sched.c 165.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
265 266
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
267
	u64 tick_timestamp;
I
Ingo Molnar 已提交
268

L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
277
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
278

279
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
302
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
303 304
};

305
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

313 314 315 316 317 318 319 320 321
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
322
/*
I
Ingo Molnar 已提交
323 324
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
325
 */
I
Ingo Molnar 已提交
326
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
327 328 329 330 331 332
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
333 334 335
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
336 337 338 339 340 341 342 343 344 345
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
346 347 348 349 350
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
351 352 353 354 355 356 357 358 359 360
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
361
}
I
Ingo Molnar 已提交
362

I
Ingo Molnar 已提交
363 364 365 366
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
367 368
}

N
Nick Piggin 已提交
369 370
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
372 373 374 375
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
376 377
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
378 379 380 381 382 383

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

384 385 386 387 388 389 390 391
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
392
	struct rq *rq;
393

394
	local_irq_save(flags);
I
Ingo Molnar 已提交
395 396 397
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
398
	local_irq_restore(flags);
399 400 401 402

	return now;
}

I
Ingo Molnar 已提交
403 404 405 406 407 408 409 410 411 412 413 414
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
415
#ifndef prepare_arch_switch
416 417 418 419 420 421 422
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
423
static inline int task_running(struct rq *rq, struct task_struct *p)
424 425 426 427
{
	return rq->curr == p;
}

428
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
429 430 431
{
}

432
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
433
{
434 435 436 437
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
438 439 440 441 442 443 444
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

445 446 447 448
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
449
static inline int task_running(struct rq *rq, struct task_struct *p)
450 451 452 453 454 455 456 457
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

458
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

475
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
476 477 478 479 480 481 482 483 484 485 486 487
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
488
#endif
489 490
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
491

492 493 494 495
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
496
static inline struct rq *__task_rq_lock(struct task_struct *p)
497 498
	__acquires(rq->lock)
{
499
	struct rq *rq;
500 501 502 503 504 505 506 507 508 509 510

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
511 512 513 514 515
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
516
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
517 518
	__acquires(rq->lock)
{
519
	struct rq *rq;
L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528 529 530 531

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

532
static inline void __task_rq_unlock(struct rq *rq)
533 534 535 536 537
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

538
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
539 540 541 542 543 544
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
545
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
546
 */
547
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
548 549
	__acquires(rq->lock)
{
550
	struct rq *rq;
L
Linus Torvalds 已提交
551 552 553 554 555 556 557 558

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

559
/*
560
 * We are going deep-idle (irqs are disabled):
561
 */
562
void sched_clock_idle_sleep_event(void)
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
580

581 582 583 584 585 586 587 588 589 590 591
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
592
}
593
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
594

I
Ingo Molnar 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
668 669 670 671 672
/*
 * Shift right and round:
 */
#define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

673
static unsigned long
674 675 676 677 678 679
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
680
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
681 682 683 684 685

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
686 687 688 689 690
	if (unlikely(tmp > WMULT_CONST))
		tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
691

692
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

713 714 715 716 717 718 719 720 721
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
722 723 724 725 726 727 728 729 730 731 732
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 734 735
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
736 737
 */
static const int prio_to_weight[40] = {
738 739 740 741 742 743 744 745
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
746 747
};

748 749 750 751 752 753 754
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
755
static const u32 prio_to_wmult[40] = {
756 757 758 759 760 761 762 763
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
764
};
765

I
Ingo Molnar 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
783
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
784 785 786 787 788 789 790 791 792 793 794

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
819
static void update_curr_load(struct rq *rq)
820 821 822 823 824
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
825 826
	ls->load_update_start = rq->clock;
	ls->delta_stat += rq->clock - start;
827 828 829 830 831 832 833 834
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

835
static inline void inc_load(struct rq *rq, const struct task_struct *p)
836
{
837
	update_curr_load(rq);
838 839 840
	update_load_add(&rq->ls.load, p->se.load.weight);
}

841
static inline void dec_load(struct rq *rq, const struct task_struct *p)
842
{
843
	update_curr_load(rq);
844 845 846
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

847
static void inc_nr_running(struct task_struct *p, struct rq *rq)
848 849
{
	rq->nr_running++;
850
	inc_load(rq, p);
851 852
}

853
static void dec_nr_running(struct task_struct *p, struct rq *rq)
854 855
{
	rq->nr_running--;
856
	dec_load(rq, p);
857 858
}

859 860
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
861 862
	p->se.wait_runtime = 0;

863
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
864 865 866 867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
868

I
Ingo Molnar 已提交
869 870 871 872 873 874 875 876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
877

I
Ingo Molnar 已提交
878 879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
880 881
}

882
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
883
{
I
Ingo Molnar 已提交
884
	sched_info_queued(p);
885
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
886
	p->se.on_rq = 1;
887 888
}

889
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
890
{
891
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
892
	p->se.on_rq = 0;
893 894
}

895
/*
I
Ingo Molnar 已提交
896
 * __normal_prio - return the priority that is based on the static prio
897 898 899
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
900
	return p->static_prio;
901 902
}

903 904 905 906 907 908 909
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
910
static inline int normal_prio(struct task_struct *p)
911 912 913
{
	int prio;

914
	if (task_has_rt_policy(p))
915 916 917 918 919 920 921 922 923 924 925 926 927
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
928
static int effective_prio(struct task_struct *p)
929 930 931 932 933 934 935 936 937 938 939 940
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
941
/*
I
Ingo Molnar 已提交
942
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
943
 */
I
Ingo Molnar 已提交
944
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
945
{
I
Ingo Molnar 已提交
946 947
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
948

949
	enqueue_task(rq, p, wakeup);
950
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
951 952 953
}

/*
I
Ingo Molnar 已提交
954
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
955
 */
I
Ingo Molnar 已提交
956
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
957
{
I
Ingo Molnar 已提交
958
	update_rq_clock(rq);
L
Linus Torvalds 已提交
959

I
Ingo Molnar 已提交
960 961
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
962

963
	enqueue_task(rq, p, 0);
964
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
965 966 967 968 969
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
970
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
971
{
I
Ingo Molnar 已提交
972 973 974
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

975
	dequeue_task(rq, p, sleep);
976
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
977 978 979 980 981 982
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
983
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
984 985 986 987
{
	return cpu_curr(task_cpu(p)) == p;
}

988 989 990
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
991 992 993 994 995 996 997 998 999
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1000 1001
}

L
Linus Torvalds 已提交
1002
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1003

I
Ingo Molnar 已提交
1004
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1005
{
I
Ingo Molnar 已提交
1006 1007 1008 1009 1010
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1011 1012
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1013 1014
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1015 1016 1017 1018 1019 1020
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1021 1022 1023 1024
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1025
#endif
I
Ingo Molnar 已提交
1026 1027

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1028 1029
}

1030
struct migration_req {
L
Linus Torvalds 已提交
1031 1032
	struct list_head list;

1033
	struct task_struct *task;
L
Linus Torvalds 已提交
1034 1035 1036
	int dest_cpu;

	struct completion done;
1037
};
L
Linus Torvalds 已提交
1038 1039 1040 1041 1042

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1043
static int
1044
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1045
{
1046
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1047 1048 1049 1050 1051

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1052
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1053 1054 1055 1056 1057 1058 1059 1060
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1061

L
Linus Torvalds 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1074
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1075 1076
{
	unsigned long flags;
I
Ingo Molnar 已提交
1077
	int running, on_rq;
1078
	struct rq *rq;
L
Linus Torvalds 已提交
1079 1080

repeat:
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1108
	rq = task_rq_lock(p, &flags);
1109
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1110
	on_rq = p->se.on_rq;
1111 1112 1113 1114 1115 1116 1117 1118 1119
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1120 1121 1122
		cpu_relax();
		goto repeat;
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1133
	if (unlikely(on_rq)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1158
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1170 1171
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1172 1173 1174 1175
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1176
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1177
{
1178
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1179
	unsigned long total = weighted_cpuload(cpu);
1180

1181
	if (type == 0)
I
Ingo Molnar 已提交
1182
		return total;
1183

I
Ingo Molnar 已提交
1184
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1185 1186 1187
}

/*
1188 1189
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1190
 */
N
Nick Piggin 已提交
1191
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1192
{
1193
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1194
	unsigned long total = weighted_cpuload(cpu);
1195

N
Nick Piggin 已提交
1196
	if (type == 0)
I
Ingo Molnar 已提交
1197
		return total;
1198

I
Ingo Molnar 已提交
1199
	return max(rq->cpu_load[type-1], total);
1200 1201 1202 1203 1204 1205 1206
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1207
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1208
	unsigned long total = weighted_cpuload(cpu);
1209 1210
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1211
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1212 1213
}

N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1231 1232 1233 1234
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1251 1252
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1253 1254 1255 1256 1257 1258 1259 1260

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1261
nextgroup:
N
Nick Piggin 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1271
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1272
 */
I
Ingo Molnar 已提交
1273 1274
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1275
{
1276
	cpumask_t tmp;
N
Nick Piggin 已提交
1277 1278 1279 1280
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1281 1282 1283 1284
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1285
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1311

1312
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1313 1314 1315
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1316 1317
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1318 1319
		if (tmp->flags & flag)
			sd = tmp;
1320
	}
N
Nick Piggin 已提交
1321 1322 1323 1324

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1325 1326 1327 1328 1329 1330
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1331 1332 1333

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1334 1335 1336 1337
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1338

1339
		new_cpu = find_idlest_cpu(group, t, cpu);
1340 1341 1342 1343 1344
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1345

1346
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1373
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1389 1390 1391 1392
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1393
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1394 1395 1396 1397
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1398
		} else {
N
Nick Piggin 已提交
1399
			break;
I
Ingo Molnar 已提交
1400
		}
L
Linus Torvalds 已提交
1401 1402 1403 1404
	}
	return cpu;
}
#else
1405
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1425
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1426 1427 1428 1429
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1430
	struct rq *rq;
L
Linus Torvalds 已提交
1431
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1432
	struct sched_domain *sd, *this_sd = NULL;
1433
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1434 1435 1436 1437 1438 1439 1440 1441
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1442
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1452 1453
	new_cpu = cpu;

L
Linus Torvalds 已提交
1454 1455 1456
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1457 1458 1459 1460 1461 1462 1463 1464
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1465 1466 1467
		}
	}

N
Nick Piggin 已提交
1468
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1469 1470 1471
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1472
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1473
	 */
N
Nick Piggin 已提交
1474 1475 1476
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1477

1478 1479
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1480 1481
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1482

N
Nick Piggin 已提交
1483 1484
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1485 1486
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1487 1488 1489
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1490

L
Linus Torvalds 已提交
1491
			/*
1492 1493 1494
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1495
			 */
1496
			if (sync)
I
Ingo Molnar 已提交
1497
				tl -= current->se.load.weight;
1498 1499

			if ((tl <= load &&
1500
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1501
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1535
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541 1542 1543
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1544
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1545
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1554 1555
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1566
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1567 1568 1569 1570 1571 1572
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1573
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579 1580
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1581 1582 1583 1584 1585 1586 1587 1588
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1589
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1590 1591 1592 1593
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1594 1595 1596 1597
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1608
#endif
N
Nick Piggin 已提交
1609

I
Ingo Molnar 已提交
1610 1611
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1612

1613 1614 1615 1616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1639 1640 1641 1642 1643 1644

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1645
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1646
	if (likely(sched_info_on()))
1647
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1648
#endif
1649
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1650 1651
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1652
#ifdef CONFIG_PREEMPT
1653
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1654
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1655
#endif
N
Nick Piggin 已提交
1656
	put_cpu();
L
Linus Torvalds 已提交
1657 1658
}

I
Ingo Molnar 已提交
1659 1660 1661 1662 1663 1664
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1672
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1673 1674
{
	unsigned long flags;
I
Ingo Molnar 已提交
1675 1676
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1677 1678

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1679
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1680
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1681
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1682 1683 1684

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1685 1686 1687 1688
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1689
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1690 1691
	} else {
		/*
I
Ingo Molnar 已提交
1692 1693
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1694
		 */
1695
		p->sched_class->task_new(rq, p);
1696
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1697
	}
I
Ingo Molnar 已提交
1698 1699
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1700 1701
}

1702 1703 1704
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1705 1706
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1707 1708 1709 1710 1711 1712 1713 1714 1715
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1716
 * @notifier: notifier struct to unregister
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1760 1761 1762
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1763
 * @prev: the current task that is being switched out
1764 1765 1766 1767 1768 1769 1770 1771 1772
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1773 1774 1775
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1776
{
1777
	fire_sched_out_preempt_notifiers(prev, next);
1778 1779 1780 1781
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1782 1783
/**
 * finish_task_switch - clean up after a task-switch
1784
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1785 1786
 * @prev: the thread we just switched away from.
 *
1787 1788 1789 1790
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1797
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1798 1799 1800
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1801
	long prev_state;
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1807
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1808 1809
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1810
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1816
	prev_state = prev->state;
1817 1818
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1819
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1820 1821
	if (mm)
		mmdrop(mm);
1822
	if (unlikely(prev_state == TASK_DEAD)) {
1823 1824 1825
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1826
		 */
1827
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1828
		put_task_struct(prev);
1829
	}
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1836
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1837 1838
	__releases(rq->lock)
{
1839 1840
	struct rq *rq = this_rq();

1841 1842 1843 1844 1845
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1854
static inline void
1855
context_switch(struct rq *rq, struct task_struct *prev,
1856
	       struct task_struct *next)
L
Linus Torvalds 已提交
1857
{
I
Ingo Molnar 已提交
1858
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1859

1860
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1861 1862
	mm = next->mm;
	oldmm = prev->active_mm;
1863 1864 1865 1866 1867 1868 1869
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1870
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1877
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1878 1879 1880
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1881 1882 1883 1884 1885 1886 1887
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1888
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1889
#endif
L
Linus Torvalds 已提交
1890 1891 1892 1893

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1894 1895 1896 1897 1898 1899 1900
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1939 1940
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1941

1942
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1952
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1953 1954 1955 1956 1957
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1973
/*
I
Ingo Molnar 已提交
1974 1975
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1976
 */
I
Ingo Molnar 已提交
1977
static void update_cpu_load(struct rq *this_rq)
1978
{
I
Ingo Molnar 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
1990
	update_curr_load(this_rq);
I
Ingo Molnar 已提交
1991 1992 1993 1994 1995 1996 1997

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

1998 1999
	sample_interval64 = this_rq->clock - ls->load_update_last;
	ls->load_update_last = this_rq->clock;
I
Ingo Molnar 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2027 2028
}

I
Ingo Molnar 已提交
2029 2030
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2037
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2038 2039 2040
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2041
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2042 2043 2044 2045
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2046
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2054 2055
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2064
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2078
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2079 2080 2081 2082
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2083 2084 2085 2086 2087
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2088
	if (unlikely(!spin_trylock(&busiest->lock))) {
2089
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2104
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2105
{
2106
	struct migration_req req;
L
Linus Torvalds 已提交
2107
	unsigned long flags;
2108
	struct rq *rq;
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2119

L
Linus Torvalds 已提交
2120 2121 2122 2123 2124
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2125

L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2133 2134
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2135 2136 2137 2138
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2139
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2140
	put_cpu();
N
Nick Piggin 已提交
2141 2142
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2149 2150
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2151
{
2152
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2153
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2154
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2155 2156 2157 2158
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2159
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2165
static
2166
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2167
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2168
		     int *all_pinned)
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2178 2179 2180 2181
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2182 2183 2184 2185

	return 1;
}

I
Ingo Molnar 已提交
2186
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2187
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2188
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2189
		      int *all_pinned, unsigned long *load_moved,
2190
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2191
{
I
Ingo Molnar 已提交
2192 2193 2194
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2195

2196
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2197 2198
		goto out;

2199 2200
	pinned = 1;

L
Linus Torvalds 已提交
2201
	/*
I
Ingo Molnar 已提交
2202
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2203
	 */
I
Ingo Molnar 已提交
2204 2205 2206
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2207
		goto out;
2208 2209 2210 2211 2212
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2213 2214
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2215
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2216 2217 2218
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2219 2220
	}

I
Ingo Molnar 已提交
2221
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2222
	pulled++;
I
Ingo Molnar 已提交
2223
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2224

2225 2226 2227 2228 2229
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2230 2231
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2232 2233
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2234 2235 2236 2237 2238 2239 2240 2241
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2242 2243 2244

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2245
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2246 2247 2248
	return pulled;
}

I
Ingo Molnar 已提交
2249
/*
P
Peter Williams 已提交
2250 2251 2252
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2253 2254 2255 2256
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2257
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2258 2259 2260 2261
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2262
	unsigned long total_load_moved = 0;
2263
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2264 2265

	do {
P
Peter Williams 已提交
2266 2267 2268
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2269
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2270
		class = class->next;
P
Peter Williams 已提交
2271
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2272

P
Peter Williams 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2287
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2288 2289 2290

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2291 2292
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2293 2294 2295
			return 1;

	return 0;
I
Ingo Molnar 已提交
2296 2297
}

L
Linus Torvalds 已提交
2298 2299
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2300 2301
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2302 2303 2304
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2305 2306
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2307 2308 2309
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2310
	unsigned long max_pull;
2311 2312
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2313
	int load_idx;
2314 2315 2316 2317 2318 2319
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2320 2321

	max_load = this_load = total_load = total_pwr = 0;
2322 2323
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2324
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2325
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2326
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2327 2328 2329
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2330 2331

	do {
2332
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2333 2334
		int local_group;
		int i;
2335
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2336
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2337 2338 2339

		local_group = cpu_isset(this_cpu, group->cpumask);

2340 2341 2342
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2343
		/* Tally up the load of all CPUs in the group */
2344
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2345 2346

		for_each_cpu_mask(i, group->cpumask) {
2347 2348 2349 2350 2351 2352
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2353

2354
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2355 2356
				*sd_idle = 0;

L
Linus Torvalds 已提交
2357
			/* Bias balancing toward cpus of our domain */
2358 2359 2360 2361 2362 2363
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2364
				load = target_load(i, load_idx);
2365
			} else
N
Nick Piggin 已提交
2366
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2367 2368

			avg_load += load;
2369
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2370
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2371 2372
		}

2373 2374 2375
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2376 2377
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2378
		 */
2379 2380
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2381 2382 2383 2384
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2385
		total_load += avg_load;
2386
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2387 2388

		/* Adjust by relative CPU power of the group */
2389 2390
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2391

2392
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2393

L
Linus Torvalds 已提交
2394 2395 2396
		if (local_group) {
			this_load = avg_load;
			this = group;
2397 2398 2399
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2400
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2401 2402
			max_load = avg_load;
			busiest = group;
2403 2404
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2405
		}
2406 2407 2408 2409 2410 2411

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2412 2413 2414
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2415 2416 2417 2418 2419 2420 2421 2422 2423

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2424
		/*
2425 2426
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2427 2428
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2429
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2430
			goto group_next;
2431

I
Ingo Molnar 已提交
2432
		/*
2433
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2434 2435 2436 2437 2438
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2439 2440
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2441 2442
			group_min = group;
			min_nr_running = sum_nr_running;
2443 2444
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2445
		}
2446

I
Ingo Molnar 已提交
2447
		/*
2448
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2460
		}
2461 2462
group_next:
#endif
L
Linus Torvalds 已提交
2463 2464 2465
		group = group->next;
	} while (group != sd->groups);

2466
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472 2473 2474
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2475
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2499 2500

	/* Don't want to pull so many tasks that a group would go idle */
2501
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2502

L
Linus Torvalds 已提交
2503
	/* How much load to actually move to equalise the imbalance */
2504 2505
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2506 2507
			/ SCHED_LOAD_SCALE;

2508 2509 2510 2511 2512 2513
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2514
	if (*imbalance < busiest_load_per_task) {
2515
		unsigned long tmp, pwr_now, pwr_move;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2527

I
Ingo Molnar 已提交
2528 2529
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2530
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2540 2541 2542 2543
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2544 2545 2546
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2547 2548
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2549
		if (max_load > tmp)
2550
			pwr_move += busiest->__cpu_power *
2551
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2552 2553

		/* Amount of load we'd add */
2554
		if (max_load * busiest->__cpu_power <
2555
				busiest_load_per_task * SCHED_LOAD_SCALE)
2556 2557
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2558
		else
2559 2560 2561 2562
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2563 2564 2565
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2566 2567
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572
	}

	return busiest;

out_balanced:
2573
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2574
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2575
		goto ret;
L
Linus Torvalds 已提交
2576

2577 2578 2579 2580 2581
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2582
ret:
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2590
static struct rq *
I
Ingo Molnar 已提交
2591
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2592
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2593
{
2594
	struct rq *busiest = NULL, *rq;
2595
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2596 2597 2598
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2599
		unsigned long wl;
2600 2601 2602 2603

		if (!cpu_isset(i, *cpus))
			continue;

2604
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2605
		wl = weighted_cpuload(i);
2606

I
Ingo Molnar 已提交
2607
		if (rq->nr_running == 1 && wl > imbalance)
2608
			continue;
L
Linus Torvalds 已提交
2609

I
Ingo Molnar 已提交
2610 2611
		if (wl > max_load) {
			max_load = wl;
2612
			busiest = rq;
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617 2618
		}
	}

	return busiest;
}

2619 2620 2621 2622 2623 2624
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2625 2626 2627 2628
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2629
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2630
			struct sched_domain *sd, enum cpu_idle_type idle,
2631
			int *balance)
L
Linus Torvalds 已提交
2632
{
P
Peter Williams 已提交
2633
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2634 2635
	struct sched_group *group;
	unsigned long imbalance;
2636
	struct rq *busiest;
2637
	cpumask_t cpus = CPU_MASK_ALL;
2638
	unsigned long flags;
N
Nick Piggin 已提交
2639

2640 2641 2642
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2643
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2644
	 * portraying it as CPU_NOT_IDLE.
2645
	 */
I
Ingo Molnar 已提交
2646
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2647
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2648
		sd_idle = 1;
L
Linus Torvalds 已提交
2649 2650 2651

	schedstat_inc(sd, lb_cnt[idle]);

2652 2653
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2654 2655
				   &cpus, balance);

2656
	if (*balance == 0)
2657 2658
		goto out_balanced;

L
Linus Torvalds 已提交
2659 2660 2661 2662 2663
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2664
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2670
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2671 2672 2673

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2674
	ld_moved = 0;
L
Linus Torvalds 已提交
2675 2676 2677 2678
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2679
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2680 2681
		 * correctly treated as an imbalance.
		 */
2682
		local_irq_save(flags);
N
Nick Piggin 已提交
2683
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2684
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2685
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2686
		double_rq_unlock(this_rq, busiest);
2687
		local_irq_restore(flags);
2688

2689 2690 2691
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2692
		if (ld_moved && this_cpu != smp_processor_id())
2693 2694
			resched_cpu(this_cpu);

2695
		/* All tasks on this runqueue were pinned by CPU affinity */
2696 2697 2698 2699
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2700
			goto out_balanced;
2701
		}
L
Linus Torvalds 已提交
2702
	}
2703

P
Peter Williams 已提交
2704
	if (!ld_moved) {
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2710
			spin_lock_irqsave(&busiest->lock, flags);
2711 2712 2713 2714 2715

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2716
				spin_unlock_irqrestore(&busiest->lock, flags);
2717 2718 2719 2720
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2721 2722 2723
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2724
				active_balance = 1;
L
Linus Torvalds 已提交
2725
			}
2726
			spin_unlock_irqrestore(&busiest->lock, flags);
2727
			if (active_balance)
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2734
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2735
		}
2736
	} else
L
Linus Torvalds 已提交
2737 2738
		sd->nr_balance_failed = 0;

2739
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2740 2741
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2742 2743 2744 2745 2746 2747 2748 2749 2750
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2751 2752
	}

P
Peter Williams 已提交
2753
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2754
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2755
		return -1;
P
Peter Williams 已提交
2756
	return ld_moved;
L
Linus Torvalds 已提交
2757 2758 2759 2760

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2761
	sd->nr_balance_failed = 0;
2762 2763

out_one_pinned:
L
Linus Torvalds 已提交
2764
	/* tune up the balancing interval */
2765 2766
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2767 2768
		sd->balance_interval *= 2;

2769
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2770
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2771
		return -1;
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777 2778
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2779
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2780 2781
 * this_rq is locked.
 */
2782
static int
2783
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2784 2785
{
	struct sched_group *group;
2786
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2787
	unsigned long imbalance;
P
Peter Williams 已提交
2788
	int ld_moved = 0;
N
Nick Piggin 已提交
2789
	int sd_idle = 0;
2790
	int all_pinned = 0;
2791
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2792

2793 2794 2795 2796
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2797
	 * portraying it as CPU_NOT_IDLE.
2798 2799 2800
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2801
		sd_idle = 1;
L
Linus Torvalds 已提交
2802

I
Ingo Molnar 已提交
2803
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2804
redo:
I
Ingo Molnar 已提交
2805
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2806
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2807
	if (!group) {
I
Ingo Molnar 已提交
2808
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2809
		goto out_balanced;
L
Linus Torvalds 已提交
2810 2811
	}

I
Ingo Molnar 已提交
2812
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2813
				&cpus);
N
Nick Piggin 已提交
2814
	if (!busiest) {
I
Ingo Molnar 已提交
2815
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2816
		goto out_balanced;
L
Linus Torvalds 已提交
2817 2818
	}

N
Nick Piggin 已提交
2819 2820
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2821
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2822

P
Peter Williams 已提交
2823
	ld_moved = 0;
2824 2825 2826
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2827 2828
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2829
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2830 2831
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2832
		spin_unlock(&busiest->lock);
2833

2834
		if (unlikely(all_pinned)) {
2835 2836 2837 2838
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2839 2840
	}

P
Peter Williams 已提交
2841
	if (!ld_moved) {
I
Ingo Molnar 已提交
2842
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2843 2844
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2845 2846
			return -1;
	} else
2847
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2848

P
Peter Williams 已提交
2849
	return ld_moved;
2850 2851

out_balanced:
I
Ingo Molnar 已提交
2852
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2853
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2854
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2855
		return -1;
2856
	sd->nr_balance_failed = 0;
2857

2858
	return 0;
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863 2864
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2865
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2866 2867
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2868 2869
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2870 2871

	for_each_domain(this_cpu, sd) {
2872 2873 2874 2875 2876 2877
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2878
			/* If we've pulled tasks over stop searching: */
2879
			pulled_task = load_balance_newidle(this_cpu,
2880 2881 2882 2883 2884 2885 2886
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2887
	}
I
Ingo Molnar 已提交
2888
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2889 2890 2891 2892 2893
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2894
	}
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2905
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2906
{
2907
	int target_cpu = busiest_rq->push_cpu;
2908 2909
	struct sched_domain *sd;
	struct rq *target_rq;
2910

2911
	/* Is there any task to move? */
2912 2913 2914 2915
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2916 2917

	/*
2918 2919 2920
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2921
	 */
2922
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2923

2924 2925
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2926 2927
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2928 2929

	/* Search for an sd spanning us and the target CPU. */
2930
	for_each_domain(target_cpu, sd) {
2931
		if ((sd->flags & SD_LOAD_BALANCE) &&
2932
		    cpu_isset(busiest_cpu, sd->span))
2933
				break;
2934
	}
2935

2936 2937
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2938

P
Peter Williams 已提交
2939 2940
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2941 2942 2943 2944
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2945
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2946 2947
}

2948 2949 2950 2951 2952 2953 2954 2955 2956
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2957
/*
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2968
 *
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3025 3026 3027 3028 3029
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3030
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3031
{
3032 3033
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3034 3035
	unsigned long interval;
	struct sched_domain *sd;
3036
	/* Earliest time when we have to do rebalance again */
3037
	unsigned long next_balance = jiffies + 60*HZ;
3038
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3039

3040
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3041 3042 3043 3044
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3045
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050 3051
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3052 3053 3054
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3055

3056 3057 3058 3059 3060
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3061
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3062
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3063 3064
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3065 3066 3067
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3068
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3069
			}
3070
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3071
		}
3072 3073 3074
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3075
		if (time_after(next_balance, sd->last_balance + interval)) {
3076
			next_balance = sd->last_balance + interval;
3077 3078
			update_next_balance = 1;
		}
3079 3080 3081 3082 3083 3084 3085 3086

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3087
	}
3088 3089 3090 3091 3092 3093 3094 3095

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3096 3097 3098 3099 3100 3101 3102 3103 3104
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3105 3106 3107 3108
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3109

I
Ingo Molnar 已提交
3110
	rebalance_domains(this_cpu, idle);
3111 3112 3113 3114 3115 3116 3117

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3118 3119
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3120 3121 3122 3123
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3124
		cpu_clear(this_cpu, cpus);
3125 3126 3127 3128 3129 3130 3131 3132 3133
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3134
			rebalance_domains(balance_cpu, CPU_IDLE);
3135 3136

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3137 3138
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3151
static inline void trigger_load_balance(struct rq *rq, int cpu)
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3203
}
I
Ingo Molnar 已提交
3204 3205 3206

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3207 3208 3209
/*
 * on UP we do not need to balance between CPUs:
 */
3210
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3211 3212
{
}
I
Ingo Molnar 已提交
3213 3214 3215 3216 3217 3218

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3219
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3220 3221 3222 3223 3224 3225
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3226 3227 3228 3229 3230 3231 3232
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3233 3234
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3235
 */
3236
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3237 3238
{
	unsigned long flags;
3239 3240
	u64 ns, delta_exec;
	struct rq *rq;
3241

3242 3243 3244
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3245 3246
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3247 3248 3249 3250
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3251

L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3316
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3339
	struct task_struct *curr = rq->curr;
3340
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3341 3342

	spin_lock(&rq->lock);
3343
	__update_rq_clock(rq);
3344 3345 3346 3347 3348 3349
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3350
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3351 3352 3353
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3354

3355
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3356 3357
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3358
#endif
L
Linus Torvalds 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3368 3369
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3370 3371 3372 3373
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3374 3375
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3376 3377 3378 3379 3380 3381 3382 3383
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3384 3385
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3386 3387 3388
	/*
	 * Is the spinlock portion underflowing?
	 */
3389 3390 3391 3392
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3393 3394 3395 3396 3397 3398 3399
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3400
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3401
 */
I
Ingo Molnar 已提交
3402
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3403
{
I
Ingo Molnar 已提交
3404 3405 3406 3407 3408 3409 3410
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3411

I
Ingo Molnar 已提交
3412 3413 3414 3415 3416
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3422 3423 3424
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3425 3426
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3427 3428 3429 3430 3431 3432 3433
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3434
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3435 3436 3437
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3438 3439

	/*
I
Ingo Molnar 已提交
3440 3441
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3442
	 */
I
Ingo Molnar 已提交
3443
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3444
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3445 3446
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3447 3448
	}

I
Ingo Molnar 已提交
3449 3450
	class = sched_class_highest;
	for ( ; ; ) {
3451
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3461

I
Ingo Molnar 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3484 3485

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3486
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3487
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3488 3489 3490

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3491
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3492
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3493
		} else {
3494
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3495
		}
I
Ingo Molnar 已提交
3496
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3497 3498
	}

I
Ingo Molnar 已提交
3499
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3500 3501
		idle_balance(cpu, rq);

3502
	prev->sched_class->put_prev_task(rq, prev);
3503
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3504 3505

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3506

L
Linus Torvalds 已提交
3507 3508 3509 3510 3511
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3512
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3513 3514 3515
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3516 3517 3518
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3519
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3520
	}
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526 3527 3528
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3529
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3544
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3572
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3584
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3614 3615
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3616
{
3617
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3636 3637 3638
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3639
		if (curr->func(curr, mode, sync, key) &&
3640
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3650
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3651 3652
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3653
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3672
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3684 3685
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3729

L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3848 3849 3850 3851 3852
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3853
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3854
}
L
Linus Torvalds 已提交
3855

I
Ingo Molnar 已提交
3856 3857 3858 3859 3860 3861 3862
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3863

I
Ingo Molnar 已提交
3864
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3865
{
I
Ingo Molnar 已提交
3866 3867 3868 3869
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3870 3871 3872

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3873
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3874
	schedule();
I
Ingo Molnar 已提交
3875
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3876 3877 3878
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3879
long __sched
I
Ingo Molnar 已提交
3880
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3881
{
I
Ingo Molnar 已提交
3882 3883 3884 3885
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3886 3887 3888

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3889
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3890
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3891
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3897
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3898
{
I
Ingo Molnar 已提交
3899 3900 3901 3902
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3903 3904 3905

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3906
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3907
	schedule();
I
Ingo Molnar 已提交
3908
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3909 3910 3911
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3912
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3913
{
I
Ingo Molnar 已提交
3914 3915 3916 3917
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3918 3919 3920

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3921
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3922
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3923
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3941
void rt_mutex_setprio(struct task_struct *p, int prio)
3942 3943
{
	unsigned long flags;
I
Ingo Molnar 已提交
3944
	int oldprio, on_rq;
3945
	struct rq *rq;
3946 3947 3948 3949

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3950
	update_rq_clock(rq);
3951

3952
	oldprio = p->prio;
I
Ingo Molnar 已提交
3953 3954
	on_rq = p->se.on_rq;
	if (on_rq)
3955
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3956 3957 3958 3959 3960 3961

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3962 3963
	p->prio = prio;

I
Ingo Molnar 已提交
3964
	if (on_rq) {
3965
		enqueue_task(rq, p, 0);
3966 3967
		/*
		 * Reschedule if we are currently running on this runqueue and
3968 3969
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3970
		 */
3971 3972 3973
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3974 3975 3976
		} else {
			check_preempt_curr(rq, p);
		}
3977 3978 3979 3980 3981 3982
	}
	task_rq_unlock(rq, &flags);
}

#endif

3983
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3984
{
I
Ingo Molnar 已提交
3985
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3986
	unsigned long flags;
3987
	struct rq *rq;
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993 3994 3995

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3996
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3997 3998 3999 4000
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4001
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4002
	 */
4003
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4004 4005 4006
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4007 4008
	on_rq = p->se.on_rq;
	if (on_rq) {
4009
		dequeue_task(rq, p, 0);
4010
		dec_load(rq, p);
4011
	}
L
Linus Torvalds 已提交
4012 4013

	p->static_prio = NICE_TO_PRIO(nice);
4014
	set_load_weight(p);
4015 4016 4017
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4018

I
Ingo Molnar 已提交
4019
	if (on_rq) {
4020
		enqueue_task(rq, p, 0);
4021
		inc_load(rq, p);
L
Linus Torvalds 已提交
4022
		/*
4023 4024
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4025
		 */
4026
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032 4033
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4034 4035 4036 4037 4038
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4039
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4040
{
4041 4042
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4043

M
Matt Mackall 已提交
4044 4045 4046 4047
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4059
	long nice, retval;
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4066 4067
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4077 4078 4079
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4098
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104 4105 4106
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4107
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4126
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132 4133 4134
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4135
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4141 4142
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4143
{
I
Ingo Molnar 已提交
4144
	BUG_ON(p->se.on_rq);
4145

L
Linus Torvalds 已提交
4146
	p->policy = policy;
I
Ingo Molnar 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4159
	p->rt_priority = prio;
4160 4161 4162
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4163
	set_load_weight(p);
L
Linus Torvalds 已提交
4164 4165 4166
}

/**
4167
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4168 4169 4170
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4171
 *
4172
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4173
 */
I
Ingo Molnar 已提交
4174 4175
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4176
{
I
Ingo Molnar 已提交
4177
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4178
	unsigned long flags;
4179
	struct rq *rq;
L
Linus Torvalds 已提交
4180

4181 4182
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4188 4189
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4190
		return -EINVAL;
L
Linus Torvalds 已提交
4191 4192
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4193 4194
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4195 4196
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4197
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4198
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4199
		return -EINVAL;
4200
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4201 4202
		return -EINVAL;

4203 4204 4205 4206
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4207
		if (rt_policy(policy)) {
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4224 4225 4226 4227 4228 4229
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4230

4231 4232 4233 4234 4235
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4236 4237 4238 4239

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4240 4241 4242 4243 4244
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4245 4246 4247 4248
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4249
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4250 4251 4252
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4253 4254
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4255 4256
		goto recheck;
	}
I
Ingo Molnar 已提交
4257
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4258
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4259
	if (on_rq)
4260
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4261
	oldprio = p->prio;
I
Ingo Molnar 已提交
4262 4263 4264
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4265 4266
		/*
		 * Reschedule if we are currently running on this runqueue and
4267 4268
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4269
		 */
4270 4271 4272
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4273 4274 4275
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4276
	}
4277 4278 4279
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4280 4281
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4282 4283 4284 4285
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4286 4287
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4288 4289 4290
{
	struct sched_param lparam;
	struct task_struct *p;
4291
	int retval;
L
Linus Torvalds 已提交
4292 4293 4294 4295 4296

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4297 4298 4299

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4300
	p = find_process_by_pid(pid);
4301 4302 4303
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4304

L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4317 4318 4319 4320
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4340
	struct task_struct *p;
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4368
	struct task_struct *p;
L
Linus Torvalds 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4403 4404
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4405

4406
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4412
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4429 4430 4431 4432
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4433 4434 4435 4436 4437 4438
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4439
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4480
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4481 4482 4483
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4484
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4485 4486
EXPORT_SYMBOL(cpu_online_map);

4487
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4488
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4489 4490 4491 4492
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4493
	struct task_struct *p;
L
Linus Torvalds 已提交
4494 4495
	int retval;

4496
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4504 4505 4506 4507
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4508
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4509 4510 4511

out_unlock:
	read_unlock(&tasklist_lock);
4512
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4513

4514
	return retval;
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4545 4546
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4547 4548 4549
 */
asmlinkage long sys_sched_yield(void)
{
4550
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4551 4552

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4553
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4554
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4555 4556
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561 4562

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4563
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4572
static void __cond_resched(void)
L
Linus Torvalds 已提交
4573
{
4574 4575 4576
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4577 4578 4579 4580 4581
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4591 4592
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4608
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4609
{
J
Jan Kara 已提交
4610 4611
	int ret = 0;

L
Linus Torvalds 已提交
4612 4613 4614
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4615
		ret = 1;
L
Linus Torvalds 已提交
4616 4617
		spin_lock(lock);
	}
4618
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4619
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4620 4621 4622
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4623
		ret = 1;
L
Linus Torvalds 已提交
4624 4625
		spin_lock(lock);
	}
J
Jan Kara 已提交
4626
	return ret;
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4634
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4635
		local_bh_enable();
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4647
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4666
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4667

4668
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4669 4670 4671
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4672
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4678
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4679 4680
	long ret;

4681
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4682 4683 4684
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4685
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4706
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4707
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4731
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4732
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4749
	struct task_struct *p;
L
Linus Torvalds 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4766
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4767
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4777
static const char stat_nam[] = "RSDTtZX";
4778 4779

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4780 4781
{
	unsigned long free = 0;
4782
	unsigned state;
L
Linus Torvalds 已提交
4783 4784

	state = p->state ? __ffs(p->state) + 1 : 0;
4785 4786
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4787
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4788
	if (state == TASK_RUNNING)
4789
		printk(" running  ");
L
Linus Torvalds 已提交
4790
	else
4791
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4792 4793
#else
	if (state == TASK_RUNNING)
4794
		printk("  running task    ");
L
Linus Torvalds 已提交
4795 4796 4797 4798 4799
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4800
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4801 4802
		while (!*n)
			n++;
4803
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4804 4805
	}
#endif
4806
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4812
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4813
{
4814
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4815

4816 4817 4818
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4819
#else
4820 4821
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4822 4823 4824 4825 4826 4827 4828 4829
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4830
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4831
			show_task(p);
L
Linus Torvalds 已提交
4832 4833
	} while_each_thread(g, p);

4834 4835
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4836 4837 4838
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4839
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4840 4841 4842 4843 4844
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4845 4846
}

I
Ingo Molnar 已提交
4847 4848
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4849
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4850 4851
}

4852 4853 4854 4855 4856 4857 4858 4859
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4860
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4861
{
4862
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4863 4864
	unsigned long flags;

I
Ingo Molnar 已提交
4865 4866 4867
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4868
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4869
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4870
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4871 4872 4873

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4874 4875 4876
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4877 4878 4879 4880
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4881
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4882
#else
A
Al Viro 已提交
4883
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4884
#endif
I
Ingo Molnar 已提交
4885 4886 4887 4888
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4912
	const unsigned long limit = 100000000;
I
Ingo Molnar 已提交
4913

4914 4915 4916
	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;
I
Ingo Molnar 已提交
4917

4918 4919 4920 4921
	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

4922 4923
	sysctl_sched_runtime_limit = sysctl_sched_latency;
	sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
I
Ingo Molnar 已提交
4924 4925
}

L
Linus Torvalds 已提交
4926 4927 4928 4929
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4930
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4952
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4953
{
4954
	struct migration_req req;
L
Linus Torvalds 已提交
4955
	unsigned long flags;
4956
	struct rq *rq;
4957
	int ret = 0;
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4980

L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4993 4994
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4995
 */
4996
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4997
{
4998
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4999
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5000 5001

	if (unlikely(cpu_is_offline(dest_cpu)))
5002
		return ret;
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5015
	on_rq = p->se.on_rq;
5016
	if (on_rq)
5017
		deactivate_task(rq_src, p, 0);
5018

L
Linus Torvalds 已提交
5019
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5020 5021 5022
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5023
	}
5024
	ret = 1;
L
Linus Torvalds 已提交
5025 5026
out:
	double_rq_unlock(rq_src, rq_dest);
5027
	return ret;
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5035
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5036 5037
{
	int cpu = (long)data;
5038
	struct rq *rq;
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5045
		struct migration_req *req;
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5068
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5069 5070
		list_del_init(head->next);

N
Nick Piggin 已提交
5071 5072 5073
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5092 5093 5094 5095
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5096
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5097
{
5098
	unsigned long flags;
L
Linus Torvalds 已提交
5099
	cpumask_t mask;
5100 5101
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5102

5103
restart:
L
Linus Torvalds 已提交
5104 5105
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5106
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5107 5108 5109 5110
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5111
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5112 5113 5114

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5115 5116 5117
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5118
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5125
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5126 5127
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5128
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5129
	}
5130
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5131
		goto restart;
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5141
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5142
{
5143
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5157
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5158 5159 5160

	write_lock_irq(&tasklist_lock);

5161 5162
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5163 5164
			continue;

5165 5166 5167
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5168 5169 5170 5171

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5172 5173
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5174
 * It does so by boosting its priority to highest possible and adding it to
5175
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5176 5177 5178
 */
void sched_idle_next(void)
{
5179
	int this_cpu = smp_processor_id();
5180
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5181 5182 5183 5184
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5185
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5186

5187 5188 5189
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5190 5191 5192
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5193
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5194 5195

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5196
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5197 5198 5199 5200

	spin_unlock_irqrestore(&rq->lock, flags);
}

5201 5202
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5216
/* called under rq->lock with disabled interrupts */
5217
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5218
{
5219
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5220 5221

	/* Must be exiting, otherwise would be on tasklist. */
5222
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5223 5224

	/* Cannot have done final schedule yet: would have vanished. */
5225
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5226

5227
	get_task_struct(p);
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5233
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5234
	 */
5235
	spin_unlock(&rq->lock);
5236
	move_task_off_dead_cpu(dead_cpu, p);
5237
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5238

5239
	put_task_struct(p);
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5245
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5246
	struct task_struct *next;
5247

I
Ingo Molnar 已提交
5248 5249 5250
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5251
		update_rq_clock(rq);
5252
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5253 5254 5255
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5256

L
Linus Torvalds 已提交
5257 5258 5259 5260
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5261 5262 5263
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5264 5265
	{
		.procname	= "sched_domain",
5266
		.mode		= 0555,
5267
	},
5268 5269 5270 5271
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5272
	{
5273
		.ctl_name	= CTL_KERN,
5274
		.procname	= "kernel",
5275
		.mode		= 0555,
5276 5277
		.child		= sd_ctl_dir,
	},
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5293
set_table_entry(struct ctl_table *entry,
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5309
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5310
		sizeof(long), 0644, proc_doulongvec_minmax);
5311
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5312
		sizeof(long), 0644, proc_doulongvec_minmax);
5313
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5314
		sizeof(int), 0644, proc_dointvec_minmax);
5315
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5316
		sizeof(int), 0644, proc_dointvec_minmax);
5317
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5318
		sizeof(int), 0644, proc_dointvec_minmax);
5319
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5320
		sizeof(int), 0644, proc_dointvec_minmax);
5321
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5322
		sizeof(int), 0644, proc_dointvec_minmax);
5323
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5324
		sizeof(int), 0644, proc_dointvec_minmax);
5325
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5326
		sizeof(int), 0644, proc_dointvec_minmax);
5327
	set_table_entry(&table[10], "cache_nice_tries",
5328 5329
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5330
	set_table_entry(&table[12], "flags", &sd->flags,
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5351
		entry->mode = 0555;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5371
		entry->mode = 0555;
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5382 5383 5384 5385
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5386 5387
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5388 5389
{
	struct task_struct *p;
5390
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5391
	unsigned long flags;
5392
	struct rq *rq;
L
Linus Torvalds 已提交
5393 5394

	switch (action) {
5395 5396 5397 5398
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5399
	case CPU_UP_PREPARE:
5400
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5401
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5407
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5408 5409 5410
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5411

L
Linus Torvalds 已提交
5412
	case CPU_ONLINE:
5413
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5414 5415 5416
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5417

L
Linus Torvalds 已提交
5418 5419
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5420
	case CPU_UP_CANCELED_FROZEN:
5421 5422
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5423
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5424 5425
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5426 5427 5428
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5429

L
Linus Torvalds 已提交
5430
	case CPU_DEAD:
5431
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5438
		update_rq_clock(rq);
5439
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5440
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5441 5442
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5443 5444 5445 5446 5447 5448
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5449
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5450 5451 5452
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5453 5454
			struct migration_req *req;

L
Linus Torvalds 已提交
5455
			req = list_entry(rq->migration_queue.next,
5456
					 struct migration_req, list);
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5463 5464 5465
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470 5471 5472
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5473
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5481
	int err;
5482 5483

	/* Start one for the boot CPU: */
5484 5485
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5486 5487
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5488

L
Linus Torvalds 已提交
5489 5490 5491 5492 5493
	return 0;
}
#endif

#ifdef CONFIG_SMP
5494 5495 5496 5497 5498

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5499
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5500 5501 5502 5503 5504
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5505 5506 5507 5508 5509
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5529 5530
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535 5536
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5537 5538
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5539
		if (!cpu_isset(cpu, group->cpumask))
5540 5541
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5554
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5555
				printk("\n");
5556 5557
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5580 5581
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5582 5583 5584

		level++;
		sd = sd->parent;
5585 5586
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5587

5588 5589 5590
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5591 5592 5593 5594

	} while (sd);
}
#else
5595
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5596 5597
#endif

5598
static int sd_degenerate(struct sched_domain *sd)
5599 5600 5601 5602 5603 5604 5605 5606
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5607 5608 5609
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5623 5624
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5643 5644 5645
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5646 5647 5648 5649 5650 5651 5652
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5653 5654 5655 5656
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5657
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5658
{
5659
	struct rq *rq = cpu_rq(cpu);
5660 5661 5662 5663 5664 5665 5666
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5667
		if (sd_parent_degenerate(tmp, parent)) {
5668
			tmp->parent = parent->parent;
5669 5670 5671
			if (parent->parent)
				parent->parent->child = tmp;
		}
5672 5673
	}

5674
	if (sd && sd_degenerate(sd)) {
5675
		sd = sd->parent;
5676 5677 5678
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5679 5680 5681

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5682
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5683 5684 5685
}

/* cpus with isolated domains */
5686
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5704 5705 5706 5707
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5708 5709 5710 5711 5712
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5713
static void
5714 5715 5716
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721 5722
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5723 5724
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5725 5726 5727 5728 5729 5730
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5731
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5732 5733

		for_each_cpu_mask(j, span) {
5734
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5749
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5750

5751
#ifdef CONFIG_NUMA
5752

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5805 5806
	cpumask_t span, nodemask;
	int i;
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5817

5818 5819 5820 5821 5822 5823 5824 5825
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5826
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5827

5828
/*
5829
 * SMT sched-domains:
5830
 */
L
Linus Torvalds 已提交
5831 5832
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5833
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5834

5835 5836
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5837
{
5838 5839
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5840 5841 5842 5843
	return cpu;
}
#endif

5844 5845 5846
/*
 * multi-core sched-domains:
 */
5847 5848
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5849
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5850 5851 5852
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5853 5854
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5855
{
5856
	int group;
5857 5858
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5859 5860 5861 5862
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5863 5864
}
#elif defined(CONFIG_SCHED_MC)
5865 5866
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5867
{
5868 5869
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5870 5871 5872 5873
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5874
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5875
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5876

5877 5878
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5879
{
5880
	int group;
5881
#ifdef CONFIG_SCHED_MC
5882
	cpumask_t mask = cpu_coregroup_map(cpu);
5883
	cpus_and(mask, mask, *cpu_map);
5884
	group = first_cpu(mask);
5885
#elif defined(CONFIG_SCHED_SMT)
5886 5887
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5888
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5889
#else
5890
	group = cpu;
L
Linus Torvalds 已提交
5891
#endif
5892 5893 5894
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5895 5896 5897 5898
}

#ifdef CONFIG_NUMA
/*
5899 5900 5901
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5902
 */
5903
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5904
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5905

5906
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5907
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5908

5909 5910
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5911
{
5912 5913 5914 5915 5916 5917 5918 5919 5920
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5921
}
5922

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5943
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5944 5945 5946 5947 5948
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5949 5950
#endif

5951
#ifdef CONFIG_NUMA
5952 5953 5954
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5955
	int cpu, i;
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5986 5987 5988 5989 5990
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5991

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6018 6019
	sd->groups->__cpu_power = 0;

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6030
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6031 6032 6033 6034 6035 6036 6037 6038
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6039
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6040 6041 6042 6043
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6044
/*
6045 6046
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6047
 */
6048
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6049 6050
{
	int i;
6051 6052
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6053
	int sd_allnodes = 0;
6054 6055 6056 6057

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6058
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6059
					   GFP_KERNEL);
6060 6061
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6062
		return -ENOMEM;
6063 6064 6065
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6066 6067

	/*
6068
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6069
	 */
6070
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6071 6072 6073
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6074
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6075 6076

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6077 6078
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6079 6080 6081
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6082
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6083
			p = sd;
6084
			sd_allnodes = 1;
6085 6086 6087
		} else
			p = NULL;

L
Linus Torvalds 已提交
6088 6089
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6090 6091
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6092 6093
		if (p)
			p->child = sd;
6094
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6095 6096 6097 6098 6099 6100 6101
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6102 6103
		if (p)
			p->child = sd;
6104
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6105

6106 6107 6108 6109 6110 6111 6112
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6113
		p->child = sd;
6114
		cpu_to_core_group(i, cpu_map, &sd->groups);
6115 6116
#endif

L
Linus Torvalds 已提交
6117 6118 6119 6120 6121
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6122
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6123
		sd->parent = p;
6124
		p->child = sd;
6125
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6126 6127 6128 6129 6130
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6131
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6132
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6133
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6134 6135 6136
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6137 6138
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6139 6140 6141
	}
#endif

6142 6143 6144 6145 6146 6147 6148
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6149 6150
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6151 6152 6153
	}
#endif

L
Linus Torvalds 已提交
6154 6155 6156 6157
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6158
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6159 6160 6161
		if (cpus_empty(nodemask))
			continue;

6162
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6163 6164 6165 6166
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6167
	if (sd_allnodes)
I
Ingo Molnar 已提交
6168 6169
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6180 6181
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6182
			continue;
6183
		}
6184 6185 6186 6187

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6188
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6189 6190 6191 6192 6193
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6194 6195 6196
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6197

6198 6199 6200
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6201
		sg->__cpu_power = 0;
6202
		sg->cpumask = nodemask;
6203
		sg->next = sg;
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6222 6223
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6224 6225 6226
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6227
				goto error;
6228
			}
6229
			sg->__cpu_power = 0;
6230
			sg->cpumask = tmp;
6231
			sg->next = prev->next;
6232 6233 6234 6235 6236
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6237 6238 6239
#endif

	/* Calculate CPU power for physical packages and nodes */
6240
#ifdef CONFIG_SCHED_SMT
6241
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6242 6243
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6244
		init_sched_groups_power(i, sd);
6245
	}
L
Linus Torvalds 已提交
6246
#endif
6247
#ifdef CONFIG_SCHED_MC
6248
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6249 6250
		struct sched_domain *sd = &per_cpu(core_domains, i);

6251
		init_sched_groups_power(i, sd);
6252 6253
	}
#endif
6254

6255
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6256 6257
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6258
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6259 6260
	}

6261
#ifdef CONFIG_NUMA
6262 6263
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6264

6265 6266
	if (sd_allnodes) {
		struct sched_group *sg;
6267

6268
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6269 6270
		init_numa_sched_groups_power(sg);
	}
6271 6272
#endif

L
Linus Torvalds 已提交
6273
	/* Attach the domains */
6274
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6275 6276 6277
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6278 6279
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6280 6281 6282 6283 6284
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6285 6286 6287

	return 0;

6288
#ifdef CONFIG_NUMA
6289 6290 6291
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6292
#endif
L
Linus Torvalds 已提交
6293
}
6294 6295 6296
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6297
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6298 6299
{
	cpumask_t cpu_default_map;
6300
	int err;
L
Linus Torvalds 已提交
6301

6302 6303 6304 6305 6306 6307 6308
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6309 6310 6311
	err = build_sched_domains(&cpu_default_map);

	return err;
6312 6313 6314
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6315
{
6316
	free_sched_groups(cpu_map);
6317
}
L
Linus Torvalds 已提交
6318

6319 6320 6321 6322
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6323
static void detach_destroy_domains(const cpumask_t *cpu_map)
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6341
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6342 6343
{
	cpumask_t change_map;
6344
	int err = 0;
6345 6346 6347 6348 6349 6350 6351 6352

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6353 6354 6355 6356 6357
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6358 6359
}

6360
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6361
static int arch_reinit_sched_domains(void)
6362 6363 6364
{
	int err;

6365
	mutex_lock(&sched_hotcpu_mutex);
6366 6367
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6368
	mutex_unlock(&sched_hotcpu_mutex);
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6395 6396
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6397 6398 6399
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6400 6401
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6402 6403 6404 6405 6406 6407 6408
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6409 6410
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6411 6412 6413
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6434 6435
#endif

L
Linus Torvalds 已提交
6436 6437 6438
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6439
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6440 6441 6442 6443 6444 6445 6446
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6447
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6448
	case CPU_DOWN_PREPARE:
6449
	case CPU_DOWN_PREPARE_FROZEN:
6450
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6451 6452 6453
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6454
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6455
	case CPU_DOWN_FAILED:
6456
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6457
	case CPU_ONLINE:
6458
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6459
	case CPU_DEAD:
6460
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6470
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6471 6472 6473 6474 6475 6476

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6477 6478
	cpumask_t non_isolated_cpus;

6479
	mutex_lock(&sched_hotcpu_mutex);
6480
	arch_init_sched_domains(&cpu_online_map);
6481
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6482 6483
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6484
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6485 6486
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6487

6488 6489
	init_sched_domain_sysctl();

6490 6491 6492
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6493
	sched_init_granularity();
L
Linus Torvalds 已提交
6494 6495 6496 6497
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6498
	sched_init_granularity();
L
Linus Torvalds 已提交
6499 6500 6501 6502 6503 6504 6505
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6506

L
Linus Torvalds 已提交
6507 6508 6509 6510 6511
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6512 6513 6514 6515 6516 6517 6518 6519 6520
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6521 6522
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6523
	u64 now = sched_clock();
6524
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6525 6526 6527 6528 6529 6530 6531 6532
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6533

6534
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6535
		struct rt_prio_array *array;
6536
		struct rq *rq;
L
Linus Torvalds 已提交
6537 6538 6539

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6540
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6541
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6542 6543 6544 6545 6546 6547 6548 6549
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6550

I
Ingo Molnar 已提交
6551 6552
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6553
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6554
		rq->sd = NULL;
L
Linus Torvalds 已提交
6555
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6556
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6557
		rq->push_cpu = 0;
6558
		rq->cpu = i;
L
Linus Torvalds 已提交
6559 6560 6561 6562 6563
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6564 6565 6566 6567
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6568
		}
6569
		highest_cpu = i;
I
Ingo Molnar 已提交
6570 6571
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6572 6573
	}

6574
	set_load_weight(&init_task);
6575

6576 6577 6578 6579
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6580
#ifdef CONFIG_SMP
6581
	nr_cpu_ids = highest_cpu + 1;
6582 6583 6584
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6585 6586 6587 6588
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6602 6603 6604 6605
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6606 6607 6608 6609 6610
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6611
#ifdef in_atomic
L
Linus Torvalds 已提交
6612 6613 6614 6615 6616 6617 6618
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6619
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6620 6621 6622
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6623
		debug_show_held_locks(current);
6624 6625
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6636
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6637
	unsigned long flags;
6638
	struct rq *rq;
I
Ingo Molnar 已提交
6639
	int on_rq;
L
Linus Torvalds 已提交
6640 6641

	read_lock_irq(&tasklist_lock);
6642
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6643 6644
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6645
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6646
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6647 6648
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6649 6650 6651
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6652
#endif
I
Ingo Molnar 已提交
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6663
			continue;
I
Ingo Molnar 已提交
6664
		}
L
Linus Torvalds 已提交
6665

6666 6667
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6668 6669 6670 6671 6672 6673 6674
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6675

I
Ingo Molnar 已提交
6676
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6677
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6678 6679
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6680 6681
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6682
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6683 6684
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6685 6686 6687
#ifdef CONFIG_SMP
 out_unlock:
#endif
6688 6689
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6690 6691
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6692 6693 6694 6695
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6714
struct task_struct *curr_task(int cpu)
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6734
void set_curr_task(int cpu, struct task_struct *p)
6735 6736 6737 6738 6739
{
	cpu_curr(cpu) = p;
}

#endif