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6465
	for (i = 0; i < nr_node_ids; i++) {
6466
		/* Start at @node */
6467
		n = (node + i) % nr_node_ids;
6468 6469 6470 6471 6472

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6473
		if (node_isset(n, *used_nodes))
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6485
	node_set(best_node, *used_nodes);
6486 6487 6488 6489 6490 6491
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6492
 * @span: resulting cpumask
6493
 *
I
Ingo Molnar 已提交
6494
 * Given a node, construct a good cpumask for its sched_domain to span. It
6495 6496 6497
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6498
static void sched_domain_node_span(int node, struct cpumask *span)
6499
{
6500
	nodemask_t used_nodes;
6501
	int i;
6502

6503
	cpumask_clear(span);
6504
	nodes_clear(used_nodes);
6505

6506
	cpumask_or(span, span, cpumask_of_node(node));
6507
	node_set(node, used_nodes);
6508 6509

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6510
		int next_node = find_next_best_node(node, &used_nodes);
6511

6512
		cpumask_or(span, span, cpumask_of_node(next_node));
6513 6514
	}
}
6515
#endif /* CONFIG_NUMA */
6516

6517
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6518

6519 6520
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6521 6522 6523
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6545
	cpumask_var_t		this_book_map;
6546 6547 6548 6549 6550 6551
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6552 6553 6554 6555 6556
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6557
	sa_this_book_map,
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6570
/*
6571
 * SMT sched-domains:
6572
 */
L
Linus Torvalds 已提交
6573
#ifdef CONFIG_SCHED_SMT
6574
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6575
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6576

I
Ingo Molnar 已提交
6577
static int
6578 6579
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6580
{
6581
	if (sg)
6582
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6583 6584
	return cpu;
}
6585
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6586

6587 6588 6589
/*
 * multi-core sched-domains:
 */
6590
#ifdef CONFIG_SCHED_MC
6591 6592
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6593

I
Ingo Molnar 已提交
6594
static int
6595 6596
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6597
{
6598
	int group;
6599
#ifdef CONFIG_SCHED_SMT
6600
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6601
	group = cpumask_first(mask);
6602 6603 6604
#else
	group = cpu;
#endif
6605
	if (sg)
6606
		*sg = &per_cpu(sched_group_core, group).sg;
6607
	return group;
6608
}
6609
#endif /* CONFIG_SCHED_MC */
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

static int
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
{
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
	if (sg)
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
}
#endif /* CONFIG_SCHED_BOOK */

6636 6637
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6638

I
Ingo Molnar 已提交
6639
static int
6640 6641
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6642
{
6643
	int group;
6644 6645 6646 6647
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6648
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6649
	group = cpumask_first(mask);
6650
#elif defined(CONFIG_SCHED_SMT)
6651
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6652
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6653
#else
6654
	group = cpu;
L
Linus Torvalds 已提交
6655
#endif
6656
	if (sg)
6657
		*sg = &per_cpu(sched_group_phys, group).sg;
6658
	return group;
L
Linus Torvalds 已提交
6659 6660 6661 6662
}

#ifdef CONFIG_NUMA
/*
6663 6664 6665
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6666
 */
6667
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6668
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6669

6670
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6671
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6672

6673 6674 6675
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6676
{
6677 6678
	int group;

6679
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6680
	group = cpumask_first(nodemask);
6681 6682

	if (sg)
6683
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6684
	return group;
L
Linus Torvalds 已提交
6685
}
6686

6687 6688 6689 6690 6691 6692 6693
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6694
	do {
6695
		for_each_cpu(j, sched_group_cpus(sg)) {
6696
			struct sched_domain *sd;
6697

6698
			sd = &per_cpu(phys_domains, j).sd;
6699
			if (j != group_first_cpu(sd->groups)) {
6700 6701 6702 6703 6704 6705
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6706

6707
			sg->cpu_power += sd->groups->cpu_power;
6708 6709 6710
		}
		sg = sg->next;
	} while (sg != group_head);
6711
}
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6733 6734
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6735 6736 6737 6738 6739 6740 6741 6742 6743
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6744
	sg->cpu_power = 0;
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6763 6764
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6765 6766
			return -ENOMEM;
		}
6767
		sg->cpu_power = 0;
6768 6769 6770 6771 6772 6773 6774 6775 6776
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6777
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6778

6779
#ifdef CONFIG_NUMA
6780
/* Free memory allocated for various sched_group structures */
6781 6782
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6783
{
6784
	int cpu, i;
6785

6786
	for_each_cpu(cpu, cpu_map) {
6787 6788 6789 6790 6791 6792
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6793
		for (i = 0; i < nr_node_ids; i++) {
6794 6795
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6796
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6797
			if (cpumask_empty(nodemask))
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6814
#else /* !CONFIG_NUMA */
6815 6816
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6817 6818
{
}
6819
#endif /* CONFIG_NUMA */
6820

6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6835 6836
	long power;
	int weight;
6837 6838 6839

	WARN_ON(!sd || !sd->groups);

6840
	if (cpu != group_first_cpu(sd->groups))
6841 6842 6843 6844
		return;

	child = sd->child;

6845
	sd->groups->cpu_power = 0;
6846

6847 6848 6849 6850 6851
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6852 6853 6854
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6855
		 */
P
Peter Zijlstra 已提交
6856 6857
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6858
			power /= weight;
P
Peter Zijlstra 已提交
6859 6860
			power >>= SCHED_LOAD_SHIFT;
		}
6861
		sd->groups->cpu_power += power;
6862 6863 6864 6865
		return;
	}

	/*
6866
	 * Add cpu_power of each child group to this groups cpu_power.
6867 6868 6869
	 */
	group = child->groups;
	do {
6870
		sd->groups->cpu_power += group->cpu_power;
6871 6872 6873 6874
		group = group->next;
	} while (group != child->groups);
}

6875 6876 6877 6878 6879
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6880 6881 6882 6883 6884 6885
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6886
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6887

6888 6889 6890 6891 6892
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6893
	sd->level = SD_LV_##type;				\
6894
	SD_INIT_NAME(sd, type);					\
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6908 6909 6910
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6911

6912 6913 6914 6915
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6916 6917 6918 6919 6920 6921
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6940
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6941 6942
	} else {
		/* turn on idle balance on this domain */
6943
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6944 6945 6946
	}
}

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
6960 6961
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
6962 6963 6964 6965 6966 6967 6968
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6969
#ifdef CONFIG_NUMA
6970 6971 6972 6973 6974 6975 6976
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6977
#endif
6978 6979 6980 6981
	case sa_none:
		break;
	}
}
6982

6983 6984 6985
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6986
#ifdef CONFIG_NUMA
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6997
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6998
		return sa_notcovered;
6999
	}
7000
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7001
#endif
7002 7003 7004 7005 7006 7007
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7008
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7009
		return sa_this_core_map;
7010 7011
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7012 7013 7014 7015
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7016
		printk(KERN_WARNING "Cannot alloc root domain\n");
7017
		return sa_tmpmask;
G
Gregory Haskins 已提交
7018
	}
7019 7020
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7021

7022 7023 7024 7025
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7026
#ifdef CONFIG_NUMA
7027
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7028

7029 7030 7031 7032 7033
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7034
		set_domain_attribute(sd, attr);
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7049
#endif
7050 7051
	return sd;
}
L
Linus Torvalds 已提交
7052

7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7068

7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7086 7087 7088 7089 7090
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7091
#ifdef CONFIG_SCHED_MC
7092 7093 7094 7095 7096 7097 7098
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7099
#endif
7100 7101
	return sd;
}
7102

7103 7104 7105 7106 7107
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7108
#ifdef CONFIG_SCHED_SMT
7109 7110 7111 7112 7113 7114 7115
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7116
#endif
7117 7118
	return sd;
}
L
Linus Torvalds 已提交
7119

7120 7121 7122 7123
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7124
#ifdef CONFIG_SCHED_SMT
7125 7126 7127 7128 7129 7130 7131 7132
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7133
#endif
7134
#ifdef CONFIG_SCHED_MC
7135 7136 7137 7138 7139 7140 7141
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7142 7143 7144 7145 7146 7147 7148 7149 7150
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7151
#endif
7152 7153 7154 7155 7156 7157 7158
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7159
#ifdef CONFIG_NUMA
7160 7161 7162 7163 7164
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7165 7166
	default:
		break;
7167
	}
7168
}
7169

7170 7171 7172 7173 7174 7175 7176 7177 7178
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7179
	struct sched_domain *sd;
7180
	int i;
7181
#ifdef CONFIG_NUMA
7182
	d.sd_allnodes = 0;
7183
#endif
7184

7185 7186 7187 7188
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7189

L
Linus Torvalds 已提交
7190
	/*
7191
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7192
	 */
7193
	for_each_cpu(i, cpu_map) {
7194 7195
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7196

7197
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7198
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7199
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7200
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7201
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7202
	}
7203

7204
	for_each_cpu(i, cpu_map) {
7205
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7206
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7207
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7208
	}
7209

L
Linus Torvalds 已提交
7210
	/* Set up physical groups */
7211 7212
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7213

L
Linus Torvalds 已提交
7214 7215
#ifdef CONFIG_NUMA
	/* Set up node groups */
7216 7217
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7218

7219 7220
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7221
			goto error;
L
Linus Torvalds 已提交
7222 7223 7224
#endif

	/* Calculate CPU power for physical packages and nodes */
7225
#ifdef CONFIG_SCHED_SMT
7226
	for_each_cpu(i, cpu_map) {
7227
		sd = &per_cpu(cpu_domains, i).sd;
7228
		init_sched_groups_power(i, sd);
7229
	}
L
Linus Torvalds 已提交
7230
#endif
7231
#ifdef CONFIG_SCHED_MC
7232
	for_each_cpu(i, cpu_map) {
7233
		sd = &per_cpu(core_domains, i).sd;
7234
		init_sched_groups_power(i, sd);
7235 7236
	}
#endif
7237 7238 7239 7240 7241 7242
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7243

7244
	for_each_cpu(i, cpu_map) {
7245
		sd = &per_cpu(phys_domains, i).sd;
7246
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7247 7248
	}

7249
#ifdef CONFIG_NUMA
7250
	for (i = 0; i < nr_node_ids; i++)
7251
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7252

7253
	if (d.sd_allnodes) {
7254
		struct sched_group *sg;
7255

7256
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7257
								d.tmpmask);
7258 7259
		init_numa_sched_groups_power(sg);
	}
7260 7261
#endif

L
Linus Torvalds 已提交
7262
	/* Attach the domains */
7263
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7264
#ifdef CONFIG_SCHED_SMT
7265
		sd = &per_cpu(cpu_domains, i).sd;
7266
#elif defined(CONFIG_SCHED_MC)
7267
		sd = &per_cpu(core_domains, i).sd;
7268 7269
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7270
#else
7271
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7272
#endif
7273
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7274
	}
7275

7276 7277 7278
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7279 7280

error:
7281 7282
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7283
}
P
Paul Jackson 已提交
7284

7285
static int build_sched_domains(const struct cpumask *cpu_map)
7286 7287 7288 7289
{
	return __build_sched_domains(cpu_map, NULL);
}

7290
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7291
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7292 7293
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7294 7295 7296

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7297 7298
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7299
 */
7300
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7301

7302 7303 7304 7305 7306 7307
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7308
{
7309
	return 0;
7310 7311
}

7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7337
/*
I
Ingo Molnar 已提交
7338
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7339 7340
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7341
 */
7342
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7343
{
7344 7345
	int err;

7346
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7347
	ndoms_cur = 1;
7348
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7349
	if (!doms_cur)
7350 7351
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7352
	dattr_cur = NULL;
7353
	err = build_sched_domains(doms_cur[0]);
7354
	register_sched_domain_sysctl();
7355 7356

	return err;
7357 7358
}

7359 7360
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7361
{
7362
	free_sched_groups(cpu_map, tmpmask);
7363
}
L
Linus Torvalds 已提交
7364

7365 7366 7367 7368
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7369
static void detach_destroy_domains(const struct cpumask *cpu_map)
7370
{
7371 7372
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7373 7374
	int i;

7375
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7376
		cpu_attach_domain(NULL, &def_root_domain, i);
7377
	synchronize_sched();
7378
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7379 7380
}

7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7397 7398
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7399
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7400 7401 7402
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7403
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7404 7405 7406
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7407 7408 7409
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7410 7411 7412 7413 7414 7415
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7416
 *
7417
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7418 7419
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7420
 *
P
Paul Jackson 已提交
7421 7422
 * Call with hotplug lock held
 */
7423
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7424
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7425
{
7426
	int i, j, n;
7427
	int new_topology;
P
Paul Jackson 已提交
7428

7429
	mutex_lock(&sched_domains_mutex);
7430

7431 7432 7433
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7434 7435 7436
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7437
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7438 7439 7440

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7441
		for (j = 0; j < n && !new_topology; j++) {
7442
			if (cpumask_equal(doms_cur[i], doms_new[j])
7443
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7444 7445 7446
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7447
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7448 7449 7450 7451
match1:
		;
	}

7452 7453
	if (doms_new == NULL) {
		ndoms_cur = 0;
7454
		doms_new = &fallback_doms;
7455
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7456
		WARN_ON_ONCE(dattr_new);
7457 7458
	}

P
Paul Jackson 已提交
7459 7460
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7461
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7462
			if (cpumask_equal(doms_new[i], doms_cur[j])
7463
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7464 7465 7466
				goto match2;
		}
		/* no match - add a new doms_new */
7467
		__build_sched_domains(doms_new[i],
7468
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7469 7470 7471 7472 7473
match2:
		;
	}

	/* Remember the new sched domains */
7474 7475
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7476
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7477
	doms_cur = doms_new;
7478
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7479
	ndoms_cur = ndoms_new;
7480 7481

	register_sched_domain_sysctl();
7482

7483
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7484 7485
}

7486
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7487
static void arch_reinit_sched_domains(void)
7488
{
7489
	get_online_cpus();
7490 7491 7492 7493

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7494
	rebuild_sched_domains();
7495
	put_online_cpus();
7496 7497 7498 7499
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7500
	unsigned int level = 0;
7501

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7513 7514 7515
		return -EINVAL;

	if (smt)
7516
		sched_smt_power_savings = level;
7517
	else
7518
		sched_mc_power_savings = level;
7519

7520
	arch_reinit_sched_domains();
7521

7522
	return count;
7523 7524 7525
}

#ifdef CONFIG_SCHED_MC
7526
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7527
					   struct sysdev_class_attribute *attr,
7528
					   char *page)
7529 7530 7531
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7532
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7533
					    struct sysdev_class_attribute *attr,
7534
					    const char *buf, size_t count)
7535 7536 7537
{
	return sched_power_savings_store(buf, count, 0);
}
7538 7539 7540
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7541 7542 7543
#endif

#ifdef CONFIG_SCHED_SMT
7544
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7545
					    struct sysdev_class_attribute *attr,
7546
					    char *page)
7547 7548 7549
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7550
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7551
					     struct sysdev_class_attribute *attr,
7552
					     const char *buf, size_t count)
7553 7554 7555
{
	return sched_power_savings_store(buf, count, 1);
}
7556 7557
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7558 7559 7560
		   sched_smt_power_savings_store);
#endif

7561
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7577
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7578

L
Linus Torvalds 已提交
7579
/*
7580 7581 7582
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7583
 */
7584 7585
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7586
{
7587
	switch (action & ~CPU_TASKS_FROZEN) {
7588
	case CPU_ONLINE:
7589
	case CPU_DOWN_FAILED:
7590
		cpuset_update_active_cpus();
7591
		return NOTIFY_OK;
7592 7593 7594 7595
	default:
		return NOTIFY_DONE;
	}
}
7596

7597 7598
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7599 7600 7601 7602 7603
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7604 7605 7606 7607 7608 7609 7610
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7611
{
P
Peter Zijlstra 已提交
7612 7613
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7614 7615
	switch (action) {
	case CPU_DOWN_PREPARE:
7616
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7617
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7618 7619 7620
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7621
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7622
	case CPU_ONLINE:
7623
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7624
		enable_runtime(cpu_rq(cpu));
7625 7626
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7627 7628 7629 7630 7631 7632 7633
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7634 7635 7636
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7637
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7638

7639 7640 7641 7642 7643
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7644
	get_online_cpus();
7645
	mutex_lock(&sched_domains_mutex);
7646
	arch_init_sched_domains(cpu_active_mask);
7647 7648 7649
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7650
	mutex_unlock(&sched_domains_mutex);
7651
	put_online_cpus();
7652

7653 7654
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7655 7656 7657 7658

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7659
	init_hrtick();
7660 7661

	/* Move init over to a non-isolated CPU */
7662
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7663
		BUG();
I
Ingo Molnar 已提交
7664
	sched_init_granularity();
7665
	free_cpumask_var(non_isolated_cpus);
7666

7667
	init_sched_rt_class();
L
Linus Torvalds 已提交
7668 7669 7670 7671
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7672
	sched_init_granularity();
L
Linus Torvalds 已提交
7673 7674 7675
}
#endif /* CONFIG_SMP */

7676 7677
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7678 7679 7680 7681 7682 7683 7684
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7685
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7686 7687
{
	cfs_rq->tasks_timeline = RB_ROOT;
7688
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7689 7690 7691
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7692
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7693 7694
}

P
Peter Zijlstra 已提交
7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7708
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7709
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7710
#ifdef CONFIG_SMP
7711
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7712 7713
#endif
#endif
P
Peter Zijlstra 已提交
7714 7715 7716
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7717
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7718 7719 7720 7721
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7722
	rt_rq->rt_runtime = 0;
7723
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7724

7725
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7726
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7727 7728
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7729 7730
}

P
Peter Zijlstra 已提交
7731
#ifdef CONFIG_FAIR_GROUP_SCHED
7732 7733 7734
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7735
{
7736
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7737 7738 7739 7740 7741 7742 7743
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7744 7745 7746 7747
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7748 7749 7750 7751 7752
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7753 7754
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7755
	se->load.inv_weight = 0;
7756
	se->parent = parent;
P
Peter Zijlstra 已提交
7757
}
7758
#endif
P
Peter Zijlstra 已提交
7759

7760
#ifdef CONFIG_RT_GROUP_SCHED
7761 7762 7763
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7764
{
7765 7766
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7767 7768 7769
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7770
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7771 7772 7773 7774
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7775 7776 7777
	if (!rt_se)
		return;

7778 7779 7780 7781 7782
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7783
	rt_se->my_q = rt_rq;
7784
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7785 7786 7787 7788
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7789 7790
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7791
	int i, j;
7792 7793 7794 7795 7796 7797 7798
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7799
#endif
7800
#ifdef CONFIG_CPUMASK_OFFSTACK
7801
	alloc_size += num_possible_cpus() * cpumask_size();
7802 7803
#endif
	if (alloc_size) {
7804
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7805 7806 7807 7808 7809 7810 7811

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7812

7813
#endif /* CONFIG_FAIR_GROUP_SCHED */
7814 7815 7816 7817 7818
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7819 7820
		ptr += nr_cpu_ids * sizeof(void **);

7821
#endif /* CONFIG_RT_GROUP_SCHED */
7822 7823 7824 7825 7826 7827
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7828
	}
I
Ingo Molnar 已提交
7829

G
Gregory Haskins 已提交
7830 7831 7832 7833
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7834 7835 7836 7837 7838 7839
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7840
#endif /* CONFIG_RT_GROUP_SCHED */
7841

D
Dhaval Giani 已提交
7842
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7843
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7844 7845
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7846
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7847

7848 7849 7850 7851
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7852
	for_each_possible_cpu(i) {
7853
		struct rq *rq;
L
Linus Torvalds 已提交
7854 7855

		rq = cpu_rq(i);
7856
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7857
		rq->nr_running = 0;
7858 7859
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7860
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7861
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7862
#ifdef CONFIG_FAIR_GROUP_SCHED
7863
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7864
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7880
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7881 7882 7883 7884
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7885
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7886
#endif
D
Dhaval Giani 已提交
7887 7888 7889
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7890
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7891
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7892
#ifdef CONFIG_CGROUP_SCHED
7893
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7894
#endif
I
Ingo Molnar 已提交
7895
#endif
L
Linus Torvalds 已提交
7896

I
Ingo Molnar 已提交
7897 7898
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7899 7900 7901

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7902
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7903
		rq->sd = NULL;
G
Gregory Haskins 已提交
7904
		rq->rd = NULL;
7905
		rq->cpu_power = SCHED_LOAD_SCALE;
7906
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7907
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7908
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7909
		rq->push_cpu = 0;
7910
		rq->cpu = i;
7911
		rq->online = 0;
7912 7913
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7914
		rq_attach_root(rq, &def_root_domain);
7915 7916 7917 7918
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7919
#endif
P
Peter Zijlstra 已提交
7920
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7921 7922 7923
		atomic_set(&rq->nr_iowait, 0);
	}

7924
	set_load_weight(&init_task);
7925

7926 7927 7928 7929
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7930
#ifdef CONFIG_SMP
7931
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7932 7933
#endif

7934
#ifdef CONFIG_RT_MUTEXES
7935
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7936 7937
#endif

L
Linus Torvalds 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7951 7952 7953

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7954 7955 7956 7957
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7958

7959
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7960
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7961
#ifdef CONFIG_SMP
7962
#ifdef CONFIG_NO_HZ
7963 7964 7965 7966 7967
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7968
#endif
R
Rusty Russell 已提交
7969 7970 7971
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7972
#endif /* SMP */
7973

7974
	perf_event_init();
7975

7976
	scheduler_running = 1;
L
Linus Torvalds 已提交
7977 7978 7979
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7980 7981
static inline int preempt_count_equals(int preempt_offset)
{
7982
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7983 7984 7985 7986

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7987
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7988
{
7989
#ifdef in_atomic
L
Linus Torvalds 已提交
7990 7991
	static unsigned long prev_jiffy;	/* ratelimiting */

7992 7993
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7994 7995 7996 7997 7998
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7999 8000 8001 8002 8003 8004 8005
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8006 8007 8008 8009 8010

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8011 8012 8013 8014 8015 8016
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8017 8018 8019
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8020

8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8031 8032
void normalize_rt_tasks(void)
{
8033
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8034
	unsigned long flags;
8035
	struct rq *rq;
L
Linus Torvalds 已提交
8036

8037
	read_lock_irqsave(&tasklist_lock, flags);
8038
	do_each_thread(g, p) {
8039 8040 8041 8042 8043 8044
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8045 8046
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8047 8048 8049
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8050
#endif
I
Ingo Molnar 已提交
8051 8052 8053 8054 8055 8056 8057 8058

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8059
			continue;
I
Ingo Molnar 已提交
8060
		}
L
Linus Torvalds 已提交
8061

8062
		raw_spin_lock(&p->pi_lock);
8063
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8064

8065
		normalize_task(rq, p);
8066

8067
		__task_rq_unlock(rq);
8068
		raw_spin_unlock(&p->pi_lock);
8069 8070
	} while_each_thread(g, p);

8071
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8072 8073 8074
}

#endif /* CONFIG_MAGIC_SYSRQ */
8075

8076
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8077
/*
8078
 * These functions are only useful for the IA64 MCA handling, or kdb.
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8093
struct task_struct *curr_task(int cpu)
8094 8095 8096 8097
{
	return cpu_curr(cpu);
}

8098 8099 8100
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8101 8102 8103 8104 8105 8106
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8107 8108
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8109 8110 8111 8112 8113 8114 8115
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8116
void set_curr_task(int cpu, struct task_struct *p)
8117 8118 8119 8120 8121
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8122

8123 8124
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8139 8140
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8141 8142
{
	struct cfs_rq *cfs_rq;
8143
	struct sched_entity *se;
8144
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8145 8146
	int i;

8147
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8148 8149
	if (!tg->cfs_rq)
		goto err;
8150
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8151 8152
	if (!tg->se)
		goto err;
8153 8154

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8155 8156

	for_each_possible_cpu(i) {
8157
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8158

8159 8160
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8161 8162 8163
		if (!cfs_rq)
			goto err;

8164 8165
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8166
		if (!se)
8167
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8168

8169
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8170 8171 8172 8173
	}

	return 1;

P
Peter Zijlstra 已提交
8174
err_free_rq:
8175
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8176
err:
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8190
#else /* !CONFG_FAIR_GROUP_SCHED */
8191 8192 8193 8194
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8195 8196
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8208
#endif /* CONFIG_FAIR_GROUP_SCHED */
8209 8210

#ifdef CONFIG_RT_GROUP_SCHED
8211 8212 8213 8214
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8215 8216
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8228 8229
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8230 8231
{
	struct rt_rq *rt_rq;
8232
	struct sched_rt_entity *rt_se;
8233 8234 8235
	struct rq *rq;
	int i;

8236
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8237 8238
	if (!tg->rt_rq)
		goto err;
8239
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8240 8241 8242
	if (!tg->rt_se)
		goto err;

8243 8244
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8245 8246 8247 8248

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8249 8250
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8251 8252
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8253

8254 8255
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8256
		if (!rt_se)
8257
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8258

8259
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8260 8261
	}

8262 8263
	return 1;

P
Peter Zijlstra 已提交
8264
err_free_rq:
8265
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8266
err:
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8280
#else /* !CONFIG_RT_GROUP_SCHED */
8281 8282 8283 8284
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8285 8286
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8298
#endif /* CONFIG_RT_GROUP_SCHED */
8299

D
Dhaval Giani 已提交
8300
#ifdef CONFIG_CGROUP_SCHED
8301 8302 8303 8304 8305 8306 8307 8308
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8309
struct task_group *sched_create_group(struct task_group *parent)
8310 8311 8312 8313 8314 8315 8316 8317 8318
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8319
	if (!alloc_fair_sched_group(tg, parent))
8320 8321
		goto err;

8322
	if (!alloc_rt_sched_group(tg, parent))
8323 8324
		goto err;

8325
	spin_lock_irqsave(&task_group_lock, flags);
8326
	for_each_possible_cpu(i) {
8327 8328
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8329
	}
P
Peter Zijlstra 已提交
8330
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8331 8332 8333 8334 8335

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8336
	list_add_rcu(&tg->siblings, &parent->children);
8337
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8338

8339
	return tg;
S
Srivatsa Vaddagiri 已提交
8340 8341

err:
P
Peter Zijlstra 已提交
8342
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8343 8344 8345
	return ERR_PTR(-ENOMEM);
}

8346
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8347
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8348 8349
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8350
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8351 8352
}

8353
/* Destroy runqueue etc associated with a task group */
8354
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8355
{
8356
	unsigned long flags;
8357
	int i;
S
Srivatsa Vaddagiri 已提交
8358

8359
	spin_lock_irqsave(&task_group_lock, flags);
8360
	for_each_possible_cpu(i) {
8361 8362
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8363
	}
P
Peter Zijlstra 已提交
8364
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8365
	list_del_rcu(&tg->siblings);
8366
	spin_unlock_irqrestore(&task_group_lock, flags);
8367 8368

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8369
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8370 8371
}

8372
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8373 8374 8375
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8376 8377
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8378 8379 8380 8381 8382 8383 8384
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8385
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8386 8387
	on_rq = tsk->se.on_rq;

8388
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8389
		dequeue_task(rq, tsk, 0);
8390 8391
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8392

P
Peter Zijlstra 已提交
8393
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8394

P
Peter Zijlstra 已提交
8395 8396
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8397
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8398 8399
#endif

8400 8401 8402
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8403
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8404 8405 8406

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8407
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8408

8409
#ifdef CONFIG_FAIR_GROUP_SCHED
8410
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8411 8412 8413 8414 8415
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8416
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8417 8418 8419
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8420
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8421

8422
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8423
		enqueue_entity(cfs_rq, se, 0);
8424
}
8425

8426 8427 8428 8429 8430 8431
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8432
	raw_spin_lock_irqsave(&rq->lock, flags);
8433
	__set_se_shares(se, shares);
8434
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8435 8436
}

8437 8438
static DEFINE_MUTEX(shares_mutex);

8439
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8440 8441
{
	int i;
8442
	unsigned long flags;
8443

8444 8445 8446 8447 8448 8449
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8450 8451
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8452 8453
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8454

8455
	mutex_lock(&shares_mutex);
8456
	if (tg->shares == shares)
8457
		goto done;
S
Srivatsa Vaddagiri 已提交
8458

8459
	spin_lock_irqsave(&task_group_lock, flags);
8460 8461
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8462
	list_del_rcu(&tg->siblings);
8463
	spin_unlock_irqrestore(&task_group_lock, flags);
8464 8465 8466 8467 8468 8469 8470 8471

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8472
	tg->shares = shares;
8473 8474 8475 8476 8477
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8478
		set_se_shares(tg->se[i], shares);
8479
	}
S
Srivatsa Vaddagiri 已提交
8480

8481 8482 8483 8484
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8485
	spin_lock_irqsave(&task_group_lock, flags);
8486 8487
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8488
	list_add_rcu(&tg->siblings, &tg->parent->children);
8489
	spin_unlock_irqrestore(&task_group_lock, flags);
8490
done:
8491
	mutex_unlock(&shares_mutex);
8492
	return 0;
S
Srivatsa Vaddagiri 已提交
8493 8494
}

8495 8496 8497 8498
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8499
#endif
8500

8501
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8502
/*
P
Peter Zijlstra 已提交
8503
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8504
 */
P
Peter Zijlstra 已提交
8505 8506 8507 8508 8509
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8510
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8511

P
Peter Zijlstra 已提交
8512
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8513 8514
}

P
Peter Zijlstra 已提交
8515 8516
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8517
{
P
Peter Zijlstra 已提交
8518
	struct task_struct *g, *p;
8519

P
Peter Zijlstra 已提交
8520 8521 8522 8523
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8524

P
Peter Zijlstra 已提交
8525 8526
	return 0;
}
8527

P
Peter Zijlstra 已提交
8528 8529 8530 8531 8532
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8533

P
Peter Zijlstra 已提交
8534 8535 8536 8537 8538 8539
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8540

P
Peter Zijlstra 已提交
8541 8542
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8543

P
Peter Zijlstra 已提交
8544 8545 8546
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8547 8548
	}

8549 8550 8551 8552 8553
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8554

8555 8556 8557
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8558 8559
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8560

P
Peter Zijlstra 已提交
8561
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8562

8563 8564 8565 8566 8567
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8568

8569 8570 8571
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8572 8573 8574
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8575

P
Peter Zijlstra 已提交
8576 8577 8578 8579
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8580

P
Peter Zijlstra 已提交
8581
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8582
	}
P
Peter Zijlstra 已提交
8583

P
Peter Zijlstra 已提交
8584 8585 8586 8587
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8588 8589
}

P
Peter Zijlstra 已提交
8590
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8591
{
P
Peter Zijlstra 已提交
8592 8593 8594 8595 8596 8597 8598
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8599 8600
}

8601 8602
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8603
{
P
Peter Zijlstra 已提交
8604
	int i, err = 0;
P
Peter Zijlstra 已提交
8605 8606

	mutex_lock(&rt_constraints_mutex);
8607
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8608 8609
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8610
		goto unlock;
P
Peter Zijlstra 已提交
8611

8612
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8613 8614
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8615 8616 8617 8618

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8619
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8620
		rt_rq->rt_runtime = rt_runtime;
8621
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8622
	}
8623
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8624
unlock:
8625
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8626 8627 8628
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8629 8630
}

8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8643 8644 8645 8646
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8647
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8648 8649
		return -1;

8650
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8651 8652 8653
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8654 8655 8656 8657 8658 8659 8660 8661

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8662 8663 8664
	if (rt_period == 0)
		return -EINVAL;

8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8679
	u64 runtime, period;
8680 8681
	int ret = 0;

8682 8683 8684
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8685 8686 8687 8688 8689 8690 8691 8692
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8693

8694
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8695
	read_lock(&tasklist_lock);
8696
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8697
	read_unlock(&tasklist_lock);
8698 8699 8700 8701
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8712
#else /* !CONFIG_RT_GROUP_SCHED */
8713 8714
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8715 8716 8717
	unsigned long flags;
	int i;

8718 8719 8720
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8721 8722 8723 8724 8725 8726 8727
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8728
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8729 8730 8731
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8732
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8733
		rt_rq->rt_runtime = global_rt_runtime();
8734
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8735
	}
8736
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8737

8738 8739
	return 0;
}
8740
#endif /* CONFIG_RT_GROUP_SCHED */
8741 8742

int sched_rt_handler(struct ctl_table *table, int write,
8743
		void __user *buffer, size_t *lenp,
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8754
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8771

8772
#ifdef CONFIG_CGROUP_SCHED
8773 8774

/* return corresponding task_group object of a cgroup */
8775
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8776
{
8777 8778
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8779 8780 8781
}

static struct cgroup_subsys_state *
8782
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8783
{
8784
	struct task_group *tg, *parent;
8785

8786
	if (!cgrp->parent) {
8787 8788 8789 8790
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8791 8792
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8793 8794 8795 8796 8797 8798
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8799 8800
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8801
{
8802
	struct task_group *tg = cgroup_tg(cgrp);
8803 8804 8805 8806

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8807
static int
8808
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8809
{
8810
#ifdef CONFIG_RT_GROUP_SCHED
8811
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8812 8813
		return -EINVAL;
#else
8814 8815 8816
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8817
#endif
8818 8819
	return 0;
}
8820

8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8840 8841 8842 8843
	return 0;
}

static void
8844
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8845 8846
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8847 8848
{
	sched_move_task(tsk);
8849 8850 8851 8852 8853 8854 8855 8856
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8857 8858
}

8859
#ifdef CONFIG_FAIR_GROUP_SCHED
8860
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8861
				u64 shareval)
8862
{
8863
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8864 8865
}

8866
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8867
{
8868
	struct task_group *tg = cgroup_tg(cgrp);
8869 8870 8871

	return (u64) tg->shares;
}
8872
#endif /* CONFIG_FAIR_GROUP_SCHED */
8873

8874
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8875
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8876
				s64 val)
P
Peter Zijlstra 已提交
8877
{
8878
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8879 8880
}

8881
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8882
{
8883
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8884
}
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8896
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8897

8898
static struct cftype cpu_files[] = {
8899
#ifdef CONFIG_FAIR_GROUP_SCHED
8900 8901
	{
		.name = "shares",
8902 8903
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8904
	},
8905 8906
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8907
	{
P
Peter Zijlstra 已提交
8908
		.name = "rt_runtime_us",
8909 8910
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8911
	},
8912 8913
	{
		.name = "rt_period_us",
8914 8915
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8916
	},
8917
#endif
8918 8919 8920 8921
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8922
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8923 8924 8925
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8926 8927 8928 8929 8930 8931 8932
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8933 8934 8935
	.early_init	= 1,
};

8936
#endif	/* CONFIG_CGROUP_SCHED */
8937 8938 8939 8940 8941 8942 8943 8944 8945 8946

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8947
/* track cpu usage of a group of tasks and its child groups */
8948 8949 8950
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8951
	u64 __percpu *cpuusage;
8952
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8953
	struct cpuacct *parent;
8954 8955 8956 8957 8958
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8959
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8960
{
8961
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8974
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8975 8976
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8977
	int i;
8978 8979

	if (!ca)
8980
		goto out;
8981 8982

	ca->cpuusage = alloc_percpu(u64);
8983 8984 8985 8986 8987 8988
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8989

8990 8991 8992
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8993
	return &ca->css;
8994 8995 8996 8997 8998 8999 9000 9001 9002

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9003 9004 9005
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9006
static void
9007
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9008
{
9009
	struct cpuacct *ca = cgroup_ca(cgrp);
9010
	int i;
9011

9012 9013
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9014 9015 9016 9017
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9018 9019
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9020
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9021 9022 9023 9024 9025 9026
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9027
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9028
	data = *cpuusage;
9029
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9030 9031 9032 9033 9034 9035 9036 9037 9038
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9039
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9040 9041 9042 9043 9044

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9045
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9046
	*cpuusage = val;
9047
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9048 9049 9050 9051 9052
#else
	*cpuusage = val;
#endif
}

9053
/* return total cpu usage (in nanoseconds) of a group */
9054
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9055
{
9056
	struct cpuacct *ca = cgroup_ca(cgrp);
9057 9058 9059
	u64 totalcpuusage = 0;
	int i;

9060 9061
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9062 9063 9064 9065

	return totalcpuusage;
}

9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9078 9079
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9080 9081 9082 9083 9084

out:
	return err;
}

9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9119 9120 9121
static struct cftype files[] = {
	{
		.name = "usage",
9122 9123
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9124
	},
9125 9126 9127 9128
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9129 9130 9131 9132
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9133 9134
};

9135
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9136
{
9137
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9148
	int cpu;
9149

L
Li Zefan 已提交
9150
	if (unlikely(!cpuacct_subsys.active))
9151 9152
		return;

9153
	cpu = task_cpu(tsk);
9154 9155 9156

	rcu_read_lock();

9157 9158
	ca = task_ca(tsk);

9159
	for (; ca; ca = ca->parent) {
9160
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9161 9162
		*cpuusage += cputime;
	}
9163 9164

	rcu_read_unlock();
9165 9166
}

9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9184 9185 9186 9187 9188 9189 9190
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9191
	int batch = CPUACCT_BATCH;
9192 9193 9194 9195 9196 9197 9198 9199

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9200
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9201 9202 9203 9204 9205
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9206 9207 9208 9209 9210 9211 9212 9213
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9214 9215 9216 9217 9218

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
9219
	barrier();
9220 9221 9222 9223 9224
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9225
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9226

9227
static int synchronize_sched_expedited_cpu_stop(void *data)
9228
{
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9240
	smp_mb(); /* See above comment block. */
9241
	return 0;
9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9256
	int snap, trycount = 0;
9257 9258

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9259
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9260
	get_online_cpus();
9261 9262
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9263
			     NULL) == -EAGAIN) {
9264 9265 9266 9267 9268 9269 9270
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9271
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9272 9273 9274 9275 9276
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9277
	atomic_inc(&synchronize_sched_expedited_count);
9278
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9279 9280 9281 9282 9283
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */