sched.c 196.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
158 159
#ifdef CONFIG_FAIR_GROUP_SCHED

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168 169 170
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
171 172 173 174
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
175

P
Peter Zijlstra 已提交
176 177 178 179 180
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	unsigned int rt_ratio;

181 182 183 184 185 186 187 188 189 190 191 192
	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193
	 *	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
194 195 196 197 198 199 200 201 202
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
203 204 205
	 *	 entity have the same weight on all CPUs. If the group
	 *	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 *	 better distribution of weight could be:
206 207 208 209 210 211 212 213 214
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
215
	unsigned long shares;
216

217
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
218
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
219 220 221 222 223 224 225
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

P
Peter Zijlstra 已提交
226 227 228
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;

229 230
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
231

P
Peter Zijlstra 已提交
232 233 234
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];

235 236 237 238 239
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

240 241 242
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

243 244 245 246 247 248 249 250
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
251
/* Default task group.
I
Ingo Molnar 已提交
252
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
253
 */
254
struct task_group init_task_group = {
I
Ingo Molnar 已提交
255
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
256
	.cfs_rq = init_cfs_rq_p,
P
Peter Zijlstra 已提交
257 258 259

	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
I
Ingo Molnar 已提交
260
};
261

262
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
263
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
264
#else
265
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
266 267
#endif

I
Ingo Molnar 已提交
268
#define MIN_GROUP_SHARES	2
269

270
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
271 272

/* return group to which a task belongs */
273
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
274
{
275
	struct task_group *tg;
276

277 278
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
279 280 281
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
282
#else
I
Ingo Molnar 已提交
283
	tg = &init_task_group;
284
#endif
285
	return tg;
S
Srivatsa Vaddagiri 已提交
286 287 288
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
289
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
290
{
291 292
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
P
Peter Zijlstra 已提交
293 294 295

	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
S
Srivatsa Vaddagiri 已提交
296 297
}

298 299 300 301 302 303 304 305 306 307
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

308 309 310 311 312 313 314 315 316 317
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
318 319
#else

P
Peter Zijlstra 已提交
320
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
321 322
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
323 324
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
325 326 327

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
328 329 330 331 332 333
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
334
	u64 min_vruntime;
I
Ingo Molnar 已提交
335 336 337 338 339 340 341 342

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
343 344 345

	unsigned long nr_spread_over;

346
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
347 348
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
349 350
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
351 352 353 354 355 356
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
357 358
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
359 360
#endif
};
L
Linus Torvalds 已提交
361

I
Ingo Molnar 已提交
362 363 364
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
365
	unsigned long rt_nr_running;
P
Peter Zijlstra 已提交
366 367 368
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
369
#ifdef CONFIG_SMP
370
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
371
	int overloaded;
P
Peter Zijlstra 已提交
372
#endif
P
Peter Zijlstra 已提交
373
	int rt_throttled;
P
Peter Zijlstra 已提交
374
	u64 rt_time;
P
Peter Zijlstra 已提交
375 376 377 378 379 380 381

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
382 383
};

G
Gregory Haskins 已提交
384 385 386 387
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
388 389
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
390 391 392 393 394 395 396 397
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
398

I
Ingo Molnar 已提交
399
	/*
400 401 402 403
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
404
	atomic_t rto_count;
G
Gregory Haskins 已提交
405 406
};

407 408 409 410
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
411 412 413 414
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
415 416 417 418 419 420 421
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
422
struct rq {
423 424
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
425 426 427 428 429 430

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
431 432
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
433
	unsigned char idle_at_tick;
434 435 436
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
437 438
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
439 440 441 442
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
443 444
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
445
	int rt_throttled;
P
Peter Zijlstra 已提交
446

I
Ingo Molnar 已提交
447
#ifdef CONFIG_FAIR_GROUP_SCHED
448 449
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
P
Peter Zijlstra 已提交
450
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459 460
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

461
	struct task_struct *curr, *idle;
462
	unsigned long next_balance;
L
Linus Torvalds 已提交
463
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
464 465 466 467 468

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
469 470
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
471
	u64 tick_timestamp;
I
Ingo Molnar 已提交
472

L
Linus Torvalds 已提交
473 474 475
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
476
	struct root_domain *rd;
L
Linus Torvalds 已提交
477 478 479 480 481
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
482 483
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
484

485
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
486 487 488
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
489 490 491 492 493 494
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
495 496 497 498 499
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
500 501 502 503
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
504 505

	/* schedule() stats */
506 507 508
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
509 510

	/* try_to_wake_up() stats */
511 512
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
513 514

	/* BKL stats */
515
	unsigned int bkl_count;
L
Linus Torvalds 已提交
516
#endif
517
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
518 519
};

520
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
521

I
Ingo Molnar 已提交
522 523 524 525 526
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

527 528 529 530 531 532 533 534 535
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
536
/*
I
Ingo Molnar 已提交
537 538
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
539
 */
I
Ingo Molnar 已提交
540
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
541 542 543 544 545 546
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
547 548 549
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
550 551 552 553 554 555 556 557 558 559
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
560 561 562 563 564
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
565 566 567 568 569 570 571 572 573 574
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
575
}
I
Ingo Molnar 已提交
576

I
Ingo Molnar 已提交
577 578 579 580
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
581 582
}

N
Nick Piggin 已提交
583 584
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
586 587 588 589
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
590 591
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
592 593 594 595 596 597

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
628
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
629 630
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
631 632
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
633 634
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
635 636 637
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
638
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
639
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
640 641
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
642 643 644
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
645 646 647

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

648 649 650 651 652 653
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662 663 664
/*
 * period over which we measure -rt task cpu usage in ms.
 * default: 1s
 */
const_debug unsigned int sysctl_sched_rt_period = 1000;

#define SCHED_RT_FRAC_SHIFT	16
#define SCHED_RT_FRAC		(1UL << SCHED_RT_FRAC_SHIFT)

/*
 * ratio of time -rt tasks may consume.
P
Peter Zijlstra 已提交
665
 * default: 95%
P
Peter Zijlstra 已提交
666
 */
P
Peter Zijlstra 已提交
667
const_debug unsigned int sysctl_sched_rt_ratio = 62259;
P
Peter Zijlstra 已提交
668

669 670 671 672 673 674 675 676
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
677
	struct rq *rq;
678

679
	local_irq_save(flags);
I
Ingo Molnar 已提交
680
	rq = cpu_rq(cpu);
681 682 683 684 685 686
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
687
	now = rq->clock;
688
	local_irq_restore(flags);
689 690 691

	return now;
}
P
Paul E. McKenney 已提交
692
EXPORT_SYMBOL_GPL(cpu_clock);
693

L
Linus Torvalds 已提交
694
#ifndef prepare_arch_switch
695 696 697 698 699 700
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

701 702 703 704 705
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

706
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
707
static inline int task_running(struct rq *rq, struct task_struct *p)
708
{
709
	return task_current(rq, p);
710 711
}

712
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
713 714 715
{
}

716
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
717
{
718 719 720 721
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
722 723 724 725 726 727 728
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

729 730 731 732
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
733
static inline int task_running(struct rq *rq, struct task_struct *p)
734 735 736 737
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
738
	return task_current(rq, p);
739 740 741
#endif
}

742
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

759
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
760 761 762 763 764 765 766 767 768 769 770 771
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
772
#endif
773 774
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
775

776 777 778 779
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
780
static inline struct rq *__task_rq_lock(struct task_struct *p)
781 782
	__acquires(rq->lock)
{
783 784 785 786 787
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
788 789 790 791
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
792 793
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
794
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
795 796
 * explicitly disabling preemption.
 */
797
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
798 799
	__acquires(rq->lock)
{
800
	struct rq *rq;
L
Linus Torvalds 已提交
801

802 803 804 805 806 807
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
808 809 810 811
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
812
static void __task_rq_unlock(struct rq *rq)
813 814 815 816 817
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

818
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
819 820 821 822 823 824
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
825
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
826
 */
A
Alexey Dobriyan 已提交
827
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
828 829
	__acquires(rq->lock)
{
830
	struct rq *rq;
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

839
/*
840
 * We are going deep-idle (irqs are disabled):
841
 */
842
void sched_clock_idle_sleep_event(void)
843
{
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
860

861
	touch_softlockup_watchdog();
862 863 864 865 866 867 868 869 870 871 872
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
873
}
874
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
875

P
Peter Zijlstra 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1056
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1057 1058 1059 1060 1061
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1062
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1063 1064
		return;

P
Peter Zijlstra 已提交
1065
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1088
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1089 1090
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1091
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1092 1093 1094
}
#endif

1095 1096 1097 1098 1099 1100 1101 1102
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1103 1104 1105
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1106
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1107

1108
static unsigned long
1109 1110 1111 1112 1113 1114
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1115
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1116 1117 1118 1119 1120

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1121
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1122
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1123 1124
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1125
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1126

1127
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1128 1129 1130 1131 1132 1133 1134 1135
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1136
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1137 1138 1139 1140
{
	lw->weight += inc;
}

1141
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1142 1143 1144 1145
{
	lw->weight -= dec;
}

1146 1147 1148 1149
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1150
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 1152 1153 1154
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1166 1167 1168
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1169 1170
 */
static const int prio_to_weight[40] = {
1171 1172 1173 1174 1175 1176 1177 1178
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1179 1180
};

1181 1182 1183 1184 1185 1186 1187
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1188
static const u32 prio_to_wmult[40] = {
1189 1190 1191 1192 1193 1194 1195 1196
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1197
};
1198

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1224

1225 1226 1227 1228 1229 1230
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1241 1242 1243 1244 1245 1246 1247
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1248 1249
#include "sched_stats.h"
#include "sched_idletask.c"
1250 1251
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1252 1253 1254 1255 1256 1257
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1258
static void inc_nr_running(struct task_struct *p, struct rq *rq)
1259 1260 1261 1262
{
	rq->nr_running++;
}

1263
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1264 1265 1266 1267
{
	rq->nr_running--;
}

1268 1269 1270
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1271 1272 1273 1274
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1275

I
Ingo Molnar 已提交
1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1284

I
Ingo Molnar 已提交
1285 1286
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1287 1288
}

1289
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1290
{
I
Ingo Molnar 已提交
1291
	sched_info_queued(p);
1292
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1293
	p->se.on_rq = 1;
1294 1295
}

1296
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1297
{
1298
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1299
	p->se.on_rq = 0;
1300 1301
}

1302
/*
I
Ingo Molnar 已提交
1303
 * __normal_prio - return the priority that is based on the static prio
1304 1305 1306
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1307
	return p->static_prio;
1308 1309
}

1310 1311 1312 1313 1314 1315 1316
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1317
static inline int normal_prio(struct task_struct *p)
1318 1319 1320
{
	int prio;

1321
	if (task_has_rt_policy(p))
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1335
static int effective_prio(struct task_struct *p)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1348
/*
I
Ingo Molnar 已提交
1349
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1350
 */
I
Ingo Molnar 已提交
1351
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1352
{
I
Ingo Molnar 已提交
1353 1354
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1355

1356
	enqueue_task(rq, p, wakeup);
1357
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1363
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1364
{
I
Ingo Molnar 已提交
1365 1366 1367
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1368
	dequeue_task(rq, p, sleep);
1369
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1376
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1377 1378 1379 1380
{
	return cpu_curr(task_cpu(p)) == p;
}

1381 1382 1383
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1384
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1385 1386 1387 1388
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1389
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1390
#ifdef CONFIG_SMP
1391 1392 1393 1394 1395 1396
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1397 1398
	task_thread_info(p)->cpu = cpu;
#endif
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1413
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1414

1415 1416 1417
/*
 * Is this task likely cache-hot:
 */
1418
static int
1419 1420 1421 1422 1423 1424 1425
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1426 1427 1428 1429 1430
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1431 1432 1433 1434 1435 1436
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1437
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1438
{
I
Ingo Molnar 已提交
1439 1440
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1441 1442
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1443
	u64 clock_offset;
I
Ingo Molnar 已提交
1444 1445

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1446 1447 1448 1449

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1450 1451 1452 1453
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1454 1455 1456 1457 1458
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1459
#endif
1460 1461
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1462 1463

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1464 1465
}

1466
struct migration_req {
L
Linus Torvalds 已提交
1467 1468
	struct list_head list;

1469
	struct task_struct *task;
L
Linus Torvalds 已提交
1470 1471 1472
	int dest_cpu;

	struct completion done;
1473
};
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1479
static int
1480
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1481
{
1482
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1488
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1489 1490 1491 1492 1493 1494 1495 1496
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1497

L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1510
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1511 1512
{
	unsigned long flags;
I
Ingo Molnar 已提交
1513
	int running, on_rq;
1514
	struct rq *rq;
L
Linus Torvalds 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1573

1574 1575 1576 1577 1578 1579 1580
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1596
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1608 1609
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1610 1611 1612 1613
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1614
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1615
{
1616
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1617
	unsigned long total = weighted_cpuload(cpu);
1618

1619
	if (type == 0)
I
Ingo Molnar 已提交
1620
		return total;
1621

I
Ingo Molnar 已提交
1622
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1623 1624 1625
}

/*
1626 1627
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1628
 */
A
Alexey Dobriyan 已提交
1629
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1630
{
1631
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1632
	unsigned long total = weighted_cpuload(cpu);
1633

N
Nick Piggin 已提交
1634
	if (type == 0)
I
Ingo Molnar 已提交
1635
		return total;
1636

I
Ingo Molnar 已提交
1637
	return max(rq->cpu_load[type-1], total);
1638 1639 1640 1641 1642
}

/*
 * Return the average load per task on the cpu's run queue
 */
1643
static unsigned long cpu_avg_load_per_task(int cpu)
1644
{
1645
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1646
	unsigned long total = weighted_cpuload(cpu);
1647 1648
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1649
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1650 1651
}

N
Nick Piggin 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1669 1670
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1671
			continue;
1672

N
Nick Piggin 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1689 1690
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1691 1692 1693 1694 1695 1696 1697 1698

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1699
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1700 1701 1702 1703 1704 1705 1706

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1707
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1708
 */
I
Ingo Molnar 已提交
1709 1710
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1711
{
1712
	cpumask_t tmp;
N
Nick Piggin 已提交
1713 1714 1715 1716
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1717 1718 1719 1720
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1721
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1747

1748
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1749 1750 1751
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1752 1753
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1754 1755
		if (tmp->flags & flag)
			sd = tmp;
1756
	}
N
Nick Piggin 已提交
1757 1758 1759 1760

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1761 1762 1763 1764 1765 1766
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1767 1768 1769

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1770 1771 1772 1773
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1774

1775
		new_cpu = find_idlest_cpu(group, t, cpu);
1776 1777 1778 1779 1780
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1781

1782
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1814
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1815
{
1816
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1817 1818
	unsigned long flags;
	long old_state;
1819
	struct rq *rq;
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1826
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1827 1828 1829
		goto out_running;

	cpu = task_cpu(p);
1830
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1837 1838 1839
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1846
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1868 1869
out_activate:
#endif /* CONFIG_SMP */
1870 1871 1872 1873 1874 1875 1876 1877 1878
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1879
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1880
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1881
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1882 1883 1884 1885
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1886 1887 1888 1889
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1896
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1903
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1911 1912 1913 1914 1915 1916 1917
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1918
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1919 1920 1921

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1922 1923 1924 1925 1926 1927
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1928
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1929
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1930
#endif
N
Nick Piggin 已提交
1931

P
Peter Zijlstra 已提交
1932
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1933
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1934

1935 1936 1937 1938
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944 1945
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1960
	set_task_cpu(p, cpu);
1961 1962 1963 1964 1965

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1966 1967
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1968

1969
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1970
	if (likely(sched_info_on()))
1971
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1972
#endif
1973
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1974 1975
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1976
#ifdef CONFIG_PREEMPT
1977
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1978
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1979
#endif
N
Nick Piggin 已提交
1980
	put_cpu();
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1990
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1991 1992
{
	unsigned long flags;
I
Ingo Molnar 已提交
1993
	struct rq *rq;
L
Linus Torvalds 已提交
1994 1995

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1996
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1997
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1998 1999 2000

	p->prio = effective_prio(p);

2001
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2002
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2003 2004
	} else {
		/*
I
Ingo Molnar 已提交
2005 2006
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2007
		 */
2008
		p->sched_class->task_new(rq, p);
2009
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2010
	}
I
Ingo Molnar 已提交
2011
	check_preempt_curr(rq, p);
2012 2013 2014 2015
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2016
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2017 2018
}

2019 2020 2021
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2022 2023
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2024 2025 2026 2027 2028 2029 2030 2031 2032
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2033
 * @notifier: notifier struct to unregister
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2077 2078 2079
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2080
 * @prev: the current task that is being switched out
2081 2082 2083 2084 2085 2086 2087 2088 2089
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2090 2091 2092
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2093
{
2094
	fire_sched_out_preempt_notifiers(prev, next);
2095 2096 2097 2098
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2099 2100
/**
 * finish_task_switch - clean up after a task-switch
2101
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2102 2103
 * @prev: the thread we just switched away from.
 *
2104 2105 2106 2107
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2108 2109
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2110
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2111 2112 2113
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2114
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2115 2116 2117
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2118
	long prev_state;
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2124
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2125 2126
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2127
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2133
	prev_state = prev->state;
2134 2135
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2136 2137 2138 2139
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2140

2141
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2142 2143
	if (mm)
		mmdrop(mm);
2144
	if (unlikely(prev_state == TASK_DEAD)) {
2145 2146 2147
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2148
		 */
2149
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2150
		put_task_struct(prev);
2151
	}
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2158
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2159 2160
	__releases(rq->lock)
{
2161 2162
	struct rq *rq = this_rq();

2163 2164 2165 2166 2167
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2168
	if (current->set_child_tid)
2169
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2176
static inline void
2177
context_switch(struct rq *rq, struct task_struct *prev,
2178
	       struct task_struct *next)
L
Linus Torvalds 已提交
2179
{
I
Ingo Molnar 已提交
2180
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2181

2182
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2183 2184
	mm = next->mm;
	oldmm = prev->active_mm;
2185 2186 2187 2188 2189 2190 2191
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2192
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2199
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2200 2201 2202
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2203 2204 2205 2206 2207 2208 2209
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2210
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2211
#endif
L
Linus Torvalds 已提交
2212 2213 2214 2215

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2216 2217 2218 2219 2220 2221 2222
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2246
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2261 2262
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2263

2264
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2274
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2295
/*
I
Ingo Molnar 已提交
2296 2297
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2298
 */
I
Ingo Molnar 已提交
2299
static void update_cpu_load(struct rq *this_rq)
2300
{
2301
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2314 2315 2316 2317 2318 2319 2320
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2321 2322
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2323 2324
}

I
Ingo Molnar 已提交
2325 2326
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2327 2328 2329 2330 2331 2332
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2333
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2334 2335 2336
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2337
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2338 2339 2340 2341
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2342
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2350 2351
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2352 2353 2354 2355 2356 2357 2358 2359
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2360
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2374
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2375 2376 2377 2378
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2379 2380
	int ret = 0;

2381 2382 2383 2384 2385
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2386
	if (unlikely(!spin_trylock(&busiest->lock))) {
2387
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2388 2389 2390
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2391
			ret = 1;
L
Linus Torvalds 已提交
2392 2393 2394
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2395
	return ret;
L
Linus Torvalds 已提交
2396 2397 2398 2399 2400
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2401
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2402 2403
 * the cpu_allowed mask is restored.
 */
2404
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2405
{
2406
	struct migration_req req;
L
Linus Torvalds 已提交
2407
	unsigned long flags;
2408
	struct rq *rq;
L
Linus Torvalds 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2419

L
Linus Torvalds 已提交
2420 2421 2422 2423 2424
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2425

L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2433 2434
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2435 2436 2437 2438
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2439
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2440
	put_cpu();
N
Nick Piggin 已提交
2441 2442
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2449 2450
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2451
{
2452
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2453
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2454
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2455 2456 2457 2458
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2459
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2465
static
2466
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2467
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2468
		     int *all_pinned)
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2476 2477
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2478
		return 0;
2479
	}
2480 2481
	*all_pinned = 0;

2482 2483
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2484
		return 0;
2485
	}
L
Linus Torvalds 已提交
2486

2487 2488 2489 2490 2491 2492
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2493 2494
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2495
#ifdef CONFIG_SCHEDSTATS
2496
		if (task_hot(p, rq->clock, sd)) {
2497
			schedstat_inc(sd, lb_hot_gained[idle]);
2498 2499
			schedstat_inc(p, se.nr_forced_migrations);
		}
2500 2501 2502 2503
#endif
		return 1;
	}

2504 2505
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2506
		return 0;
2507
	}
L
Linus Torvalds 已提交
2508 2509 2510
	return 1;
}

2511 2512 2513 2514 2515
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2516
{
2517
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2518 2519
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2520

2521
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2522 2523
		goto out;

2524 2525
	pinned = 1;

L
Linus Torvalds 已提交
2526
	/*
I
Ingo Molnar 已提交
2527
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2528
	 */
I
Ingo Molnar 已提交
2529 2530
	p = iterator->start(iterator->arg);
next:
2531
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2532
		goto out;
2533
	/*
2534
	 * To help distribute high priority tasks across CPUs we don't
2535 2536 2537
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2538 2539
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2540
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2541 2542 2543
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2544 2545
	}

I
Ingo Molnar 已提交
2546
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2547
	pulled++;
I
Ingo Molnar 已提交
2548
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2549

2550
	/*
2551
	 * We only want to steal up to the prescribed amount of weighted load.
2552
	 */
2553
	if (rem_load_move > 0) {
2554 2555
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2556 2557
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2558 2559 2560
	}
out:
	/*
2561
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2562 2563 2564 2565
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2566 2567 2568

	if (all_pinned)
		*all_pinned = pinned;
2569 2570

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2571 2572
}

I
Ingo Molnar 已提交
2573
/*
P
Peter Williams 已提交
2574 2575 2576
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2577 2578 2579 2580
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2581
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2582 2583 2584
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2585
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2586
	unsigned long total_load_moved = 0;
2587
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2588 2589

	do {
P
Peter Williams 已提交
2590 2591
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2592
				max_load_move - total_load_moved,
2593
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2594
		class = class->next;
P
Peter Williams 已提交
2595
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2596

P
Peter Williams 已提交
2597 2598 2599
	return total_load_moved > 0;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2636
	const struct sched_class *class;
P
Peter Williams 已提交
2637 2638

	for (class = sched_class_highest; class; class = class->next)
2639
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2640 2641 2642
			return 1;

	return 0;
I
Ingo Molnar 已提交
2643 2644
}

L
Linus Torvalds 已提交
2645 2646
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2647 2648
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2649 2650 2651
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2652 2653
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2654 2655 2656
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2657
	unsigned long max_pull;
2658 2659
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2660
	int load_idx, group_imb = 0;
2661 2662 2663 2664 2665 2666
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2667 2668

	max_load = this_load = total_load = total_pwr = 0;
2669 2670
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2671
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2672
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2673
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2674 2675 2676
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2677 2678

	do {
2679
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2680 2681
		int local_group;
		int i;
2682
		int __group_imb = 0;
2683
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2684
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2685 2686 2687

		local_group = cpu_isset(this_cpu, group->cpumask);

2688 2689 2690
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2691
		/* Tally up the load of all CPUs in the group */
2692
		sum_weighted_load = sum_nr_running = avg_load = 0;
2693 2694
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2695 2696

		for_each_cpu_mask(i, group->cpumask) {
2697 2698 2699 2700 2701 2702
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2703

2704
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2705 2706
				*sd_idle = 0;

L
Linus Torvalds 已提交
2707
			/* Bias balancing toward cpus of our domain */
2708 2709 2710 2711 2712 2713
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2714
				load = target_load(i, load_idx);
2715
			} else {
N
Nick Piggin 已提交
2716
				load = source_load(i, load_idx);
2717 2718 2719 2720 2721
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2722 2723

			avg_load += load;
2724
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2725
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2726 2727
		}

2728 2729 2730
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2731 2732
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2733
		 */
2734 2735
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2736 2737 2738 2739
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2740
		total_load += avg_load;
2741
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2742 2743

		/* Adjust by relative CPU power of the group */
2744 2745
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2746

2747 2748 2749
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2750
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2751

L
Linus Torvalds 已提交
2752 2753 2754
		if (local_group) {
			this_load = avg_load;
			this = group;
2755 2756 2757
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2758
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2759 2760
			max_load = avg_load;
			busiest = group;
2761 2762
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2763
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2764
		}
2765 2766 2767 2768 2769 2770

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2771 2772 2773
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2774 2775 2776 2777 2778 2779 2780 2781 2782

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2783
		/*
2784 2785
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2786 2787
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2788
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2789
			goto group_next;
2790

I
Ingo Molnar 已提交
2791
		/*
2792
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2793 2794 2795 2796 2797
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2798 2799
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2800 2801
			group_min = group;
			min_nr_running = sum_nr_running;
2802 2803
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2804
		}
2805

I
Ingo Molnar 已提交
2806
		/*
2807
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2819
		}
2820 2821
group_next:
#endif
L
Linus Torvalds 已提交
2822 2823 2824
		group = group->next;
	} while (group != sd->groups);

2825
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2834
	busiest_load_per_task /= busiest_nr_running;
2835 2836 2837
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844 2845
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2846
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2847 2848
	 * appear as very large values with unsigned longs.
	 */
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2861 2862

	/* Don't want to pull so many tasks that a group would go idle */
2863
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2864

L
Linus Torvalds 已提交
2865
	/* How much load to actually move to equalise the imbalance */
2866 2867
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2868 2869
			/ SCHED_LOAD_SCALE;

2870 2871 2872 2873 2874 2875
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2876
	if (*imbalance < busiest_load_per_task) {
2877
		unsigned long tmp, pwr_now, pwr_move;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2889

I
Ingo Molnar 已提交
2890 2891
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2892
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2902 2903 2904 2905
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2906 2907 2908
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2909 2910
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2911
		if (max_load > tmp)
2912
			pwr_move += busiest->__cpu_power *
2913
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2914 2915

		/* Amount of load we'd add */
2916
		if (max_load * busiest->__cpu_power <
2917
				busiest_load_per_task * SCHED_LOAD_SCALE)
2918 2919
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2920
		else
2921 2922 2923 2924
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2925 2926 2927
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2928 2929
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934
	}

	return busiest;

out_balanced:
2935
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2936
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2937
		goto ret;
L
Linus Torvalds 已提交
2938

2939 2940 2941 2942 2943
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2944
ret:
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950 2951
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2952
static struct rq *
I
Ingo Molnar 已提交
2953
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2954
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2955
{
2956
	struct rq *busiest = NULL, *rq;
2957
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2958 2959 2960
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2961
		unsigned long wl;
2962 2963 2964 2965

		if (!cpu_isset(i, *cpus))
			continue;

2966
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2967
		wl = weighted_cpuload(i);
2968

I
Ingo Molnar 已提交
2969
		if (rq->nr_running == 1 && wl > imbalance)
2970
			continue;
L
Linus Torvalds 已提交
2971

I
Ingo Molnar 已提交
2972 2973
		if (wl > max_load) {
			max_load = wl;
2974
			busiest = rq;
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980
		}
	}

	return busiest;
}

2981 2982 2983 2984 2985 2986
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2987 2988 2989 2990
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2991
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2992
			struct sched_domain *sd, enum cpu_idle_type idle,
2993
			int *balance)
L
Linus Torvalds 已提交
2994
{
P
Peter Williams 已提交
2995
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2996 2997
	struct sched_group *group;
	unsigned long imbalance;
2998
	struct rq *busiest;
2999
	cpumask_t cpus = CPU_MASK_ALL;
3000
	unsigned long flags;
N
Nick Piggin 已提交
3001

3002 3003 3004
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3005
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3006
	 * portraying it as CPU_NOT_IDLE.
3007
	 */
I
Ingo Molnar 已提交
3008
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3009
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3010
		sd_idle = 1;
L
Linus Torvalds 已提交
3011

3012
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3013

3014 3015
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3016 3017
				   &cpus, balance);

3018
	if (*balance == 0)
3019 3020
		goto out_balanced;

L
Linus Torvalds 已提交
3021 3022 3023 3024 3025
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3026
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3032
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3033 3034 3035

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3036
	ld_moved = 0;
L
Linus Torvalds 已提交
3037 3038 3039 3040
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3041
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3042 3043
		 * correctly treated as an imbalance.
		 */
3044
		local_irq_save(flags);
N
Nick Piggin 已提交
3045
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3046
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3047
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3048
		double_rq_unlock(this_rq, busiest);
3049
		local_irq_restore(flags);
3050

3051 3052 3053
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3054
		if (ld_moved && this_cpu != smp_processor_id())
3055 3056
			resched_cpu(this_cpu);

3057
		/* All tasks on this runqueue were pinned by CPU affinity */
3058 3059 3060 3061
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3062
			goto out_balanced;
3063
		}
L
Linus Torvalds 已提交
3064
	}
3065

P
Peter Williams 已提交
3066
	if (!ld_moved) {
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3072
			spin_lock_irqsave(&busiest->lock, flags);
3073 3074 3075 3076 3077

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3078
				spin_unlock_irqrestore(&busiest->lock, flags);
3079 3080 3081 3082
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3083 3084 3085
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3086
				active_balance = 1;
L
Linus Torvalds 已提交
3087
			}
3088
			spin_unlock_irqrestore(&busiest->lock, flags);
3089
			if (active_balance)
L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3096
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3097
		}
3098
	} else
L
Linus Torvalds 已提交
3099 3100
		sd->nr_balance_failed = 0;

3101
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3102 3103
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3104 3105 3106 3107 3108 3109 3110 3111 3112
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3113 3114
	}

P
Peter Williams 已提交
3115
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3116
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3117
		return -1;
P
Peter Williams 已提交
3118
	return ld_moved;
L
Linus Torvalds 已提交
3119 3120 3121 3122

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3123
	sd->nr_balance_failed = 0;
3124 3125

out_one_pinned:
L
Linus Torvalds 已提交
3126
	/* tune up the balancing interval */
3127 3128
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3129 3130
		sd->balance_interval *= 2;

3131
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3132
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3133
		return -1;
L
Linus Torvalds 已提交
3134 3135 3136 3137 3138 3139 3140
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3141
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3142 3143
 * this_rq is locked.
 */
3144
static int
3145
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3146 3147
{
	struct sched_group *group;
3148
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3149
	unsigned long imbalance;
P
Peter Williams 已提交
3150
	int ld_moved = 0;
N
Nick Piggin 已提交
3151
	int sd_idle = 0;
3152
	int all_pinned = 0;
3153
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3154

3155 3156 3157 3158
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3159
	 * portraying it as CPU_NOT_IDLE.
3160 3161 3162
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3163
		sd_idle = 1;
L
Linus Torvalds 已提交
3164

3165
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3166
redo:
I
Ingo Molnar 已提交
3167
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3168
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3169
	if (!group) {
I
Ingo Molnar 已提交
3170
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3171
		goto out_balanced;
L
Linus Torvalds 已提交
3172 3173
	}

I
Ingo Molnar 已提交
3174
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3175
				&cpus);
N
Nick Piggin 已提交
3176
	if (!busiest) {
I
Ingo Molnar 已提交
3177
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3178
		goto out_balanced;
L
Linus Torvalds 已提交
3179 3180
	}

N
Nick Piggin 已提交
3181 3182
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3183
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3184

P
Peter Williams 已提交
3185
	ld_moved = 0;
3186 3187 3188
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3189 3190
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3191
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3192 3193
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3194
		spin_unlock(&busiest->lock);
3195

3196
		if (unlikely(all_pinned)) {
3197 3198 3199 3200
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3201 3202
	}

P
Peter Williams 已提交
3203
	if (!ld_moved) {
I
Ingo Molnar 已提交
3204
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3205 3206
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3207 3208
			return -1;
	} else
3209
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3210

P
Peter Williams 已提交
3211
	return ld_moved;
3212 3213

out_balanced:
I
Ingo Molnar 已提交
3214
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3215
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3216
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3217
		return -1;
3218
	sd->nr_balance_failed = 0;
3219

3220
	return 0;
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3227
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3228 3229
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3230 3231
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3232 3233

	for_each_domain(this_cpu, sd) {
3234 3235 3236 3237 3238 3239
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3240
			/* If we've pulled tasks over stop searching: */
3241
			pulled_task = load_balance_newidle(this_cpu,
3242 3243 3244 3245 3246 3247 3248
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3249
	}
I
Ingo Molnar 已提交
3250
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3251 3252 3253 3254 3255
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3256
	}
L
Linus Torvalds 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3267
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3268
{
3269
	int target_cpu = busiest_rq->push_cpu;
3270 3271
	struct sched_domain *sd;
	struct rq *target_rq;
3272

3273
	/* Is there any task to move? */
3274 3275 3276 3277
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3278 3279

	/*
3280
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3281
	 * we need to fix it. Originally reported by
3282
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3283
	 */
3284
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3285

3286 3287
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3288 3289
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3290 3291

	/* Search for an sd spanning us and the target CPU. */
3292
	for_each_domain(target_cpu, sd) {
3293
		if ((sd->flags & SD_LOAD_BALANCE) &&
3294
		    cpu_isset(busiest_cpu, sd->span))
3295
				break;
3296
	}
3297

3298
	if (likely(sd)) {
3299
		schedstat_inc(sd, alb_count);
3300

P
Peter Williams 已提交
3301 3302
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3303 3304 3305 3306
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3307
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3308 3309
}

3310 3311 3312
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3313
	cpumask_t cpu_mask;
3314 3315 3316 3317 3318
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3319
/*
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3330
 *
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3387 3388 3389 3390 3391
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3392
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3393
{
3394 3395
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3396 3397
	unsigned long interval;
	struct sched_domain *sd;
3398
	/* Earliest time when we have to do rebalance again */
3399
	unsigned long next_balance = jiffies + 60*HZ;
3400
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3401

3402
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3403 3404 3405 3406
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3407
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3414 3415 3416
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3417

3418 3419 3420 3421 3422
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3423
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3424
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3425 3426
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3427 3428 3429
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3430
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3431
			}
3432
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3433
		}
3434 3435 3436
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3437
		if (time_after(next_balance, sd->last_balance + interval)) {
3438
			next_balance = sd->last_balance + interval;
3439 3440
			update_next_balance = 1;
		}
3441 3442 3443 3444 3445 3446 3447 3448

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3449
	}
3450 3451 3452 3453 3454 3455 3456 3457

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3458 3459 3460 3461 3462 3463 3464 3465 3466
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3467 3468 3469 3470
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3471

I
Ingo Molnar 已提交
3472
	rebalance_domains(this_cpu, idle);
3473 3474 3475 3476 3477 3478 3479

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3480 3481
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3482 3483 3484 3485
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3486
		cpu_clear(this_cpu, cpus);
3487 3488 3489 3490 3491 3492 3493 3494 3495
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3496
			rebalance_domains(balance_cpu, CPU_IDLE);
3497 3498

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3499 3500
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3513
static inline void trigger_load_balance(struct rq *rq, int cpu)
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3565
}
I
Ingo Molnar 已提交
3566 3567 3568

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3569 3570 3571
/*
 * on UP we do not need to balance between CPUs:
 */
3572
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3573 3574
{
}
I
Ingo Molnar 已提交
3575

L
Linus Torvalds 已提交
3576 3577 3578 3579 3580 3581 3582
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3583 3584
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3585
 */
3586
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3587 3588
{
	unsigned long flags;
3589 3590
	u64 ns, delta_exec;
	struct rq *rq;
3591

3592 3593
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3594
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3595 3596
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3597 3598 3599 3600
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3601

L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3625 3626 3627 3628 3629
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3630
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3664
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3665 3666
	cputime64_t tmp;

3667 3668
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3669

L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676 3677
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3678
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3679
		cpustat->system = cputime64_add(cpustat->system, tmp);
3680
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686 3687
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3708
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3709 3710 3711 3712 3713 3714 3715

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3716
	} else
L
Linus Torvalds 已提交
3717 3718 3719
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3731
	struct task_struct *curr = rq->curr;
3732
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3733 3734

	spin_lock(&rq->lock);
3735
	__update_rq_clock(rq);
3736 3737 3738 3739 3740 3741
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3742
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3743 3744
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3745
	spin_unlock(&rq->lock);
3746

3747
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3748 3749
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3750
#endif
L
Linus Torvalds 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3760 3761
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3762 3763 3764 3765
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3766 3767
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773 3774 3775
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3776 3777
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3778 3779 3780
	/*
	 * Is the spinlock portion underflowing?
	 */
3781 3782 3783 3784
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3785 3786 3787 3788 3789 3790 3791
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3792
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3793
 */
I
Ingo Molnar 已提交
3794
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3795
{
3796 3797 3798 3799 3800
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3801 3802 3803
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3804 3805 3806 3807 3808

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3809
}
L
Linus Torvalds 已提交
3810

I
Ingo Molnar 已提交
3811 3812 3813 3814 3815
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3816
	/*
I
Ingo Molnar 已提交
3817
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3818 3819 3820
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3821 3822 3823
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3824 3825
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3826
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3827 3828
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3829 3830
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3831 3832
	}
#endif
I
Ingo Molnar 已提交
3833 3834 3835 3836 3837 3838
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3839
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3840
{
3841
	const struct sched_class *class;
I
Ingo Molnar 已提交
3842
	struct task_struct *p;
L
Linus Torvalds 已提交
3843 3844

	/*
I
Ingo Molnar 已提交
3845 3846
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3847
	 */
I
Ingo Molnar 已提交
3848
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3849
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3850 3851
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3852 3853
	}

I
Ingo Molnar 已提交
3854 3855
	class = sched_class_highest;
	for ( ; ; ) {
3856
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3866

I
Ingo Molnar 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3889

P
Peter Zijlstra 已提交
3890 3891
	hrtick_clear(rq);

3892 3893 3894 3895
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3896
	__update_rq_clock(rq);
3897 3898
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3899 3900 3901

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3902
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3903
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3904
		} else {
3905
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3906
		}
I
Ingo Molnar 已提交
3907
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3908 3909
	}

3910 3911 3912 3913
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3914

I
Ingo Molnar 已提交
3915
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3916 3917
		idle_balance(cpu, rq);

3918
	prev->sched_class->put_prev_task(rq, prev);
3919
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3920 3921

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3922

L
Linus Torvalds 已提交
3923 3924 3925 3926 3927
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3928
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3929 3930 3931 3932 3933 3934
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3935 3936 3937
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3938 3939 3940
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3941
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3942

L
Linus Torvalds 已提交
3943 3944 3945 3946 3947 3948 3949 3950
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3951
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3952
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3964
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3965
	 */
N
Nick Piggin 已提交
3966
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3967 3968
		return;

3969 3970 3971 3972 3973 3974 3975 3976
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3977
#ifdef CONFIG_PREEMPT_BKL
3978 3979
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3980
#endif
3981
		schedule();
L
Linus Torvalds 已提交
3982
#ifdef CONFIG_PREEMPT_BKL
3983
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3984
#endif
3985
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3986

3987 3988 3989 3990 3991 3992
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3993 3994 3995 3996
}
EXPORT_SYMBOL(preempt_schedule);

/*
3997
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
4009
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4010 4011
	BUG_ON(ti->preempt_count || !irqs_disabled());

4012 4013 4014 4015 4016 4017 4018 4019
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
4020
#ifdef CONFIG_PREEMPT_BKL
4021 4022
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
4023
#endif
4024 4025 4026
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
4027
#ifdef CONFIG_PREEMPT_BKL
4028
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
4029
#endif
4030
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4031

4032 4033 4034 4035 4036 4037
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4038 4039 4040 4041
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4042 4043
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4044
{
4045
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4046 4047 4048 4049
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4050 4051
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4052 4053 4054
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4055
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4056 4057 4058 4059 4060
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4061
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4062

4063
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4064 4065
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4066
		if (curr->func(curr, mode, sync, key) &&
4067
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4077
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4078 4079
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4080
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4099
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
4111 4112
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4129
void complete(struct completion *x)
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4141
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4153 4154
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4162 4163 4164 4165 4166 4167
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4173
				return timeout;
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178 4179 4180 4181
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4182 4183
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4184 4185 4186 4187
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4188
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4189
	spin_unlock_irq(&x->wait.lock);
4190 4191
	return timeout;
}
L
Linus Torvalds 已提交
4192

4193
void __sched wait_for_completion(struct completion *x)
4194 4195
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4196
}
4197
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4198

4199
unsigned long __sched
4200
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4201
{
4202
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4203
}
4204
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4205

4206
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4207
{
4208 4209 4210 4211
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4212
}
4213
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4214

4215
unsigned long __sched
4216 4217
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4218
{
4219
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4220
}
4221
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4222

4223 4224
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4225
{
I
Ingo Molnar 已提交
4226 4227 4228 4229
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4230

4231
	__set_current_state(state);
L
Linus Torvalds 已提交
4232

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4247 4248 4249
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4250
long __sched
I
Ingo Molnar 已提交
4251
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4252
{
4253
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4254 4255 4256
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4257
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4258
{
4259
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4260 4261 4262
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4263
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4264
{
4265
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4266 4267 4268
}
EXPORT_SYMBOL(sleep_on_timeout);

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4281
void rt_mutex_setprio(struct task_struct *p, int prio)
4282 4283
{
	unsigned long flags;
4284
	int oldprio, on_rq, running;
4285
	struct rq *rq;
4286
	const struct sched_class *prev_class = p->sched_class;
4287 4288 4289 4290

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4291
	update_rq_clock(rq);
4292

4293
	oldprio = p->prio;
I
Ingo Molnar 已提交
4294
	on_rq = p->se.on_rq;
4295
	running = task_current(rq, p);
4296
	if (on_rq) {
4297
		dequeue_task(rq, p, 0);
4298 4299 4300
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4301 4302 4303 4304 4305 4306

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4307 4308
	p->prio = prio;

I
Ingo Molnar 已提交
4309
	if (on_rq) {
4310 4311
		if (running)
			p->sched_class->set_curr_task(rq);
4312

4313
		enqueue_task(rq, p, 0);
4314 4315

		check_class_changed(rq, p, prev_class, oldprio, running);
4316 4317 4318 4319 4320 4321
	}
	task_rq_unlock(rq, &flags);
}

#endif

4322
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4323
{
I
Ingo Molnar 已提交
4324
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4325
	unsigned long flags;
4326
	struct rq *rq;
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4335
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4336 4337 4338 4339
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4340
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4341
	 */
4342
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4343 4344 4345
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4346
	on_rq = p->se.on_rq;
4347
	if (on_rq)
4348
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4349 4350

	p->static_prio = NICE_TO_PRIO(nice);
4351
	set_load_weight(p);
4352 4353 4354
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4355

I
Ingo Molnar 已提交
4356
	if (on_rq) {
4357
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4358
		/*
4359 4360
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4361
		 */
4362
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4370 4371 4372 4373 4374
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4375
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4376
{
4377 4378
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4379

M
Matt Mackall 已提交
4380 4381 4382 4383
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4395
	long nice, retval;
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4402 4403
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4413 4414 4415
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4434
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4443
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4462
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4471
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4472
{
4473
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4474 4475 4476
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4477 4478
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4479
{
I
Ingo Molnar 已提交
4480
	BUG_ON(p->se.on_rq);
4481

L
Linus Torvalds 已提交
4482
	p->policy = policy;
I
Ingo Molnar 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4495
	p->rt_priority = prio;
4496 4497 4498
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4499
	set_load_weight(p);
L
Linus Torvalds 已提交
4500 4501 4502
}

/**
4503
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4504 4505 4506
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4507
 *
4508
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4509
 */
I
Ingo Molnar 已提交
4510 4511
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4512
{
4513
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4514
	unsigned long flags;
4515
	const struct sched_class *prev_class = p->sched_class;
4516
	struct rq *rq;
L
Linus Torvalds 已提交
4517

4518 4519
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4525 4526
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4527
		return -EINVAL;
L
Linus Torvalds 已提交
4528 4529
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4530 4531
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4532 4533
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4534
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4535
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4536
		return -EINVAL;
4537
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4538 4539
		return -EINVAL;

4540 4541 4542 4543
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4544
		if (rt_policy(policy)) {
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4561 4562 4563 4564 4565 4566
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4567

4568 4569 4570 4571 4572
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4573 4574 4575 4576

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4577 4578 4579 4580 4581
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4582 4583 4584 4585
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4586
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4587 4588 4589
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4590 4591
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4592 4593
		goto recheck;
	}
I
Ingo Molnar 已提交
4594
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4595
	on_rq = p->se.on_rq;
4596
	running = task_current(rq, p);
4597
	if (on_rq) {
4598
		deactivate_task(rq, p, 0);
4599 4600 4601
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4602

L
Linus Torvalds 已提交
4603
	oldprio = p->prio;
I
Ingo Molnar 已提交
4604
	__setscheduler(rq, p, policy, param->sched_priority);
4605

I
Ingo Molnar 已提交
4606
	if (on_rq) {
4607 4608
		if (running)
			p->sched_class->set_curr_task(rq);
4609

I
Ingo Molnar 已提交
4610
		activate_task(rq, p, 0);
4611 4612

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4613
	}
4614 4615 4616
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4617 4618
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4619 4620 4621 4622
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4623 4624
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4625 4626 4627
{
	struct sched_param lparam;
	struct task_struct *p;
4628
	int retval;
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4634 4635 4636

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4637
	p = find_process_by_pid(pid);
4638 4639 4640
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4641

L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4651 4652
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4653
{
4654 4655 4656 4657
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4677
	struct task_struct *p;
4678
	int retval;
L
Linus Torvalds 已提交
4679 4680

	if (pid < 0)
4681
		return -EINVAL;
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4703
	struct task_struct *p;
4704
	int retval;
L
Linus Torvalds 已提交
4705 4706

	if (!param || pid < 0)
4707
		return -EINVAL;
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4737 4738
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4739

4740
	get_online_cpus();
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4746
		put_online_cpus();
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4752
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4763 4764 4765 4766
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4767 4768
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4769
 again:
L
Linus Torvalds 已提交
4770 4771
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4784 4785
out_unlock:
	put_task_struct(p);
4786
	put_online_cpus();
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4827
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4828 4829 4830
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4831
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4832 4833
EXPORT_SYMBOL(cpu_online_map);

4834
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4835
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4836 4837 4838 4839
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4840
	struct task_struct *p;
L
Linus Torvalds 已提交
4841 4842
	int retval;

4843
	get_online_cpus();
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849 4850
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4851 4852 4853 4854
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4855
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4856 4857 4858

out_unlock:
	read_unlock(&tasklist_lock);
4859
	put_online_cpus();
L
Linus Torvalds 已提交
4860

4861
	return retval;
L
Linus Torvalds 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4892 4893
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4894 4895 4896
 */
asmlinkage long sys_sched_yield(void)
{
4897
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4898

4899
	schedstat_inc(rq, yld_count);
4900
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4907
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4916
static void __cond_resched(void)
L
Linus Torvalds 已提交
4917
{
4918 4919 4920
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4921 4922 4923 4924 4925
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4926 4927 4928 4929 4930 4931 4932
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4933 4934
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4935
{
4936 4937
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942
		__cond_resched();
		return 1;
	}
	return 0;
}
4943 4944
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4950
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4951 4952 4953
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4954
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4955
{
J
Jan Kara 已提交
4956 4957
	int ret = 0;

L
Linus Torvalds 已提交
4958 4959 4960
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4961
		ret = 1;
L
Linus Torvalds 已提交
4962 4963
		spin_lock(lock);
	}
4964
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4965
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4966 4967 4968
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4969
		ret = 1;
L
Linus Torvalds 已提交
4970 4971
		spin_lock(lock);
	}
J
Jan Kara 已提交
4972
	return ret;
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4980
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4981
		local_bh_enable();
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4993
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5004
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5012
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5013

5014
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5015 5016 5017
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5018
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5024
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5025 5026
	long ret;

5027
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5028 5029 5030
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5031
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5052
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5053
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5077
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5078
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5095
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5096
	unsigned int time_slice;
5097
	int retval;
L
Linus Torvalds 已提交
5098 5099 5100
	struct timespec t;

	if (pid < 0)
5101
		return -EINVAL;
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5113 5114 5115 5116 5117 5118
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5119
		time_slice = DEF_TIMESLICE;
5120
	} else {
D
Dmitry Adamushko 已提交
5121 5122 5123 5124 5125
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5126 5127
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5128 5129
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5130
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5131
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5132 5133
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5134

L
Linus Torvalds 已提交
5135 5136 5137 5138 5139
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5140
static const char stat_nam[] = "RSDTtZX";
5141

5142
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5143 5144
{
	unsigned long free = 0;
5145
	unsigned state;
L
Linus Torvalds 已提交
5146 5147

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5148
	printk(KERN_INFO "%-13.13s %c", p->comm,
5149
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5150
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5151
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5152
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5153
	else
I
Ingo Molnar 已提交
5154
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5155 5156
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5157
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5158
	else
I
Ingo Molnar 已提交
5159
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5160 5161 5162
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5163
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5164 5165
		while (!*n)
			n++;
5166
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5167 5168
	}
#endif
5169
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5170
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
5176
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5177
{
5178
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5179

5180 5181 5182
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5183
#else
5184 5185
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192 5193
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5194
		if (!state_filter || (p->state & state_filter))
5195
			sched_show_task(p);
L
Linus Torvalds 已提交
5196 5197
	} while_each_thread(g, p);

5198 5199
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5200 5201 5202
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5203
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5204 5205 5206 5207 5208
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5209 5210
}

I
Ingo Molnar 已提交
5211 5212
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5213
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5214 5215
}

5216 5217 5218 5219 5220 5221 5222 5223
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5224
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5225
{
5226
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5227 5228
	unsigned long flags;

I
Ingo Molnar 已提交
5229 5230 5231
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5232
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5233
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5234
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5235 5236 5237

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5238 5239 5240
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5241 5242 5243 5244
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5245
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5246
#else
A
Al Viro 已提交
5247
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5248
#endif
I
Ingo Molnar 已提交
5249 5250 5251 5252
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5290 5291 5292 5293
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5294
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5313
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5314 5315
 * call is not atomic; no spinlocks may be held.
 */
5316
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5317
{
5318
	struct migration_req req;
L
Linus Torvalds 已提交
5319
	unsigned long flags;
5320
	struct rq *rq;
5321
	int ret = 0;
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5329 5330 5331
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5332
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5333
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5334 5335
	}

L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5350

L
Linus Torvalds 已提交
5351 5352 5353 5354 5355
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5356
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5363 5364
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5365
 */
5366
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5367
{
5368
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5369
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5370 5371

	if (unlikely(cpu_is_offline(dest_cpu)))
5372
		return ret;
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5385
	on_rq = p->se.on_rq;
5386
	if (on_rq)
5387
		deactivate_task(rq_src, p, 0);
5388

L
Linus Torvalds 已提交
5389
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5390 5391 5392
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5393
	}
5394
	ret = 1;
L
Linus Torvalds 已提交
5395 5396
out:
	double_rq_unlock(rq_src, rq_dest);
5397
	return ret;
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5405
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5406 5407
{
	int cpu = (long)data;
5408
	struct rq *rq;
L
Linus Torvalds 已提交
5409 5410 5411 5412 5413 5414

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5415
		struct migration_req *req;
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5438
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5439 5440
		list_del_init(head->next);

N
Nick Piggin 已提交
5441 5442 5443
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5473
/*
5474
 * Figure out where task on dead CPU should go, use force if necessary.
5475 5476
 * NOTE: interrupts should be disabled by the caller
 */
5477
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5478
{
5479
	unsigned long flags;
L
Linus Torvalds 已提交
5480
	cpumask_t mask;
5481 5482
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5483

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5496 5497 5498 5499 5500
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5501
			 * cpuset_cpus_allowed() will not block. It must be
5502 5503
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5504
			rq = task_rq_lock(p, &flags);
5505
			p->cpus_allowed = cpus_allowed;
5506 5507
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5508

5509 5510 5511 5512 5513
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5514
			if (p->mm && printk_ratelimit()) {
5515 5516
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5517 5518
					task_pid_nr(p), p->comm, dead_cpu);
			}
5519
		}
5520
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5530
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5531
{
5532
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5546
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5547

5548
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5549

5550 5551
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5552 5553
			continue;

5554 5555 5556
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5557

5558
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5559 5560
}

I
Ingo Molnar 已提交
5561 5562
/*
 * Schedules idle task to be the next runnable task on current CPU.
5563 5564
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5565 5566 5567
 */
void sched_idle_next(void)
{
5568
	int this_cpu = smp_processor_id();
5569
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5570 5571 5572 5573
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5574
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5575

5576 5577 5578
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5579 5580 5581
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5582
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5583

5584 5585
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5586 5587 5588 5589

	spin_unlock_irqrestore(&rq->lock, flags);
}

5590 5591
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5605
/* called under rq->lock with disabled interrupts */
5606
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5607
{
5608
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5609 5610

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5611
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5612 5613

	/* Cannot have done final schedule yet: would have vanished. */
5614
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5615

5616
	get_task_struct(p);
L
Linus Torvalds 已提交
5617 5618 5619

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5620
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5621 5622
	 * fine.
	 */
5623
	spin_unlock_irq(&rq->lock);
5624
	move_task_off_dead_cpu(dead_cpu, p);
5625
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5626

5627
	put_task_struct(p);
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5633
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5634
	struct task_struct *next;
5635

I
Ingo Molnar 已提交
5636 5637 5638
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5639
		update_rq_clock(rq);
5640
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5641 5642 5643
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5644

L
Linus Torvalds 已提交
5645 5646 5647 5648
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5649 5650 5651
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5652 5653
	{
		.procname	= "sched_domain",
5654
		.mode		= 0555,
5655
	},
I
Ingo Molnar 已提交
5656
	{0, },
5657 5658 5659
};

static struct ctl_table sd_ctl_root[] = {
5660
	{
5661
		.ctl_name	= CTL_KERN,
5662
		.procname	= "kernel",
5663
		.mode		= 0555,
5664 5665
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5666
	{0, },
5667 5668 5669 5670 5671
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5672
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5673 5674 5675 5676

	return entry;
}

5677 5678
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5679
	struct ctl_table *entry;
5680

5681 5682 5683
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5684
	 * will always be set. In the lowest directory the names are
5685 5686 5687
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5688 5689
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5690 5691 5692
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5693 5694 5695 5696 5697

	kfree(*tablep);
	*tablep = NULL;
}

5698
static void
5699
set_table_entry(struct ctl_table *entry,
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5713
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5714

5715 5716 5717
	if (table == NULL)
		return NULL;

5718
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5719
		sizeof(long), 0644, proc_doulongvec_minmax);
5720
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5721
		sizeof(long), 0644, proc_doulongvec_minmax);
5722
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5723
		sizeof(int), 0644, proc_dointvec_minmax);
5724
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5725
		sizeof(int), 0644, proc_dointvec_minmax);
5726
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5727
		sizeof(int), 0644, proc_dointvec_minmax);
5728
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5729
		sizeof(int), 0644, proc_dointvec_minmax);
5730
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5731
		sizeof(int), 0644, proc_dointvec_minmax);
5732
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5733
		sizeof(int), 0644, proc_dointvec_minmax);
5734
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5735
		sizeof(int), 0644, proc_dointvec_minmax);
5736
	set_table_entry(&table[9], "cache_nice_tries",
5737 5738
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5739
	set_table_entry(&table[10], "flags", &sd->flags,
5740
		sizeof(int), 0644, proc_dointvec_minmax);
5741
	/* &table[11] is terminator */
5742 5743 5744 5745

	return table;
}

5746
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5747 5748 5749 5750 5751 5752 5753 5754 5755
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5756 5757
	if (table == NULL)
		return NULL;
5758 5759 5760 5761 5762

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5763
		entry->mode = 0555;
5764 5765 5766 5767 5768 5769 5770 5771
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5772
static void register_sched_domain_sysctl(void)
5773 5774 5775 5776 5777
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5778 5779 5780
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5781 5782 5783
	if (entry == NULL)
		return;

5784
	for_each_online_cpu(i) {
5785 5786
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5787
		entry->mode = 0555;
5788
		entry->child = sd_alloc_ctl_cpu_table(i);
5789
		entry++;
5790
	}
5791 5792

	WARN_ON(sd_sysctl_header);
5793 5794
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5795

5796
/* may be called multiple times per register */
5797 5798
static void unregister_sched_domain_sysctl(void)
{
5799 5800
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5801
	sd_sysctl_header = NULL;
5802 5803
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5804
}
5805
#else
5806 5807 5808 5809
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5810 5811 5812 5813
{
}
#endif

L
Linus Torvalds 已提交
5814 5815 5816 5817
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5818 5819
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5820 5821
{
	struct task_struct *p;
5822
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5823
	unsigned long flags;
5824
	struct rq *rq;
L
Linus Torvalds 已提交
5825 5826

	switch (action) {
5827

L
Linus Torvalds 已提交
5828
	case CPU_UP_PREPARE:
5829
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5830
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5836
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5837 5838 5839
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5840

L
Linus Torvalds 已提交
5841
	case CPU_ONLINE:
5842
	case CPU_ONLINE_FROZEN:
5843
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5844
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5854
		break;
5855

L
Linus Torvalds 已提交
5856 5857
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5858
	case CPU_UP_CANCELED_FROZEN:
5859 5860
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5861
		/* Unbind it from offline cpu so it can run. Fall thru. */
5862 5863
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5864 5865 5866
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5867

L
Linus Torvalds 已提交
5868
	case CPU_DEAD:
5869
	case CPU_DEAD_FROZEN:
5870
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5871 5872 5873 5874 5875
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5876
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5877
		update_rq_clock(rq);
5878
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5879
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5880 5881
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5882
		migrate_dead_tasks(cpu);
5883
		spin_unlock_irq(&rq->lock);
5884
		cpuset_unlock();
L
Linus Torvalds 已提交
5885 5886 5887
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5888 5889 5890 5891 5892
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5893 5894
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5895 5896
			struct migration_req *req;

L
Linus Torvalds 已提交
5897
			req = list_entry(rq->migration_queue.next,
5898
					 struct migration_req, list);
L
Linus Torvalds 已提交
5899 5900 5901 5902 5903
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5915 5916 5917 5918 5919 5920 5921 5922
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5923
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5924 5925 5926 5927
	.notifier_call = migration_call,
	.priority = 10
};

5928
void __init migration_init(void)
L
Linus Torvalds 已提交
5929 5930
{
	void *cpu = (void *)(long)smp_processor_id();
5931
	int err;
5932 5933

	/* Start one for the boot CPU: */
5934 5935
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5936 5937 5938 5939 5940 5941
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5942 5943 5944 5945 5946

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5947
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5948 5949

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5950
{
I
Ingo Molnar 已提交
5951 5952 5953
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5954

I
Ingo Molnar 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5966 5967
	}

I
Ingo Molnar 已提交
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5978

I
Ingo Molnar 已提交
5979
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5980
	do {
I
Ingo Molnar 已提交
5981 5982 5983
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5984 5985 5986
			break;
		}

I
Ingo Molnar 已提交
5987 5988 5989 5990 5991 5992
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5993

I
Ingo Molnar 已提交
5994 5995 5996 5997 5998
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5999

I
Ingo Molnar 已提交
6000 6001 6002 6003 6004
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6005

I
Ingo Molnar 已提交
6006
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6007

I
Ingo Molnar 已提交
6008 6009
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6010

I
Ingo Molnar 已提交
6011 6012 6013
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6014

I
Ingo Molnar 已提交
6015 6016
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6017

I
Ingo Molnar 已提交
6018 6019 6020 6021 6022
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6023

I
Ingo Molnar 已提交
6024 6025 6026
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6027

I
Ingo Molnar 已提交
6028 6029 6030 6031
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6032

I
Ingo Molnar 已提交
6033 6034 6035 6036 6037
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6038 6039
		level++;
		sd = sd->parent;
6040
		if (!sd)
I
Ingo Molnar 已提交
6041 6042
			break;
	}
L
Linus Torvalds 已提交
6043 6044
}
#else
6045
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6046 6047
#endif

6048
static int sd_degenerate(struct sched_domain *sd)
6049 6050 6051 6052 6053 6054 6055 6056
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6057 6058 6059
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6073 6074
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6093 6094 6095
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6096 6097 6098 6099 6100 6101 6102
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6113
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6114 6115
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6116
		}
G
Gregory Haskins 已提交
6117

6118 6119 6120
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6121 6122 6123 6124 6125 6126 6127
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6128 6129 6130 6131
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
6132
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6133 6134
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6135
	}
G
Gregory Haskins 已提交
6136 6137 6138 6139

	spin_unlock_irqrestore(&rq->lock, flags);
}

6140
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6141 6142 6143
{
	memset(rd, 0, sizeof(*rd));

6144 6145
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6146 6147 6148 6149
}

static void init_defrootdomain(void)
{
6150
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6151 6152 6153
	atomic_set(&def_root_domain.refcount, 1);
}

6154
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6155 6156 6157 6158 6159 6160 6161
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6162
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6163 6164 6165 6166

	return rd;
}

L
Linus Torvalds 已提交
6167
/*
I
Ingo Molnar 已提交
6168
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6169 6170
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6171 6172
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6173
{
6174
	struct rq *rq = cpu_rq(cpu);
6175 6176 6177 6178 6179 6180 6181
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6182
		if (sd_parent_degenerate(tmp, parent)) {
6183
			tmp->parent = parent->parent;
6184 6185 6186
			if (parent->parent)
				parent->parent->child = tmp;
		}
6187 6188
	}

6189
	if (sd && sd_degenerate(sd)) {
6190
		sd = sd->parent;
6191 6192 6193
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6194 6195 6196

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6197
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6198
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6199 6200 6201
}

/* cpus with isolated domains */
6202
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6217
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6218 6219

/*
6220 6221 6222 6223
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6224 6225 6226 6227 6228
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6229
static void
6230 6231 6232
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6233 6234 6235 6236 6237 6238
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6239 6240
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6241 6242 6243 6244 6245 6246
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6247
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6248 6249

		for_each_cpu_mask(j, span) {
6250
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6265
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6266

6267
#ifdef CONFIG_NUMA
6268

6269 6270 6271 6272 6273
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6274
 * Find the next node to include in a given scheduling domain. Simply
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6314
 * Given a node, construct a good cpumask for its sched_domain to span. It
6315 6316 6317 6318 6319 6320
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6321 6322
	cpumask_t span, nodemask;
	int i;
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6333

6334 6335 6336 6337 6338 6339 6340 6341
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6342
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6343

6344
/*
6345
 * SMT sched-domains:
6346
 */
L
Linus Torvalds 已提交
6347 6348
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6349
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6350

I
Ingo Molnar 已提交
6351 6352
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6353
{
6354 6355
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6356 6357 6358 6359
	return cpu;
}
#endif

6360 6361 6362
/*
 * multi-core sched-domains:
 */
6363 6364
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6365
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6366 6367 6368
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6369 6370
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6371
{
6372
	int group;
6373
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6374
	cpus_and(mask, mask, *cpu_map);
6375 6376 6377 6378
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6379 6380
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6381 6382
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6383
{
6384 6385
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6386 6387 6388 6389
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6390
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6391
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6392

I
Ingo Molnar 已提交
6393 6394
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6395
{
6396
	int group;
6397
#ifdef CONFIG_SCHED_MC
6398
	cpumask_t mask = cpu_coregroup_map(cpu);
6399
	cpus_and(mask, mask, *cpu_map);
6400
	group = first_cpu(mask);
6401
#elif defined(CONFIG_SCHED_SMT)
6402
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6403
	cpus_and(mask, mask, *cpu_map);
6404
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6405
#else
6406
	group = cpu;
L
Linus Torvalds 已提交
6407
#endif
6408 6409 6410
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6411 6412 6413 6414
}

#ifdef CONFIG_NUMA
/*
6415 6416 6417
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6418
 */
6419
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6420
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6421

6422
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6423
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6424

6425 6426
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6427
{
6428 6429 6430 6431 6432 6433 6434 6435 6436
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6437
}
6438

6439 6440 6441 6442 6443 6444 6445
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6446 6447 6448
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6449

6450 6451 6452 6453 6454 6455 6456 6457
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6458

6459 6460 6461 6462
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6463
}
L
Linus Torvalds 已提交
6464 6465
#endif

6466
#ifdef CONFIG_NUMA
6467 6468 6469
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6470
	int cpu, i;
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6501 6502 6503 6504 6505
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6506

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6533 6534
	sd->groups->__cpu_power = 0;

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6545
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6546 6547 6548 6549 6550 6551 6552 6553
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6554
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6555 6556 6557 6558
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6559
/*
6560 6561
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6562
 */
6563
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6564 6565
{
	int i;
G
Gregory Haskins 已提交
6566
	struct root_domain *rd;
6567 6568
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6569
	int sd_allnodes = 0;
6570 6571 6572 6573

	/*
	 * Allocate the per-node list of sched groups
	 */
6574
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6575
				    GFP_KERNEL);
6576 6577
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6578
		return -ENOMEM;
6579 6580 6581
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6582

6583
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6584 6585 6586 6587 6588
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6589
	/*
6590
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6591
	 */
6592
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6593 6594 6595
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6596
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6597 6598

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6599 6600
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6601 6602 6603
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6604
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6605
			p = sd;
6606
			sd_allnodes = 1;
6607 6608 6609
		} else
			p = NULL;

L
Linus Torvalds 已提交
6610 6611
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6612 6613
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6614 6615
		if (p)
			p->child = sd;
6616
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6617 6618 6619 6620 6621 6622 6623
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6624 6625
		if (p)
			p->child = sd;
6626
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6627

6628 6629 6630 6631 6632 6633 6634
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6635
		p->child = sd;
6636
		cpu_to_core_group(i, cpu_map, &sd->groups);
6637 6638
#endif

L
Linus Torvalds 已提交
6639 6640 6641 6642
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6643
		sd->span = per_cpu(cpu_sibling_map, i);
6644
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6645
		sd->parent = p;
6646
		p->child = sd;
6647
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6648 6649 6650 6651 6652
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6653
	for_each_cpu_mask(i, *cpu_map) {
6654
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6655
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6656 6657 6658
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6659 6660
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6661 6662 6663
	}
#endif

6664 6665 6666 6667 6668 6669 6670
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6671 6672
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6673 6674 6675
	}
#endif

L
Linus Torvalds 已提交
6676 6677 6678 6679
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6680
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6681 6682 6683
		if (cpus_empty(nodemask))
			continue;

6684
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6685 6686 6687 6688
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6689
	if (sd_allnodes)
I
Ingo Molnar 已提交
6690 6691
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6702 6703
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6704
			continue;
6705
		}
6706 6707 6708 6709

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6710
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6711 6712 6713 6714 6715
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6716 6717 6718
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6719

6720 6721 6722
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6723
		sg->__cpu_power = 0;
6724
		sg->cpumask = nodemask;
6725
		sg->next = sg;
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6744 6745
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6746 6747 6748
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6749
				goto error;
6750
			}
6751
			sg->__cpu_power = 0;
6752
			sg->cpumask = tmp;
6753
			sg->next = prev->next;
6754 6755 6756 6757 6758
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6759 6760 6761
#endif

	/* Calculate CPU power for physical packages and nodes */
6762
#ifdef CONFIG_SCHED_SMT
6763
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6764 6765
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6766
		init_sched_groups_power(i, sd);
6767
	}
L
Linus Torvalds 已提交
6768
#endif
6769
#ifdef CONFIG_SCHED_MC
6770
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6771 6772
		struct sched_domain *sd = &per_cpu(core_domains, i);

6773
		init_sched_groups_power(i, sd);
6774 6775
	}
#endif
6776

6777
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6778 6779
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6780
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6781 6782
	}

6783
#ifdef CONFIG_NUMA
6784 6785
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6786

6787 6788
	if (sd_allnodes) {
		struct sched_group *sg;
6789

6790
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6791 6792
		init_numa_sched_groups_power(sg);
	}
6793 6794
#endif

L
Linus Torvalds 已提交
6795
	/* Attach the domains */
6796
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6797 6798 6799
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6800 6801
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6802 6803 6804
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6805
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6806
	}
6807 6808 6809

	return 0;

6810
#ifdef CONFIG_NUMA
6811 6812 6813
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6814
#endif
L
Linus Torvalds 已提交
6815
}
P
Paul Jackson 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6827
/*
I
Ingo Molnar 已提交
6828
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6829 6830
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6831
 */
6832
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6833
{
6834 6835
	int err;

P
Paul Jackson 已提交
6836 6837 6838 6839 6840
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6841
	err = build_sched_domains(doms_cur);
6842
	register_sched_domain_sysctl();
6843 6844

	return err;
6845 6846 6847
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6848
{
6849
	free_sched_groups(cpu_map);
6850
}
L
Linus Torvalds 已提交
6851

6852 6853 6854 6855
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6856
static void detach_destroy_domains(const cpumask_t *cpu_map)
6857 6858 6859
{
	int i;

6860 6861
	unregister_sched_domain_sysctl();

6862
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6863
		cpu_attach_domain(NULL, &def_root_domain, i);
6864 6865 6866 6867
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6868 6869
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6870
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6871 6872 6873 6874
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6875 6876 6877
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6878 6879 6880
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6881 6882
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6893 6894
	lock_doms_cur();

6895 6896 6897
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6933 6934

	register_sched_domain_sysctl();
6935 6936

	unlock_doms_cur();
P
Paul Jackson 已提交
6937 6938
}

6939
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6940
static int arch_reinit_sched_domains(void)
6941 6942 6943
{
	int err;

6944
	get_online_cpus();
6945 6946
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6947
	put_online_cpus();
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6974 6975
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6976 6977 6978
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6979 6980
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6981 6982 6983 6984 6985 6986 6987
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6988 6989
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6990 6991 6992
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7013 7014
#endif

L
Linus Torvalds 已提交
7015
/*
I
Ingo Molnar 已提交
7016
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7017
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7018
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7019 7020 7021 7022 7023 7024 7025
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7026
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7027
	case CPU_DOWN_PREPARE:
7028
	case CPU_DOWN_PREPARE_FROZEN:
7029
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7030 7031 7032
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7033
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7034
	case CPU_DOWN_FAILED:
7035
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7036
	case CPU_ONLINE:
7037
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7038
	case CPU_DEAD:
7039
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7040 7041 7042 7043 7044 7045 7046 7047 7048
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7049
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7050 7051 7052 7053 7054 7055

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7056 7057
	cpumask_t non_isolated_cpus;

7058
	get_online_cpus();
7059
	arch_init_sched_domains(&cpu_online_map);
7060
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7061 7062
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7063
	put_online_cpus();
L
Linus Torvalds 已提交
7064 7065
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7066 7067 7068 7069

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7070
	sched_init_granularity();
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
7086 7087 7088 7089
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7090
	sched_init_granularity();
L
Linus Torvalds 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7101
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7102 7103 7104 7105 7106
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7107
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7108 7109
}

P
Peter Zijlstra 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

P
Peter Zijlstra 已提交
7123 7124 7125
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7126 7127 7128 7129 7130 7131 7132
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7133 7134 7135 7136

#ifdef CONFIG_FAIR_GROUP_SCHED
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7137 7138
}

P
Peter Zijlstra 已提交
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}

static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7177 7178
void __init sched_init(void)
{
7179
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7180 7181
	int i, j;

G
Gregory Haskins 已提交
7182 7183 7184 7185
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

P
Peter Zijlstra 已提交
7186 7187 7188 7189
#ifdef CONFIG_FAIR_GROUP_SCHED
	list_add(&init_task_group.list, &task_groups);
#endif

7190
	for_each_possible_cpu(i) {
7191
		struct rq *rq;
L
Linus Torvalds 已提交
7192 7193 7194

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7195
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7196
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7197 7198
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7199
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7200
#ifdef CONFIG_FAIR_GROUP_SCHED
7201
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

		init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7212
#endif
P
Peter Zijlstra 已提交
7213
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7214
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7215

I
Ingo Molnar 已提交
7216 7217
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7218
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7219
		rq->sd = NULL;
G
Gregory Haskins 已提交
7220
		rq->rd = NULL;
L
Linus Torvalds 已提交
7221
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7222
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7223
		rq->push_cpu = 0;
7224
		rq->cpu = i;
L
Linus Torvalds 已提交
7225 7226
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7227
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7228
#endif
P
Peter Zijlstra 已提交
7229
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7230
		atomic_set(&rq->nr_iowait, 0);
7231
		highest_cpu = i;
L
Linus Torvalds 已提交
7232 7233
	}

7234
	set_load_weight(&init_task);
7235

7236 7237 7238 7239
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7240
#ifdef CONFIG_SMP
7241
	nr_cpu_ids = highest_cpu + 1;
7242 7243 7244
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7245 7246 7247 7248
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7262 7263 7264 7265
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
7266 7267 7268 7269 7270
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7271
#ifdef in_atomic
L
Linus Torvalds 已提交
7272 7273 7274 7275 7276 7277 7278
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7279
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7280 7281 7282
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7283
		debug_show_held_locks(current);
7284 7285
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7286 7287 7288 7289 7290 7291 7292 7293
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7308 7309
void normalize_rt_tasks(void)
{
7310
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7311
	unsigned long flags;
7312
	struct rq *rq;
L
Linus Torvalds 已提交
7313 7314

	read_lock_irq(&tasklist_lock);
7315
	do_each_thread(g, p) {
7316 7317 7318 7319 7320 7321
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7322 7323
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7324 7325 7326
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7327
#endif
I
Ingo Molnar 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7337
			continue;
I
Ingo Molnar 已提交
7338
		}
L
Linus Torvalds 已提交
7339

7340 7341
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7342

7343
		normalize_task(rq, p);
7344

7345 7346
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7347 7348
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7349 7350 7351 7352
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7371
struct task_struct *curr_task(int cpu)
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7382 7383
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7384 7385 7386 7387 7388 7389 7390
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7391
void set_curr_task(int cpu, struct task_struct *p)
7392 7393 7394 7395 7396
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7397 7398 7399

#ifdef CONFIG_FAIR_GROUP_SCHED

7400 7401 7402
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
P
Peter Zijlstra 已提交
7403
 * to reflect load distribution across cpus.
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

I
Ingo Molnar 已提交
7422
		/* Nothing to do if this group has no load */
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
P
Peter Zijlstra 已提交
7470
 * These settings allows for the appropriate trade-off between accuracy of
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7503
		get_online_cpus();
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7537
		put_online_cpus();
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

P
Peter Zijlstra 已提交
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
static void free_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg->rt_rq);
	kfree(tg->rt_se);
	kfree(tg);
}

S
Srivatsa Vaddagiri 已提交
7573
/* allocate runqueue etc for a new task group */
7574
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7575
{
7576
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7577 7578
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
P
Peter Zijlstra 已提交
7579 7580
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
7581
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7582 7583 7584 7585 7586 7587
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7588
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7589 7590
	if (!tg->cfs_rq)
		goto err;
7591
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7592 7593
	if (!tg->se)
		goto err;
P
Peter Zijlstra 已提交
7594 7595 7596 7597 7598 7599 7600 7601 7602
	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->shares = NICE_0_LOAD;
	tg->rt_ratio = 0; /* XXX */
S
Srivatsa Vaddagiri 已提交
7603 7604

	for_each_possible_cpu(i) {
7605
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7606

P
Peter Zijlstra 已提交
7607 7608
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7609 7610 7611
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7612 7613
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7614 7615 7616
		if (!se)
			goto err;

P
Peter Zijlstra 已提交
7617 7618 7619 7620
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7621

P
Peter Zijlstra 已提交
7622 7623 7624 7625
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7626

P
Peter Zijlstra 已提交
7627 7628
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7629 7630
	}

7631
	lock_task_group_list();
7632 7633 7634 7635
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
P
Peter Zijlstra 已提交
7636 7637
		rt_rq = tg->rt_rq[i];
		list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7638
	}
P
Peter Zijlstra 已提交
7639
	list_add_rcu(&tg->list, &task_groups);
7640
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7641

7642
	return tg;
S
Srivatsa Vaddagiri 已提交
7643 7644

err:
P
Peter Zijlstra 已提交
7645
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7646 7647 7648
	return ERR_PTR(-ENOMEM);
}

7649
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7650
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7651 7652
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7653
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7654 7655
}

7656
/* Destroy runqueue etc associated with a task group */
7657
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7658
{
7659
	struct cfs_rq *cfs_rq = NULL;
P
Peter Zijlstra 已提交
7660
	struct rt_rq *rt_rq = NULL;
7661
	int i;
S
Srivatsa Vaddagiri 已提交
7662

7663
	lock_task_group_list();
7664 7665 7666
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
P
Peter Zijlstra 已提交
7667 7668
		rt_rq = tg->rt_rq[i];
		list_del_rcu(&rt_rq->leaf_rt_rq_list);
7669
	}
P
Peter Zijlstra 已提交
7670
	list_del_rcu(&tg->list);
7671
	unlock_task_group_list();
7672

7673
	BUG_ON(!cfs_rq);
7674 7675

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7676
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7677 7678
}

7679
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7680 7681 7682
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7683 7684
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7685 7686 7687 7688 7689 7690 7691 7692 7693
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7694
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7695 7696
	on_rq = tsk->se.on_rq;

7697
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7698
		dequeue_task(rq, tsk, 0);
7699 7700 7701
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7702

P
Peter Zijlstra 已提交
7703
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7704

7705 7706 7707
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7708
		enqueue_task(rq, tsk, 0);
7709
	}
S
Srivatsa Vaddagiri 已提交
7710 7711 7712 7713

	task_rq_unlock(rq, &flags);
}

7714
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7715 7716 7717 7718 7719 7720
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7721 7722
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7723 7724

	on_rq = se->on_rq;
7725
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7726
		dequeue_entity(cfs_rq, se, 0);
7727 7728
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7729 7730 7731 7732

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7733
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7734
		enqueue_entity(cfs_rq, se, 0);
7735 7736
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7737 7738
}

7739
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7740 7741
{
	int i;
7742 7743
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7744

7745
	lock_task_group_list();
7746
	if (tg->shares == shares)
7747
		goto done;
S
Srivatsa Vaddagiri 已提交
7748

7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7769
	tg->shares = shares;
7770 7771
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7772
		set_se_shares(tg->se[i], shares);
7773 7774
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7775

7776 7777 7778 7779 7780 7781 7782 7783 7784
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7785
done:
7786
	unlock_task_group_list();
7787
	return 0;
S
Srivatsa Vaddagiri 已提交
7788 7789
}

7790 7791 7792 7793 7794
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

P
Peter Zijlstra 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
/*
 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
 */
int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
{
	struct task_group *tgi;
	unsigned long total = 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &task_groups, list)
		total += tgi->rt_ratio;
	rcu_read_unlock();

	if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
		return -EINVAL;

	tg->rt_ratio = rt_ratio;
	return 0;
}

unsigned long sched_group_rt_ratio(struct task_group *tg)
{
	return tg->rt_ratio;
}

I
Ingo Molnar 已提交
7820
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7821 7822 7823 7824

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7825
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7826
{
7827 7828
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7829 7830 7831
}

static struct cgroup_subsys_state *
7832
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7833 7834 7835
{
	struct task_group *tg;

7836
	if (!cgrp->parent) {
7837
		/* This is early initialization for the top cgroup */
7838
		init_task_group.css.cgroup = cgrp;
7839 7840 7841 7842
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7843
	if (cgrp->parent->parent)
7844 7845 7846 7847 7848 7849 7850
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7851
	tg->css.cgroup = cgrp;
7852 7853 7854 7855

	return &tg->css;
}

I
Ingo Molnar 已提交
7856 7857
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7858
{
7859
	struct task_group *tg = cgroup_tg(cgrp);
7860 7861 7862 7863

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7864 7865 7866
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7867 7868 7869 7870 7871 7872 7873 7874 7875
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7876
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7877 7878 7879 7880 7881
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7882 7883
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7884
{
7885
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7886 7887
}

7888
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7889
{
7890
	struct task_group *tg = cgroup_tg(cgrp);
7891 7892 7893 7894

	return (u64) tg->shares;
}

P
Peter Zijlstra 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_ratio_val)
{
	return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
}

static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	struct task_group *tg = cgroup_tg(cgrp);

	return (u64) tg->rt_ratio;
}

7908 7909 7910 7911 7912 7913
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
P
Peter Zijlstra 已提交
7914 7915 7916 7917 7918
	{
		.name = "rt_ratio",
		.read_uint = cpu_rt_ratio_read_uint,
		.write_uint = cpu_rt_ratio_write_uint,
	},
7919 7920 7921 7922
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7923
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7924 7925 7926
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7927 7928 7929 7930 7931 7932 7933
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7934 7935 7936 7937
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7990 7991
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */