sched.c 195.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
158 159
#ifdef CONFIG_FAIR_GROUP_SCHED

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168 169 170
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
171 172 173 174
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
175

P
Peter Zijlstra 已提交
176 177 178 179 180
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	unsigned int rt_ratio;

181 182 183 184 185 186 187 188 189 190 191 192
	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193
	 *	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
194 195 196 197 198 199 200 201 202
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
203 204 205
	 *	 entity have the same weight on all CPUs. If the group
	 *	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 *	 better distribution of weight could be:
206 207 208 209 210 211 212 213 214
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
215
	unsigned long shares;
216

217
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
218
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
219 220 221 222 223 224 225
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

P
Peter Zijlstra 已提交
226 227 228
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;

229 230
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
231

P
Peter Zijlstra 已提交
232 233 234
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];

235 236 237 238 239
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

240 241 242
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

243 244 245 246 247 248 249 250
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
251
/* Default task group.
I
Ingo Molnar 已提交
252
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
253
 */
254
struct task_group init_task_group = {
I
Ingo Molnar 已提交
255
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
256
	.cfs_rq = init_cfs_rq_p,
P
Peter Zijlstra 已提交
257 258 259

	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
I
Ingo Molnar 已提交
260
};
261

262
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
263
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
264
#else
265
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
266 267
#endif

I
Ingo Molnar 已提交
268
#define MIN_GROUP_SHARES	2
269

270
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
271 272

/* return group to which a task belongs */
273
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
274
{
275
	struct task_group *tg;
276

277 278
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
279 280 281
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
282
#else
I
Ingo Molnar 已提交
283
	tg = &init_task_group;
284
#endif
285
	return tg;
S
Srivatsa Vaddagiri 已提交
286 287 288
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
289
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
290
{
291 292
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
P
Peter Zijlstra 已提交
293 294 295

	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
S
Srivatsa Vaddagiri 已提交
296 297
}

298 299 300 301 302 303 304 305 306 307
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

308 309 310 311 312 313 314 315 316 317
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
318 319
#else

P
Peter Zijlstra 已提交
320
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
321 322
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
323 324
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
325 326 327

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
328 329 330 331 332 333
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
334
	u64 min_vruntime;
I
Ingo Molnar 已提交
335 336 337 338 339 340 341 342

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
343 344 345

	unsigned long nr_spread_over;

346
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
347 348
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
349 350
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
351 352 353 354 355 356
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
357 358
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
359 360
#endif
};
L
Linus Torvalds 已提交
361

I
Ingo Molnar 已提交
362 363 364
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
365
	unsigned long rt_nr_running;
P
Peter Zijlstra 已提交
366 367 368
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
369
#ifdef CONFIG_SMP
370
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
371
	int overloaded;
P
Peter Zijlstra 已提交
372
#endif
P
Peter Zijlstra 已提交
373
	int rt_throttled;
P
Peter Zijlstra 已提交
374
	u64 rt_time;
P
Peter Zijlstra 已提交
375 376 377 378 379 380 381

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
382 383
};

G
Gregory Haskins 已提交
384 385 386 387
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
388 389
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
390 391 392 393 394 395 396 397
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
398

I
Ingo Molnar 已提交
399
	/*
400 401 402 403
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
404
	atomic_t rto_count;
G
Gregory Haskins 已提交
405 406
};

407 408 409 410
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
411 412 413 414
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
415 416 417 418 419 420 421
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
422
struct rq {
423 424
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
425 426 427 428 429 430

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
431 432
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
433
	unsigned char idle_at_tick;
434 435 436
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
437 438
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
439 440 441 442
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
443 444
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
445
	int rt_throttled;
P
Peter Zijlstra 已提交
446

I
Ingo Molnar 已提交
447
#ifdef CONFIG_FAIR_GROUP_SCHED
448 449
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
P
Peter Zijlstra 已提交
450
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459 460
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

461
	struct task_struct *curr, *idle;
462
	unsigned long next_balance;
L
Linus Torvalds 已提交
463
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
464 465 466 467

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

468
	unsigned int clock_warps, clock_overflows, clock_underflows;
469 470
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
471
	u64 tick_timestamp;
I
Ingo Molnar 已提交
472

L
Linus Torvalds 已提交
473 474 475
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
476
	struct root_domain *rd;
L
Linus Torvalds 已提交
477 478 479 480 481
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
482 483
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
484

485
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
486 487 488
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
489 490 491 492 493 494
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
495 496 497 498 499
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
500 501 502 503
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
504 505

	/* schedule() stats */
506 507 508
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
509 510

	/* try_to_wake_up() stats */
511 512
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
513 514

	/* BKL stats */
515
	unsigned int bkl_count;
L
Linus Torvalds 已提交
516
#endif
517
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
518 519
};

520
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
521

I
Ingo Molnar 已提交
522 523 524 525 526
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

527 528 529 530 531 532 533 534 535
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
536
/*
I
Ingo Molnar 已提交
537 538
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
539
 */
I
Ingo Molnar 已提交
540
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
541 542 543 544 545 546
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
547 548 549
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
550 551 552 553 554 555 556 557 558 559
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
560 561 562 563 564
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
565 566 567 568 569 570 571 572 573 574
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
575
}
I
Ingo Molnar 已提交
576

I
Ingo Molnar 已提交
577 578 579 580
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
581 582
}

N
Nick Piggin 已提交
583 584
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
586 587 588 589
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
590 591
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
592 593 594 595 596 597

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
628
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
629 630
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
631 632
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
633 634
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
635 636 637
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
638
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
639
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
640 641
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
642 643 644
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
645 646 647

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

648 649 650 651 652 653
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662 663 664
/*
 * period over which we measure -rt task cpu usage in ms.
 * default: 1s
 */
const_debug unsigned int sysctl_sched_rt_period = 1000;

#define SCHED_RT_FRAC_SHIFT	16
#define SCHED_RT_FRAC		(1UL << SCHED_RT_FRAC_SHIFT)

/*
 * ratio of time -rt tasks may consume.
P
Peter Zijlstra 已提交
665
 * default: 95%
P
Peter Zijlstra 已提交
666
 */
P
Peter Zijlstra 已提交
667
const_debug unsigned int sysctl_sched_rt_ratio = 62259;
P
Peter Zijlstra 已提交
668

669 670 671 672 673 674 675 676
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
677
	struct rq *rq;
678

679
	local_irq_save(flags);
I
Ingo Molnar 已提交
680
	rq = cpu_rq(cpu);
681 682 683 684 685 686
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
687
	now = rq->clock;
688
	local_irq_restore(flags);
689 690 691

	return now;
}
P
Paul E. McKenney 已提交
692
EXPORT_SYMBOL_GPL(cpu_clock);
693

L
Linus Torvalds 已提交
694
#ifndef prepare_arch_switch
695 696 697 698 699 700
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

701 702 703 704 705
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

706
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
707
static inline int task_running(struct rq *rq, struct task_struct *p)
708
{
709
	return task_current(rq, p);
710 711
}

712
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
713 714 715
{
}

716
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
717
{
718 719 720 721
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
722 723 724 725 726 727 728
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

729 730 731 732
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
733
static inline int task_running(struct rq *rq, struct task_struct *p)
734 735 736 737
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
738
	return task_current(rq, p);
739 740 741
#endif
}

742
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

759
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
760 761 762 763 764 765 766 767 768 769 770 771
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
772
#endif
773 774
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
775

776 777 778 779
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
780
static inline struct rq *__task_rq_lock(struct task_struct *p)
781 782
	__acquires(rq->lock)
{
783 784 785 786 787
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
788 789 790 791
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
792 793
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
794
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
795 796
 * explicitly disabling preemption.
 */
797
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
798 799
	__acquires(rq->lock)
{
800
	struct rq *rq;
L
Linus Torvalds 已提交
801

802 803 804 805 806 807
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
808 809 810 811
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
812
static void __task_rq_unlock(struct rq *rq)
813 814 815 816 817
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

818
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
819 820 821 822 823 824
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
825
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
826
 */
A
Alexey Dobriyan 已提交
827
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
828 829
	__acquires(rq->lock)
{
830
	struct rq *rq;
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

839
/*
840
 * We are going deep-idle (irqs are disabled):
841
 */
842
void sched_clock_idle_sleep_event(void)
843
{
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
860

861 862 863 864 865 866 867 868 869 870 871
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
872
	touch_softlockup_watchdog();
873
}
874
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
875

P
Peter Zijlstra 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1056
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1057 1058 1059 1060 1061
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1062
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1063 1064
		return;

P
Peter Zijlstra 已提交
1065
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1088
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1089 1090
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1091
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1092 1093 1094
}
#endif

1095 1096 1097 1098 1099 1100 1101 1102
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1103 1104 1105
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1106
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1107

1108
static unsigned long
1109 1110 1111 1112 1113 1114
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1115
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1116 1117 1118 1119 1120

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1121
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1122
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1123 1124
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1125
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1126

1127
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1128 1129 1130 1131 1132 1133 1134 1135
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1136
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1137 1138 1139 1140
{
	lw->weight += inc;
}

1141
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1142 1143 1144 1145
{
	lw->weight -= dec;
}

1146 1147 1148 1149
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1150
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 1152 1153 1154
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1166 1167 1168
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1169 1170
 */
static const int prio_to_weight[40] = {
1171 1172 1173 1174 1175 1176 1177 1178
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1179 1180
};

1181 1182 1183 1184 1185 1186 1187
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1188
static const u32 prio_to_wmult[40] = {
1189 1190 1191 1192 1193 1194 1195 1196
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1197
};
1198

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1224

1225 1226 1227 1228 1229 1230
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1241 1242 1243 1244 1245 1246 1247
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1248 1249
#include "sched_stats.h"
#include "sched_idletask.c"
1250 1251
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1252 1253 1254 1255 1256 1257
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

G
Gerald Stralko 已提交
1258
static void inc_nr_running(struct rq *rq)
1259 1260 1261 1262
{
	rq->nr_running++;
}

G
Gerald Stralko 已提交
1263
static void dec_nr_running(struct rq *rq)
1264 1265 1266 1267
{
	rq->nr_running--;
}

1268 1269 1270
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1271 1272 1273 1274
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1275

I
Ingo Molnar 已提交
1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1284

I
Ingo Molnar 已提交
1285 1286
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1287 1288
}

1289
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1290
{
I
Ingo Molnar 已提交
1291
	sched_info_queued(p);
1292
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1293
	p->se.on_rq = 1;
1294 1295
}

1296
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1297
{
1298
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1299
	p->se.on_rq = 0;
1300 1301
}

1302
/*
I
Ingo Molnar 已提交
1303
 * __normal_prio - return the priority that is based on the static prio
1304 1305 1306
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1307
	return p->static_prio;
1308 1309
}

1310 1311 1312 1313 1314 1315 1316
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1317
static inline int normal_prio(struct task_struct *p)
1318 1319 1320
{
	int prio;

1321
	if (task_has_rt_policy(p))
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1335
static int effective_prio(struct task_struct *p)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1348
/*
I
Ingo Molnar 已提交
1349
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1350
 */
I
Ingo Molnar 已提交
1351
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1352
{
1353
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1354
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1355

1356
	enqueue_task(rq, p, wakeup);
G
Gerald Stralko 已提交
1357
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1363
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1364
{
1365
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1366 1367
		rq->nr_uninterruptible++;

1368
	dequeue_task(rq, p, sleep);
G
Gerald Stralko 已提交
1369
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1376
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1377 1378 1379 1380
{
	return cpu_curr(task_cpu(p)) == p;
}

1381 1382 1383
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1384
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1385 1386 1387 1388
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1389
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1390
#ifdef CONFIG_SMP
1391 1392 1393 1394 1395 1396
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1397 1398
	task_thread_info(p)->cpu = cpu;
#endif
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1413
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1414

1415 1416 1417
/*
 * Is this task likely cache-hot:
 */
1418
static int
1419 1420 1421 1422 1423 1424 1425
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1426 1427 1428 1429 1430
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1431 1432 1433 1434 1435 1436
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1437
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1438
{
I
Ingo Molnar 已提交
1439 1440
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1441 1442
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1443
	u64 clock_offset;
I
Ingo Molnar 已提交
1444 1445

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1446 1447 1448 1449

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1450 1451 1452 1453
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1454 1455 1456 1457 1458
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1459
#endif
1460 1461
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1462 1463

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1464 1465
}

1466
struct migration_req {
L
Linus Torvalds 已提交
1467 1468
	struct list_head list;

1469
	struct task_struct *task;
L
Linus Torvalds 已提交
1470 1471 1472
	int dest_cpu;

	struct completion done;
1473
};
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1479
static int
1480
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1481
{
1482
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1488
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1489 1490 1491 1492 1493 1494 1495 1496
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1497

L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1510
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1511 1512
{
	unsigned long flags;
I
Ingo Molnar 已提交
1513
	int running, on_rq;
1514
	struct rq *rq;
L
Linus Torvalds 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1573

1574 1575 1576 1577 1578 1579 1580
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1596
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1608 1609
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1610 1611 1612 1613
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1614
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1615
{
1616
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1617
	unsigned long total = weighted_cpuload(cpu);
1618

1619
	if (type == 0)
I
Ingo Molnar 已提交
1620
		return total;
1621

I
Ingo Molnar 已提交
1622
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1623 1624 1625
}

/*
1626 1627
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1628
 */
A
Alexey Dobriyan 已提交
1629
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1630
{
1631
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1632
	unsigned long total = weighted_cpuload(cpu);
1633

N
Nick Piggin 已提交
1634
	if (type == 0)
I
Ingo Molnar 已提交
1635
		return total;
1636

I
Ingo Molnar 已提交
1637
	return max(rq->cpu_load[type-1], total);
1638 1639 1640 1641 1642
}

/*
 * Return the average load per task on the cpu's run queue
 */
1643
static unsigned long cpu_avg_load_per_task(int cpu)
1644
{
1645
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1646
	unsigned long total = weighted_cpuload(cpu);
1647 1648
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1649
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1650 1651
}

N
Nick Piggin 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1669 1670
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1671
			continue;
1672

N
Nick Piggin 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1689 1690
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1691 1692 1693 1694 1695 1696 1697 1698

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1699
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1700 1701 1702 1703 1704 1705 1706

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1707
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1708
 */
I
Ingo Molnar 已提交
1709 1710
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1711
{
1712
	cpumask_t tmp;
N
Nick Piggin 已提交
1713 1714 1715 1716
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1717 1718 1719 1720
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1721
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1747

1748
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1749 1750 1751
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1752 1753
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1754 1755
		if (tmp->flags & flag)
			sd = tmp;
1756
	}
N
Nick Piggin 已提交
1757 1758 1759 1760

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1761 1762 1763 1764 1765 1766
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1767 1768 1769

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1770 1771 1772 1773
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1774

1775
		new_cpu = find_idlest_cpu(group, t, cpu);
1776 1777 1778 1779 1780
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1781

1782
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1814
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1815
{
1816
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1817 1818
	unsigned long flags;
	long old_state;
1819
	struct rq *rq;
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1826
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1827 1828 1829
		goto out_running;

	cpu = task_cpu(p);
1830
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1837 1838 1839
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1846
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1868 1869
out_activate:
#endif /* CONFIG_SMP */
1870 1871 1872 1873 1874 1875 1876 1877 1878
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1879
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1880
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1881
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1882 1883 1884 1885
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1886 1887 1888 1889
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1896
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1897
{
1898
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1899 1900 1901
}
EXPORT_SYMBOL(wake_up_process);

1902
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908 1909
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1910 1911 1912 1913 1914 1915 1916
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1917
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1918 1919 1920

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1921 1922 1923 1924 1925 1926
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1927
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1928
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1929
#endif
N
Nick Piggin 已提交
1930

P
Peter Zijlstra 已提交
1931
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1932
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1933

1934 1935 1936 1937
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1959
	set_task_cpu(p, cpu);
1960 1961 1962 1963 1964

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1965 1966
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1967

1968
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1969
	if (likely(sched_info_on()))
1970
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1971
#endif
1972
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1973 1974
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1975
#ifdef CONFIG_PREEMPT
1976
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1977
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1978
#endif
N
Nick Piggin 已提交
1979
	put_cpu();
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1989
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1990 1991
{
	unsigned long flags;
I
Ingo Molnar 已提交
1992
	struct rq *rq;
L
Linus Torvalds 已提交
1993 1994

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1995
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1996
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1997 1998 1999

	p->prio = effective_prio(p);

2000
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2001
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2002 2003
	} else {
		/*
I
Ingo Molnar 已提交
2004 2005
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2006
		 */
2007
		p->sched_class->task_new(rq, p);
G
Gerald Stralko 已提交
2008
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2009
	}
I
Ingo Molnar 已提交
2010
	check_preempt_curr(rq, p);
2011 2012 2013 2014
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2015
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2016 2017
}

2018 2019 2020
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2021 2022
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2023 2024 2025 2026 2027 2028 2029 2030 2031
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2032
 * @notifier: notifier struct to unregister
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2076 2077 2078
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2079
 * @prev: the current task that is being switched out
2080 2081 2082 2083 2084 2085 2086 2087 2088
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2089 2090 2091
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2092
{
2093
	fire_sched_out_preempt_notifiers(prev, next);
2094 2095 2096 2097
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2098 2099
/**
 * finish_task_switch - clean up after a task-switch
2100
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2101 2102
 * @prev: the thread we just switched away from.
 *
2103 2104 2105 2106
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2107 2108
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2109
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2110 2111 2112
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2113
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2114 2115 2116
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2117
	long prev_state;
L
Linus Torvalds 已提交
2118 2119 2120 2121 2122

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2123
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2124 2125
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2126
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2132
	prev_state = prev->state;
2133 2134
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2135 2136 2137 2138
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2139

2140
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2141 2142
	if (mm)
		mmdrop(mm);
2143
	if (unlikely(prev_state == TASK_DEAD)) {
2144 2145 2146
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2147
		 */
2148
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2149
		put_task_struct(prev);
2150
	}
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2157
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2158 2159
	__releases(rq->lock)
{
2160 2161
	struct rq *rq = this_rq();

2162 2163 2164 2165 2166
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2167
	if (current->set_child_tid)
2168
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2175
static inline void
2176
context_switch(struct rq *rq, struct task_struct *prev,
2177
	       struct task_struct *next)
L
Linus Torvalds 已提交
2178
{
I
Ingo Molnar 已提交
2179
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2180

2181
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2182 2183
	mm = next->mm;
	oldmm = prev->active_mm;
2184 2185 2186 2187 2188 2189 2190
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2191
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2198
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2199 2200 2201
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2202 2203 2204 2205 2206 2207 2208
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2209
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2210
#endif
L
Linus Torvalds 已提交
2211 2212 2213 2214

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2215 2216 2217 2218 2219 2220 2221
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2245
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2260 2261
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2262

2263
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2273
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2294
/*
I
Ingo Molnar 已提交
2295 2296
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2297
 */
I
Ingo Molnar 已提交
2298
static void update_cpu_load(struct rq *this_rq)
2299
{
2300
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2313 2314 2315 2316 2317 2318 2319
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2320 2321
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2322 2323
}

I
Ingo Molnar 已提交
2324 2325
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2332
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2333 2334 2335
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2336
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2337 2338 2339 2340
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2341
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2342 2343 2344 2345 2346 2347 2348
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2349 2350
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2351 2352 2353 2354 2355 2356 2357 2358
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2359
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2373
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2374 2375 2376 2377
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2378 2379
	int ret = 0;

2380 2381 2382 2383 2384
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2385
	if (unlikely(!spin_trylock(&busiest->lock))) {
2386
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2387 2388 2389
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2390
			ret = 1;
L
Linus Torvalds 已提交
2391 2392 2393
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2394
	return ret;
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2400
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2401 2402
 * the cpu_allowed mask is restored.
 */
2403
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2404
{
2405
	struct migration_req req;
L
Linus Torvalds 已提交
2406
	unsigned long flags;
2407
	struct rq *rq;
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2418

L
Linus Torvalds 已提交
2419 2420 2421 2422 2423
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2424

L
Linus Torvalds 已提交
2425 2426 2427 2428 2429 2430 2431
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2432 2433
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2434 2435 2436 2437
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2438
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2439
	put_cpu();
N
Nick Piggin 已提交
2440 2441
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2442 2443 2444 2445 2446 2447
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2448 2449
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2450
{
2451
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2452
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2453
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2454 2455 2456 2457
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2458
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2459 2460 2461 2462 2463
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2464
static
2465
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2466
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2467
		     int *all_pinned)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2475 2476
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2477
		return 0;
2478
	}
2479 2480
	*all_pinned = 0;

2481 2482
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2483
		return 0;
2484
	}
L
Linus Torvalds 已提交
2485

2486 2487 2488 2489 2490 2491
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2492 2493
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2494
#ifdef CONFIG_SCHEDSTATS
2495
		if (task_hot(p, rq->clock, sd)) {
2496
			schedstat_inc(sd, lb_hot_gained[idle]);
2497 2498
			schedstat_inc(p, se.nr_forced_migrations);
		}
2499 2500 2501 2502
#endif
		return 1;
	}

2503 2504
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2505
		return 0;
2506
	}
L
Linus Torvalds 已提交
2507 2508 2509
	return 1;
}

2510 2511 2512 2513 2514
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2515
{
2516
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2517 2518
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2519

2520
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2521 2522
		goto out;

2523 2524
	pinned = 1;

L
Linus Torvalds 已提交
2525
	/*
I
Ingo Molnar 已提交
2526
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2527
	 */
I
Ingo Molnar 已提交
2528 2529
	p = iterator->start(iterator->arg);
next:
2530
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2531
		goto out;
2532
	/*
2533
	 * To help distribute high priority tasks across CPUs we don't
2534 2535 2536
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2537 2538
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2539
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2540 2541 2542
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2543 2544
	}

I
Ingo Molnar 已提交
2545
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2546
	pulled++;
I
Ingo Molnar 已提交
2547
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2548

2549
	/*
2550
	 * We only want to steal up to the prescribed amount of weighted load.
2551
	 */
2552
	if (rem_load_move > 0) {
2553 2554
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2555 2556
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2557 2558 2559
	}
out:
	/*
2560
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2561 2562 2563 2564
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2565 2566 2567

	if (all_pinned)
		*all_pinned = pinned;
2568 2569

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2570 2571
}

I
Ingo Molnar 已提交
2572
/*
P
Peter Williams 已提交
2573 2574 2575
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2576 2577 2578 2579
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2580
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2581 2582 2583
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2584
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2585
	unsigned long total_load_moved = 0;
2586
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2587 2588

	do {
P
Peter Williams 已提交
2589 2590
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2591
				max_load_move - total_load_moved,
2592
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2593
		class = class->next;
P
Peter Williams 已提交
2594
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2595

P
Peter Williams 已提交
2596 2597 2598
	return total_load_moved > 0;
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2635
	const struct sched_class *class;
P
Peter Williams 已提交
2636 2637

	for (class = sched_class_highest; class; class = class->next)
2638
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2639 2640 2641
			return 1;

	return 0;
I
Ingo Molnar 已提交
2642 2643
}

L
Linus Torvalds 已提交
2644 2645
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2646 2647
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2648 2649 2650
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2651 2652
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2653 2654 2655
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2656
	unsigned long max_pull;
2657 2658
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2659
	int load_idx, group_imb = 0;
2660 2661 2662 2663 2664 2665
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2666 2667

	max_load = this_load = total_load = total_pwr = 0;
2668 2669
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2670
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2671
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2672
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2673 2674 2675
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2676 2677

	do {
2678
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2679 2680
		int local_group;
		int i;
2681
		int __group_imb = 0;
2682
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2683
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2684 2685 2686

		local_group = cpu_isset(this_cpu, group->cpumask);

2687 2688 2689
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2690
		/* Tally up the load of all CPUs in the group */
2691
		sum_weighted_load = sum_nr_running = avg_load = 0;
2692 2693
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2694 2695

		for_each_cpu_mask(i, group->cpumask) {
2696 2697 2698 2699 2700 2701
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2702

2703
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2704 2705
				*sd_idle = 0;

L
Linus Torvalds 已提交
2706
			/* Bias balancing toward cpus of our domain */
2707 2708 2709 2710 2711 2712
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2713
				load = target_load(i, load_idx);
2714
			} else {
N
Nick Piggin 已提交
2715
				load = source_load(i, load_idx);
2716 2717 2718 2719 2720
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2721 2722

			avg_load += load;
2723
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2724
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2725 2726
		}

2727 2728 2729
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2730 2731
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2732
		 */
2733 2734
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2735 2736 2737 2738
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2739
		total_load += avg_load;
2740
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2741 2742

		/* Adjust by relative CPU power of the group */
2743 2744
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2745

2746 2747 2748
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2749
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2750

L
Linus Torvalds 已提交
2751 2752 2753
		if (local_group) {
			this_load = avg_load;
			this = group;
2754 2755 2756
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2757
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2758 2759
			max_load = avg_load;
			busiest = group;
2760 2761
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2762
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2763
		}
2764 2765 2766 2767 2768 2769

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2770 2771 2772
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2773 2774 2775 2776 2777 2778 2779 2780 2781

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2782
		/*
2783 2784
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2785 2786
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2787
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2788
			goto group_next;
2789

I
Ingo Molnar 已提交
2790
		/*
2791
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2792 2793 2794 2795 2796
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2797 2798
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2799 2800
			group_min = group;
			min_nr_running = sum_nr_running;
2801 2802
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2803
		}
2804

I
Ingo Molnar 已提交
2805
		/*
2806
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2818
		}
2819 2820
group_next:
#endif
L
Linus Torvalds 已提交
2821 2822 2823
		group = group->next;
	} while (group != sd->groups);

2824
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2825 2826 2827 2828 2829 2830 2831 2832
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2833
	busiest_load_per_task /= busiest_nr_running;
2834 2835 2836
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842 2843 2844
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2845
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2846 2847
	 * appear as very large values with unsigned longs.
	 */
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2860 2861

	/* Don't want to pull so many tasks that a group would go idle */
2862
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2863

L
Linus Torvalds 已提交
2864
	/* How much load to actually move to equalise the imbalance */
2865 2866
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2867 2868
			/ SCHED_LOAD_SCALE;

2869 2870 2871 2872 2873 2874
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2875
	if (*imbalance < busiest_load_per_task) {
2876
		unsigned long tmp, pwr_now, pwr_move;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2888

I
Ingo Molnar 已提交
2889 2890
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2891
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2901 2902 2903 2904
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2905 2906 2907
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2908 2909
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2910
		if (max_load > tmp)
2911
			pwr_move += busiest->__cpu_power *
2912
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2913 2914

		/* Amount of load we'd add */
2915
		if (max_load * busiest->__cpu_power <
2916
				busiest_load_per_task * SCHED_LOAD_SCALE)
2917 2918
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2919
		else
2920 2921 2922 2923
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2924 2925 2926
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2927 2928
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933
	}

	return busiest;

out_balanced:
2934
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2935
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2936
		goto ret;
L
Linus Torvalds 已提交
2937

2938 2939 2940 2941 2942
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2943
ret:
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2951
static struct rq *
I
Ingo Molnar 已提交
2952
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2953
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2954
{
2955
	struct rq *busiest = NULL, *rq;
2956
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2957 2958 2959
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2960
		unsigned long wl;
2961 2962 2963 2964

		if (!cpu_isset(i, *cpus))
			continue;

2965
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2966
		wl = weighted_cpuload(i);
2967

I
Ingo Molnar 已提交
2968
		if (rq->nr_running == 1 && wl > imbalance)
2969
			continue;
L
Linus Torvalds 已提交
2970

I
Ingo Molnar 已提交
2971 2972
		if (wl > max_load) {
			max_load = wl;
2973
			busiest = rq;
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979
		}
	}

	return busiest;
}

2980 2981 2982 2983 2984 2985
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2986 2987 2988 2989
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2990
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2991
			struct sched_domain *sd, enum cpu_idle_type idle,
2992
			int *balance)
L
Linus Torvalds 已提交
2993
{
P
Peter Williams 已提交
2994
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2995 2996
	struct sched_group *group;
	unsigned long imbalance;
2997
	struct rq *busiest;
2998
	cpumask_t cpus = CPU_MASK_ALL;
2999
	unsigned long flags;
N
Nick Piggin 已提交
3000

3001 3002 3003
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3004
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3005
	 * portraying it as CPU_NOT_IDLE.
3006
	 */
I
Ingo Molnar 已提交
3007
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3008
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3009
		sd_idle = 1;
L
Linus Torvalds 已提交
3010

3011
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3012

3013 3014
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3015 3016
				   &cpus, balance);

3017
	if (*balance == 0)
3018 3019
		goto out_balanced;

L
Linus Torvalds 已提交
3020 3021 3022 3023 3024
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3025
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3031
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3032 3033 3034

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3035
	ld_moved = 0;
L
Linus Torvalds 已提交
3036 3037 3038 3039
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3040
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3041 3042
		 * correctly treated as an imbalance.
		 */
3043
		local_irq_save(flags);
N
Nick Piggin 已提交
3044
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3045
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3046
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3047
		double_rq_unlock(this_rq, busiest);
3048
		local_irq_restore(flags);
3049

3050 3051 3052
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3053
		if (ld_moved && this_cpu != smp_processor_id())
3054 3055
			resched_cpu(this_cpu);

3056
		/* All tasks on this runqueue were pinned by CPU affinity */
3057 3058 3059 3060
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3061
			goto out_balanced;
3062
		}
L
Linus Torvalds 已提交
3063
	}
3064

P
Peter Williams 已提交
3065
	if (!ld_moved) {
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3071
			spin_lock_irqsave(&busiest->lock, flags);
3072 3073 3074 3075 3076

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3077
				spin_unlock_irqrestore(&busiest->lock, flags);
3078 3079 3080 3081
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3082 3083 3084
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3085
				active_balance = 1;
L
Linus Torvalds 已提交
3086
			}
3087
			spin_unlock_irqrestore(&busiest->lock, flags);
3088
			if (active_balance)
L
Linus Torvalds 已提交
3089 3090 3091 3092 3093 3094
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3095
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3096
		}
3097
	} else
L
Linus Torvalds 已提交
3098 3099
		sd->nr_balance_failed = 0;

3100
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3101 3102
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3103 3104 3105 3106 3107 3108 3109 3110 3111
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3112 3113
	}

P
Peter Williams 已提交
3114
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3115
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3116
		return -1;
P
Peter Williams 已提交
3117
	return ld_moved;
L
Linus Torvalds 已提交
3118 3119 3120 3121

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3122
	sd->nr_balance_failed = 0;
3123 3124

out_one_pinned:
L
Linus Torvalds 已提交
3125
	/* tune up the balancing interval */
3126 3127
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3128 3129
		sd->balance_interval *= 2;

3130
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3131
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3132
		return -1;
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3140
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3141 3142
 * this_rq is locked.
 */
3143
static int
3144
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3145 3146
{
	struct sched_group *group;
3147
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3148
	unsigned long imbalance;
P
Peter Williams 已提交
3149
	int ld_moved = 0;
N
Nick Piggin 已提交
3150
	int sd_idle = 0;
3151
	int all_pinned = 0;
3152
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3153

3154 3155 3156 3157
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3158
	 * portraying it as CPU_NOT_IDLE.
3159 3160 3161
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3162
		sd_idle = 1;
L
Linus Torvalds 已提交
3163

3164
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3165
redo:
I
Ingo Molnar 已提交
3166
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3167
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3168
	if (!group) {
I
Ingo Molnar 已提交
3169
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3170
		goto out_balanced;
L
Linus Torvalds 已提交
3171 3172
	}

I
Ingo Molnar 已提交
3173
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3174
				&cpus);
N
Nick Piggin 已提交
3175
	if (!busiest) {
I
Ingo Molnar 已提交
3176
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3177
		goto out_balanced;
L
Linus Torvalds 已提交
3178 3179
	}

N
Nick Piggin 已提交
3180 3181
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3182
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3183

P
Peter Williams 已提交
3184
	ld_moved = 0;
3185 3186 3187
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3188 3189
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3190
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3191 3192
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3193
		spin_unlock(&busiest->lock);
3194

3195
		if (unlikely(all_pinned)) {
3196 3197 3198 3199
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3200 3201
	}

P
Peter Williams 已提交
3202
	if (!ld_moved) {
I
Ingo Molnar 已提交
3203
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3204 3205
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3206 3207
			return -1;
	} else
3208
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3209

P
Peter Williams 已提交
3210
	return ld_moved;
3211 3212

out_balanced:
I
Ingo Molnar 已提交
3213
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3214
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3215
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3216
		return -1;
3217
	sd->nr_balance_failed = 0;
3218

3219
	return 0;
L
Linus Torvalds 已提交
3220 3221 3222 3223 3224 3225
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3226
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3227 3228
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3229 3230
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3231 3232

	for_each_domain(this_cpu, sd) {
3233 3234 3235 3236 3237 3238
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3239
			/* If we've pulled tasks over stop searching: */
3240
			pulled_task = load_balance_newidle(this_cpu,
3241 3242 3243 3244 3245 3246 3247
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3248
	}
I
Ingo Molnar 已提交
3249
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3250 3251 3252 3253 3254
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3255
	}
L
Linus Torvalds 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3266
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3267
{
3268
	int target_cpu = busiest_rq->push_cpu;
3269 3270
	struct sched_domain *sd;
	struct rq *target_rq;
3271

3272
	/* Is there any task to move? */
3273 3274 3275 3276
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3277 3278

	/*
3279
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3280
	 * we need to fix it. Originally reported by
3281
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3282
	 */
3283
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3284

3285 3286
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3287 3288
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3289 3290

	/* Search for an sd spanning us and the target CPU. */
3291
	for_each_domain(target_cpu, sd) {
3292
		if ((sd->flags & SD_LOAD_BALANCE) &&
3293
		    cpu_isset(busiest_cpu, sd->span))
3294
				break;
3295
	}
3296

3297
	if (likely(sd)) {
3298
		schedstat_inc(sd, alb_count);
3299

P
Peter Williams 已提交
3300 3301
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3302 3303 3304 3305
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3306
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3307 3308
}

3309 3310 3311
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3312
	cpumask_t cpu_mask;
3313 3314 3315 3316 3317
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3318
/*
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3329
 *
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3386 3387 3388 3389 3390
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3391
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3392
{
3393 3394
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3395 3396
	unsigned long interval;
	struct sched_domain *sd;
3397
	/* Earliest time when we have to do rebalance again */
3398
	unsigned long next_balance = jiffies + 60*HZ;
3399
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3400

3401
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3402 3403 3404 3405
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3406
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3413 3414 3415
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3416

3417 3418 3419 3420 3421
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3422
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3423
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3424 3425
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3426 3427 3428
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3429
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3430
			}
3431
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3432
		}
3433 3434 3435
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3436
		if (time_after(next_balance, sd->last_balance + interval)) {
3437
			next_balance = sd->last_balance + interval;
3438 3439
			update_next_balance = 1;
		}
3440 3441 3442 3443 3444 3445 3446 3447

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3448
	}
3449 3450 3451 3452 3453 3454 3455 3456

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3457 3458 3459 3460 3461 3462 3463 3464 3465
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3466 3467 3468 3469
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3470

I
Ingo Molnar 已提交
3471
	rebalance_domains(this_cpu, idle);
3472 3473 3474 3475 3476 3477 3478

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3479 3480
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3481 3482 3483 3484
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3485
		cpu_clear(this_cpu, cpus);
3486 3487 3488 3489 3490 3491 3492 3493 3494
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3495
			rebalance_domains(balance_cpu, CPU_IDLE);
3496 3497

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3498 3499
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3512
static inline void trigger_load_balance(struct rq *rq, int cpu)
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3564
}
I
Ingo Molnar 已提交
3565 3566 3567

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3568 3569 3570
/*
 * on UP we do not need to balance between CPUs:
 */
3571
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3572 3573
{
}
I
Ingo Molnar 已提交
3574

L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3582 3583
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3584
 */
3585
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3586 3587
{
	unsigned long flags;
3588 3589
	u64 ns, delta_exec;
	struct rq *rq;
3590

3591 3592
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3593
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3594 3595
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3596 3597 3598 3599
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3600

L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3624 3625 3626 3627 3628
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3629
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3663
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3664 3665
	cputime64_t tmp;

3666 3667
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3668

L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675 3676
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3677
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3678
		cpustat->system = cputime64_add(cpustat->system, tmp);
3679
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684 3685 3686
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3707
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713 3714

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3715
	} else
L
Linus Torvalds 已提交
3716 3717 3718
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3730
	struct task_struct *curr = rq->curr;
3731
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3732 3733

	spin_lock(&rq->lock);
3734
	__update_rq_clock(rq);
3735 3736 3737
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3738
	if (unlikely(rq->clock < next_tick)) {
3739
		rq->clock = next_tick;
3740 3741
		rq->clock_underflows++;
	}
3742
	rq->tick_timestamp = rq->clock;
3743
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3744 3745
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3746
	spin_unlock(&rq->lock);
3747

3748
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3749 3750
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3751
#endif
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3761 3762
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3763 3764 3765 3766
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3767 3768
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3777 3778
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3779 3780 3781
	/*
	 * Is the spinlock portion underflowing?
	 */
3782 3783 3784 3785
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3793
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3794
 */
I
Ingo Molnar 已提交
3795
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3796
{
3797 3798 3799 3800 3801
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3802 3803 3804
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3805 3806 3807 3808 3809

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3810
}
L
Linus Torvalds 已提交
3811

I
Ingo Molnar 已提交
3812 3813 3814 3815 3816
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3817
	/*
I
Ingo Molnar 已提交
3818
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3819 3820 3821
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3822 3823 3824
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3825 3826
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3827
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3828 3829
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3830 3831
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3832 3833
	}
#endif
I
Ingo Molnar 已提交
3834 3835 3836 3837 3838 3839
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3840
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3841
{
3842
	const struct sched_class *class;
I
Ingo Molnar 已提交
3843
	struct task_struct *p;
L
Linus Torvalds 已提交
3844 3845

	/*
I
Ingo Molnar 已提交
3846 3847
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3848
	 */
I
Ingo Molnar 已提交
3849
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3850
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3851 3852
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3853 3854
	}

I
Ingo Molnar 已提交
3855 3856
	class = sched_class_highest;
	for ( ; ; ) {
3857
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3867

I
Ingo Molnar 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3890

P
Peter Zijlstra 已提交
3891 3892
	hrtick_clear(rq);

3893 3894 3895 3896
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3897
	__update_rq_clock(rq);
3898 3899
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3900 3901 3902

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3903
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3904
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3905
		} else {
3906
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3907
		}
I
Ingo Molnar 已提交
3908
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3909 3910
	}

3911 3912 3913 3914
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3915

I
Ingo Molnar 已提交
3916
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3917 3918
		idle_balance(cpu, rq);

3919
	prev->sched_class->put_prev_task(rq, prev);
3920
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3921 3922

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3923

L
Linus Torvalds 已提交
3924 3925 3926 3927 3928
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3929
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3930 3931 3932 3933 3934 3935
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3936 3937 3938
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3939 3940 3941
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3942
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3943

L
Linus Torvalds 已提交
3944 3945 3946 3947 3948 3949 3950 3951
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3952
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3953
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3954 3955 3956 3957 3958 3959 3960
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3961

L
Linus Torvalds 已提交
3962 3963
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3964
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3965
	 */
N
Nick Piggin 已提交
3966
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3967 3968
		return;

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3982

3983 3984 3985 3986 3987 3988
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3989 3990 3991 3992
}
EXPORT_SYMBOL(preempt_schedule);

/*
3993
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4003

4004
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4005 4006
	BUG_ON(ti->preempt_count || !irqs_disabled());

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4022

4023 4024 4025 4026 4027 4028
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4029 4030 4031 4032
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4033 4034
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4035
{
4036
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4037 4038 4039 4040
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4041 4042
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4043 4044 4045
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4046
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4052
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4053

4054
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4055 4056
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4057
		if (curr->func(curr, mode, sync, key) &&
4058
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4068
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4069 4070
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4071
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4090
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
4102 4103
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4120
void complete(struct completion *x)
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4126
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4127 4128 4129 4130
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4131
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4132 4133 4134 4135 4136
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4137
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4138 4139 4140 4141
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4142 4143
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149 4150
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4151 4152 4153 4154
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4155 4156 4157 4158
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4159 4160 4161 4162 4163
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4164
				return timeout;
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4173 4174
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4175 4176 4177 4178
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4179
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4180
	spin_unlock_irq(&x->wait.lock);
4181 4182
	return timeout;
}
L
Linus Torvalds 已提交
4183

4184
void __sched wait_for_completion(struct completion *x)
4185 4186
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4187
}
4188
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4189

4190
unsigned long __sched
4191
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4192
{
4193
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4194
}
4195
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4196

4197
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4198
{
4199 4200 4201 4202
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4203
}
4204
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4205

4206
unsigned long __sched
4207 4208
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4209
{
4210
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4211
}
4212
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4213

M
Matthew Wilcox 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4223 4224
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4225
{
I
Ingo Molnar 已提交
4226 4227 4228 4229
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4230

4231
	__set_current_state(state);
L
Linus Torvalds 已提交
4232

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4247 4248 4249
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4250
long __sched
I
Ingo Molnar 已提交
4251
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4252
{
4253
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4254 4255 4256
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4257
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4258
{
4259
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4260 4261 4262
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4263
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4264
{
4265
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4266 4267 4268
}
EXPORT_SYMBOL(sleep_on_timeout);

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4281
void rt_mutex_setprio(struct task_struct *p, int prio)
4282 4283
{
	unsigned long flags;
4284
	int oldprio, on_rq, running;
4285
	struct rq *rq;
4286
	const struct sched_class *prev_class = p->sched_class;
4287 4288 4289 4290

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4291
	update_rq_clock(rq);
4292

4293
	oldprio = p->prio;
I
Ingo Molnar 已提交
4294
	on_rq = p->se.on_rq;
4295
	running = task_current(rq, p);
4296
	if (on_rq) {
4297
		dequeue_task(rq, p, 0);
4298 4299 4300
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4301 4302 4303 4304 4305 4306

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4307 4308
	p->prio = prio;

I
Ingo Molnar 已提交
4309
	if (on_rq) {
4310 4311
		if (running)
			p->sched_class->set_curr_task(rq);
4312

4313
		enqueue_task(rq, p, 0);
4314 4315

		check_class_changed(rq, p, prev_class, oldprio, running);
4316 4317 4318 4319 4320 4321
	}
	task_rq_unlock(rq, &flags);
}

#endif

4322
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4323
{
I
Ingo Molnar 已提交
4324
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4325
	unsigned long flags;
4326
	struct rq *rq;
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4335
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4336 4337 4338 4339
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4340
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4341
	 */
4342
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4343 4344 4345
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4346
	on_rq = p->se.on_rq;
4347
	if (on_rq)
4348
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4349 4350

	p->static_prio = NICE_TO_PRIO(nice);
4351
	set_load_weight(p);
4352 4353 4354
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4355

I
Ingo Molnar 已提交
4356
	if (on_rq) {
4357
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4358
		/*
4359 4360
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4361
		 */
4362
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4370 4371 4372 4373 4374
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4375
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4376
{
4377 4378
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4379

M
Matt Mackall 已提交
4380 4381 4382 4383
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4395
	long nice, retval;
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4402 4403
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4413 4414 4415
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4434
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4443
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4462
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4471
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4472
{
4473
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4474 4475 4476
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4477 4478
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4479
{
I
Ingo Molnar 已提交
4480
	BUG_ON(p->se.on_rq);
4481

L
Linus Torvalds 已提交
4482
	p->policy = policy;
I
Ingo Molnar 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4495
	p->rt_priority = prio;
4496 4497 4498
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4499
	set_load_weight(p);
L
Linus Torvalds 已提交
4500 4501 4502
}

/**
4503
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4504 4505 4506
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4507
 *
4508
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4509
 */
I
Ingo Molnar 已提交
4510 4511
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4512
{
4513
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4514
	unsigned long flags;
4515
	const struct sched_class *prev_class = p->sched_class;
4516
	struct rq *rq;
L
Linus Torvalds 已提交
4517

4518 4519
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4525 4526
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4527
		return -EINVAL;
L
Linus Torvalds 已提交
4528 4529
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4530 4531
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4532 4533
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4534
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4535
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4536
		return -EINVAL;
4537
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4538 4539
		return -EINVAL;

4540 4541 4542 4543
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4544
		if (rt_policy(policy)) {
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4561 4562 4563 4564 4565 4566
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4567

4568 4569 4570 4571 4572
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4573 4574 4575 4576

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4577 4578 4579 4580 4581
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4582 4583 4584 4585
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4586
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4587 4588 4589
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4590 4591
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4592 4593
		goto recheck;
	}
I
Ingo Molnar 已提交
4594
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4595
	on_rq = p->se.on_rq;
4596
	running = task_current(rq, p);
4597
	if (on_rq) {
4598
		deactivate_task(rq, p, 0);
4599 4600 4601
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4602

L
Linus Torvalds 已提交
4603
	oldprio = p->prio;
I
Ingo Molnar 已提交
4604
	__setscheduler(rq, p, policy, param->sched_priority);
4605

I
Ingo Molnar 已提交
4606
	if (on_rq) {
4607 4608
		if (running)
			p->sched_class->set_curr_task(rq);
4609

I
Ingo Molnar 已提交
4610
		activate_task(rq, p, 0);
4611 4612

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4613
	}
4614 4615 4616
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4617 4618
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4619 4620 4621 4622
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4623 4624
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4625 4626 4627
{
	struct sched_param lparam;
	struct task_struct *p;
4628
	int retval;
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4634 4635 4636

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4637
	p = find_process_by_pid(pid);
4638 4639 4640
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4641

L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4651 4652
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4653
{
4654 4655 4656 4657
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4677
	struct task_struct *p;
4678
	int retval;
L
Linus Torvalds 已提交
4679 4680

	if (pid < 0)
4681
		return -EINVAL;
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4703
	struct task_struct *p;
4704
	int retval;
L
Linus Torvalds 已提交
4705 4706

	if (!param || pid < 0)
4707
		return -EINVAL;
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4737 4738
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4739

4740
	get_online_cpus();
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4746
		put_online_cpus();
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4752
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4763 4764 4765 4766
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4767 4768
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4769
 again:
L
Linus Torvalds 已提交
4770 4771
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4784 4785
out_unlock:
	put_task_struct(p);
4786
	put_online_cpus();
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4827
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4828 4829 4830
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4831
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4832 4833
EXPORT_SYMBOL(cpu_online_map);

4834
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4835
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4836 4837 4838 4839
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4840
	struct task_struct *p;
L
Linus Torvalds 已提交
4841 4842
	int retval;

4843
	get_online_cpus();
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849 4850
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4851 4852 4853 4854
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4855
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4856 4857 4858

out_unlock:
	read_unlock(&tasklist_lock);
4859
	put_online_cpus();
L
Linus Torvalds 已提交
4860

4861
	return retval;
L
Linus Torvalds 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4892 4893
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4894 4895 4896
 */
asmlinkage long sys_sched_yield(void)
{
4897
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4898

4899
	schedstat_inc(rq, yld_count);
4900
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4907
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4916
static void __cond_resched(void)
L
Linus Torvalds 已提交
4917
{
4918 4919 4920
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4921 4922 4923 4924 4925
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4926 4927 4928 4929 4930 4931 4932
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4933 4934
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4935
{
4936 4937
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942
		__cond_resched();
		return 1;
	}
	return 0;
}
4943 4944
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4950
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4951 4952 4953
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4954
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4955
{
N
Nick Piggin 已提交
4956
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4957 4958
	int ret = 0;

N
Nick Piggin 已提交
4959
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4960
		spin_unlock(lock);
N
Nick Piggin 已提交
4961 4962 4963 4964
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4965
		ret = 1;
L
Linus Torvalds 已提交
4966 4967
		spin_lock(lock);
	}
J
Jan Kara 已提交
4968
	return ret;
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4976
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4977
		local_bh_enable();
L
Linus Torvalds 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4989
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5000
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5008
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5009

5010
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5011 5012 5013
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5014
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5020
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5021 5022
	long ret;

5023
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5024 5025 5026
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5027
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5048
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5049
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5073
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5074
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5091
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5092
	unsigned int time_slice;
5093
	int retval;
L
Linus Torvalds 已提交
5094 5095 5096
	struct timespec t;

	if (pid < 0)
5097
		return -EINVAL;
L
Linus Torvalds 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5109 5110 5111 5112 5113 5114
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5115
		time_slice = DEF_TIMESLICE;
5116
	} else {
D
Dmitry Adamushko 已提交
5117 5118 5119 5120 5121
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5122 5123
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5124 5125
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5126
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5127
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5128 5129
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5130

L
Linus Torvalds 已提交
5131 5132 5133 5134 5135
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5136
static const char stat_nam[] = "RSDTtZX";
5137

5138
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5139 5140
{
	unsigned long free = 0;
5141
	unsigned state;
L
Linus Torvalds 已提交
5142 5143

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5144
	printk(KERN_INFO "%-13.13s %c", p->comm,
5145
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5146
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5147
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5148
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5149
	else
I
Ingo Molnar 已提交
5150
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5151 5152
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5153
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5154
	else
I
Ingo Molnar 已提交
5155
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5156 5157 5158
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5159
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5160 5161
		while (!*n)
			n++;
5162
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5163 5164
	}
#endif
5165
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5166
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5167

5168
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5169 5170
}

I
Ingo Molnar 已提交
5171
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5172
{
5173
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5174

5175 5176 5177
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5178
#else
5179 5180
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187 5188
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5189
		if (!state_filter || (p->state & state_filter))
5190
			sched_show_task(p);
L
Linus Torvalds 已提交
5191 5192
	} while_each_thread(g, p);

5193 5194
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5195 5196 5197
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5198
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5199 5200 5201 5202 5203
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5204 5205
}

I
Ingo Molnar 已提交
5206 5207
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5208
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5209 5210
}

5211 5212 5213 5214 5215 5216 5217 5218
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5219
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5220
{
5221
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5222 5223
	unsigned long flags;

I
Ingo Molnar 已提交
5224 5225 5226
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5227
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5228
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5229
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5230 5231 5232

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5233 5234 5235
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5236 5237 5238
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5239
	task_thread_info(idle)->preempt_count = 0;
5240

I
Ingo Molnar 已提交
5241 5242 5243 5244
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5282 5283 5284 5285
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5286
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5305
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5306 5307
 * call is not atomic; no spinlocks may be held.
 */
5308
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5309
{
5310
	struct migration_req req;
L
Linus Torvalds 已提交
5311
	unsigned long flags;
5312
	struct rq *rq;
5313
	int ret = 0;
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5321 5322 5323
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5324
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5325
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5326 5327
	}

L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5342

L
Linus Torvalds 已提交
5343 5344 5345 5346 5347
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5348
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5349 5350 5351 5352 5353 5354
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5355 5356
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5357
 */
5358
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5359
{
5360
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5361
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5362 5363

	if (unlikely(cpu_is_offline(dest_cpu)))
5364
		return ret;
L
Linus Torvalds 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5377
	on_rq = p->se.on_rq;
5378
	if (on_rq)
5379
		deactivate_task(rq_src, p, 0);
5380

L
Linus Torvalds 已提交
5381
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5382 5383 5384
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5385
	}
5386
	ret = 1;
L
Linus Torvalds 已提交
5387 5388
out:
	double_rq_unlock(rq_src, rq_dest);
5389
	return ret;
L
Linus Torvalds 已提交
5390 5391 5392 5393 5394 5395 5396
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5397
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5398 5399
{
	int cpu = (long)data;
5400
	struct rq *rq;
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5407
		struct migration_req *req;
L
Linus Torvalds 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5430
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5431 5432
		list_del_init(head->next);

N
Nick Piggin 已提交
5433 5434 5435
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5465
/*
5466
 * Figure out where task on dead CPU should go, use force if necessary.
5467 5468
 * NOTE: interrupts should be disabled by the caller
 */
5469
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5470
{
5471
	unsigned long flags;
L
Linus Torvalds 已提交
5472
	cpumask_t mask;
5473 5474
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5475

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5488 5489 5490 5491 5492
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5493
			 * cpuset_cpus_allowed() will not block. It must be
5494 5495
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5496
			rq = task_rq_lock(p, &flags);
5497
			p->cpus_allowed = cpus_allowed;
5498 5499
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5500

5501 5502 5503 5504 5505
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5506
			if (p->mm && printk_ratelimit()) {
5507 5508
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5509 5510
					task_pid_nr(p), p->comm, dead_cpu);
			}
5511
		}
5512
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5522
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5523
{
5524
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5538
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5539

5540
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5541

5542 5543
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5544 5545
			continue;

5546 5547 5548
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5549

5550
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5551 5552
}

I
Ingo Molnar 已提交
5553 5554
/*
 * Schedules idle task to be the next runnable task on current CPU.
5555 5556
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5557 5558 5559
 */
void sched_idle_next(void)
{
5560
	int this_cpu = smp_processor_id();
5561
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5562 5563 5564 5565
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5566
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5567

5568 5569 5570
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5571 5572 5573
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5574
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5575

5576 5577
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5578 5579 5580 5581

	spin_unlock_irqrestore(&rq->lock, flags);
}

5582 5583
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5597
/* called under rq->lock with disabled interrupts */
5598
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5599
{
5600
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5601 5602

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5603
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5604 5605

	/* Cannot have done final schedule yet: would have vanished. */
5606
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5607

5608
	get_task_struct(p);
L
Linus Torvalds 已提交
5609 5610 5611

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5612
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5613 5614
	 * fine.
	 */
5615
	spin_unlock_irq(&rq->lock);
5616
	move_task_off_dead_cpu(dead_cpu, p);
5617
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5618

5619
	put_task_struct(p);
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5625
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5626
	struct task_struct *next;
5627

I
Ingo Molnar 已提交
5628 5629 5630
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5631
		update_rq_clock(rq);
5632
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5633 5634 5635
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5636

L
Linus Torvalds 已提交
5637 5638 5639 5640
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5641 5642 5643
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5644 5645
	{
		.procname	= "sched_domain",
5646
		.mode		= 0555,
5647
	},
I
Ingo Molnar 已提交
5648
	{0, },
5649 5650 5651
};

static struct ctl_table sd_ctl_root[] = {
5652
	{
5653
		.ctl_name	= CTL_KERN,
5654
		.procname	= "kernel",
5655
		.mode		= 0555,
5656 5657
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5658
	{0, },
5659 5660 5661 5662 5663
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5664
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5665 5666 5667 5668

	return entry;
}

5669 5670
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5671
	struct ctl_table *entry;
5672

5673 5674 5675
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5676
	 * will always be set. In the lowest directory the names are
5677 5678 5679
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5680 5681
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5682 5683 5684
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5685 5686 5687 5688 5689

	kfree(*tablep);
	*tablep = NULL;
}

5690
static void
5691
set_table_entry(struct ctl_table *entry,
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5705
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5706

5707 5708 5709
	if (table == NULL)
		return NULL;

5710
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5711
		sizeof(long), 0644, proc_doulongvec_minmax);
5712
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5713
		sizeof(long), 0644, proc_doulongvec_minmax);
5714
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5715
		sizeof(int), 0644, proc_dointvec_minmax);
5716
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5717
		sizeof(int), 0644, proc_dointvec_minmax);
5718
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5719
		sizeof(int), 0644, proc_dointvec_minmax);
5720
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5721
		sizeof(int), 0644, proc_dointvec_minmax);
5722
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5723
		sizeof(int), 0644, proc_dointvec_minmax);
5724
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5725
		sizeof(int), 0644, proc_dointvec_minmax);
5726
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5727
		sizeof(int), 0644, proc_dointvec_minmax);
5728
	set_table_entry(&table[9], "cache_nice_tries",
5729 5730
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5731
	set_table_entry(&table[10], "flags", &sd->flags,
5732
		sizeof(int), 0644, proc_dointvec_minmax);
5733
	/* &table[11] is terminator */
5734 5735 5736 5737

	return table;
}

5738
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5739 5740 5741 5742 5743 5744 5745 5746 5747
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5748 5749
	if (table == NULL)
		return NULL;
5750 5751 5752 5753 5754

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5755
		entry->mode = 0555;
5756 5757 5758 5759 5760 5761 5762 5763
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5764
static void register_sched_domain_sysctl(void)
5765 5766 5767 5768 5769
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5770 5771 5772
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5773 5774 5775
	if (entry == NULL)
		return;

5776
	for_each_online_cpu(i) {
5777 5778
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5779
		entry->mode = 0555;
5780
		entry->child = sd_alloc_ctl_cpu_table(i);
5781
		entry++;
5782
	}
5783 5784

	WARN_ON(sd_sysctl_header);
5785 5786
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5787

5788
/* may be called multiple times per register */
5789 5790
static void unregister_sched_domain_sysctl(void)
{
5791 5792
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5793
	sd_sysctl_header = NULL;
5794 5795
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5796
}
5797
#else
5798 5799 5800 5801
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5802 5803 5804 5805
{
}
#endif

L
Linus Torvalds 已提交
5806 5807 5808 5809
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5810 5811
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5812 5813
{
	struct task_struct *p;
5814
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5815
	unsigned long flags;
5816
	struct rq *rq;
L
Linus Torvalds 已提交
5817 5818

	switch (action) {
5819

L
Linus Torvalds 已提交
5820
	case CPU_UP_PREPARE:
5821
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5822
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5828
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5829 5830 5831
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5832

L
Linus Torvalds 已提交
5833
	case CPU_ONLINE:
5834
	case CPU_ONLINE_FROZEN:
5835
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5836
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5846
		break;
5847

L
Linus Torvalds 已提交
5848 5849
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5850
	case CPU_UP_CANCELED_FROZEN:
5851 5852
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5853
		/* Unbind it from offline cpu so it can run. Fall thru. */
5854 5855
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5856 5857 5858
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5859

L
Linus Torvalds 已提交
5860
	case CPU_DEAD:
5861
	case CPU_DEAD_FROZEN:
5862
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5868
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5869
		update_rq_clock(rq);
5870
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5871
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5872 5873
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5874
		migrate_dead_tasks(cpu);
5875
		spin_unlock_irq(&rq->lock);
5876
		cpuset_unlock();
L
Linus Torvalds 已提交
5877 5878 5879
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5880 5881 5882 5883 5884
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5885 5886
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5887 5888
			struct migration_req *req;

L
Linus Torvalds 已提交
5889
			req = list_entry(rq->migration_queue.next,
5890
					 struct migration_req, list);
L
Linus Torvalds 已提交
5891 5892 5893 5894 5895
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913 5914
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5915
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5916 5917 5918 5919
	.notifier_call = migration_call,
	.priority = 10
};

5920
void __init migration_init(void)
L
Linus Torvalds 已提交
5921 5922
{
	void *cpu = (void *)(long)smp_processor_id();
5923
	int err;
5924 5925

	/* Start one for the boot CPU: */
5926 5927
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5928 5929 5930 5931 5932 5933
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5934 5935 5936 5937 5938

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5939
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5940 5941

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5942
{
I
Ingo Molnar 已提交
5943 5944 5945
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5946

I
Ingo Molnar 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5958 5959
	}

I
Ingo Molnar 已提交
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5970

I
Ingo Molnar 已提交
5971
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5972
	do {
I
Ingo Molnar 已提交
5973 5974 5975
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5976 5977 5978
			break;
		}

I
Ingo Molnar 已提交
5979 5980 5981 5982 5983 5984
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5985

I
Ingo Molnar 已提交
5986 5987 5988 5989 5990
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5991

I
Ingo Molnar 已提交
5992 5993 5994 5995 5996
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5997

I
Ingo Molnar 已提交
5998
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5999

I
Ingo Molnar 已提交
6000 6001
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6002

I
Ingo Molnar 已提交
6003 6004 6005
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6006

I
Ingo Molnar 已提交
6007 6008
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6009

I
Ingo Molnar 已提交
6010 6011 6012 6013 6014
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6015

I
Ingo Molnar 已提交
6016 6017 6018
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6019

I
Ingo Molnar 已提交
6020 6021 6022 6023
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6024

I
Ingo Molnar 已提交
6025 6026 6027 6028 6029
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6030 6031
		level++;
		sd = sd->parent;
6032
		if (!sd)
I
Ingo Molnar 已提交
6033 6034
			break;
	}
L
Linus Torvalds 已提交
6035 6036
}
#else
6037
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6038 6039
#endif

6040
static int sd_degenerate(struct sched_domain *sd)
6041 6042 6043 6044 6045 6046 6047 6048
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6049 6050 6051
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6065 6066
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6085 6086 6087
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6088 6089 6090 6091 6092 6093 6094
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6105
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6106 6107
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6108
		}
G
Gregory Haskins 已提交
6109

6110 6111 6112
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6113 6114 6115 6116 6117 6118 6119
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6120 6121 6122 6123
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
6124
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6125 6126
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6127
	}
G
Gregory Haskins 已提交
6128 6129 6130 6131

	spin_unlock_irqrestore(&rq->lock, flags);
}

6132
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6133 6134 6135
{
	memset(rd, 0, sizeof(*rd));

6136 6137
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6138 6139 6140 6141
}

static void init_defrootdomain(void)
{
6142
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6143 6144 6145
	atomic_set(&def_root_domain.refcount, 1);
}

6146
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6147 6148 6149 6150 6151 6152 6153
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6154
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6155 6156 6157 6158

	return rd;
}

L
Linus Torvalds 已提交
6159
/*
I
Ingo Molnar 已提交
6160
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6161 6162
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6163 6164
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6165
{
6166
	struct rq *rq = cpu_rq(cpu);
6167 6168 6169 6170 6171 6172 6173
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6174
		if (sd_parent_degenerate(tmp, parent)) {
6175
			tmp->parent = parent->parent;
6176 6177 6178
			if (parent->parent)
				parent->parent->child = tmp;
		}
6179 6180
	}

6181
	if (sd && sd_degenerate(sd)) {
6182
		sd = sd->parent;
6183 6184 6185
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6186 6187 6188

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6189
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6190
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6191 6192 6193
}

/* cpus with isolated domains */
6194
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6209
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6210 6211

/*
6212 6213 6214 6215
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6221
static void
6222 6223 6224
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6225 6226 6227 6228 6229 6230
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6231 6232
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6233 6234 6235 6236 6237 6238
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6239
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6240 6241

		for_each_cpu_mask(j, span) {
6242
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6257
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6258

6259
#ifdef CONFIG_NUMA
6260

6261 6262 6263 6264 6265
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6266
 * Find the next node to include in a given scheduling domain. Simply
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6306
 * Given a node, construct a good cpumask for its sched_domain to span. It
6307 6308 6309 6310 6311 6312
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6313 6314
	cpumask_t span, nodemask;
	int i;
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6325

6326 6327 6328 6329 6330 6331 6332 6333
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6334
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6335

6336
/*
6337
 * SMT sched-domains:
6338
 */
L
Linus Torvalds 已提交
6339 6340
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6341
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6342

I
Ingo Molnar 已提交
6343 6344
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6345
{
6346 6347
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6348 6349 6350 6351
	return cpu;
}
#endif

6352 6353 6354
/*
 * multi-core sched-domains:
 */
6355 6356
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6357
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6358 6359 6360
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6361 6362
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6363
{
6364
	int group;
6365
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6366
	cpus_and(mask, mask, *cpu_map);
6367 6368 6369 6370
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6371 6372
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6373 6374
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6375
{
6376 6377
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6378 6379 6380 6381
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6382
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6383
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6384

I
Ingo Molnar 已提交
6385 6386
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6387
{
6388
	int group;
6389
#ifdef CONFIG_SCHED_MC
6390
	cpumask_t mask = cpu_coregroup_map(cpu);
6391
	cpus_and(mask, mask, *cpu_map);
6392
	group = first_cpu(mask);
6393
#elif defined(CONFIG_SCHED_SMT)
6394
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6395
	cpus_and(mask, mask, *cpu_map);
6396
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6397
#else
6398
	group = cpu;
L
Linus Torvalds 已提交
6399
#endif
6400 6401 6402
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6403 6404 6405 6406
}

#ifdef CONFIG_NUMA
/*
6407 6408 6409
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6410
 */
6411
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6412
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6413

6414
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6415
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6416

6417 6418
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6419
{
6420 6421 6422 6423 6424 6425 6426 6427 6428
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6429
}
6430

6431 6432 6433 6434 6435 6436 6437
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6438 6439 6440
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6441

6442 6443 6444 6445 6446 6447 6448 6449
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6450

6451 6452 6453 6454
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6455
}
L
Linus Torvalds 已提交
6456 6457
#endif

6458
#ifdef CONFIG_NUMA
6459 6460 6461
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6462
	int cpu, i;
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6493 6494 6495 6496 6497
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6498

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6525 6526
	sd->groups->__cpu_power = 0;

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6537
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6538 6539 6540 6541 6542 6543 6544 6545
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6546
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6547 6548 6549 6550
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6551
/*
6552 6553
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6554
 */
6555
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6556 6557
{
	int i;
G
Gregory Haskins 已提交
6558
	struct root_domain *rd;
6559 6560
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6561
	int sd_allnodes = 0;
6562 6563 6564 6565

	/*
	 * Allocate the per-node list of sched groups
	 */
6566
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6567
				    GFP_KERNEL);
6568 6569
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6570
		return -ENOMEM;
6571 6572 6573
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6574

6575
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6576 6577 6578 6579 6580
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6581
	/*
6582
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6583
	 */
6584
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6585 6586 6587
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6588
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6589 6590

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6591 6592
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6593 6594 6595
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6596
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6597
			p = sd;
6598
			sd_allnodes = 1;
6599 6600 6601
		} else
			p = NULL;

L
Linus Torvalds 已提交
6602 6603
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6604 6605
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6606 6607
		if (p)
			p->child = sd;
6608
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6609 6610 6611 6612 6613 6614 6615
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6616 6617
		if (p)
			p->child = sd;
6618
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6619

6620 6621 6622 6623 6624 6625 6626
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6627
		p->child = sd;
6628
		cpu_to_core_group(i, cpu_map, &sd->groups);
6629 6630
#endif

L
Linus Torvalds 已提交
6631 6632 6633 6634
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6635
		sd->span = per_cpu(cpu_sibling_map, i);
6636
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6637
		sd->parent = p;
6638
		p->child = sd;
6639
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6640 6641 6642 6643 6644
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6645
	for_each_cpu_mask(i, *cpu_map) {
6646
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6647
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6648 6649 6650
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6651 6652
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6653 6654 6655
	}
#endif

6656 6657 6658 6659 6660 6661 6662
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6663 6664
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6665 6666 6667
	}
#endif

L
Linus Torvalds 已提交
6668 6669 6670 6671
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6672
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6673 6674 6675
		if (cpus_empty(nodemask))
			continue;

6676
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6677 6678 6679 6680
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6681
	if (sd_allnodes)
I
Ingo Molnar 已提交
6682 6683
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6694 6695
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6696
			continue;
6697
		}
6698 6699 6700 6701

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6702
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6703 6704 6705 6706 6707
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6708 6709 6710
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6711

6712 6713 6714
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6715
		sg->__cpu_power = 0;
6716
		sg->cpumask = nodemask;
6717
		sg->next = sg;
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6736 6737
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6738 6739 6740
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6741
				goto error;
6742
			}
6743
			sg->__cpu_power = 0;
6744
			sg->cpumask = tmp;
6745
			sg->next = prev->next;
6746 6747 6748 6749 6750
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6751 6752 6753
#endif

	/* Calculate CPU power for physical packages and nodes */
6754
#ifdef CONFIG_SCHED_SMT
6755
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6756 6757
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6758
		init_sched_groups_power(i, sd);
6759
	}
L
Linus Torvalds 已提交
6760
#endif
6761
#ifdef CONFIG_SCHED_MC
6762
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6763 6764
		struct sched_domain *sd = &per_cpu(core_domains, i);

6765
		init_sched_groups_power(i, sd);
6766 6767
	}
#endif
6768

6769
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6770 6771
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6772
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6773 6774
	}

6775
#ifdef CONFIG_NUMA
6776 6777
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6778

6779 6780
	if (sd_allnodes) {
		struct sched_group *sg;
6781

6782
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6783 6784
		init_numa_sched_groups_power(sg);
	}
6785 6786
#endif

L
Linus Torvalds 已提交
6787
	/* Attach the domains */
6788
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6789 6790 6791
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6792 6793
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6794 6795 6796
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6797
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6798
	}
6799 6800 6801

	return 0;

6802
#ifdef CONFIG_NUMA
6803 6804 6805
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6806
#endif
L
Linus Torvalds 已提交
6807
}
P
Paul Jackson 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6819
/*
I
Ingo Molnar 已提交
6820
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6821 6822
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6823
 */
6824
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6825
{
6826 6827
	int err;

P
Paul Jackson 已提交
6828 6829 6830 6831 6832
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6833
	err = build_sched_domains(doms_cur);
6834
	register_sched_domain_sysctl();
6835 6836

	return err;
6837 6838 6839
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6840
{
6841
	free_sched_groups(cpu_map);
6842
}
L
Linus Torvalds 已提交
6843

6844 6845 6846 6847
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6848
static void detach_destroy_domains(const cpumask_t *cpu_map)
6849 6850 6851
{
	int i;

6852 6853
	unregister_sched_domain_sysctl();

6854
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6855
		cpu_attach_domain(NULL, &def_root_domain, i);
6856 6857 6858 6859
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6860 6861
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6862
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6863 6864 6865 6866
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6867 6868 6869
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6870 6871 6872
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6873 6874
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6885 6886
	lock_doms_cur();

6887 6888 6889
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6925 6926

	register_sched_domain_sysctl();
6927 6928

	unlock_doms_cur();
P
Paul Jackson 已提交
6929 6930
}

6931
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6932
static int arch_reinit_sched_domains(void)
6933 6934 6935
{
	int err;

6936
	get_online_cpus();
6937 6938
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6939
	put_online_cpus();
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6966 6967
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6968 6969 6970
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6971 6972
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6973 6974 6975 6976 6977 6978 6979
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6980 6981
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6982 6983 6984
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7005 7006
#endif

L
Linus Torvalds 已提交
7007
/*
I
Ingo Molnar 已提交
7008
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7009
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7010
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7011 7012 7013 7014 7015 7016 7017
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7018
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7019
	case CPU_DOWN_PREPARE:
7020
	case CPU_DOWN_PREPARE_FROZEN:
7021
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7022 7023 7024
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7025
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7026
	case CPU_DOWN_FAILED:
7027
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7028
	case CPU_ONLINE:
7029
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7030
	case CPU_DEAD:
7031
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7041
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7042 7043 7044 7045 7046 7047

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7048 7049
	cpumask_t non_isolated_cpus;

7050
	get_online_cpus();
7051
	arch_init_sched_domains(&cpu_online_map);
7052
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7053 7054
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7055
	put_online_cpus();
L
Linus Torvalds 已提交
7056 7057
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7058 7059 7060 7061

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7062
	sched_init_granularity();
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
7078 7079 7080 7081
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7082
	sched_init_granularity();
L
Linus Torvalds 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7093
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7094 7095 7096 7097 7098
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7099
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7100 7101
}

P
Peter Zijlstra 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

P
Peter Zijlstra 已提交
7115 7116 7117
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7118 7119 7120 7121 7122 7123 7124
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7125 7126 7127 7128

#ifdef CONFIG_FAIR_GROUP_SCHED
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7129 7130
}

P
Peter Zijlstra 已提交
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}

static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7169 7170
void __init sched_init(void)
{
7171
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7172 7173
	int i, j;

G
Gregory Haskins 已提交
7174 7175 7176 7177
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

P
Peter Zijlstra 已提交
7178 7179 7180 7181
#ifdef CONFIG_FAIR_GROUP_SCHED
	list_add(&init_task_group.list, &task_groups);
#endif

7182
	for_each_possible_cpu(i) {
7183
		struct rq *rq;
L
Linus Torvalds 已提交
7184 7185 7186

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7187
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7188
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7189 7190
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7191
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7192
#ifdef CONFIG_FAIR_GROUP_SCHED
7193
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

		init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7204
#endif
P
Peter Zijlstra 已提交
7205
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7206
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7207

I
Ingo Molnar 已提交
7208 7209
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7210
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7211
		rq->sd = NULL;
G
Gregory Haskins 已提交
7212
		rq->rd = NULL;
L
Linus Torvalds 已提交
7213
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7214
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7215
		rq->push_cpu = 0;
7216
		rq->cpu = i;
L
Linus Torvalds 已提交
7217 7218
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7219
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7220
#endif
P
Peter Zijlstra 已提交
7221
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7222
		atomic_set(&rq->nr_iowait, 0);
7223
		highest_cpu = i;
L
Linus Torvalds 已提交
7224 7225
	}

7226
	set_load_weight(&init_task);
7227

7228 7229 7230 7231
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7232
#ifdef CONFIG_SMP
7233
	nr_cpu_ids = highest_cpu + 1;
7234 7235 7236
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7237 7238 7239 7240
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7254 7255 7256 7257
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
7258 7259 7260 7261 7262
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7263
#ifdef in_atomic
L
Linus Torvalds 已提交
7264 7265 7266 7267 7268 7269 7270
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7271
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7272 7273 7274
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7275
		debug_show_held_locks(current);
7276 7277
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7278 7279 7280 7281 7282 7283 7284 7285
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7300 7301
void normalize_rt_tasks(void)
{
7302
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7303
	unsigned long flags;
7304
	struct rq *rq;
L
Linus Torvalds 已提交
7305 7306

	read_lock_irq(&tasklist_lock);
7307
	do_each_thread(g, p) {
7308 7309 7310 7311 7312 7313
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7314 7315
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7316 7317 7318
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7319
#endif
I
Ingo Molnar 已提交
7320 7321 7322 7323 7324 7325 7326 7327 7328
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7329
			continue;
I
Ingo Molnar 已提交
7330
		}
L
Linus Torvalds 已提交
7331

7332 7333
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7334

7335
		normalize_task(rq, p);
7336

7337 7338
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7339 7340
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7341 7342 7343 7344
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7363
struct task_struct *curr_task(int cpu)
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7374 7375
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7376 7377 7378 7379 7380 7381 7382
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7383
void set_curr_task(int cpu, struct task_struct *p)
7384 7385 7386 7387 7388
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7389 7390 7391

#ifdef CONFIG_FAIR_GROUP_SCHED

7392 7393 7394
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
P
Peter Zijlstra 已提交
7395
 * to reflect load distribution across cpus.
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

I
Ingo Molnar 已提交
7414
		/* Nothing to do if this group has no load */
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
P
Peter Zijlstra 已提交
7462
 * These settings allows for the appropriate trade-off between accuracy of
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7495
		get_online_cpus();
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7529
		put_online_cpus();
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

P
Peter Zijlstra 已提交
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
static void free_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg->rt_rq);
	kfree(tg->rt_se);
	kfree(tg);
}

S
Srivatsa Vaddagiri 已提交
7565
/* allocate runqueue etc for a new task group */
7566
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7567
{
7568
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7569 7570
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
P
Peter Zijlstra 已提交
7571 7572
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
7573
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7574 7575 7576 7577 7578 7579
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7580
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7581 7582
	if (!tg->cfs_rq)
		goto err;
7583
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7584 7585
	if (!tg->se)
		goto err;
P
Peter Zijlstra 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594
	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->shares = NICE_0_LOAD;
	tg->rt_ratio = 0; /* XXX */
S
Srivatsa Vaddagiri 已提交
7595 7596

	for_each_possible_cpu(i) {
7597
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7598

P
Peter Zijlstra 已提交
7599 7600
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7601 7602 7603
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7604 7605
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7606 7607 7608
		if (!se)
			goto err;

P
Peter Zijlstra 已提交
7609 7610 7611 7612
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7613

P
Peter Zijlstra 已提交
7614 7615 7616 7617
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7618

P
Peter Zijlstra 已提交
7619 7620
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7621 7622
	}

7623
	lock_task_group_list();
7624 7625 7626 7627
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
P
Peter Zijlstra 已提交
7628 7629
		rt_rq = tg->rt_rq[i];
		list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7630
	}
P
Peter Zijlstra 已提交
7631
	list_add_rcu(&tg->list, &task_groups);
7632
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7633

7634
	return tg;
S
Srivatsa Vaddagiri 已提交
7635 7636

err:
P
Peter Zijlstra 已提交
7637
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7638 7639 7640
	return ERR_PTR(-ENOMEM);
}

7641
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7642
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7643 7644
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7645
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7646 7647
}

7648
/* Destroy runqueue etc associated with a task group */
7649
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7650
{
7651
	struct cfs_rq *cfs_rq = NULL;
P
Peter Zijlstra 已提交
7652
	struct rt_rq *rt_rq = NULL;
7653
	int i;
S
Srivatsa Vaddagiri 已提交
7654

7655
	lock_task_group_list();
7656 7657 7658
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
P
Peter Zijlstra 已提交
7659 7660
		rt_rq = tg->rt_rq[i];
		list_del_rcu(&rt_rq->leaf_rt_rq_list);
7661
	}
P
Peter Zijlstra 已提交
7662
	list_del_rcu(&tg->list);
7663
	unlock_task_group_list();
7664

7665
	BUG_ON(!cfs_rq);
7666 7667

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7668
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7669 7670
}

7671
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7672 7673 7674
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7675 7676
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7677 7678 7679 7680 7681 7682 7683 7684 7685
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7686
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7687 7688
	on_rq = tsk->se.on_rq;

7689
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7690
		dequeue_task(rq, tsk, 0);
7691 7692 7693
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7694

P
Peter Zijlstra 已提交
7695
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7696

7697 7698 7699
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7700
		enqueue_task(rq, tsk, 0);
7701
	}
S
Srivatsa Vaddagiri 已提交
7702 7703 7704 7705

	task_rq_unlock(rq, &flags);
}

7706
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7707 7708 7709 7710 7711 7712
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7713 7714
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7715 7716

	on_rq = se->on_rq;
7717
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7718
		dequeue_entity(cfs_rq, se, 0);
7719 7720
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7721 7722 7723 7724

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7725
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7726
		enqueue_entity(cfs_rq, se, 0);
7727 7728
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7729 7730
}

7731
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7732 7733
{
	int i;
7734 7735
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7736

7737
	lock_task_group_list();
7738
	if (tg->shares == shares)
7739
		goto done;
S
Srivatsa Vaddagiri 已提交
7740

7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7761
	tg->shares = shares;
7762 7763
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7764
		set_se_shares(tg->se[i], shares);
7765 7766
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7767

7768 7769 7770 7771 7772 7773 7774 7775 7776
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7777
done:
7778
	unlock_task_group_list();
7779
	return 0;
S
Srivatsa Vaddagiri 已提交
7780 7781
}

7782 7783 7784 7785 7786
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

P
Peter Zijlstra 已提交
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811
/*
 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
 */
int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
{
	struct task_group *tgi;
	unsigned long total = 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &task_groups, list)
		total += tgi->rt_ratio;
	rcu_read_unlock();

	if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
		return -EINVAL;

	tg->rt_ratio = rt_ratio;
	return 0;
}

unsigned long sched_group_rt_ratio(struct task_group *tg)
{
	return tg->rt_ratio;
}

I
Ingo Molnar 已提交
7812
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7813 7814 7815 7816

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7817
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7818
{
7819 7820
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7821 7822 7823
}

static struct cgroup_subsys_state *
7824
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7825 7826 7827
{
	struct task_group *tg;

7828
	if (!cgrp->parent) {
7829
		/* This is early initialization for the top cgroup */
7830
		init_task_group.css.cgroup = cgrp;
7831 7832 7833 7834
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7835
	if (cgrp->parent->parent)
7836 7837 7838 7839 7840 7841 7842
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7843
	tg->css.cgroup = cgrp;
7844 7845 7846 7847

	return &tg->css;
}

I
Ingo Molnar 已提交
7848 7849
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7850
{
7851
	struct task_group *tg = cgroup_tg(cgrp);
7852 7853 7854 7855

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7856 7857 7858
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7859 7860 7861 7862 7863 7864 7865 7866 7867
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7868
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7869 7870 7871 7872 7873
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7874 7875
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7876
{
7877
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7878 7879
}

7880
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7881
{
7882
	struct task_group *tg = cgroup_tg(cgrp);
7883 7884 7885 7886

	return (u64) tg->shares;
}

P
Peter Zijlstra 已提交
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899
static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_ratio_val)
{
	return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
}

static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	struct task_group *tg = cgroup_tg(cgrp);

	return (u64) tg->rt_ratio;
}

7900 7901 7902 7903 7904 7905
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
P
Peter Zijlstra 已提交
7906 7907 7908 7909 7910
	{
		.name = "rt_ratio",
		.read_uint = cpu_rt_ratio_read_uint,
		.write_uint = cpu_rt_ratio_write_uint,
	},
7911 7912 7913 7914
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7915
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7916 7917 7918
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7919 7920 7921 7922 7923 7924 7925
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7926 7927 7928 7929
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7982 7983
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */