sched.c 187.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
206
	unsigned long shares;
207

208
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
209 210 211 212 213 214 215
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

216 217
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
218

219 220 221 222 223
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

224 225 226
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

227 228 229 230 231 232 233 234
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
235
/* Default task group.
I
Ingo Molnar 已提交
236
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
237
 */
238
struct task_group init_task_group = {
I
Ingo Molnar 已提交
239 240 241
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
242

243
#ifdef CONFIG_FAIR_USER_SCHED
244
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
245
#else
246
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
247 248
#endif

249 250
#define MIN_GROUP_SHARES       2

251
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
252 253

/* return group to which a task belongs */
254
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
255
{
256
	struct task_group *tg;
257

258 259
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
260 261 262
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
263
#else
I
Ingo Molnar 已提交
264
	tg = &init_task_group;
265
#endif
266
	return tg;
S
Srivatsa Vaddagiri 已提交
267 268 269
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
271
{
272 273
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

286 287 288 289 290 291 292 293 294 295
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
296 297
#else

298
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 300
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
301 302
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
303 304 305

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315 316 317 318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
321 322 323

	unsigned long nr_spread_over;

324
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
325 326
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
327 328
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
329 330 331 332 333 334
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
335 336
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
337 338
#endif
};
L
Linus Torvalds 已提交
339

I
Ingo Molnar 已提交
340 341 342 343 344
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345
	unsigned long rt_nr_running;
346 347
	/* highest queued rt task prio */
	int highest_prio;
I
Ingo Molnar 已提交
348 349
};

L
Linus Torvalds 已提交
350 351 352 353 354 355 356
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
357
struct rq {
358 359
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
360 361 362 363 364 365

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
366 367
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
368
	unsigned char idle_at_tick;
369 370 371
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
372 373
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
374 375 376 377 378
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
379 380
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
381
#endif
I
Ingo Molnar 已提交
382
	struct rt_rq rt;
L
Linus Torvalds 已提交
383 384 385 386 387 388 389 390 391

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

392
	struct task_struct *curr, *idle;
393
	unsigned long next_balance;
L
Linus Torvalds 已提交
394
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
395 396 397 398 399

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
400 401
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
402
	u64 tick_timestamp;
I
Ingo Molnar 已提交
403

L
Linus Torvalds 已提交
404 405 406 407 408 409 410 411
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
412 413
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
414

415
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
416 417 418 419 420 421 422 423
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
424 425 426 427
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
428 429

	/* schedule() stats */
430 431 432
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
433 434

	/* try_to_wake_up() stats */
435 436
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
437 438

	/* BKL stats */
439
	unsigned int bkl_count;
L
Linus Torvalds 已提交
440
#endif
441
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
442 443
};

444
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
445

I
Ingo Molnar 已提交
446 447 448 449 450
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

451 452 453 454 455 456 457 458 459
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
460
/*
I
Ingo Molnar 已提交
461 462
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
463
 */
I
Ingo Molnar 已提交
464
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
465 466 467 468 469 470
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
471 472 473
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
474 475 476 477 478 479 480 481 482 483
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
484 485 486 487 488
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
489 490 491 492 493 494 495 496 497 498
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
499
}
I
Ingo Molnar 已提交
500

I
Ingo Molnar 已提交
501 502 503 504
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
505 506
}

N
Nick Piggin 已提交
507 508
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
510 511 512 513
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
514 515
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
516 517 518 519 520 521

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
535
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
536 537
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
538 539
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
540 541 542
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
543
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
544
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
545 546
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
547
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
548 549 550

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

551 552 553 554 555 556
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

557 558 559 560 561 562 563 564
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
565
	struct rq *rq;
566

567
	local_irq_save(flags);
I
Ingo Molnar 已提交
568
	rq = cpu_rq(cpu);
569 570 571 572 573 574
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
575
	now = rq->clock;
576
	local_irq_restore(flags);
577 578 579

	return now;
}
P
Paul E. McKenney 已提交
580
EXPORT_SYMBOL_GPL(cpu_clock);
581

L
Linus Torvalds 已提交
582
#ifndef prepare_arch_switch
583 584 585 586 587 588
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

589 590 591 592 593
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

594
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
595
static inline int task_running(struct rq *rq, struct task_struct *p)
596
{
597
	return task_current(rq, p);
598 599
}

600
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
601 602 603
{
}

604
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
605
{
606 607 608 609
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
610 611 612 613 614 615 616
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

617 618 619 620
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
621
static inline int task_running(struct rq *rq, struct task_struct *p)
622 623 624 625
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
626
	return task_current(rq, p);
627 628 629
#endif
}

630
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

647
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
648 649 650 651 652 653 654 655 656 657 658 659
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
660
#endif
661 662
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
663

664 665 666 667
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
668
static inline struct rq *__task_rq_lock(struct task_struct *p)
669 670
	__acquires(rq->lock)
{
671 672 673 674 675
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
676 677 678 679
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
680 681
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
682
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
683 684
 * explicitly disabling preemption.
 */
685
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
686 687
	__acquires(rq->lock)
{
688
	struct rq *rq;
L
Linus Torvalds 已提交
689

690 691 692 693 694 695
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
696 697 698 699
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
700
static void __task_rq_unlock(struct rq *rq)
701 702 703 704 705
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

706
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
707 708 709 710 711 712
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
713
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
714
 */
A
Alexey Dobriyan 已提交
715
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
716 717
	__acquires(rq->lock)
{
718
	struct rq *rq;
L
Linus Torvalds 已提交
719 720 721 722 723 724 725 726

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

727
/*
728
 * We are going deep-idle (irqs are disabled):
729
 */
730
void sched_clock_idle_sleep_event(void)
731
{
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
748

749
	touch_softlockup_watchdog();
750 751 752 753 754 755 756 757 758 759 760
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
761
}
762
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
763

I
Ingo Molnar 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

816 817 818 819 820 821 822 823
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
824 825 826
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
827
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
828

829
static unsigned long
830 831 832 833 834 835
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
836
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
837 838 839 840 841

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
842
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
843
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
844 845
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
846
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
847

848
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
849 850 851 852 853 854 855 856
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

857
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
858 859 860 861
{
	lw->weight += inc;
}

862
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
863 864 865 866
{
	lw->weight -= dec;
}

867 868 869 870
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
871
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 873 874 875
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
876 877 878 879 880 881 882 883 884 885 886
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 888 889
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
890 891
 */
static const int prio_to_weight[40] = {
892 893 894 895 896 897 898 899
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
900 901
};

902 903 904 905 906 907 908
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
909
static const u32 prio_to_wmult[40] = {
910 911 912 913 914 915 916 917
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
918
};
919

I
Ingo Molnar 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

933 934 935 936 937 938 939 940 941 942 943 944
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
945

946 947 948 949 950 951
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

952 953 954 955 956 957 958 959 960 961
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
962 963
#include "sched_stats.h"
#include "sched_idletask.c"
964 965
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
966 967 968 969 970 971
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

972
static void inc_nr_running(struct task_struct *p, struct rq *rq)
973 974 975 976
{
	rq->nr_running++;
}

977
static void dec_nr_running(struct task_struct *p, struct rq *rq)
978 979 980 981
{
	rq->nr_running--;
}

982 983 984
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
985 986 987 988
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
989

I
Ingo Molnar 已提交
990 991 992 993 994 995 996 997
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
998

I
Ingo Molnar 已提交
999 1000
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1001 1002
}

1003
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1004
{
I
Ingo Molnar 已提交
1005
	sched_info_queued(p);
1006
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1007
	p->se.on_rq = 1;
1008 1009
}

1010
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1011
{
1012
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1013
	p->se.on_rq = 0;
1014 1015
}

1016
/*
I
Ingo Molnar 已提交
1017
 * __normal_prio - return the priority that is based on the static prio
1018 1019 1020
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1021
	return p->static_prio;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1031
static inline int normal_prio(struct task_struct *p)
1032 1033 1034
{
	int prio;

1035
	if (task_has_rt_policy(p))
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1049
static int effective_prio(struct task_struct *p)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1062
/*
I
Ingo Molnar 已提交
1063
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1064
 */
I
Ingo Molnar 已提交
1065
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1066
{
I
Ingo Molnar 已提交
1067 1068
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1069

1070
	enqueue_task(rq, p, wakeup);
1071
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1077
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1078
{
I
Ingo Molnar 已提交
1079 1080 1081
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1082
	dequeue_task(rq, p, sleep);
1083
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1090
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094
{
	return cpu_curr(task_cpu(p)) == p;
}

1095 1096 1097
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1098
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1099 1100 1101 1102
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1103
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1104
#ifdef CONFIG_SMP
1105 1106 1107 1108 1109 1110
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1111 1112
	task_thread_info(p)->cpu = cpu;
#endif
1113 1114
}

L
Linus Torvalds 已提交
1115
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1128 1129 1130 1131 1132
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1133 1134 1135 1136 1137 1138
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1139
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1140
{
I
Ingo Molnar 已提交
1141 1142
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1143 1144
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1145
	u64 clock_offset;
I
Ingo Molnar 已提交
1146 1147

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1148 1149 1150 1151

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1152 1153 1154 1155
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1156 1157 1158 1159 1160
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1161
#endif
1162 1163
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1164 1165

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1166 1167
}

1168
struct migration_req {
L
Linus Torvalds 已提交
1169 1170
	struct list_head list;

1171
	struct task_struct *task;
L
Linus Torvalds 已提交
1172 1173 1174
	int dest_cpu;

	struct completion done;
1175
};
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1181
static int
1182
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1183
{
1184
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1190
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1191 1192 1193 1194 1195 1196 1197 1198
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1199

L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1212
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1213 1214
{
	unsigned long flags;
I
Ingo Molnar 已提交
1215
	int running, on_rq;
1216
	struct rq *rq;
L
Linus Torvalds 已提交
1217

1218 1219 1220 1221 1222 1223 1224 1225
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1275

1276 1277 1278 1279 1280 1281 1282
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1298
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1310 1311
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1312 1313 1314 1315
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1316
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1317
{
1318
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1319
	unsigned long total = weighted_cpuload(cpu);
1320

1321
	if (type == 0)
I
Ingo Molnar 已提交
1322
		return total;
1323

I
Ingo Molnar 已提交
1324
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1325 1326 1327
}

/*
1328 1329
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1330
 */
A
Alexey Dobriyan 已提交
1331
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1332
{
1333
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1334
	unsigned long total = weighted_cpuload(cpu);
1335

N
Nick Piggin 已提交
1336
	if (type == 0)
I
Ingo Molnar 已提交
1337
		return total;
1338

I
Ingo Molnar 已提交
1339
	return max(rq->cpu_load[type-1], total);
1340 1341 1342 1343 1344 1345 1346
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1347
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1348
	unsigned long total = weighted_cpuload(cpu);
1349 1350
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1351
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1352 1353
}

N
Nick Piggin 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1371 1372
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1373
			continue;
1374

N
Nick Piggin 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1391 1392
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1393 1394 1395 1396 1397 1398 1399 1400

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1401
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1402 1403 1404 1405 1406 1407 1408

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1409
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1410
 */
I
Ingo Molnar 已提交
1411 1412
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1413
{
1414
	cpumask_t tmp;
N
Nick Piggin 已提交
1415 1416 1417 1418
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1419 1420 1421 1422
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1423
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1449

1450
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1451 1452 1453
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1454 1455
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1456 1457
		if (tmp->flags & flag)
			sd = tmp;
1458
	}
N
Nick Piggin 已提交
1459 1460 1461 1462

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1463 1464 1465 1466 1467 1468
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1469 1470 1471

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1472 1473 1474 1475
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1476

1477
		new_cpu = find_idlest_cpu(group, t, cpu);
1478 1479 1480 1481 1482
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1483

1484
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1527 1528 1529 1530
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1531
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1532
			for_each_cpu_mask(i, tmp) {
1533 1534 1535 1536 1537
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1538
					return i;
1539
				}
L
Linus Torvalds 已提交
1540
			}
I
Ingo Molnar 已提交
1541
		} else {
N
Nick Piggin 已提交
1542
			break;
I
Ingo Molnar 已提交
1543
		}
L
Linus Torvalds 已提交
1544 1545 1546 1547
	}
	return cpu;
}
#else
1548
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1568
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1569
{
1570
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1571 1572
	unsigned long flags;
	long old_state;
1573
	struct rq *rq;
L
Linus Torvalds 已提交
1574
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1575
	struct sched_domain *sd, *this_sd = NULL;
1576
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583 1584
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1585
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1586 1587 1588
		goto out_running;

	cpu = task_cpu(p);
1589
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1596 1597
	new_cpu = cpu;

1598
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1599 1600
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1601 1602 1603 1604 1605 1606 1607 1608
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1609 1610 1611
		}
	}

N
Nick Piggin 已提交
1612
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1613 1614 1615
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1616
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1617
	 */
N
Nick Piggin 已提交
1618 1619 1620
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1621

1622 1623
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1624 1625
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1626

N
Nick Piggin 已提交
1627 1628
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1629 1630
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1631 1632
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1633 1634 1635 1636 1637 1638
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1639
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1640
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1641

L
Linus Torvalds 已提交
1642
			/*
1643 1644 1645
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1646
			 */
1647
			if (sync)
I
Ingo Molnar 已提交
1648
				tl -= current->se.load.weight;
1649 1650

			if ((tl <= load &&
1651
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1652
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1653 1654 1655 1656 1657 1658
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1659
				schedstat_inc(p, se.nr_wakeups_affine);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1671
				schedstat_inc(p, se.nr_wakeups_passive);
1672 1673
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1688
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1697 1698 1699 1700 1701 1702 1703 1704 1705
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1706
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1707
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1708
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1709 1710 1711 1712
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1713
	wakeup_balance_rt(rq, p);
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718 1719
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1720
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1727
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1735 1736 1737 1738 1739 1740 1741
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1742
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1743 1744 1745

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1746 1747 1748 1749 1750 1751
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1752
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1753
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1754
#endif
N
Nick Piggin 已提交
1755

I
Ingo Molnar 已提交
1756 1757
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1758

1759 1760 1761 1762
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1784
	set_task_cpu(p, cpu);
1785 1786 1787 1788 1789

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1790 1791
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1792

1793
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1794
	if (likely(sched_info_on()))
1795
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1796
#endif
1797
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1798 1799
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1800
#ifdef CONFIG_PREEMPT
1801
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1802
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1803
#endif
N
Nick Piggin 已提交
1804
	put_cpu();
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1814
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1815 1816
{
	unsigned long flags;
I
Ingo Molnar 已提交
1817
	struct rq *rq;
L
Linus Torvalds 已提交
1818 1819

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1820
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1821
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1822 1823 1824

	p->prio = effective_prio(p);

1825
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1826
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1827 1828
	} else {
		/*
I
Ingo Molnar 已提交
1829 1830
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1831
		 */
1832
		p->sched_class->task_new(rq, p);
1833
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1834
	}
I
Ingo Molnar 已提交
1835 1836
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1837 1838
}

1839 1840 1841
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1842 1843
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1844 1845 1846 1847 1848 1849 1850 1851 1852
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1853
 * @notifier: notifier struct to unregister
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1897 1898 1899
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1900
 * @prev: the current task that is being switched out
1901 1902 1903 1904 1905 1906 1907 1908 1909
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1910 1911 1912
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1913
{
1914
	fire_sched_out_preempt_notifiers(prev, next);
1915 1916 1917 1918
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1919 1920
/**
 * finish_task_switch - clean up after a task-switch
1921
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1922 1923
 * @prev: the thread we just switched away from.
 *
1924 1925 1926 1927
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1928 1929
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1930
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1931 1932 1933
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1934
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1935 1936 1937
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1938
	long prev_state;
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1944
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1945 1946
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1947
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1953
	prev_state = prev->state;
1954 1955
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1956 1957
	schedule_tail_balance_rt(rq);

1958
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1959 1960
	if (mm)
		mmdrop(mm);
1961
	if (unlikely(prev_state == TASK_DEAD)) {
1962 1963 1964
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1965
		 */
1966
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1967
		put_task_struct(prev);
1968
	}
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1975
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1976 1977
	__releases(rq->lock)
{
1978 1979
	struct rq *rq = this_rq();

1980 1981 1982 1983 1984
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1985
	if (current->set_child_tid)
1986
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1993
static inline void
1994
context_switch(struct rq *rq, struct task_struct *prev,
1995
	       struct task_struct *next)
L
Linus Torvalds 已提交
1996
{
I
Ingo Molnar 已提交
1997
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1998

1999
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2000 2001
	mm = next->mm;
	oldmm = prev->active_mm;
2002 2003 2004 2005 2006 2007 2008
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2009
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2016
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2017 2018 2019
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2020 2021 2022 2023 2024 2025 2026
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2027
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2028
#endif
L
Linus Torvalds 已提交
2029 2030 2031 2032

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2033 2034 2035 2036 2037 2038 2039
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2063
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2078 2079
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2080

2081
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2091
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2112
/*
I
Ingo Molnar 已提交
2113 2114
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2115
 */
I
Ingo Molnar 已提交
2116
static void update_cpu_load(struct rq *this_rq)
2117
{
2118
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2131 2132 2133 2134 2135 2136 2137
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2138 2139
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2140 2141
}

I
Ingo Molnar 已提交
2142 2143
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2150
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2151 2152 2153
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2154
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2155 2156 2157 2158
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2159
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164 2165 2166
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2167 2168
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2177
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2191
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2192 2193 2194 2195
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2196 2197
	int ret = 0;

2198 2199 2200 2201 2202
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2203
	if (unlikely(!spin_trylock(&busiest->lock))) {
2204
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2205 2206 2207
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2208
			ret = 1;
L
Linus Torvalds 已提交
2209 2210 2211
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2212
	return ret;
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2218
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2219 2220
 * the cpu_allowed mask is restored.
 */
2221
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2222
{
2223
	struct migration_req req;
L
Linus Torvalds 已提交
2224
	unsigned long flags;
2225
	struct rq *rq;
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2236

L
Linus Torvalds 已提交
2237 2238 2239 2240 2241
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2242

L
Linus Torvalds 已提交
2243 2244 2245 2246 2247 2248 2249
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2250 2251
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2252 2253 2254 2255
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2256
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2257
	put_cpu();
N
Nick Piggin 已提交
2258 2259
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2266 2267
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2268
{
2269
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2270
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2271
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2272 2273 2274 2275
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2276
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2282
static
2283
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2284
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2285
		     int *all_pinned)
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2293 2294
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2295
		return 0;
2296
	}
2297 2298
	*all_pinned = 0;

2299 2300
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2301
		return 0;
2302
	}
L
Linus Torvalds 已提交
2303

2304 2305 2306 2307 2308 2309
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2310 2311
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2312
#ifdef CONFIG_SCHEDSTATS
2313
		if (task_hot(p, rq->clock, sd)) {
2314
			schedstat_inc(sd, lb_hot_gained[idle]);
2315 2316
			schedstat_inc(p, se.nr_forced_migrations);
		}
2317 2318 2319 2320
#endif
		return 1;
	}

2321 2322
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2323
		return 0;
2324
	}
L
Linus Torvalds 已提交
2325 2326 2327
	return 1;
}

2328 2329 2330 2331 2332
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2333
{
2334
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2335 2336
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2337

2338
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2339 2340
		goto out;

2341 2342
	pinned = 1;

L
Linus Torvalds 已提交
2343
	/*
I
Ingo Molnar 已提交
2344
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2345
	 */
I
Ingo Molnar 已提交
2346 2347
	p = iterator->start(iterator->arg);
next:
2348
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2349
		goto out;
2350
	/*
2351
	 * To help distribute high priority tasks across CPUs we don't
2352 2353 2354
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2355 2356
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2357
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2358 2359 2360
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2361 2362
	}

I
Ingo Molnar 已提交
2363
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2364
	pulled++;
I
Ingo Molnar 已提交
2365
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2366

2367
	/*
2368
	 * We only want to steal up to the prescribed amount of weighted load.
2369
	 */
2370
	if (rem_load_move > 0) {
2371 2372
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2373 2374
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2375 2376 2377
	}
out:
	/*
2378
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2379 2380 2381 2382
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2383 2384 2385

	if (all_pinned)
		*all_pinned = pinned;
2386 2387

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2388 2389
}

I
Ingo Molnar 已提交
2390
/*
P
Peter Williams 已提交
2391 2392 2393
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2394 2395 2396 2397
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2398
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2399 2400 2401
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2402
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2403
	unsigned long total_load_moved = 0;
2404
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2405 2406

	do {
P
Peter Williams 已提交
2407 2408
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2409
				max_load_move - total_load_moved,
2410
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2411
		class = class->next;
P
Peter Williams 已提交
2412
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2413

P
Peter Williams 已提交
2414 2415 2416
	return total_load_moved > 0;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2453
	const struct sched_class *class;
P
Peter Williams 已提交
2454 2455

	for (class = sched_class_highest; class; class = class->next)
2456
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2457 2458 2459
			return 1;

	return 0;
I
Ingo Molnar 已提交
2460 2461
}

L
Linus Torvalds 已提交
2462 2463
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2464 2465
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2466 2467 2468
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2469 2470
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2471 2472 2473
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2474
	unsigned long max_pull;
2475 2476
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2477
	int load_idx, group_imb = 0;
2478 2479 2480 2481 2482 2483
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2484 2485

	max_load = this_load = total_load = total_pwr = 0;
2486 2487
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2488
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2489
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2490
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2491 2492 2493
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2494 2495

	do {
2496
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2497 2498
		int local_group;
		int i;
2499
		int __group_imb = 0;
2500
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2501
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2502 2503 2504

		local_group = cpu_isset(this_cpu, group->cpumask);

2505 2506 2507
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2508
		/* Tally up the load of all CPUs in the group */
2509
		sum_weighted_load = sum_nr_running = avg_load = 0;
2510 2511
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2512 2513

		for_each_cpu_mask(i, group->cpumask) {
2514 2515 2516 2517 2518 2519
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2520

2521
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2522 2523
				*sd_idle = 0;

L
Linus Torvalds 已提交
2524
			/* Bias balancing toward cpus of our domain */
2525 2526 2527 2528 2529 2530
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2531
				load = target_load(i, load_idx);
2532
			} else {
N
Nick Piggin 已提交
2533
				load = source_load(i, load_idx);
2534 2535 2536 2537 2538
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2539 2540

			avg_load += load;
2541
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2542
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2543 2544
		}

2545 2546 2547
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2548 2549
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2550
		 */
2551 2552
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2553 2554 2555 2556
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2557
		total_load += avg_load;
2558
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2559 2560

		/* Adjust by relative CPU power of the group */
2561 2562
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2563

2564 2565 2566
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2567
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2568

L
Linus Torvalds 已提交
2569 2570 2571
		if (local_group) {
			this_load = avg_load;
			this = group;
2572 2573 2574
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2575
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2576 2577
			max_load = avg_load;
			busiest = group;
2578 2579
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2580
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2581
		}
2582 2583 2584 2585 2586 2587

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2588 2589 2590
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2591 2592 2593 2594 2595 2596 2597 2598 2599

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2600
		/*
2601 2602
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2603 2604
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2605
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2606
			goto group_next;
2607

I
Ingo Molnar 已提交
2608
		/*
2609
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2610 2611 2612 2613 2614
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2615 2616
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2617 2618
			group_min = group;
			min_nr_running = sum_nr_running;
2619 2620
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2621
		}
2622

I
Ingo Molnar 已提交
2623
		/*
2624
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2636
		}
2637 2638
group_next:
#endif
L
Linus Torvalds 已提交
2639 2640 2641
		group = group->next;
	} while (group != sd->groups);

2642
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647 2648 2649 2650
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2651
	busiest_load_per_task /= busiest_nr_running;
2652 2653 2654
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2663
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2664 2665
	 * appear as very large values with unsigned longs.
	 */
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2678 2679

	/* Don't want to pull so many tasks that a group would go idle */
2680
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2681

L
Linus Torvalds 已提交
2682
	/* How much load to actually move to equalise the imbalance */
2683 2684
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2685 2686
			/ SCHED_LOAD_SCALE;

2687 2688 2689 2690 2691 2692
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2693
	if (*imbalance < busiest_load_per_task) {
2694
		unsigned long tmp, pwr_now, pwr_move;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2706

I
Ingo Molnar 已提交
2707 2708
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2709
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2719 2720 2721 2722
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2723 2724 2725
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2726 2727
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2728
		if (max_load > tmp)
2729
			pwr_move += busiest->__cpu_power *
2730
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2731 2732

		/* Amount of load we'd add */
2733
		if (max_load * busiest->__cpu_power <
2734
				busiest_load_per_task * SCHED_LOAD_SCALE)
2735 2736
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2737
		else
2738 2739 2740 2741
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2742 2743 2744
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2745 2746
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2747 2748 2749 2750 2751
	}

	return busiest;

out_balanced:
2752
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2753
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2754
		goto ret;
L
Linus Torvalds 已提交
2755

2756 2757 2758 2759 2760
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2761
ret:
L
Linus Torvalds 已提交
2762 2763 2764 2765 2766 2767 2768
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2769
static struct rq *
I
Ingo Molnar 已提交
2770
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2771
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2772
{
2773
	struct rq *busiest = NULL, *rq;
2774
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2775 2776 2777
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2778
		unsigned long wl;
2779 2780 2781 2782

		if (!cpu_isset(i, *cpus))
			continue;

2783
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2784
		wl = weighted_cpuload(i);
2785

I
Ingo Molnar 已提交
2786
		if (rq->nr_running == 1 && wl > imbalance)
2787
			continue;
L
Linus Torvalds 已提交
2788

I
Ingo Molnar 已提交
2789 2790
		if (wl > max_load) {
			max_load = wl;
2791
			busiest = rq;
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797
		}
	}

	return busiest;
}

2798 2799 2800 2801 2802 2803
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2804 2805 2806 2807
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2808
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2809
			struct sched_domain *sd, enum cpu_idle_type idle,
2810
			int *balance)
L
Linus Torvalds 已提交
2811
{
P
Peter Williams 已提交
2812
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2813 2814
	struct sched_group *group;
	unsigned long imbalance;
2815
	struct rq *busiest;
2816
	cpumask_t cpus = CPU_MASK_ALL;
2817
	unsigned long flags;
N
Nick Piggin 已提交
2818

2819 2820 2821
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2822
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2823
	 * portraying it as CPU_NOT_IDLE.
2824
	 */
I
Ingo Molnar 已提交
2825
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2826
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2827
		sd_idle = 1;
L
Linus Torvalds 已提交
2828

2829
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2830

2831 2832
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2833 2834
				   &cpus, balance);

2835
	if (*balance == 0)
2836 2837
		goto out_balanced;

L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2843
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2849
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2850 2851 2852

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2853
	ld_moved = 0;
L
Linus Torvalds 已提交
2854 2855 2856 2857
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2858
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2859 2860
		 * correctly treated as an imbalance.
		 */
2861
		local_irq_save(flags);
N
Nick Piggin 已提交
2862
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2863
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2864
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2865
		double_rq_unlock(this_rq, busiest);
2866
		local_irq_restore(flags);
2867

2868 2869 2870
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2871
		if (ld_moved && this_cpu != smp_processor_id())
2872 2873
			resched_cpu(this_cpu);

2874
		/* All tasks on this runqueue were pinned by CPU affinity */
2875 2876 2877 2878
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2879
			goto out_balanced;
2880
		}
L
Linus Torvalds 已提交
2881
	}
2882

P
Peter Williams 已提交
2883
	if (!ld_moved) {
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2889
			spin_lock_irqsave(&busiest->lock, flags);
2890 2891 2892 2893 2894

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2895
				spin_unlock_irqrestore(&busiest->lock, flags);
2896 2897 2898 2899
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2900 2901 2902
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2903
				active_balance = 1;
L
Linus Torvalds 已提交
2904
			}
2905
			spin_unlock_irqrestore(&busiest->lock, flags);
2906
			if (active_balance)
L
Linus Torvalds 已提交
2907 2908 2909 2910 2911 2912
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2913
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2914
		}
2915
	} else
L
Linus Torvalds 已提交
2916 2917
		sd->nr_balance_failed = 0;

2918
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2919 2920
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2921 2922 2923 2924 2925 2926 2927 2928 2929
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2930 2931
	}

P
Peter Williams 已提交
2932
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2933
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2934
		return -1;
P
Peter Williams 已提交
2935
	return ld_moved;
L
Linus Torvalds 已提交
2936 2937 2938 2939

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2940
	sd->nr_balance_failed = 0;
2941 2942

out_one_pinned:
L
Linus Torvalds 已提交
2943
	/* tune up the balancing interval */
2944 2945
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2946 2947
		sd->balance_interval *= 2;

2948
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2949
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2950
		return -1;
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956 2957
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2958
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2959 2960
 * this_rq is locked.
 */
2961
static int
2962
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2963 2964
{
	struct sched_group *group;
2965
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2966
	unsigned long imbalance;
P
Peter Williams 已提交
2967
	int ld_moved = 0;
N
Nick Piggin 已提交
2968
	int sd_idle = 0;
2969
	int all_pinned = 0;
2970
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2971

2972 2973 2974 2975
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2976
	 * portraying it as CPU_NOT_IDLE.
2977 2978 2979
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2980
		sd_idle = 1;
L
Linus Torvalds 已提交
2981

2982
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2983
redo:
I
Ingo Molnar 已提交
2984
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2985
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2986
	if (!group) {
I
Ingo Molnar 已提交
2987
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2988
		goto out_balanced;
L
Linus Torvalds 已提交
2989 2990
	}

I
Ingo Molnar 已提交
2991
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2992
				&cpus);
N
Nick Piggin 已提交
2993
	if (!busiest) {
I
Ingo Molnar 已提交
2994
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2995
		goto out_balanced;
L
Linus Torvalds 已提交
2996 2997
	}

N
Nick Piggin 已提交
2998 2999
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3000
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3001

P
Peter Williams 已提交
3002
	ld_moved = 0;
3003 3004 3005
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3006 3007
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3008
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3009 3010
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3011
		spin_unlock(&busiest->lock);
3012

3013
		if (unlikely(all_pinned)) {
3014 3015 3016 3017
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3018 3019
	}

P
Peter Williams 已提交
3020
	if (!ld_moved) {
I
Ingo Molnar 已提交
3021
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3022 3023
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3024 3025
			return -1;
	} else
3026
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3027

P
Peter Williams 已提交
3028
	return ld_moved;
3029 3030

out_balanced:
I
Ingo Molnar 已提交
3031
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3032
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3033
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3034
		return -1;
3035
	sd->nr_balance_failed = 0;
3036

3037
	return 0;
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3044
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3045 3046
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3047 3048
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3049 3050

	for_each_domain(this_cpu, sd) {
3051 3052 3053 3054 3055 3056
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3057
			/* If we've pulled tasks over stop searching: */
3058
			pulled_task = load_balance_newidle(this_cpu,
3059 3060 3061 3062 3063 3064 3065
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3066
	}
I
Ingo Molnar 已提交
3067
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3068 3069 3070 3071 3072
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3073
	}
L
Linus Torvalds 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3084
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3085
{
3086
	int target_cpu = busiest_rq->push_cpu;
3087 3088
	struct sched_domain *sd;
	struct rq *target_rq;
3089

3090
	/* Is there any task to move? */
3091 3092 3093 3094
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3095 3096

	/*
3097
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3098
	 * we need to fix it. Originally reported by
3099
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3100
	 */
3101
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3102

3103 3104
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3105 3106
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3107 3108

	/* Search for an sd spanning us and the target CPU. */
3109
	for_each_domain(target_cpu, sd) {
3110
		if ((sd->flags & SD_LOAD_BALANCE) &&
3111
		    cpu_isset(busiest_cpu, sd->span))
3112
				break;
3113
	}
3114

3115
	if (likely(sd)) {
3116
		schedstat_inc(sd, alb_count);
3117

P
Peter Williams 已提交
3118 3119
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3120 3121 3122 3123
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3124
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3125 3126
}

3127 3128 3129
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3130
	cpumask_t cpu_mask;
3131 3132 3133 3134 3135
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3136
/*
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3147
 *
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3204 3205 3206 3207 3208
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3209
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3210
{
3211 3212
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3213 3214
	unsigned long interval;
	struct sched_domain *sd;
3215
	/* Earliest time when we have to do rebalance again */
3216
	unsigned long next_balance = jiffies + 60*HZ;
3217
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3218

3219
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3220 3221 3222 3223
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3224
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3231 3232 3233
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3234

3235 3236 3237 3238 3239
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3240
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3241
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3242 3243
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3244 3245 3246
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3247
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3248
			}
3249
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3250
		}
3251 3252 3253
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3254
		if (time_after(next_balance, sd->last_balance + interval)) {
3255
			next_balance = sd->last_balance + interval;
3256 3257
			update_next_balance = 1;
		}
3258 3259 3260 3261 3262 3263 3264 3265

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3266
	}
3267 3268 3269 3270 3271 3272 3273 3274

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3275 3276 3277 3278 3279 3280 3281 3282 3283
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3284 3285 3286 3287
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3288

I
Ingo Molnar 已提交
3289
	rebalance_domains(this_cpu, idle);
3290 3291 3292 3293 3294 3295 3296

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3297 3298
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3299 3300 3301 3302
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3303
		cpu_clear(this_cpu, cpus);
3304 3305 3306 3307 3308 3309 3310 3311 3312
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3313
			rebalance_domains(balance_cpu, CPU_IDLE);
3314 3315

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3316 3317
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3330
static inline void trigger_load_balance(struct rq *rq, int cpu)
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3382
}
I
Ingo Molnar 已提交
3383 3384 3385

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3386 3387 3388
/*
 * on UP we do not need to balance between CPUs:
 */
3389
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3390 3391
{
}
I
Ingo Molnar 已提交
3392

L
Linus Torvalds 已提交
3393 3394 3395 3396 3397 3398 3399
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3400 3401
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3402
 */
3403
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3404 3405
{
	unsigned long flags;
3406 3407
	u64 ns, delta_exec;
	struct rq *rq;
3408

3409 3410
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3411
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3412 3413
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3414 3415 3416 3417
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3418

L
Linus Torvalds 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3442 3443 3444 3445 3446
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3447
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3481
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3482 3483
	cputime64_t tmp;

3484 3485
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3486

L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492 3493 3494
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3495
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3496
		cpustat->system = cputime64_add(cpustat->system, tmp);
3497
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503 3504
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3525
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3533
	} else
L
Linus Torvalds 已提交
3534 3535 3536
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3548
	struct task_struct *curr = rq->curr;
3549
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3550 3551

	spin_lock(&rq->lock);
3552
	__update_rq_clock(rq);
3553 3554 3555 3556 3557 3558
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3559
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3560 3561 3562
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3563

3564
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3565 3566
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3567
#endif
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3577 3578
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3579 3580 3581 3582
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3583 3584
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590 3591 3592
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3593 3594
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3595 3596 3597
	/*
	 * Is the spinlock portion underflowing?
	 */
3598 3599 3600 3601
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607 3608
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3609
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3610
 */
I
Ingo Molnar 已提交
3611
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3612
{
3613 3614 3615 3616 3617
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3618 3619 3620
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3621 3622 3623 3624 3625

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3626
}
L
Linus Torvalds 已提交
3627

I
Ingo Molnar 已提交
3628 3629 3630 3631 3632
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3633
	/*
I
Ingo Molnar 已提交
3634
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3635 3636 3637
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3638 3639 3640
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3641 3642
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3643
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3644 3645
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3646 3647
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3648 3649
	}
#endif
I
Ingo Molnar 已提交
3650 3651 3652 3653 3654 3655
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3656
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3657
{
3658
	const struct sched_class *class;
I
Ingo Molnar 已提交
3659
	struct task_struct *p;
L
Linus Torvalds 已提交
3660 3661

	/*
I
Ingo Molnar 已提交
3662 3663
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3664
	 */
I
Ingo Molnar 已提交
3665
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3667 3668
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3669 3670
	}

I
Ingo Molnar 已提交
3671 3672
	class = sched_class_highest;
	for ( ; ; ) {
3673
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3683

I
Ingo Molnar 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3706

3707 3708 3709 3710
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3711
	__update_rq_clock(rq);
3712 3713
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3714 3715 3716

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3717
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3718
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3719
		} else {
3720
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3721
		}
I
Ingo Molnar 已提交
3722
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3723 3724
	}

3725 3726
	schedule_balance_rt(rq, prev);

I
Ingo Molnar 已提交
3727
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3728 3729
		idle_balance(cpu, rq);

3730
	prev->sched_class->put_prev_task(rq, prev);
3731
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3732 3733

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3734

L
Linus Torvalds 已提交
3735 3736 3737 3738 3739
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3740
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3741 3742 3743
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3744 3745 3746
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3747
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3748
	}
L
Linus Torvalds 已提交
3749 3750 3751 3752 3753 3754 3755 3756
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3757
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3758
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3770
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3771
	 */
N
Nick Piggin 已提交
3772
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3773 3774
		return;

3775 3776 3777 3778 3779 3780 3781 3782
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3783
#ifdef CONFIG_PREEMPT_BKL
3784 3785
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3786
#endif
3787
		schedule();
L
Linus Torvalds 已提交
3788
#ifdef CONFIG_PREEMPT_BKL
3789
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3790
#endif
3791
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3792

3793 3794 3795 3796 3797 3798
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3799 3800 3801 3802
}
EXPORT_SYMBOL(preempt_schedule);

/*
3803
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3815
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3816 3817
	BUG_ON(ti->preempt_count || !irqs_disabled());

3818 3819 3820 3821 3822 3823 3824 3825
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3826
#ifdef CONFIG_PREEMPT_BKL
3827 3828
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3829
#endif
3830 3831 3832
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3833
#ifdef CONFIG_PREEMPT_BKL
3834
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3835
#endif
3836
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3837

3838 3839 3840 3841 3842 3843
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3844 3845 3846 3847
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3848 3849
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3850
{
3851
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3852 3853 3854 3855
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3856 3857
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3858 3859 3860
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3861
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3867
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3868

3869
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3870 3871
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3872
		if (curr->func(curr, mode, sync, key) &&
3873
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3883
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3884 3885
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3886
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3905
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3917 3918
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3935
void complete(struct completion *x)
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3947
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3959 3960
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3968 3969 3970 3971 3972 3973
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3979
				return timeout;
L
Linus Torvalds 已提交
3980 3981 3982 3983 3984 3985 3986 3987
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3988 3989
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3990 3991 3992 3993
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3994
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3995
	spin_unlock_irq(&x->wait.lock);
3996 3997
	return timeout;
}
L
Linus Torvalds 已提交
3998

3999
void __sched wait_for_completion(struct completion *x)
4000 4001
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4002
}
4003
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4004

4005
unsigned long __sched
4006
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4007
{
4008
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4009
}
4010
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4011

4012
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4013
{
4014 4015 4016 4017
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4018
}
4019
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4020

4021
unsigned long __sched
4022 4023
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4024
{
4025
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4026
}
4027
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4028

4029 4030
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4031
{
I
Ingo Molnar 已提交
4032 4033 4034 4035
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4036

4037
	__set_current_state(state);
L
Linus Torvalds 已提交
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4053 4054 4055
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4056
long __sched
I
Ingo Molnar 已提交
4057
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4058
{
4059
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4060 4061 4062
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4063
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4064
{
4065
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4066 4067 4068
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4069
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4070
{
4071
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4072 4073 4074
}
EXPORT_SYMBOL(sleep_on_timeout);

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4087
void rt_mutex_setprio(struct task_struct *p, int prio)
4088 4089
{
	unsigned long flags;
4090
	int oldprio, on_rq, running;
4091
	struct rq *rq;
4092 4093 4094 4095

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4096
	update_rq_clock(rq);
4097

4098
	oldprio = p->prio;
I
Ingo Molnar 已提交
4099
	on_rq = p->se.on_rq;
4100
	running = task_current(rq, p);
4101
	if (on_rq) {
4102
		dequeue_task(rq, p, 0);
4103 4104 4105
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4106 4107 4108 4109 4110 4111

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4112 4113
	p->prio = prio;

I
Ingo Molnar 已提交
4114
	if (on_rq) {
4115 4116
		if (running)
			p->sched_class->set_curr_task(rq);
4117
		enqueue_task(rq, p, 0);
4118 4119
		/*
		 * Reschedule if we are currently running on this runqueue and
4120 4121
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4122
		 */
4123
		if (running) {
4124 4125
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4126 4127 4128
		} else {
			check_preempt_curr(rq, p);
		}
4129 4130 4131 4132 4133 4134
	}
	task_rq_unlock(rq, &flags);
}

#endif

4135
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4136
{
I
Ingo Molnar 已提交
4137
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4138
	unsigned long flags;
4139
	struct rq *rq;
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144 4145 4146 4147

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4148
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4149 4150 4151 4152
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4153
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4154
	 */
4155
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4156 4157 4158
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4159
	on_rq = p->se.on_rq;
4160
	if (on_rq)
4161
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4162 4163

	p->static_prio = NICE_TO_PRIO(nice);
4164
	set_load_weight(p);
4165 4166 4167
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4168

I
Ingo Molnar 已提交
4169
	if (on_rq) {
4170
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4171
		/*
4172 4173
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4174
		 */
4175
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4183 4184 4185 4186 4187
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4188
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4189
{
4190 4191
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4192

M
Matt Mackall 已提交
4193 4194 4195 4196
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4208
	long nice, retval;
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4215 4216
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4226 4227 4228
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4247
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253 4254 4255
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4256
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4275
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4276 4277 4278 4279 4280 4281 4282 4283
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4284
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4285
{
4286
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4287 4288 4289
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4290 4291
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4292
{
I
Ingo Molnar 已提交
4293
	BUG_ON(p->se.on_rq);
4294

L
Linus Torvalds 已提交
4295
	p->policy = policy;
I
Ingo Molnar 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4308
	p->rt_priority = prio;
4309 4310 4311
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4312
	set_load_weight(p);
L
Linus Torvalds 已提交
4313 4314 4315
}

/**
4316
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4317 4318 4319
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4320
 *
4321
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4322
 */
I
Ingo Molnar 已提交
4323 4324
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4325
{
4326
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4327
	unsigned long flags;
4328
	struct rq *rq;
L
Linus Torvalds 已提交
4329

4330 4331
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4337 4338
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4339
		return -EINVAL;
L
Linus Torvalds 已提交
4340 4341
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4342 4343
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4344 4345
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4346
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4347
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4348
		return -EINVAL;
4349
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4350 4351
		return -EINVAL;

4352 4353 4354 4355
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4356
		if (rt_policy(policy)) {
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4373 4374 4375 4376 4377 4378
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4379

4380 4381 4382 4383 4384
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4385 4386 4387 4388

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4389 4390 4391 4392 4393
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4394 4395 4396 4397
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4398
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4399 4400 4401
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4402 4403
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4404 4405
		goto recheck;
	}
I
Ingo Molnar 已提交
4406
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4407
	on_rq = p->se.on_rq;
4408
	running = task_current(rq, p);
4409
	if (on_rq) {
4410
		deactivate_task(rq, p, 0);
4411 4412 4413
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4414

L
Linus Torvalds 已提交
4415
	oldprio = p->prio;
I
Ingo Molnar 已提交
4416
	__setscheduler(rq, p, policy, param->sched_priority);
4417

I
Ingo Molnar 已提交
4418
	if (on_rq) {
4419 4420
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4421
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4422 4423
		/*
		 * Reschedule if we are currently running on this runqueue and
4424 4425
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4426
		 */
4427
		if (running) {
4428 4429
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4430 4431 4432
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4433
	}
4434 4435 4436
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4437 4438
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4439 4440 4441 4442
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4443 4444
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4445 4446 4447
{
	struct sched_param lparam;
	struct task_struct *p;
4448
	int retval;
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4454 4455 4456

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4457
	p = find_process_by_pid(pid);
4458 4459 4460
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4461

L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4471 4472
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4473
{
4474 4475 4476 4477
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4497
	struct task_struct *p;
4498
	int retval;
L
Linus Torvalds 已提交
4499 4500

	if (pid < 0)
4501
		return -EINVAL;
L
Linus Torvalds 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4523
	struct task_struct *p;
4524
	int retval;
L
Linus Torvalds 已提交
4525 4526

	if (!param || pid < 0)
4527
		return -EINVAL;
L
Linus Torvalds 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4557 4558
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4559

4560
	get_online_cpus();
L
Linus Torvalds 已提交
4561 4562 4563 4564 4565
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4566
		put_online_cpus();
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4572
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4583 4584 4585 4586
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4587 4588
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4589
 again:
L
Linus Torvalds 已提交
4590 4591
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4604 4605
out_unlock:
	put_task_struct(p);
4606
	put_online_cpus();
L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4647
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4648 4649 4650
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4651
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4652 4653
EXPORT_SYMBOL(cpu_online_map);

4654
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4655
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4656 4657 4658 4659
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4660
	struct task_struct *p;
L
Linus Torvalds 已提交
4661 4662
	int retval;

4663
	get_online_cpus();
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4671 4672 4673 4674
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4675
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4676 4677 4678

out_unlock:
	read_unlock(&tasklist_lock);
4679
	put_online_cpus();
L
Linus Torvalds 已提交
4680

4681
	return retval;
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4712 4713
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4714 4715 4716
 */
asmlinkage long sys_sched_yield(void)
{
4717
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4718

4719
	schedstat_inc(rq, yld_count);
4720
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4727
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734 4735
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4736
static void __cond_resched(void)
L
Linus Torvalds 已提交
4737
{
4738 4739 4740
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4741 4742 4743 4744 4745
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4755 4756
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4768
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4769 4770 4771
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4772
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4773
{
J
Jan Kara 已提交
4774 4775
	int ret = 0;

L
Linus Torvalds 已提交
4776 4777 4778
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4779
		ret = 1;
L
Linus Torvalds 已提交
4780 4781
		spin_lock(lock);
	}
4782
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4783
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4784 4785 4786
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4787
		ret = 1;
L
Linus Torvalds 已提交
4788 4789
		spin_lock(lock);
	}
J
Jan Kara 已提交
4790
	return ret;
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4798
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4799
		local_bh_enable();
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4811
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4822
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4830
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4831

4832
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4833 4834 4835
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4836
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4842
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4843 4844
	long ret;

4845
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4846 4847 4848
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4849
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4870
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4871
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4895
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4896
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4913
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4914
	unsigned int time_slice;
4915
	int retval;
L
Linus Torvalds 已提交
4916 4917 4918
	struct timespec t;

	if (pid < 0)
4919
		return -EINVAL;
L
Linus Torvalds 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4931 4932 4933 4934 4935 4936
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4937
		time_slice = DEF_TIMESLICE;
4938
	} else {
D
Dmitry Adamushko 已提交
4939 4940 4941 4942 4943
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4944 4945
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4946 4947
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4948
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4949
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4950 4951
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4952

L
Linus Torvalds 已提交
4953 4954 4955 4956 4957
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4958
static const char stat_nam[] = "RSDTtZX";
4959

4960
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4961 4962
{
	unsigned long free = 0;
4963
	unsigned state;
L
Linus Torvalds 已提交
4964 4965

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4966
	printk(KERN_INFO "%-13.13s %c", p->comm,
4967
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4968
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4969
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4970
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4971
	else
I
Ingo Molnar 已提交
4972
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4973 4974
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4975
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4976
	else
I
Ingo Molnar 已提交
4977
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4978 4979 4980
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4981
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4982 4983
		while (!*n)
			n++;
4984
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4985 4986
	}
#endif
4987
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4988
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4994
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4995
{
4996
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4997

4998 4999 5000
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5001
#else
5002 5003
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5012
		if (!state_filter || (p->state & state_filter))
5013
			sched_show_task(p);
L
Linus Torvalds 已提交
5014 5015
	} while_each_thread(g, p);

5016 5017
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5018 5019 5020
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5021
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5022 5023 5024 5025 5026
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5027 5028
}

I
Ingo Molnar 已提交
5029 5030
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5031
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5032 5033
}

5034 5035 5036 5037 5038 5039 5040 5041
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5042
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5043
{
5044
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5045 5046
	unsigned long flags;

I
Ingo Molnar 已提交
5047 5048 5049
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5050
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5051
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5052
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5053 5054 5055

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5056 5057 5058
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5059 5060 5061 5062
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5063
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5064
#else
A
Al Viro 已提交
5065
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5066
#endif
I
Ingo Molnar 已提交
5067 5068 5069 5070
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5108 5109 5110 5111
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5112
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5131
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5132 5133
 * call is not atomic; no spinlocks may be held.
 */
5134
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5135
{
5136
	struct migration_req req;
L
Linus Torvalds 已提交
5137
	unsigned long flags;
5138
	struct rq *rq;
5139
	int ret = 0;
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5162

L
Linus Torvalds 已提交
5163 5164 5165 5166 5167
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5168
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5169 5170 5171 5172 5173 5174
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5175 5176
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5177
 */
5178
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5179
{
5180
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5181
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5182 5183

	if (unlikely(cpu_is_offline(dest_cpu)))
5184
		return ret;
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5197
	on_rq = p->se.on_rq;
5198
	if (on_rq)
5199
		deactivate_task(rq_src, p, 0);
5200

L
Linus Torvalds 已提交
5201
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5202 5203 5204
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5205
	}
5206
	ret = 1;
L
Linus Torvalds 已提交
5207 5208
out:
	double_rq_unlock(rq_src, rq_dest);
5209
	return ret;
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215 5216
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5217
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5218 5219
{
	int cpu = (long)data;
5220
	struct rq *rq;
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5227
		struct migration_req *req;
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5250
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5251 5252
		list_del_init(head->next);

N
Nick Piggin 已提交
5253 5254 5255
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5285
/*
5286
 * Figure out where task on dead CPU should go, use force if necessary.
5287 5288
 * NOTE: interrupts should be disabled by the caller
 */
5289
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5290
{
5291
	unsigned long flags;
L
Linus Torvalds 已提交
5292
	cpumask_t mask;
5293 5294
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5295

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5308 5309 5310 5311 5312
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5313
			 * cpuset_cpus_allowed() will not block. It must be
5314 5315
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5316
			rq = task_rq_lock(p, &flags);
5317
			p->cpus_allowed = cpus_allowed;
5318 5319
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5320

5321 5322 5323 5324 5325
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5326
			if (p->mm && printk_ratelimit()) {
5327 5328
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5329 5330
					task_pid_nr(p), p->comm, dead_cpu);
			}
5331
		}
5332
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5342
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5343
{
5344
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5358
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5359

5360
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5361

5362 5363
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5364 5365
			continue;

5366 5367 5368
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5369

5370
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5371 5372
}

I
Ingo Molnar 已提交
5373 5374
/*
 * Schedules idle task to be the next runnable task on current CPU.
5375 5376
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5377 5378 5379
 */
void sched_idle_next(void)
{
5380
	int this_cpu = smp_processor_id();
5381
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5382 5383 5384 5385
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5386
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5387

5388 5389 5390
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5391 5392 5393
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5394
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5395

5396 5397
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5398 5399 5400 5401

	spin_unlock_irqrestore(&rq->lock, flags);
}

5402 5403
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5417
/* called under rq->lock with disabled interrupts */
5418
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5419
{
5420
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5421 5422

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5423
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5424 5425

	/* Cannot have done final schedule yet: would have vanished. */
5426
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5427

5428
	get_task_struct(p);
L
Linus Torvalds 已提交
5429 5430 5431

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5432
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5433 5434
	 * fine.
	 */
5435
	spin_unlock_irq(&rq->lock);
5436
	move_task_off_dead_cpu(dead_cpu, p);
5437
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5438

5439
	put_task_struct(p);
L
Linus Torvalds 已提交
5440 5441 5442 5443 5444
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5445
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5446
	struct task_struct *next;
5447

I
Ingo Molnar 已提交
5448 5449 5450
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5451
		update_rq_clock(rq);
5452
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5453 5454 5455
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5456

L
Linus Torvalds 已提交
5457 5458 5459 5460
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5461 5462 5463
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5464 5465
	{
		.procname	= "sched_domain",
5466
		.mode		= 0555,
5467
	},
I
Ingo Molnar 已提交
5468
	{0, },
5469 5470 5471
};

static struct ctl_table sd_ctl_root[] = {
5472
	{
5473
		.ctl_name	= CTL_KERN,
5474
		.procname	= "kernel",
5475
		.mode		= 0555,
5476 5477
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5478
	{0, },
5479 5480 5481 5482 5483
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5484
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5485 5486 5487 5488

	return entry;
}

5489 5490
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5491
	struct ctl_table *entry;
5492

5493 5494 5495
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5496
	 * will always be set. In the lowest directory the names are
5497 5498 5499
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5500 5501
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5502 5503 5504
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5505 5506 5507 5508 5509

	kfree(*tablep);
	*tablep = NULL;
}

5510
static void
5511
set_table_entry(struct ctl_table *entry,
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5525
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5526

5527 5528 5529
	if (table == NULL)
		return NULL;

5530
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5531
		sizeof(long), 0644, proc_doulongvec_minmax);
5532
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5533
		sizeof(long), 0644, proc_doulongvec_minmax);
5534
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5535
		sizeof(int), 0644, proc_dointvec_minmax);
5536
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5537
		sizeof(int), 0644, proc_dointvec_minmax);
5538
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5539
		sizeof(int), 0644, proc_dointvec_minmax);
5540
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5541
		sizeof(int), 0644, proc_dointvec_minmax);
5542
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5543
		sizeof(int), 0644, proc_dointvec_minmax);
5544
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5545
		sizeof(int), 0644, proc_dointvec_minmax);
5546
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5547
		sizeof(int), 0644, proc_dointvec_minmax);
5548
	set_table_entry(&table[9], "cache_nice_tries",
5549 5550
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5551
	set_table_entry(&table[10], "flags", &sd->flags,
5552
		sizeof(int), 0644, proc_dointvec_minmax);
5553
	/* &table[11] is terminator */
5554 5555 5556 5557

	return table;
}

5558
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5559 5560 5561 5562 5563 5564 5565 5566 5567
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5568 5569
	if (table == NULL)
		return NULL;
5570 5571 5572 5573 5574

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5575
		entry->mode = 0555;
5576 5577 5578 5579 5580 5581 5582 5583
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5584
static void register_sched_domain_sysctl(void)
5585 5586 5587 5588 5589
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5590 5591 5592
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5593 5594 5595
	if (entry == NULL)
		return;

5596
	for_each_online_cpu(i) {
5597 5598
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5599
		entry->mode = 0555;
5600
		entry->child = sd_alloc_ctl_cpu_table(i);
5601
		entry++;
5602
	}
5603 5604

	WARN_ON(sd_sysctl_header);
5605 5606
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5607

5608
/* may be called multiple times per register */
5609 5610
static void unregister_sched_domain_sysctl(void)
{
5611 5612
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5613
	sd_sysctl_header = NULL;
5614 5615
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5616
}
5617
#else
5618 5619 5620 5621
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5622 5623 5624 5625
{
}
#endif

L
Linus Torvalds 已提交
5626 5627 5628 5629
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5630 5631
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5632 5633
{
	struct task_struct *p;
5634
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5635
	unsigned long flags;
5636
	struct rq *rq;
L
Linus Torvalds 已提交
5637 5638

	switch (action) {
5639

L
Linus Torvalds 已提交
5640
	case CPU_UP_PREPARE:
5641
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5642
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5648
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5649 5650 5651
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5652

L
Linus Torvalds 已提交
5653
	case CPU_ONLINE:
5654
	case CPU_ONLINE_FROZEN:
5655
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5656 5657
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5658

L
Linus Torvalds 已提交
5659 5660
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5661
	case CPU_UP_CANCELED_FROZEN:
5662 5663
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5664
		/* Unbind it from offline cpu so it can run. Fall thru. */
5665 5666
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5667 5668 5669
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5670

L
Linus Torvalds 已提交
5671
	case CPU_DEAD:
5672
	case CPU_DEAD_FROZEN:
5673
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5674 5675 5676 5677 5678
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5679
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5680
		update_rq_clock(rq);
5681
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5682
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5683 5684
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5685
		migrate_dead_tasks(cpu);
5686
		spin_unlock_irq(&rq->lock);
5687
		cpuset_unlock();
L
Linus Torvalds 已提交
5688 5689 5690
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5691 5692 5693 5694 5695
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5696 5697
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5698 5699
			struct migration_req *req;

L
Linus Torvalds 已提交
5700
			req = list_entry(rq->migration_queue.next,
5701
					 struct migration_req, list);
L
Linus Torvalds 已提交
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5715
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5716 5717 5718 5719
	.notifier_call = migration_call,
	.priority = 10
};

5720
void __init migration_init(void)
L
Linus Torvalds 已提交
5721 5722
{
	void *cpu = (void *)(long)smp_processor_id();
5723
	int err;
5724 5725

	/* Start one for the boot CPU: */
5726 5727
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5728 5729 5730 5731 5732 5733
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5734 5735 5736 5737 5738

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5739
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5740 5741

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5742
{
I
Ingo Molnar 已提交
5743 5744 5745
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5746

I
Ingo Molnar 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5758 5759
	}

I
Ingo Molnar 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5770

I
Ingo Molnar 已提交
5771
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5772
	do {
I
Ingo Molnar 已提交
5773 5774 5775
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5776 5777 5778
			break;
		}

I
Ingo Molnar 已提交
5779 5780 5781 5782 5783 5784
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5785

I
Ingo Molnar 已提交
5786 5787 5788 5789 5790
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5791

I
Ingo Molnar 已提交
5792 5793 5794 5795 5796
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5797

I
Ingo Molnar 已提交
5798
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5799

I
Ingo Molnar 已提交
5800 5801
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5802

I
Ingo Molnar 已提交
5803 5804 5805
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5806

I
Ingo Molnar 已提交
5807 5808
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5809

I
Ingo Molnar 已提交
5810 5811 5812 5813 5814
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5815

I
Ingo Molnar 已提交
5816 5817 5818
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5819

I
Ingo Molnar 已提交
5820 5821 5822 5823
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5824

I
Ingo Molnar 已提交
5825 5826 5827 5828 5829
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5830 5831
		level++;
		sd = sd->parent;
5832
		if (!sd)
I
Ingo Molnar 已提交
5833 5834
			break;
	}
L
Linus Torvalds 已提交
5835 5836
}
#else
5837
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5838 5839
#endif

5840
static int sd_degenerate(struct sched_domain *sd)
5841 5842 5843 5844 5845 5846 5847 5848
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5849 5850 5851
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5865 5866
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5885 5886 5887
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5888 5889 5890 5891 5892 5893 5894
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5895 5896 5897 5898
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5899
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5900
{
5901
	struct rq *rq = cpu_rq(cpu);
5902 5903 5904 5905 5906 5907 5908
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5909
		if (sd_parent_degenerate(tmp, parent)) {
5910
			tmp->parent = parent->parent;
5911 5912 5913
			if (parent->parent)
				parent->parent->child = tmp;
		}
5914 5915
	}

5916
	if (sd && sd_degenerate(sd)) {
5917
		sd = sd->parent;
5918 5919 5920
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5921 5922 5923

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5924
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5925 5926 5927
}

/* cpus with isolated domains */
5928
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5943
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5944 5945

/*
5946 5947 5948 5949
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5950 5951 5952 5953 5954
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5955
static void
5956 5957 5958
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5959 5960 5961 5962 5963 5964
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5965 5966
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5967 5968 5969 5970 5971 5972
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5973
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5974 5975

		for_each_cpu_mask(j, span) {
5976
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5991
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5992

5993
#ifdef CONFIG_NUMA
5994

5995 5996 5997 5998 5999
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6000
 * Find the next node to include in a given scheduling domain. Simply
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6040
 * Given a node, construct a good cpumask for its sched_domain to span. It
6041 6042 6043 6044 6045 6046
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6047 6048
	cpumask_t span, nodemask;
	int i;
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6059

6060 6061 6062 6063 6064 6065 6066 6067
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6068
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6069

6070
/*
6071
 * SMT sched-domains:
6072
 */
L
Linus Torvalds 已提交
6073 6074
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6075
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6076

I
Ingo Molnar 已提交
6077 6078
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6079
{
6080 6081
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6082 6083 6084 6085
	return cpu;
}
#endif

6086 6087 6088
/*
 * multi-core sched-domains:
 */
6089 6090
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6091
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6092 6093 6094
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6095 6096
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6097
{
6098
	int group;
6099
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6100
	cpus_and(mask, mask, *cpu_map);
6101 6102 6103 6104
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6105 6106
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6107 6108
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6109
{
6110 6111
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6112 6113 6114 6115
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6116
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6117
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6118

I
Ingo Molnar 已提交
6119 6120
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6121
{
6122
	int group;
6123
#ifdef CONFIG_SCHED_MC
6124
	cpumask_t mask = cpu_coregroup_map(cpu);
6125
	cpus_and(mask, mask, *cpu_map);
6126
	group = first_cpu(mask);
6127
#elif defined(CONFIG_SCHED_SMT)
6128
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6129
	cpus_and(mask, mask, *cpu_map);
6130
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6131
#else
6132
	group = cpu;
L
Linus Torvalds 已提交
6133
#endif
6134 6135 6136
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6137 6138 6139 6140
}

#ifdef CONFIG_NUMA
/*
6141 6142 6143
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6144
 */
6145
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6146
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6147

6148
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6149
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6150

6151 6152
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6153
{
6154 6155 6156 6157 6158 6159 6160 6161 6162
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6163
}
6164

6165 6166 6167 6168 6169 6170 6171
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6172 6173 6174
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6175

6176 6177 6178 6179 6180 6181 6182 6183
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6184

6185 6186 6187 6188
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6189
}
L
Linus Torvalds 已提交
6190 6191
#endif

6192
#ifdef CONFIG_NUMA
6193 6194 6195
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6196
	int cpu, i;
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6227 6228 6229 6230 6231
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6232

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6259 6260
	sd->groups->__cpu_power = 0;

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6271
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6272 6273 6274 6275 6276 6277 6278 6279
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6280
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6281 6282 6283 6284
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6285
/*
6286 6287
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6288
 */
6289
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6290 6291
{
	int i;
6292 6293
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6294
	int sd_allnodes = 0;
6295 6296 6297 6298

	/*
	 * Allocate the per-node list of sched groups
	 */
6299
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6300
				    GFP_KERNEL);
6301 6302
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6303
		return -ENOMEM;
6304 6305 6306
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6307 6308

	/*
6309
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6310
	 */
6311
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6312 6313 6314
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6315
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6316 6317

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6318 6319
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6320 6321 6322
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6323
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6324
			p = sd;
6325
			sd_allnodes = 1;
6326 6327 6328
		} else
			p = NULL;

L
Linus Torvalds 已提交
6329 6330
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6331 6332
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6333 6334
		if (p)
			p->child = sd;
6335
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6336 6337 6338 6339 6340 6341 6342
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6343 6344
		if (p)
			p->child = sd;
6345
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6346

6347 6348 6349 6350 6351 6352 6353
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6354
		p->child = sd;
6355
		cpu_to_core_group(i, cpu_map, &sd->groups);
6356 6357
#endif

L
Linus Torvalds 已提交
6358 6359 6360 6361
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6362
		sd->span = per_cpu(cpu_sibling_map, i);
6363
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6364
		sd->parent = p;
6365
		p->child = sd;
6366
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6367 6368 6369 6370 6371
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6372
	for_each_cpu_mask(i, *cpu_map) {
6373
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6374
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6375 6376 6377
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6378 6379
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6380 6381 6382
	}
#endif

6383 6384 6385 6386 6387 6388 6389
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6390 6391
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6392 6393 6394
	}
#endif

L
Linus Torvalds 已提交
6395 6396 6397 6398
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6399
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6400 6401 6402
		if (cpus_empty(nodemask))
			continue;

6403
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6404 6405 6406 6407
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6408
	if (sd_allnodes)
I
Ingo Molnar 已提交
6409 6410
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6421 6422
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6423
			continue;
6424
		}
6425 6426 6427 6428

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6429
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6430 6431 6432 6433 6434
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6435 6436 6437
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6438

6439 6440 6441
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6442
		sg->__cpu_power = 0;
6443
		sg->cpumask = nodemask;
6444
		sg->next = sg;
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6463 6464
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6465 6466 6467
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6468
				goto error;
6469
			}
6470
			sg->__cpu_power = 0;
6471
			sg->cpumask = tmp;
6472
			sg->next = prev->next;
6473 6474 6475 6476 6477
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6478 6479 6480
#endif

	/* Calculate CPU power for physical packages and nodes */
6481
#ifdef CONFIG_SCHED_SMT
6482
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6483 6484
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6485
		init_sched_groups_power(i, sd);
6486
	}
L
Linus Torvalds 已提交
6487
#endif
6488
#ifdef CONFIG_SCHED_MC
6489
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6490 6491
		struct sched_domain *sd = &per_cpu(core_domains, i);

6492
		init_sched_groups_power(i, sd);
6493 6494
	}
#endif
6495

6496
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6497 6498
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6499
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6500 6501
	}

6502
#ifdef CONFIG_NUMA
6503 6504
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6505

6506 6507
	if (sd_allnodes) {
		struct sched_group *sg;
6508

6509
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6510 6511
		init_numa_sched_groups_power(sg);
	}
6512 6513
#endif

L
Linus Torvalds 已提交
6514
	/* Attach the domains */
6515
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6516 6517 6518
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6519 6520
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6521 6522 6523 6524 6525
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6526 6527 6528

	return 0;

6529
#ifdef CONFIG_NUMA
6530 6531 6532
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6533
#endif
L
Linus Torvalds 已提交
6534
}
P
Paul Jackson 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6546
/*
I
Ingo Molnar 已提交
6547
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6548 6549
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6550
 */
6551
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6552
{
6553 6554
	int err;

P
Paul Jackson 已提交
6555 6556 6557 6558 6559
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6560
	err = build_sched_domains(doms_cur);
6561
	register_sched_domain_sysctl();
6562 6563

	return err;
6564 6565 6566
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6567
{
6568
	free_sched_groups(cpu_map);
6569
}
L
Linus Torvalds 已提交
6570

6571 6572 6573 6574
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6575
static void detach_destroy_domains(const cpumask_t *cpu_map)
6576 6577 6578
{
	int i;

6579 6580
	unregister_sched_domain_sysctl();

6581 6582 6583 6584 6585 6586
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6587 6588
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6589
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6590 6591 6592 6593
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6594 6595 6596
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6597 6598 6599
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6600 6601
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6612 6613
	lock_doms_cur();

6614 6615 6616
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6652 6653

	register_sched_domain_sysctl();
6654 6655

	unlock_doms_cur();
P
Paul Jackson 已提交
6656 6657
}

6658
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6659
static int arch_reinit_sched_domains(void)
6660 6661 6662
{
	int err;

6663
	get_online_cpus();
6664 6665
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6666
	put_online_cpus();
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6693 6694
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6695 6696 6697
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6698 6699
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6700 6701 6702 6703 6704 6705 6706
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6707 6708
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6709 6710 6711
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6732 6733
#endif

L
Linus Torvalds 已提交
6734
/*
I
Ingo Molnar 已提交
6735
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6736
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6737
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6738 6739 6740 6741 6742 6743 6744
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6745
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6746
	case CPU_DOWN_PREPARE:
6747
	case CPU_DOWN_PREPARE_FROZEN:
6748
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6749 6750 6751
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6752
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6753
	case CPU_DOWN_FAILED:
6754
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6755
	case CPU_ONLINE:
6756
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6757
	case CPU_DEAD:
6758
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6768
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6769 6770 6771 6772 6773 6774

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6775 6776
	cpumask_t non_isolated_cpus;

6777
	get_online_cpus();
6778
	arch_init_sched_domains(&cpu_online_map);
6779
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6780 6781
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6782
	put_online_cpus();
L
Linus Torvalds 已提交
6783 6784
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6785 6786 6787 6788

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6789
	sched_init_granularity();
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6805 6806 6807 6808
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6809
	sched_init_granularity();
L
Linus Torvalds 已提交
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6820
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6821 6822 6823 6824 6825
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6826
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6827 6828
}

L
Linus Torvalds 已提交
6829 6830
void __init sched_init(void)
{
6831
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6832 6833
	int i, j;

6834
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6835
		struct rt_prio_array *array;
6836
		struct rq *rq;
L
Linus Torvalds 已提交
6837 6838 6839

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6840
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6841
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6842 6843 6844 6845
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6846 6847 6848 6849 6850 6851 6852
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6853
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6854
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6855 6856
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6857 6858 6859
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6860
			se->load.weight = init_task_group_load;
6861
			se->load.inv_weight =
6862
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6863 6864
			se->parent = NULL;
		}
6865
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6866
#endif
L
Linus Torvalds 已提交
6867

I
Ingo Molnar 已提交
6868 6869
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6870
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6871
		rq->sd = NULL;
L
Linus Torvalds 已提交
6872
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6873
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6874
		rq->push_cpu = 0;
6875
		rq->cpu = i;
L
Linus Torvalds 已提交
6876 6877
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
6878
		rq->rt.highest_prio = MAX_RT_PRIO;
L
Linus Torvalds 已提交
6879 6880 6881
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6882 6883 6884 6885
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6886
		}
6887
		highest_cpu = i;
I
Ingo Molnar 已提交
6888 6889
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6890 6891
	}

6892
	set_load_weight(&init_task);
6893

6894 6895 6896 6897
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6898
#ifdef CONFIG_SMP
6899
	nr_cpu_ids = highest_cpu + 1;
6900 6901 6902
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6903 6904 6905 6906
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6920 6921 6922 6923
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6924 6925 6926 6927 6928
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6929
#ifdef in_atomic
L
Linus Torvalds 已提交
6930 6931 6932 6933 6934 6935 6936
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6937
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6938 6939 6940
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6941
		debug_show_held_locks(current);
6942 6943
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6944 6945 6946 6947 6948 6949 6950 6951
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6966 6967
void normalize_rt_tasks(void)
{
6968
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6969
	unsigned long flags;
6970
	struct rq *rq;
L
Linus Torvalds 已提交
6971 6972

	read_lock_irq(&tasklist_lock);
6973
	do_each_thread(g, p) {
6974 6975 6976 6977 6978 6979
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6980 6981
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6982 6983 6984
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6985
#endif
I
Ingo Molnar 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6995
			continue;
I
Ingo Molnar 已提交
6996
		}
L
Linus Torvalds 已提交
6997

6998 6999
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7000

7001
		normalize_task(rq, p);
7002

7003 7004
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7005 7006
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7007 7008 7009 7010
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7029
struct task_struct *curr_task(int cpu)
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7040 7041
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7042 7043 7044 7045 7046 7047 7048
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7049
void set_curr_task(int cpu, struct task_struct *p)
7050 7051 7052 7053 7054
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7055 7056 7057

#ifdef CONFIG_FAIR_GROUP_SCHED

7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

		/* Nothing to do if this group has no load  */
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7161
		get_online_cpus();
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7195
		put_online_cpus();
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7209
/* allocate runqueue etc for a new task group */
7210
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7211
{
7212
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7213 7214
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7215
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7216 7217 7218 7219 7220 7221
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7222
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7223 7224
	if (!tg->cfs_rq)
		goto err;
7225
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7226 7227 7228 7229
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7230
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7257 7258 7259
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7260 7261 7262 7263 7264
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7265
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7266

7267
	return tg;
S
Srivatsa Vaddagiri 已提交
7268 7269 7270

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7271
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7272
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7273
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7274 7275
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7276 7277 7278
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7279 7280 7281 7282

	return ERR_PTR(-ENOMEM);
}

7283 7284
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7285
{
7286 7287
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7305
/* Destroy runqueue etc associated with a task group */
7306
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7307
{
7308
	struct cfs_rq *cfs_rq = NULL;
7309
	int i;
S
Srivatsa Vaddagiri 已提交
7310

7311
	lock_task_group_list();
7312 7313 7314 7315
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7316
	unlock_task_group_list();
7317

7318
	BUG_ON(!cfs_rq);
7319 7320

	/* wait for possible concurrent references to cfs_rqs complete */
7321
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7322 7323
}

7324
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7325 7326 7327
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7328 7329
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7330 7331 7332 7333 7334 7335 7336
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7337
	if (tsk->sched_class != &fair_sched_class) {
7338
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7339
		goto done;
7340
	}
S
Srivatsa Vaddagiri 已提交
7341 7342 7343

	update_rq_clock(rq);

7344
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7345 7346
	on_rq = tsk->se.on_rq;

7347
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7348
		dequeue_task(rq, tsk, 0);
7349 7350 7351
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7352

7353
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7354

7355 7356 7357
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7358
		enqueue_task(rq, tsk, 0);
7359
	}
S
Srivatsa Vaddagiri 已提交
7360 7361 7362 7363 7364

done:
	task_rq_unlock(rq, &flags);
}

7365
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7366 7367 7368 7369 7370 7371
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7372 7373
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7374 7375

	on_rq = se->on_rq;
7376
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7377
		dequeue_entity(cfs_rq, se, 0);
7378 7379
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7380 7381 7382 7383

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7384
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7385
		enqueue_entity(cfs_rq, se, 0);
7386 7387
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7388 7389
}

7390
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7391 7392
{
	int i;
7393 7394
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7395

7396
	lock_task_group_list();
7397
	if (tg->shares == shares)
7398
		goto done;
S
Srivatsa Vaddagiri 已提交
7399

7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7420
	tg->shares = shares;
7421 7422
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7423
		set_se_shares(tg->se[i], shares);
7424 7425
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7426

7427 7428 7429 7430 7431 7432 7433 7434 7435
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7436
done:
7437
	unlock_task_group_list();
7438
	return 0;
S
Srivatsa Vaddagiri 已提交
7439 7440
}

7441 7442 7443 7444 7445
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7446
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7447 7448 7449 7450

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7451
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7452
{
7453 7454
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7455 7456 7457
}

static struct cgroup_subsys_state *
7458
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7459 7460 7461
{
	struct task_group *tg;

7462
	if (!cgrp->parent) {
7463
		/* This is early initialization for the top cgroup */
7464
		init_task_group.css.cgroup = cgrp;
7465 7466 7467 7468
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7469
	if (cgrp->parent->parent)
7470 7471 7472 7473 7474 7475 7476
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7477
	tg->css.cgroup = cgrp;
7478 7479 7480 7481

	return &tg->css;
}

I
Ingo Molnar 已提交
7482 7483
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7484
{
7485
	struct task_group *tg = cgroup_tg(cgrp);
7486 7487 7488 7489

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7490 7491 7492
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7493 7494 7495 7496 7497 7498 7499 7500 7501
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7502
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7503 7504 7505 7506 7507
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7508 7509
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7510
{
7511
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7512 7513
}

7514
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7515
{
7516
	struct task_group *tg = cgroup_tg(cgrp);
7517 7518 7519 7520

	return (u64) tg->shares;
}

7521 7522 7523 7524 7525 7526
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7527 7528 7529 7530
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7531
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7532 7533 7534
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7535 7536 7537 7538 7539 7540 7541
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7542 7543 7544 7545
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7598 7599
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */