sched.c 259.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618 619 620
	/* For active balancing */
	int active_balance;
	int push_cpu;
621 622
	/* cpu of this runqueue: */
	int cpu;
623
	int online;
L
Linus Torvalds 已提交
624

625
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
626

627
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
628 629 630
	struct list_head migration_queue;
#endif

631 632 633 634
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
635
#ifdef CONFIG_SCHED_HRTICK
636 637 638 639
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
640 641 642
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
643 644 645
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
646 647
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
648 649

	/* sys_sched_yield() stats */
650
	unsigned int yld_count;
L
Linus Torvalds 已提交
651 652

	/* schedule() stats */
653 654 655
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
656 657

	/* try_to_wake_up() stats */
658 659
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
660 661

	/* BKL stats */
662
	unsigned int bkl_count;
L
Linus Torvalds 已提交
663 664 665
#endif
};

666
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
667

668
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
669
{
670
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
671 672
}

673 674 675 676 677 678 679 680 681
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
682 683
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
685 686 687 688
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
689 690
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
696
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
697

I
Ingo Molnar 已提交
698
inline void update_rq_clock(struct rq *rq)
699 700 701 702
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
703 704 705 706 707 708 709 710 711
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
730 731 732
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
733 734 735 736

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
737
enum {
P
Peter Zijlstra 已提交
738
#include "sched_features.h"
I
Ingo Molnar 已提交
739 740
};

P
Peter Zijlstra 已提交
741 742 743 744 745
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
746
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
747 748 749 750 751 752 753 754 755
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

756
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
757 758 759 760 761 762
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
763
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
764 765 766 767
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
768 769 770
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
771
	}
L
Li Zefan 已提交
772
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
773

L
Li Zefan 已提交
774
	return 0;
P
Peter Zijlstra 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
794
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
819 820 821 822 823
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
824
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
825 826 827 828 829
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
844

845 846 847 848 849 850
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
851 852
/*
 * ratelimit for updating the group shares.
853
 * default: 0.25ms
P
Peter Zijlstra 已提交
854
 */
855
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
856

857 858 859 860 861 862 863
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
864
/*
P
Peter Zijlstra 已提交
865
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
866 867
 * default: 1s
 */
P
Peter Zijlstra 已提交
868
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
869

870 871
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
872 873 874 875 876
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
877

878 879 880 881 882 883 884
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
885
	if (sysctl_sched_rt_runtime < 0)
886 887 888 889
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
890

L
Linus Torvalds 已提交
891
#ifndef prepare_arch_switch
892 893 894 895 896 897
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

898 899 900 901 902
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

903
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
904
static inline int task_running(struct rq *rq, struct task_struct *p)
905
{
906
	return task_current(rq, p);
907 908
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912
{
}

913
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914
{
915 916 917 918
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
919 920 921 922 923 924 925
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

926 927 928 929
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
930
static inline int task_running(struct rq *rq, struct task_struct *p)
931 932 933 934
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
935
	return task_current(rq, p);
936 937 938
#endif
}

939
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

956
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 958 959 960 961 962 963 964 965 966 967 968
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
969
#endif
970 971
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
972

973 974 975 976
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
977
static inline struct rq *__task_rq_lock(struct task_struct *p)
978 979
	__acquires(rq->lock)
{
980 981 982 983 984
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
985 986 987 988
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
989 990
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
991
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
992 993
 * explicitly disabling preemption.
 */
994
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998

999 1000 1001 1002 1003 1004
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1005 1006 1007 1008
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1009 1010 1011 1012 1013 1014 1015 1016
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1017
static void __task_rq_unlock(struct rq *rq)
1018 1019 1020 1021 1022
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1023
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1030
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1031
 */
A
Alexey Dobriyan 已提交
1032
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1033 1034
	__acquires(rq->lock)
{
1035
	struct rq *rq;
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042 1043

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1065
	if (!cpu_active(cpu_of(rq)))
1066
		return 0;
P
Peter Zijlstra 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1087
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1088 1089 1090 1091 1092 1093
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1094
#ifdef CONFIG_SMP
1095 1096 1097 1098
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1099
{
1100
	struct rq *rq = arg;
1101

1102 1103 1104 1105
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1106 1107
}

1108 1109 1110 1111 1112 1113
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1114
{
1115 1116
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1117

1118
	hrtimer_set_expires(timer, time);
1119 1120 1121 1122

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1123
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1124 1125
		rq->hrtick_csd_pending = 1;
	}
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1140
		hrtick_clear(cpu_rq(cpu));
1141 1142 1143 1144 1145 1146
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1147
static __init void init_hrtick(void)
1148 1149 1150
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1151 1152 1153 1154 1155 1156 1157 1158
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1159
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1160
			HRTIMER_MODE_REL_PINNED, 0);
1161
}
1162

A
Andrew Morton 已提交
1163
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1164 1165
{
}
1166
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1167

1168
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1169
{
1170 1171
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1172

1173 1174 1175 1176
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1177

1178 1179
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1180
}
A
Andrew Morton 已提交
1181
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1182 1183 1184 1185 1186 1187 1188 1189
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1190 1191 1192
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1193
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1194

I
Ingo Molnar 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1208
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1209 1210 1211 1212 1213
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1214
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1215 1216
		return;

1217
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1273
	set_tsk_need_resched(rq->idle);
1274 1275 1276 1277 1278 1279

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1280
#endif /* CONFIG_NO_HZ */
1281

1282
#else /* !CONFIG_SMP */
1283
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1284 1285
{
	assert_spin_locked(&task_rq(p)->lock);
1286
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1287
}
1288
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1289

1290 1291 1292 1293 1294 1295 1296 1297
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1298 1299 1300
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1301
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1302

1303 1304 1305
/*
 * delta *= weight / lw
 */
1306
static unsigned long
1307 1308 1309 1310 1311
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1312 1313 1314 1315 1316 1317 1318
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1319 1320 1321 1322 1323

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1324
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1325
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1326 1327
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1328
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329

1330
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 1332
}

1333
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 1335
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 1341
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1342
	lw->inv_weight = 0;
1343 1344
}

1345 1346 1347 1348
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1349
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1350 1351 1352 1353
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1354 1355
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1365 1366 1367
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1368 1369
 */
static const int prio_to_weight[40] = {
1370 1371 1372 1373 1374 1375 1376 1377
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1378 1379
};

1380 1381 1382 1383 1384 1385 1386
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1387
static const u32 prio_to_wmult[40] = {
1388 1389 1390 1391 1392 1393 1394 1395
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1396
};
1397

I
Ingo Molnar 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1432 1433
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1434 1435
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1436 1437
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1438 1439
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1440 1441
#endif

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1452
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1453
typedef int (*tg_visitor)(struct task_group *, void *);
1454 1455 1456 1457 1458

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1459
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1460 1461
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1462
	int ret;
1463 1464 1465 1466

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1467 1468 1469
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1470 1471 1472 1473 1474 1475 1476
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1477 1478 1479
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1480 1481 1482 1483 1484

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1485
out_unlock:
1486
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1487 1488

	return ret;
1489 1490
}

P
Peter Zijlstra 已提交
1491 1492 1493
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1494
}
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1505
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1506

1507 1508
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1509 1510
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1511 1512 1513 1514 1515

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1516 1517 1518 1519 1520 1521 1522

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1523 1524
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1525
{
1526
	unsigned long rq_weight;
P
Peter Zijlstra 已提交
1527 1528
	unsigned long shares;
	int boost = 0;
1529

1530
	if (!tg->se[cpu])
1531 1532
		return;

1533
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
P
Peter Zijlstra 已提交
1534 1535 1536 1537
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1538

1539 1540 1541 1542 1543 1544
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1545
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1546
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1547

1548 1549 1550 1551
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1552

1553
		spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
1554
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1555 1556 1557
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1558
}
1559 1560

/*
1561 1562 1563
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1564
 */
P
Peter Zijlstra 已提交
1565
static int tg_shares_up(struct task_group *tg, void *data)
1566
{
P
Peter Zijlstra 已提交
1567
	unsigned long weight, rq_weight = 0, eff_weight = 0;
1568
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1569
	struct sched_domain *sd = data;
1570
	int i;
1571

1572
	for_each_cpu(i, sched_domain_span(sd)) {
1573 1574 1575 1576 1577 1578
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
P
Peter Zijlstra 已提交
1579 1580 1581
		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;

1582 1583 1584
		if (!weight)
			weight = NICE_0_LOAD;

P
Peter Zijlstra 已提交
1585
		eff_weight += weight;
1586
		shares += tg->cfs_rq[i]->shares;
1587 1588
	}

1589 1590 1591 1592 1593
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1594

P
Peter Zijlstra 已提交
1595 1596 1597 1598 1599 1600 1601 1602
	for_each_cpu(i, sched_domain_span(sd)) {
		unsigned long sd_rq_weight = rq_weight;

		if (!tg->cfs_rq[i]->rq_weight)
			sd_rq_weight = eff_weight;

		update_group_shares_cpu(tg, i, shares, sd_rq_weight);
	}
P
Peter Zijlstra 已提交
1603 1604

	return 0;
1605 1606 1607
}

/*
1608 1609 1610
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1611
 */
P
Peter Zijlstra 已提交
1612
static int tg_load_down(struct task_group *tg, void *data)
1613
{
1614
	unsigned long load;
P
Peter Zijlstra 已提交
1615
	long cpu = (long)data;
1616

1617 1618 1619 1620 1621 1622 1623
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1624

1625
	tg->cfs_rq[cpu]->h_load = load;
1626

P
Peter Zijlstra 已提交
1627
	return 0;
1628 1629
}

1630
static void update_shares(struct sched_domain *sd)
1631
{
1632 1633 1634 1635 1636 1637 1638 1639
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1640 1641 1642

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1643
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1644
	}
1645 1646
}

1647 1648
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1649 1650 1651
	if (root_task_group_empty())
		return;

1652 1653 1654 1655 1656
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1657
static void update_h_load(long cpu)
1658
{
1659 1660 1661
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1662
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1663 1664 1665 1666
}

#else

1667
static inline void update_shares(struct sched_domain *sd)
1668 1669 1670
{
}

1671 1672 1673 1674
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1675 1676
#endif

1677 1678
#ifdef CONFIG_PREEMPT

1679
/*
1680 1681 1682 1683 1684 1685
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1686
 */
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1741 1742 1743 1744 1745 1746
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1747 1748
#endif

V
Vegard Nossum 已提交
1749
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1750 1751
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1752
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1753 1754 1755
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1756
#endif
1757

1758 1759
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1760 1761
#include "sched_stats.h"
#include "sched_idletask.c"
1762 1763
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1764 1765 1766 1767 1768
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1769 1770
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1771

1772
static void inc_nr_running(struct rq *rq)
1773 1774 1775 1776
{
	rq->nr_running++;
}

1777
static void dec_nr_running(struct rq *rq)
1778 1779 1780 1781
{
	rq->nr_running--;
}

1782 1783 1784
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1785 1786 1787 1788
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1789

I
Ingo Molnar 已提交
1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1798

I
Ingo Molnar 已提交
1799 1800
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1801 1802
}

1803 1804 1805 1806 1807 1808
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1809
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1810
{
P
Peter Zijlstra 已提交
1811 1812 1813
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1814
	sched_info_queued(p);
1815
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1816
	p->se.on_rq = 1;
1817 1818
}

1819
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1820
{
P
Peter Zijlstra 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1830 1831
	}

1832
	sched_info_dequeued(p);
1833
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1834
	p->se.on_rq = 0;
1835 1836
}

1837
/*
I
Ingo Molnar 已提交
1838
 * __normal_prio - return the priority that is based on the static prio
1839 1840 1841
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1842
	return p->static_prio;
1843 1844
}

1845 1846 1847 1848 1849 1850 1851
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1852
static inline int normal_prio(struct task_struct *p)
1853 1854 1855
{
	int prio;

1856
	if (task_has_rt_policy(p))
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1870
static int effective_prio(struct task_struct *p)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1883
/*
I
Ingo Molnar 已提交
1884
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1885
 */
I
Ingo Molnar 已提交
1886
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1887
{
1888
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1889
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1890

1891
	enqueue_task(rq, p, wakeup);
1892
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1893 1894 1895 1896 1897
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1898
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1899
{
1900
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1901 1902
		rq->nr_uninterruptible++;

1903
	dequeue_task(rq, p, sleep);
1904
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1911
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1912 1913 1914 1915
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1916 1917
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1918
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1919
#ifdef CONFIG_SMP
1920 1921 1922 1923 1924 1925
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1926 1927
	task_thread_info(p)->cpu = cpu;
#endif
1928 1929
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1942
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1943

1944 1945 1946 1947 1948 1949
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1950 1951 1952
/*
 * Is this task likely cache-hot:
 */
1953
static int
1954 1955 1956 1957
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1958 1959 1960
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1961 1962 1963
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1964 1965
		return 1;

1966 1967 1968
	if (p->sched_class != &fair_sched_class)
		return 0;

1969 1970 1971 1972 1973
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1974 1975 1976 1977 1978 1979
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1980
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1981
{
I
Ingo Molnar 已提交
1982 1983
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1984 1985
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1986
	u64 clock_offset;
I
Ingo Molnar 已提交
1987 1988

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1989

1990
	trace_sched_migrate_task(p, new_cpu);
1991

I
Ingo Molnar 已提交
1992 1993 1994
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1995 1996 1997 1998
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1999
#endif
2000
	if (old_cpu != new_cpu) {
2001
		p->se.nr_migrations++;
2002
		new_rq->nr_migrations_in++;
2003
#ifdef CONFIG_SCHEDSTATS
2004 2005
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2006
#endif
2007 2008
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2009
	}
2010 2011
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2012 2013

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2014 2015
}

2016
struct migration_req {
L
Linus Torvalds 已提交
2017 2018
	struct list_head list;

2019
	struct task_struct *task;
L
Linus Torvalds 已提交
2020 2021 2022
	int dest_cpu;

	struct completion done;
2023
};
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2029
static int
2030
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2031
{
2032
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2033 2034 2035 2036 2037

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2038
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2047

L
Linus Torvalds 已提交
2048 2049 2050
	return 1;
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2094 2095 2096
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2097 2098 2099 2100 2101 2102 2103
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108 2109
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2110
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2111 2112
{
	unsigned long flags;
I
Ingo Molnar 已提交
2113
	int running, on_rq;
R
Roland McGrath 已提交
2114
	unsigned long ncsw;
2115
	struct rq *rq;
L
Linus Torvalds 已提交
2116

2117 2118 2119 2120 2121 2122 2123 2124
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2125

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2137 2138 2139
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2140
			cpu_relax();
R
Roland McGrath 已提交
2141
		}
2142

2143 2144 2145 2146 2147 2148
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2149
		trace_sched_wait_task(rq, p);
2150 2151
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2152
		ncsw = 0;
2153
		if (!match_state || p->state == match_state)
2154
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2155
		task_rq_unlock(rq, &flags);
2156

R
Roland McGrath 已提交
2157 2158 2159 2160 2161 2162
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2173

2174 2175 2176 2177 2178
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2179
		 * So if it was still runnable (but just not actively
2180 2181 2182 2183 2184 2185 2186
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2187

2188 2189 2190 2191 2192 2193 2194
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2195 2196

	return ncsw;
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2212
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2222
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2223 2224

/*
2225 2226
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2227 2228 2229 2230
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2231
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2232
{
2233
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2234
	unsigned long total = weighted_cpuload(cpu);
2235

2236
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2237
		return total;
2238

I
Ingo Molnar 已提交
2239
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2240 2241 2242
}

/*
2243 2244
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2245
 */
A
Alexey Dobriyan 已提交
2246
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2247
{
2248
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2249
	unsigned long total = weighted_cpuload(cpu);
2250

2251
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2252
		return total;
2253

I
Ingo Molnar 已提交
2254
	return max(rq->cpu_load[type-1], total);
2255 2256
}

N
Nick Piggin 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2274
		/* Skip over this group if it has no CPUs allowed */
2275 2276
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2277
			continue;
2278

2279 2280
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2281 2282 2283 2284

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2285
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2296 2297
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2298 2299 2300 2301 2302 2303 2304 2305

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2306
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2307 2308 2309 2310 2311 2312 2313

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2314
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2315
 */
I
Ingo Molnar 已提交
2316
static int
2317
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2318 2319 2320 2321 2322
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2323
	/* Traverse only the allowed CPUs */
2324
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2325
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2351

2352
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2353 2354 2355
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2356 2357
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2358 2359
		if (tmp->flags & flag)
			sd = tmp;
2360
	}
N
Nick Piggin 已提交
2361

2362 2363 2364
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2365 2366
	while (sd) {
		struct sched_group *group;
2367 2368 2369 2370 2371 2372
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2373 2374

		group = find_idlest_group(sd, t, cpu);
2375 2376 2377 2378
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2379

2380
		new_cpu = find_idlest_cpu(group, t, cpu);
2381 2382 2383 2384 2385
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2386

2387
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2388
		cpu = new_cpu;
2389
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2390 2391
		sd = NULL;
		for_each_domain(cpu, tmp) {
2392
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2404

T
Thomas Gleixner 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2440
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2441
{
2442
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2443 2444
	unsigned long flags;
	long old_state;
2445
	struct rq *rq;
L
Linus Torvalds 已提交
2446

2447 2448 2449
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2450
#ifdef CONFIG_SMP
2451
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2452 2453 2454 2455 2456 2457
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2458
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2459 2460 2461 2462 2463 2464 2465
				update_shares(sd);
				break;
			}
		}
	}
#endif

2466
	smp_wmb();
L
Linus Torvalds 已提交
2467
	rq = task_rq_lock(p, &flags);
2468
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2469 2470 2471 2472
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2473
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2474 2475 2476
		goto out_running;

	cpu = task_cpu(p);
2477
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2478 2479 2480 2481 2482 2483
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2484 2485 2486
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491 2492
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2493
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2500 2501 2502 2503 2504 2505 2506
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2507
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2508 2509 2510 2511 2512
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2513
#endif /* CONFIG_SCHEDSTATS */
2514

L
Linus Torvalds 已提交
2515 2516
out_activate:
#endif /* CONFIG_SMP */
2517 2518 2519 2520 2521 2522 2523 2524 2525
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2526
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2527 2528
	success = 1;

P
Peter Zijlstra 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2545
out_running:
2546
	trace_sched_wakeup(rq, p, success);
2547
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2548

L
Linus Torvalds 已提交
2549
	p->state = TASK_RUNNING;
2550 2551 2552 2553
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2571
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2572
{
2573
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2574 2575 2576
}
EXPORT_SYMBOL(wake_up_process);

2577
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590 2591
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2592
	p->se.prev_sum_exec_runtime	= 0;
2593
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2594 2595
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2596 2597
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2598 2599

#ifdef CONFIG_SCHEDSTATS
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2631
#endif
N
Nick Piggin 已提交
2632

P
Peter Zijlstra 已提交
2633
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2634
	p->se.on_rq = 0;
2635
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2636

2637 2638 2639 2640
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2662
	set_task_cpu(p, cpu);
2663 2664

	/*
2665
	 * Make sure we do not leak PI boosting priority to the child.
2666
	 */
2667
	p->prio = current->normal_prio;
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2679 2680 2681 2682 2683
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2684 2685 2686 2687 2688 2689
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2690

H
Hiroshi Shimamoto 已提交
2691 2692
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2693

2694
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2695
	if (likely(sched_info_on()))
2696
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2697
#endif
2698
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2699 2700
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2701
#ifdef CONFIG_PREEMPT
2702
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2703
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2704
#endif
2705 2706
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2707
	put_cpu();
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2717
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2718 2719
{
	unsigned long flags;
I
Ingo Molnar 已提交
2720
	struct rq *rq;
L
Linus Torvalds 已提交
2721 2722

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2723
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2724
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2725 2726 2727

	p->prio = effective_prio(p);

2728
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2729
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2730 2731
	} else {
		/*
I
Ingo Molnar 已提交
2732 2733
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2734
		 */
2735
		p->sched_class->task_new(rq, p);
2736
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2737
	}
2738
	trace_sched_wakeup_new(rq, p, 1);
2739
	check_preempt_curr(rq, p, 0);
2740 2741 2742 2743
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2744
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2745 2746
}

2747 2748 2749
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2750
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2751
 * @notifier: notifier struct to register
2752 2753 2754 2755 2756 2757 2758 2759 2760
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2761
 * @notifier: notifier struct to unregister
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2791
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2803
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2804

2805 2806 2807
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2808
 * @prev: the current task that is being switched out
2809 2810 2811 2812 2813 2814 2815 2816 2817
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2818 2819 2820
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2821
{
2822
	fire_sched_out_preempt_notifiers(prev, next);
2823 2824 2825 2826
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2827 2828
/**
 * finish_task_switch - clean up after a task-switch
2829
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2830 2831
 * @prev: the thread we just switched away from.
 *
2832 2833 2834 2835
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2836 2837
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2838
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2839 2840 2841
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2842
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2843 2844 2845
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2846
	long prev_state;
2847 2848 2849 2850 2851 2852
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2858
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2859 2860
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2861
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2867
	prev_state = prev->state;
2868
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2869
	perf_counter_task_sched_in(current, cpu_of(rq));
2870
	finish_lock_switch(rq, prev);
2871
#ifdef CONFIG_SMP
2872
	if (post_schedule)
2873 2874
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2875

2876
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2877 2878
	if (mm)
		mmdrop(mm);
2879
	if (unlikely(prev_state == TASK_DEAD)) {
2880 2881 2882
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2883
		 */
2884
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2885
		put_task_struct(prev);
2886
	}
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2893
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2894 2895
	__releases(rq->lock)
{
2896 2897
	struct rq *rq = this_rq();

2898 2899 2900 2901 2902
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2903
	if (current->set_child_tid)
2904
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2911
static inline void
2912
context_switch(struct rq *rq, struct task_struct *prev,
2913
	       struct task_struct *next)
L
Linus Torvalds 已提交
2914
{
I
Ingo Molnar 已提交
2915
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2916

2917
	prepare_task_switch(rq, prev, next);
2918
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2919 2920
	mm = next->mm;
	oldmm = prev->active_mm;
2921 2922 2923 2924 2925
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2926
	arch_start_context_switch(prev);
2927

I
Ingo Molnar 已提交
2928
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2935
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2936 2937 2938
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2939 2940 2941 2942 2943 2944 2945
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2946
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2947
#endif
L
Linus Torvalds 已提交
2948 2949 2950 2951

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2952 2953 2954 2955 2956 2957 2958
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2982
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2997 2998
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2999

3000
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3010
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3011 3012 3013 3014 3015
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3016 3017 3018 3019 3020 3021
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3037 3038
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3039
{
3040 3041 3042 3043
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3056

3057 3058
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3059

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3082 3083
}

3084 3085 3086 3087 3088 3089 3090 3091 3092
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3093
/*
I
Ingo Molnar 已提交
3094 3095
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3096
 */
I
Ingo Molnar 已提交
3097
static void update_cpu_load(struct rq *this_rq)
3098
{
3099
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3112 3113 3114 3115 3116 3117 3118
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3119 3120
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3121 3122 3123 3124 3125

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3126 3127
}

I
Ingo Molnar 已提交
3128 3129
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3136
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3137 3138 3139
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3140
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3141 3142 3143 3144
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3145
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3146
			spin_lock(&rq1->lock);
3147
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3148 3149
		} else {
			spin_lock(&rq2->lock);
3150
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3151 3152
		}
	}
3153 3154
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160 3161 3162
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3163
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3177
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3178 3179
 * the cpu_allowed mask is restored.
 */
3180
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3181
{
3182
	struct migration_req req;
L
Linus Torvalds 已提交
3183
	unsigned long flags;
3184
	struct rq *rq;
L
Linus Torvalds 已提交
3185 3186

	rq = task_rq_lock(p, &flags);
3187
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3188
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3189 3190 3191 3192 3193 3194
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3195

L
Linus Torvalds 已提交
3196 3197 3198 3199 3200
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3201

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3209 3210
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3211 3212 3213 3214
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3215
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3216
	put_cpu();
N
Nick Piggin 已提交
3217 3218
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3225 3226
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3227
{
3228
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3229
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3230
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3231 3232 3233 3234
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3235
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3236 3237 3238 3239 3240
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3241
static
3242
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3243
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3244
		     int *all_pinned)
L
Linus Torvalds 已提交
3245
{
3246
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3247 3248 3249 3250 3251 3252
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3253
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3254
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3255
		return 0;
3256
	}
3257 3258
	*all_pinned = 0;

3259 3260
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3261
		return 0;
3262
	}
L
Linus Torvalds 已提交
3263

3264 3265 3266 3267 3268 3269
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3270 3271 3272
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3273
#ifdef CONFIG_SCHEDSTATS
3274
		if (tsk_cache_hot) {
3275
			schedstat_inc(sd, lb_hot_gained[idle]);
3276 3277
			schedstat_inc(p, se.nr_forced_migrations);
		}
3278 3279 3280 3281
#endif
		return 1;
	}

3282
	if (tsk_cache_hot) {
3283
		schedstat_inc(p, se.nr_failed_migrations_hot);
3284
		return 0;
3285
	}
L
Linus Torvalds 已提交
3286 3287 3288
	return 1;
}

3289 3290 3291 3292 3293
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3294
{
3295
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3296 3297
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3298

3299
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3300 3301
		goto out;

3302 3303
	pinned = 1;

L
Linus Torvalds 已提交
3304
	/*
I
Ingo Molnar 已提交
3305
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3306
	 */
I
Ingo Molnar 已提交
3307 3308
	p = iterator->start(iterator->arg);
next:
3309
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3310
		goto out;
3311 3312

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3313 3314 3315
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3316 3317
	}

I
Ingo Molnar 已提交
3318
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3319
	pulled++;
I
Ingo Molnar 已提交
3320
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3332
	/*
3333
	 * We only want to steal up to the prescribed amount of weighted load.
3334
	 */
3335
	if (rem_load_move > 0) {
3336 3337
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3338 3339
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3340 3341 3342
	}
out:
	/*
3343
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3344 3345 3346 3347
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3348 3349 3350

	if (all_pinned)
		*all_pinned = pinned;
3351 3352

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3353 3354
}

I
Ingo Molnar 已提交
3355
/*
P
Peter Williams 已提交
3356 3357 3358
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3359 3360 3361 3362
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3363
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3364 3365 3366
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3367
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3368
	unsigned long total_load_moved = 0;
3369
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3370 3371

	do {
P
Peter Williams 已提交
3372 3373
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3374
				max_load_move - total_load_moved,
3375
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3376
		class = class->next;
3377

3378 3379 3380 3381 3382 3383
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3384 3385
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3386
#endif
P
Peter Williams 已提交
3387
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3388

P
Peter Williams 已提交
3389 3390 3391
	return total_load_moved > 0;
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3428
	const struct sched_class *class;
P
Peter Williams 已提交
3429 3430

	for (class = sched_class_highest; class; class = class->next)
3431
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3432 3433 3434
			return 1;

	return 0;
I
Ingo Molnar 已提交
3435
}
3436
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3437
/*
3438 3439
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3440
 */
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3459
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3460 3461 3462 3463 3464 3465
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3466
#endif
3467
};
L
Linus Torvalds 已提交
3468

3469
/*
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3502
		load_idx = sd->busy_idx;
3503 3504 3505
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3506
		load_idx = sd->newidle_idx;
3507 3508
		break;
	default:
N
Nick Piggin 已提交
3509
		load_idx = sd->idle_idx;
3510 3511
		break;
	}
L
Linus Torvalds 已提交
3512

3513 3514
	return load_idx;
}
L
Linus Torvalds 已提交
3515 3516


3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3555

3556 3557
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3558

3559 3560 3561 3562 3563 3564 3565
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3566

3567 3568 3569 3570 3571 3572 3573 3574
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3575

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3589

3590 3591 3592 3593 3594 3595 3596
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3597

3598 3599 3600 3601 3602 3603 3604
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3605

3606
/**
3607
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3608 3609 3610 3611 3612
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3613 3614 3615 3616 3617
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3618 3619 3620 3621 3622 3623 3624 3625
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3626

3627 3628 3629
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3630

3631 3632
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3633

3634 3635 3636 3637 3638 3639
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3640

3641 3642 3643 3644 3645 3646 3647
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3693

3694 3695
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3696

3697 3698
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3699

3700
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3701
		if (local_group) {
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3714
		}
3715

3716 3717 3718
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3719

3720 3721
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3734

3735 3736 3737
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3758

3759 3760 3761 3762 3763 3764 3765 3766 3767
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3768
 */
3769 3770 3771 3772
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3773
{
3774
	struct sched_group *group = sd->groups;
3775
	struct sg_lb_stats sgs;
3776 3777
	int load_idx;

3778
	init_sd_power_savings_stats(sd, sds, idle);
3779
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3780 3781 3782 3783

	do {
		int local_group;

3784 3785
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3786
		memset(&sgs, 0, sizeof(sgs));
3787 3788
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3789

3790 3791
		if (local_group && balance && !(*balance))
			return;
3792

3793 3794
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3795 3796

		if (local_group) {
3797 3798 3799 3800 3801
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3802 3803
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3804 3805 3806 3807 3808
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3809
		}
3810

3811
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3812 3813 3814
		group = group->next;
	} while (group != sd->groups);

3815
}
L
Linus Torvalds 已提交
3816

3817 3818
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3819 3820
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3839

3840 3841 3842 3843 3844
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3845

L
Linus Torvalds 已提交
3846
	/*
3847 3848 3849
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3850
	 */
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3893 3894 3895 3896 3897
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3898
	if (sds->max_load < sds->avg_load) {
3899
		*imbalance = 0;
3900
		return fix_small_imbalance(sds, this_cpu, imbalance);
3901
	}
3902 3903

	/* Don't want to pull so many tasks that a group would go idle */
3904 3905
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3906

L
Linus Torvalds 已提交
3907
	/* How much load to actually move to equalise the imbalance */
3908 3909
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3910 3911
			/ SCHED_LOAD_SCALE;

3912 3913 3914 3915 3916 3917
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3918 3919
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3920

3921
}
3922
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3948 3949 3950 3951 3952 3953 3954
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3955

3956
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3957

3958 3959 3960 3961 3962 3963 3964
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3975 3976
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3977

3978 3979
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3980

3981
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3982 3983
		goto out_balanced;

3984
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3985

3986 3987 3988 3989
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3990 3991
		goto out_balanced;

3992 3993 3994 3995
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3996

L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002 4003 4004
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4005
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4006 4007
	 * appear as very large values with unsigned longs.
	 */
4008
	if (sds.max_load <= sds.busiest_load_per_task)
4009 4010
		goto out_balanced;

4011 4012
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4013
	return sds.busiest;
L
Linus Torvalds 已提交
4014 4015

out_balanced:
4016 4017 4018 4019 4020 4021
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4022
ret:
L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4030
static struct rq *
I
Ingo Molnar 已提交
4031
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4032
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4033
{
4034
	struct rq *busiest = NULL, *rq;
4035
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4036 4037
	int i;

4038
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
4039
		unsigned long wl;
4040

4041
		if (!cpumask_test_cpu(i, cpus))
4042 4043
			continue;

4044
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
4045
		wl = weighted_cpuload(i);
4046

I
Ingo Molnar 已提交
4047
		if (rq->nr_running == 1 && wl > imbalance)
4048
			continue;
L
Linus Torvalds 已提交
4049

I
Ingo Molnar 已提交
4050 4051
		if (wl > max_load) {
			max_load = wl;
4052
			busiest = rq;
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058
		}
	}

	return busiest;
}

4059 4060 4061 4062 4063 4064
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4065 4066 4067
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4068 4069 4070 4071
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4072
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4073
			struct sched_domain *sd, enum cpu_idle_type idle,
4074
			int *balance)
L
Linus Torvalds 已提交
4075
{
P
Peter Williams 已提交
4076
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4077 4078
	struct sched_group *group;
	unsigned long imbalance;
4079
	struct rq *busiest;
4080
	unsigned long flags;
4081
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4082

4083
	cpumask_setall(cpus);
4084

4085 4086 4087
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4088
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4089
	 * portraying it as CPU_NOT_IDLE.
4090
	 */
I
Ingo Molnar 已提交
4091
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4092
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4093
		sd_idle = 1;
L
Linus Torvalds 已提交
4094

4095
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4096

4097
redo:
4098
	update_shares(sd);
4099
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4100
				   cpus, balance);
4101

4102
	if (*balance == 0)
4103 4104
		goto out_balanced;

L
Linus Torvalds 已提交
4105 4106 4107 4108 4109
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4110
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4111 4112 4113 4114 4115
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4116
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4117 4118 4119

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4120
	ld_moved = 0;
L
Linus Torvalds 已提交
4121 4122 4123 4124
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4125
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4126 4127
		 * correctly treated as an imbalance.
		 */
4128
		local_irq_save(flags);
N
Nick Piggin 已提交
4129
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4130
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4131
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4132
		double_rq_unlock(this_rq, busiest);
4133
		local_irq_restore(flags);
4134

4135 4136 4137
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4138
		if (ld_moved && this_cpu != smp_processor_id())
4139 4140
			resched_cpu(this_cpu);

4141
		/* All tasks on this runqueue were pinned by CPU affinity */
4142
		if (unlikely(all_pinned)) {
4143 4144
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4145
				goto redo;
4146
			goto out_balanced;
4147
		}
L
Linus Torvalds 已提交
4148
	}
4149

P
Peter Williams 已提交
4150
	if (!ld_moved) {
L
Linus Torvalds 已提交
4151 4152 4153 4154 4155
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4156
			spin_lock_irqsave(&busiest->lock, flags);
4157 4158 4159 4160

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4161 4162
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4163
				spin_unlock_irqrestore(&busiest->lock, flags);
4164 4165 4166 4167
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4168 4169 4170
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4171
				active_balance = 1;
L
Linus Torvalds 已提交
4172
			}
4173
			spin_unlock_irqrestore(&busiest->lock, flags);
4174
			if (active_balance)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4181
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4182
		}
4183
	} else
L
Linus Torvalds 已提交
4184 4185
		sd->nr_balance_failed = 0;

4186
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4187 4188
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4189 4190 4191 4192 4193 4194 4195 4196 4197
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4198 4199
	}

P
Peter Williams 已提交
4200
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4201
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4202 4203 4204
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4205 4206 4207 4208

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4209
	sd->nr_balance_failed = 0;
4210 4211

out_one_pinned:
L
Linus Torvalds 已提交
4212
	/* tune up the balancing interval */
4213 4214
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4215 4216
		sd->balance_interval *= 2;

4217
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4218
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4219 4220 4221 4222
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4223 4224
	if (ld_moved)
		update_shares(sd);
4225
	return ld_moved;
L
Linus Torvalds 已提交
4226 4227 4228 4229 4230 4231
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4232
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4233 4234
 * this_rq is locked.
 */
4235
static int
4236
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4237 4238
{
	struct sched_group *group;
4239
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4240
	unsigned long imbalance;
P
Peter Williams 已提交
4241
	int ld_moved = 0;
N
Nick Piggin 已提交
4242
	int sd_idle = 0;
4243
	int all_pinned = 0;
4244
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4245

4246
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4247

4248 4249 4250 4251
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4252
	 * portraying it as CPU_NOT_IDLE.
4253 4254 4255
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4256
		sd_idle = 1;
L
Linus Torvalds 已提交
4257

4258
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4259
redo:
4260
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4261
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4262
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4263
	if (!group) {
I
Ingo Molnar 已提交
4264
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4265
		goto out_balanced;
L
Linus Torvalds 已提交
4266 4267
	}

4268
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4269
	if (!busiest) {
I
Ingo Molnar 已提交
4270
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4271
		goto out_balanced;
L
Linus Torvalds 已提交
4272 4273
	}

N
Nick Piggin 已提交
4274 4275
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4276
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4277

P
Peter Williams 已提交
4278
	ld_moved = 0;
4279 4280 4281
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4282 4283
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4284
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4285 4286
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4287
		double_unlock_balance(this_rq, busiest);
4288

4289
		if (unlikely(all_pinned)) {
4290 4291
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4292 4293
				goto redo;
		}
4294 4295
	}

P
Peter Williams 已提交
4296
	if (!ld_moved) {
4297
		int active_balance = 0;
4298

I
Ingo Molnar 已提交
4299
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4300 4301
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4302
			return -1;
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4339
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4352 4353 4354 4355
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4356 4357
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4358
		spin_lock(&this_rq->lock);
4359

N
Nick Piggin 已提交
4360
	} else
4361
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4362

4363
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4364
	return ld_moved;
4365 4366

out_balanced:
I
Ingo Molnar 已提交
4367
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4368
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4370
		return -1;
4371
	sd->nr_balance_failed = 0;
4372

4373
	return 0;
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4380
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4381 4382
{
	struct sched_domain *sd;
4383
	int pulled_task = 0;
I
Ingo Molnar 已提交
4384
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4385 4386

	for_each_domain(this_cpu, sd) {
4387 4388 4389 4390 4391 4392
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4393
			/* If we've pulled tasks over stop searching: */
4394
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4395
							   sd);
4396 4397 4398 4399 4400 4401

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4402
	}
I
Ingo Molnar 已提交
4403
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4404 4405 4406 4407 4408
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4409
	}
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4420
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4421
{
4422
	int target_cpu = busiest_rq->push_cpu;
4423 4424
	struct sched_domain *sd;
	struct rq *target_rq;
4425

4426
	/* Is there any task to move? */
4427 4428 4429 4430
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4431 4432

	/*
4433
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4434
	 * we need to fix it. Originally reported by
4435
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4436
	 */
4437
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4438

4439 4440
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4441 4442
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4443 4444

	/* Search for an sd spanning us and the target CPU. */
4445
	for_each_domain(target_cpu, sd) {
4446
		if ((sd->flags & SD_LOAD_BALANCE) &&
4447
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4448
				break;
4449
	}
4450

4451
	if (likely(sd)) {
4452
		schedstat_inc(sd, alb_count);
4453

P
Peter Williams 已提交
4454 4455
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4456 4457 4458 4459
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4460
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4461 4462
}

4463 4464 4465
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4466
	cpumask_var_t cpu_mask;
4467
	cpumask_var_t ilb_grp_nohz_mask;
4468 4469 4470 4471
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4472 4473 4474 4475 4476
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4588
	return cpumask_first(nohz.cpu_mask);
4589 4590 4591
}
#endif

4592
/*
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4603
 *
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4619 4620 4621 4622 4623 4624 4625 4626
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4627 4628
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4629

4630 4631 4632
			return 0;
		}

4633 4634
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4635
		/* time for ilb owner also to sleep */
4636
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4637 4638 4639 4640 4641 4642 4643 4644 4645
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4662
			return 1;
4663
		}
4664
	} else {
4665
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4666 4667
			return 0;

4668
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4681 4682 4683 4684 4685
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4686
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4687
{
4688 4689
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4690 4691
	unsigned long interval;
	struct sched_domain *sd;
4692
	/* Earliest time when we have to do rebalance again */
4693
	unsigned long next_balance = jiffies + 60*HZ;
4694
	int update_next_balance = 0;
4695
	int need_serialize;
L
Linus Torvalds 已提交
4696

4697
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4698 4699 4700 4701
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4702
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4709 4710 4711
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4712
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4713

4714
		if (need_serialize) {
4715 4716 4717 4718
			if (!spin_trylock(&balancing))
				goto out;
		}

4719
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4720
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4721 4722
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4723 4724 4725
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4726
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4727
			}
4728
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4729
		}
4730
		if (need_serialize)
4731 4732
			spin_unlock(&balancing);
out:
4733
		if (time_after(next_balance, sd->last_balance + interval)) {
4734
			next_balance = sd->last_balance + interval;
4735 4736
			update_next_balance = 1;
		}
4737 4738 4739 4740 4741 4742 4743 4744

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4745
	}
4746 4747 4748 4749 4750 4751 4752 4753

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4754 4755 4756 4757 4758 4759 4760 4761 4762
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4763 4764 4765 4766
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4767

I
Ingo Molnar 已提交
4768
	rebalance_domains(this_cpu, idle);
4769 4770 4771 4772 4773 4774 4775

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4776 4777
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4778 4779 4780
		struct rq *rq;
		int balance_cpu;

4781 4782 4783 4784
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4785 4786 4787 4788 4789 4790 4791 4792
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4793
			rebalance_domains(balance_cpu, CPU_IDLE);
4794 4795

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4796 4797
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4798 4799 4800 4801 4802
		}
	}
#endif
}

4803 4804 4805 4806 4807
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4808 4809 4810 4811 4812 4813 4814
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4815
static inline void trigger_load_balance(struct rq *rq, int cpu)
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4827
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4828 4829 4830 4831
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4832
			int ilb = find_new_ilb(cpu);
4833

4834
			if (ilb < nr_cpu_ids)
4835 4836 4837 4838 4839 4840 4841 4842 4843
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4844
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4845 4846 4847 4848 4849 4850 4851 4852 4853
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4854
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4855 4856
		return;
#endif
4857 4858 4859
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4860
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4861
}
I
Ingo Molnar 已提交
4862 4863 4864

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4865 4866 4867
/*
 * on UP we do not need to balance between CPUs:
 */
4868
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4869 4870
{
}
I
Ingo Molnar 已提交
4871

L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877 4878
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4879
 * Return any ns on the sched_clock that have not yet been accounted in
4880
 * @p in case that task is currently running.
4881 4882
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4883
 */
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4898
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4899 4900
{
	unsigned long flags;
4901
	struct rq *rq;
4902
	u64 ns = 0;
4903

4904
	rq = task_rq_lock(p, &flags);
4905 4906
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4907

4908 4909
	return ns;
}
4910

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4928

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4948
	task_rq_unlock(rq, &flags);
4949

L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4957
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4958
 */
4959 4960
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4961 4962 4963 4964
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4965
	/* Add user time to process. */
L
Linus Torvalds 已提交
4966
	p->utime = cputime_add(p->utime, cputime);
4967
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4968
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4976 4977

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4978 4979
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4980 4981
}

4982 4983 4984 4985
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4986
 * @cputime_scaled: cputime scaled by cpu frequency
4987
 */
4988 4989
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4990 4991 4992 4993 4994 4995
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4996
	/* Add guest time to process. */
4997
	p->utime = cputime_add(p->utime, cputime);
4998
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4999
	account_group_user_time(p, cputime);
5000 5001
	p->gtime = cputime_add(p->gtime, cputime);

5002
	/* Add guest time to cpustat. */
5003 5004 5005 5006
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5007 5008 5009 5010 5011
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5012
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5013 5014
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5015
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5016 5017 5018 5019
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5020
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5021
		account_guest_time(p, cputime, cputime_scaled);
5022 5023
		return;
	}
5024

5025
	/* Add system time to process. */
L
Linus Torvalds 已提交
5026
	p->stime = cputime_add(p->stime, cputime);
5027
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5028
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035 5036

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5037 5038
		cpustat->system = cputime64_add(cpustat->system, tmp);

5039 5040
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5041 5042 5043 5044
	/* Account for system time used */
	acct_update_integrals(p);
}

5045
/*
L
Linus Torvalds 已提交
5046 5047
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5048
 */
5049
void account_steal_time(cputime_t cputime)
5050
{
5051 5052 5053 5054
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5055 5056
}

L
Linus Torvalds 已提交
5057
/*
5058 5059
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5060
 */
5061
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5062 5063
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5064
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5065
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5066

5067 5068 5069 5070
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5088
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5112 5113
}

5114 5115
#endif

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5186
	struct task_struct *curr = rq->curr;
5187 5188

	sched_clock_tick();
I
Ingo Molnar 已提交
5189 5190

	spin_lock(&rq->lock);
5191
	update_rq_clock(rq);
5192
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5193
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5194
	spin_unlock(&rq->lock);
5195

5196 5197
	perf_counter_task_tick(curr, cpu);

5198
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5199 5200
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5201
#endif
L
Linus Torvalds 已提交
5202 5203
}

5204
notrace unsigned long get_parent_ip(unsigned long addr)
5205 5206 5207 5208 5209 5210 5211 5212
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5213

5214 5215 5216
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5217
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5218
{
5219
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5220 5221 5222
	/*
	 * Underflow?
	 */
5223 5224
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5225
#endif
L
Linus Torvalds 已提交
5226
	preempt_count() += val;
5227
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5228 5229 5230
	/*
	 * Spinlock count overflowing soon?
	 */
5231 5232
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5233 5234 5235
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5236 5237 5238
}
EXPORT_SYMBOL(add_preempt_count);

5239
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5240
{
5241
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5242 5243 5244
	/*
	 * Underflow?
	 */
5245
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5246
		return;
L
Linus Torvalds 已提交
5247 5248 5249
	/*
	 * Is the spinlock portion underflowing?
	 */
5250 5251 5252
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5253
#endif
5254

5255 5256
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5257 5258 5259 5260 5261 5262 5263
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5264
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5265
 */
I
Ingo Molnar 已提交
5266
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5267
{
5268 5269 5270 5271 5272
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5273
	debug_show_held_locks(prev);
5274
	print_modules();
I
Ingo Molnar 已提交
5275 5276
	if (irqs_disabled())
		print_irqtrace_events(prev);
5277 5278 5279 5280 5281

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5282
}
L
Linus Torvalds 已提交
5283

I
Ingo Molnar 已提交
5284 5285 5286 5287 5288
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5289
	/*
I
Ingo Molnar 已提交
5290
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5291 5292 5293
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5294
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5295 5296
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5297 5298
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5299
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5300 5301
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5302 5303
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5304 5305
	}
#endif
I
Ingo Molnar 已提交
5306 5307
}

M
Mike Galbraith 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5330 5331 5332 5333
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5334
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5335
{
5336
	const struct sched_class *class;
I
Ingo Molnar 已提交
5337
	struct task_struct *p;
L
Linus Torvalds 已提交
5338 5339

	/*
I
Ingo Molnar 已提交
5340 5341
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5342
	 */
I
Ingo Molnar 已提交
5343
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5344
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5345 5346
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5347 5348
	}

I
Ingo Molnar 已提交
5349 5350
	class = sched_class_highest;
	for ( ; ; ) {
5351
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5361

I
Ingo Molnar 已提交
5362 5363 5364
/*
 * schedule() is the main scheduler function.
 */
5365
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5366 5367
{
	struct task_struct *prev, *next;
5368
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5369
	struct rq *rq;
5370
	int cpu;
I
Ingo Molnar 已提交
5371

5372 5373
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5384

5385
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5386
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5387

5388
	spin_lock_irq(&rq->lock);
5389
	update_rq_clock(rq);
5390
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5391 5392

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5393
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5394
			prev->state = TASK_RUNNING;
5395
		else
5396
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5397
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5398 5399
	}

5400 5401 5402 5403
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5404

I
Ingo Molnar 已提交
5405
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5406 5407
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5408
	put_prev_task(rq, prev);
5409
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5410 5411

	if (likely(prev != next)) {
5412
		sched_info_switch(prev, next);
5413
		perf_counter_task_sched_out(prev, next, cpu);
5414

L
Linus Torvalds 已提交
5415 5416 5417 5418
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5419
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5420 5421 5422 5423 5424 5425
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5426 5427 5428
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5429
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5430
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5431

L
Linus Torvalds 已提交
5432
	preempt_enable_no_resched();
5433
	if (need_resched())
L
Linus Torvalds 已提交
5434 5435 5436 5437
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5499 5500
#ifdef CONFIG_PREEMPT
/*
5501
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5502
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5508

L
Linus Torvalds 已提交
5509 5510
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5511
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5512
	 */
N
Nick Piggin 已提交
5513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5514 5515
		return;

5516 5517 5518 5519
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5520

5521 5522 5523 5524 5525
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5526
	} while (need_resched());
L
Linus Torvalds 已提交
5527 5528 5529 5530
}
EXPORT_SYMBOL(preempt_schedule);

/*
5531
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5539

5540
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5541 5542
	BUG_ON(ti->preempt_count || !irqs_disabled());

5543 5544 5545 5546 5547 5548
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5549

5550 5551 5552 5553 5554
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5555
	} while (need_resched());
L
Linus Torvalds 已提交
5556 5557 5558 5559
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5560 5561
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5562
{
5563
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5564 5565 5566 5567
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5568 5569
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5570 5571 5572
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5573
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5574 5575
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5576
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5577
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5578
{
5579
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5580

5581
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5582 5583
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5584
		if (curr->func(curr, mode, sync, key) &&
5585
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5595
 * @key: is directly passed to the wakeup function
5596 5597 5598
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5599
 */
5600
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5601
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5614
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5615 5616 5617 5618
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5619 5620 5621 5622 5623
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5624
/**
5625
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5626 5627 5628
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635 5636
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5637 5638 5639
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5640
 */
5641 5642
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5654
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5655 5656
	spin_unlock_irqrestore(&q->lock, flags);
}
5657 5658 5659 5660 5661 5662 5663 5664 5665
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5666 5667
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5668 5669 5670 5671 5672 5673 5674 5675
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5676 5677 5678
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5679
 */
5680
void complete(struct completion *x)
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5686
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5687 5688 5689 5690
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5691 5692 5693 5694 5695
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5696 5697 5698
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5699
 */
5700
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5701 5702 5703 5704 5705
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5706
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5707 5708 5709 5710
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5711 5712
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718 5719
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5720
			if (signal_pending_state(state, current)) {
5721 5722
				timeout = -ERESTARTSYS;
				break;
5723 5724
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5725 5726 5727
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5728
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5729
		__remove_wait_queue(&x->wait, &wait);
5730 5731
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5732 5733
	}
	x->done--;
5734
	return timeout ?: 1;
L
Linus Torvalds 已提交
5735 5736
}

5737 5738
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5739 5740 5741 5742
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5743
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5744
	spin_unlock_irq(&x->wait.lock);
5745 5746
	return timeout;
}
L
Linus Torvalds 已提交
5747

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5758
void __sched wait_for_completion(struct completion *x)
5759 5760
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5761
}
5762
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5773
unsigned long __sched
5774
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5775
{
5776
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5777
}
5778
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5779

5780 5781 5782 5783 5784 5785 5786
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5787
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5788
{
5789 5790 5791 5792
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5793
}
5794
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5795

5796 5797 5798 5799 5800 5801 5802 5803
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5804
unsigned long __sched
5805 5806
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5807
{
5808
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5809
}
5810
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5811

5812 5813 5814 5815 5816 5817 5818
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5874 5875
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5876
{
I
Ingo Molnar 已提交
5877 5878 5879 5880
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5881

5882
	__set_current_state(state);
L
Linus Torvalds 已提交
5883

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5898 5899 5900
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5901
long __sched
I
Ingo Molnar 已提交
5902
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5903
{
5904
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5905 5906 5907
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5908
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5909
{
5910
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5911 5912 5913
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5914
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5915
{
5916
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5917 5918 5919
}
EXPORT_SYMBOL(sleep_on_timeout);

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5932
void rt_mutex_setprio(struct task_struct *p, int prio)
5933 5934
{
	unsigned long flags;
5935
	int oldprio, on_rq, running;
5936
	struct rq *rq;
5937
	const struct sched_class *prev_class = p->sched_class;
5938 5939 5940 5941

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5942
	update_rq_clock(rq);
5943

5944
	oldprio = p->prio;
I
Ingo Molnar 已提交
5945
	on_rq = p->se.on_rq;
5946
	running = task_current(rq, p);
5947
	if (on_rq)
5948
		dequeue_task(rq, p, 0);
5949 5950
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5951 5952 5953 5954 5955 5956

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5957 5958
	p->prio = prio;

5959 5960
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5961
	if (on_rq) {
5962
		enqueue_task(rq, p, 0);
5963 5964

		check_class_changed(rq, p, prev_class, oldprio, running);
5965 5966 5967 5968 5969 5970
	}
	task_rq_unlock(rq, &flags);
}

#endif

5971
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5972
{
I
Ingo Molnar 已提交
5973
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5974
	unsigned long flags;
5975
	struct rq *rq;
L
Linus Torvalds 已提交
5976 5977 5978 5979 5980 5981 5982 5983

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5984
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5985 5986 5987 5988
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5989
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5990
	 */
5991
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5992 5993 5994
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5995
	on_rq = p->se.on_rq;
5996
	if (on_rq)
5997
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5998 5999

	p->static_prio = NICE_TO_PRIO(nice);
6000
	set_load_weight(p);
6001 6002 6003
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6004

I
Ingo Molnar 已提交
6005
	if (on_rq) {
6006
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6007
		/*
6008 6009
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6010
		 */
6011
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016 6017 6018
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6019 6020 6021 6022 6023
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6024
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6025
{
6026 6027
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6028

M
Matt Mackall 已提交
6029 6030 6031 6032
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6042
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6043
{
6044
	long nice, retval;
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049 6050

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6051 6052
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6053 6054 6055
	if (increment > 40)
		increment = 40;

6056
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6057 6058 6059 6060 6061
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6062 6063 6064
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6083
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090 6091
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6092
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6093 6094 6095
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6096
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6111
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6112 6113 6114 6115 6116 6117 6118 6119
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6120
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6121
{
6122
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6123 6124 6125
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6126 6127
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6128
{
I
Ingo Molnar 已提交
6129
	BUG_ON(p->se.on_rq);
6130

L
Linus Torvalds 已提交
6131
	p->policy = policy;
I
Ingo Molnar 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6144
	p->rt_priority = prio;
6145 6146 6147
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6148
	set_load_weight(p);
L
Linus Torvalds 已提交
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6167 6168
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6169
{
6170
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6171
	unsigned long flags;
6172
	const struct sched_class *prev_class = p->sched_class;
6173
	struct rq *rq;
6174
	int reset_on_fork;
L
Linus Torvalds 已提交
6175

6176 6177
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6178 6179
recheck:
	/* double check policy once rq lock held */
6180 6181
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6182
		policy = oldpolicy = p->policy;
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6193 6194
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6195 6196
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6197 6198
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6199
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6200
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6201
		return -EINVAL;
6202
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6203 6204
		return -EINVAL;

6205 6206 6207
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6208
	if (user && !capable(CAP_SYS_NICE)) {
6209
		if (rt_policy(policy)) {
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6226 6227 6228 6229 6230 6231
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6232

6233
		/* can't change other user's priorities */
6234
		if (!check_same_owner(p))
6235
			return -EPERM;
6236 6237 6238 6239

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6240
	}
L
Linus Torvalds 已提交
6241

6242
	if (user) {
6243
#ifdef CONFIG_RT_GROUP_SCHED
6244 6245 6246 6247
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6248 6249
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6250
			return -EPERM;
6251 6252
#endif

6253 6254 6255 6256 6257
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6258 6259 6260 6261 6262
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6263 6264 6265 6266
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6267
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6268 6269 6270
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6271 6272
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6273 6274
		goto recheck;
	}
I
Ingo Molnar 已提交
6275
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6276
	on_rq = p->se.on_rq;
6277
	running = task_current(rq, p);
6278
	if (on_rq)
6279
		deactivate_task(rq, p, 0);
6280 6281
	if (running)
		p->sched_class->put_prev_task(rq, p);
6282

6283 6284
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6285
	oldprio = p->prio;
I
Ingo Molnar 已提交
6286
	__setscheduler(rq, p, policy, param->sched_priority);
6287

6288 6289
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6290 6291
	if (on_rq) {
		activate_task(rq, p, 0);
6292 6293

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6294
	}
6295 6296 6297
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6298 6299
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6300 6301
	return 0;
}
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6316 6317
EXPORT_SYMBOL_GPL(sched_setscheduler);

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6335 6336
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6337 6338 6339
{
	struct sched_param lparam;
	struct task_struct *p;
6340
	int retval;
L
Linus Torvalds 已提交
6341 6342 6343 6344 6345

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6346 6347 6348

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6349
	p = find_process_by_pid(pid);
6350 6351 6352
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6353

L
Linus Torvalds 已提交
6354 6355 6356 6357 6358 6359 6360 6361 6362
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6363 6364
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6365
{
6366 6367 6368 6369
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6370 6371 6372 6373 6374 6375 6376 6377
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6378
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6379 6380 6381 6382 6383 6384 6385 6386
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6387
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6388
{
6389
	struct task_struct *p;
6390
	int retval;
L
Linus Torvalds 已提交
6391 6392

	if (pid < 0)
6393
		return -EINVAL;
L
Linus Torvalds 已提交
6394 6395 6396 6397 6398 6399 6400

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6401 6402
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6409
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6410 6411 6412
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6413
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6414 6415
{
	struct sched_param lp;
6416
	struct task_struct *p;
6417
	int retval;
L
Linus Torvalds 已提交
6418 6419

	if (!param || pid < 0)
6420
		return -EINVAL;
L
Linus Torvalds 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6447
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6448
{
6449
	cpumask_var_t cpus_allowed, new_mask;
6450 6451
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6452

6453
	get_online_cpus();
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6459
		put_online_cpus();
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6465
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6466 6467 6468 6469 6470
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6471 6472 6473 6474 6475 6476 6477 6478
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6479
	retval = -EPERM;
6480
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6481 6482
		goto out_unlock;

6483 6484 6485 6486
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6487 6488
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6489
 again:
6490
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6491

P
Paul Menage 已提交
6492
	if (!retval) {
6493 6494
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6495 6496 6497 6498 6499
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6500
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6501 6502 6503
			goto again;
		}
	}
L
Linus Torvalds 已提交
6504
out_unlock:
6505 6506 6507 6508
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6509
	put_task_struct(p);
6510
	put_online_cpus();
L
Linus Torvalds 已提交
6511 6512 6513 6514
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6515
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6516
{
6517 6518 6519 6520 6521
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6531 6532
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6533
{
6534
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6535 6536
	int retval;

6537 6538
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6539

6540 6541 6542 6543 6544
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6545 6546
}

6547
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6548
{
6549
	struct task_struct *p;
L
Linus Torvalds 已提交
6550 6551
	int retval;

6552
	get_online_cpus();
L
Linus Torvalds 已提交
6553 6554 6555 6556 6557 6558 6559
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6560 6561 6562 6563
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6564
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6565 6566 6567

out_unlock:
	read_unlock(&tasklist_lock);
6568
	put_online_cpus();
L
Linus Torvalds 已提交
6569

6570
	return retval;
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575 6576 6577 6578
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6579 6580
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6581 6582
{
	int ret;
6583
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6584

6585
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6586 6587
		return -EINVAL;

6588 6589
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6590

6591 6592 6593 6594 6595 6596 6597 6598
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6599

6600
	return ret;
L
Linus Torvalds 已提交
6601 6602 6603 6604 6605
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6606 6607
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6608
 */
6609
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6610
{
6611
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6612

6613
	schedstat_inc(rq, yld_count);
6614
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6615 6616 6617 6618 6619 6620

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6621
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628 6629
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6630 6631 6632 6633 6634
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6635
static void __cond_resched(void)
L
Linus Torvalds 已提交
6636
{
6637 6638 6639
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6640 6641
}

6642
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6643
{
P
Peter Zijlstra 已提交
6644
	if (should_resched()) {
L
Linus Torvalds 已提交
6645 6646 6647 6648 6649
		__cond_resched();
		return 1;
	}
	return 0;
}
6650
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6651 6652

/*
6653
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6654 6655
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6656
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6657 6658 6659
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6660
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6661
{
P
Peter Zijlstra 已提交
6662
	int resched = should_resched();
J
Jan Kara 已提交
6663 6664
	int ret = 0;

N
Nick Piggin 已提交
6665
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6666
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6667
		if (resched)
N
Nick Piggin 已提交
6668 6669 6670
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6671
		ret = 1;
L
Linus Torvalds 已提交
6672 6673
		spin_lock(lock);
	}
J
Jan Kara 已提交
6674
	return ret;
L
Linus Torvalds 已提交
6675
}
6676
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6677

6678
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6679 6680 6681
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6682
	if (should_resched()) {
6683
		local_bh_enable();
L
Linus Torvalds 已提交
6684 6685 6686 6687 6688 6689
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6690
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6691 6692 6693 6694

/**
 * yield - yield the current processor to other threads.
 *
6695
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6706
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6707 6708 6709 6710 6711 6712 6713
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6714
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6715

6716
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6717 6718 6719
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6720
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6721 6722 6723 6724 6725
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6726
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6727 6728
	long ret;

6729
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6730 6731 6732
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6733
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6744
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6745 6746 6747 6748 6749 6750 6751 6752 6753
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6754
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6755
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6769
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6779
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6780
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6794
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6795
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6796
{
6797
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6798
	unsigned int time_slice;
6799
	int retval;
L
Linus Torvalds 已提交
6800 6801 6802
	struct timespec t;

	if (pid < 0)
6803
		return -EINVAL;
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6815 6816 6817 6818 6819 6820
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6821
		time_slice = DEF_TIMESLICE;
6822
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6823 6824 6825 6826 6827
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6828 6829
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6830 6831
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6832
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6833
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6834 6835
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6836

L
Linus Torvalds 已提交
6837 6838 6839 6840 6841
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6842
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6843

6844
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6845 6846
{
	unsigned long free = 0;
6847
	unsigned state;
L
Linus Torvalds 已提交
6848 6849

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6850
	printk(KERN_INFO "%-13.13s %c", p->comm,
6851
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6852
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6853
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6854
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6855
	else
I
Ingo Molnar 已提交
6856
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6857 6858
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6859
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6860
	else
I
Ingo Molnar 已提交
6861
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6862 6863
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6864
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6865
#endif
6866 6867 6868
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6869

6870
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6871 6872
}

I
Ingo Molnar 已提交
6873
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6874
{
6875
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6876

6877 6878 6879
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6880
#else
6881 6882
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6883 6884 6885 6886 6887 6888 6889 6890
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6891
		if (!state_filter || (p->state & state_filter))
6892
			sched_show_task(p);
L
Linus Torvalds 已提交
6893 6894
	} while_each_thread(g, p);

6895 6896
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6897 6898 6899
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6900
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6901 6902 6903 6904 6905
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6906 6907
}

I
Ingo Molnar 已提交
6908 6909
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6910
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6911 6912
}

6913 6914 6915 6916 6917 6918 6919 6920
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6921
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6922
{
6923
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6924 6925
	unsigned long flags;

6926 6927
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6928 6929 6930
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6931
	idle->prio = idle->normal_prio = MAX_PRIO;
6932
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6933
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6934 6935

	rq->curr = rq->idle = idle;
6936 6937 6938
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6939 6940 6941
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6942 6943 6944
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6945
	task_thread_info(idle)->preempt_count = 0;
6946
#endif
I
Ingo Molnar 已提交
6947 6948 6949 6950
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6951
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6952 6953 6954 6955 6956 6957 6958
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6959
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6960
 */
6961
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6962

I
Ingo Molnar 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6986 6987

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6988 6989
}

L
Linus Torvalds 已提交
6990 6991 6992 6993
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6994
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7013
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7014 7015
 * call is not atomic; no spinlocks may be held.
 */
7016
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7017
{
7018
	struct migration_req req;
L
Linus Torvalds 已提交
7019
	unsigned long flags;
7020
	struct rq *rq;
7021
	int ret = 0;
L
Linus Torvalds 已提交
7022 7023

	rq = task_rq_lock(p, &flags);
7024
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7025 7026 7027 7028
		ret = -EINVAL;
		goto out;
	}

7029
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7030
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7031 7032 7033 7034
		ret = -EINVAL;
		goto out;
	}

7035
	if (p->sched_class->set_cpus_allowed)
7036
		p->sched_class->set_cpus_allowed(p, new_mask);
7037
	else {
7038 7039
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7040 7041
	}

L
Linus Torvalds 已提交
7042
	/* Can the task run on the task's current CPU? If so, we're done */
7043
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7044 7045
		goto out;

R
Rusty Russell 已提交
7046
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7047 7048 7049 7050 7051 7052 7053 7054 7055
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7056

L
Linus Torvalds 已提交
7057 7058
	return ret;
}
7059
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7060 7061

/*
I
Ingo Molnar 已提交
7062
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7063 7064 7065 7066 7067 7068
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7069 7070
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7071
 */
7072
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7073
{
7074
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7075
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7076

7077
	if (unlikely(!cpu_active(dest_cpu)))
7078
		return ret;
L
Linus Torvalds 已提交
7079 7080 7081 7082 7083 7084 7085

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7086
		goto done;
L
Linus Torvalds 已提交
7087
	/* Affinity changed (again). */
7088
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7089
		goto fail;
L
Linus Torvalds 已提交
7090

I
Ingo Molnar 已提交
7091
	on_rq = p->se.on_rq;
7092
	if (on_rq)
7093
		deactivate_task(rq_src, p, 0);
7094

L
Linus Torvalds 已提交
7095
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7096 7097
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7098
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7099
	}
L
Linus Torvalds 已提交
7100
done:
7101
	ret = 1;
L
Linus Torvalds 已提交
7102
fail:
L
Linus Torvalds 已提交
7103
	double_rq_unlock(rq_src, rq_dest);
7104
	return ret;
L
Linus Torvalds 已提交
7105 7106 7107 7108 7109 7110 7111
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7112
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7113 7114
{
	int cpu = (long)data;
7115
	struct rq *rq;
L
Linus Torvalds 已提交
7116 7117 7118 7119 7120 7121

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7122
		struct migration_req *req;
L
Linus Torvalds 已提交
7123 7124 7125 7126 7127 7128
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7129
			break;
L
Linus Torvalds 已提交
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7145
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7146 7147
		list_del_init(head->next);

N
Nick Piggin 已提交
7148 7149 7150
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7171
/*
7172
 * Figure out where task on dead CPU should go, use force if necessary.
7173
 */
7174
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7175
{
7176
	int dest_cpu;
7177
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7194

7195 7196 7197 7198 7199 7200 7201 7202 7203
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7204
		}
7205 7206 7207 7208 7209 7210
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7211 7212 7213 7214 7215 7216 7217 7218 7219
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7220
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7221
{
R
Rusty Russell 已提交
7222
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7236
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7237

7238
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7239

7240 7241
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7242 7243
			continue;

7244 7245 7246
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7247

7248
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7249 7250
}

I
Ingo Molnar 已提交
7251 7252
/*
 * Schedules idle task to be the next runnable task on current CPU.
7253 7254
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7255 7256 7257
 */
void sched_idle_next(void)
{
7258
	int this_cpu = smp_processor_id();
7259
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7260 7261 7262 7263
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7264
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7265

7266 7267 7268
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7269 7270 7271
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7272
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7273

7274 7275
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7276 7277 7278 7279

	spin_unlock_irqrestore(&rq->lock, flags);
}

7280 7281
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7295
/* called under rq->lock with disabled interrupts */
7296
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7297
{
7298
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7299 7300

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7301
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7302 7303

	/* Cannot have done final schedule yet: would have vanished. */
7304
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7305

7306
	get_task_struct(p);
L
Linus Torvalds 已提交
7307 7308 7309

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7310
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7311 7312
	 * fine.
	 */
7313
	spin_unlock_irq(&rq->lock);
7314
	move_task_off_dead_cpu(dead_cpu, p);
7315
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7316

7317
	put_task_struct(p);
L
Linus Torvalds 已提交
7318 7319 7320 7321 7322
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7323
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7324
	struct task_struct *next;
7325

I
Ingo Molnar 已提交
7326 7327 7328
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7329
		update_rq_clock(rq);
7330
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7331 7332
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7333
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7334
		migrate_dead(dead_cpu, next);
7335

L
Linus Torvalds 已提交
7336 7337
	}
}
7338 7339 7340 7341 7342 7343 7344

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7345
	rq->calc_load_active = 0;
7346
}
L
Linus Torvalds 已提交
7347 7348
#endif /* CONFIG_HOTPLUG_CPU */

7349 7350 7351
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7352 7353
	{
		.procname	= "sched_domain",
7354
		.mode		= 0555,
7355
	},
I
Ingo Molnar 已提交
7356
	{0, },
7357 7358 7359
};

static struct ctl_table sd_ctl_root[] = {
7360
	{
7361
		.ctl_name	= CTL_KERN,
7362
		.procname	= "kernel",
7363
		.mode		= 0555,
7364 7365
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7366
	{0, },
7367 7368 7369 7370 7371
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7372
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7373 7374 7375 7376

	return entry;
}

7377 7378
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7379
	struct ctl_table *entry;
7380

7381 7382 7383
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7384
	 * will always be set. In the lowest directory the names are
7385 7386 7387
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7388 7389
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7390 7391 7392
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7393 7394 7395 7396 7397

	kfree(*tablep);
	*tablep = NULL;
}

7398
static void
7399
set_table_entry(struct ctl_table *entry,
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7413
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7414

7415 7416 7417
	if (table == NULL)
		return NULL;

7418
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7419
		sizeof(long), 0644, proc_doulongvec_minmax);
7420
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7421
		sizeof(long), 0644, proc_doulongvec_minmax);
7422
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7423
		sizeof(int), 0644, proc_dointvec_minmax);
7424
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7425
		sizeof(int), 0644, proc_dointvec_minmax);
7426
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7427
		sizeof(int), 0644, proc_dointvec_minmax);
7428
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7429
		sizeof(int), 0644, proc_dointvec_minmax);
7430
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7431
		sizeof(int), 0644, proc_dointvec_minmax);
7432
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7433
		sizeof(int), 0644, proc_dointvec_minmax);
7434
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7435
		sizeof(int), 0644, proc_dointvec_minmax);
7436
	set_table_entry(&table[9], "cache_nice_tries",
7437 7438
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7439
	set_table_entry(&table[10], "flags", &sd->flags,
7440
		sizeof(int), 0644, proc_dointvec_minmax);
7441 7442 7443
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7444 7445 7446 7447

	return table;
}

7448
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7449 7450 7451 7452 7453 7454 7455 7456 7457
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7458 7459
	if (table == NULL)
		return NULL;
7460 7461 7462 7463 7464

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7465
		entry->mode = 0555;
7466 7467 7468 7469 7470 7471 7472 7473
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7474
static void register_sched_domain_sysctl(void)
7475 7476 7477 7478 7479
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7480 7481 7482
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7483 7484 7485
	if (entry == NULL)
		return;

7486
	for_each_online_cpu(i) {
7487 7488
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7489
		entry->mode = 0555;
7490
		entry->child = sd_alloc_ctl_cpu_table(i);
7491
		entry++;
7492
	}
7493 7494

	WARN_ON(sd_sysctl_header);
7495 7496
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7497

7498
/* may be called multiple times per register */
7499 7500
static void unregister_sched_domain_sysctl(void)
{
7501 7502
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7503
	sd_sysctl_header = NULL;
7504 7505
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7506
}
7507
#else
7508 7509 7510 7511
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7512 7513 7514 7515
{
}
#endif

7516 7517 7518 7519 7520
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7521
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7541
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7542 7543 7544 7545
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7546 7547 7548 7549
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7550 7551
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7552 7553
{
	struct task_struct *p;
7554
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7555
	unsigned long flags;
7556
	struct rq *rq;
L
Linus Torvalds 已提交
7557 7558

	switch (action) {
7559

L
Linus Torvalds 已提交
7560
	case CPU_UP_PREPARE:
7561
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7562
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7563 7564 7565 7566 7567
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7568
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7569
		task_rq_unlock(rq, &flags);
7570
		get_task_struct(p);
L
Linus Torvalds 已提交
7571
		cpu_rq(cpu)->migration_thread = p;
7572
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7573
		break;
7574

L
Linus Torvalds 已提交
7575
	case CPU_ONLINE:
7576
	case CPU_ONLINE_FROZEN:
7577
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7578
		wake_up_process(cpu_rq(cpu)->migration_thread);
7579 7580 7581 7582 7583

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7584
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7585 7586

			set_rq_online(rq);
7587 7588
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7589
		break;
7590

L
Linus Torvalds 已提交
7591 7592
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7593
	case CPU_UP_CANCELED_FROZEN:
7594 7595
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7596
		/* Unbind it from offline cpu so it can run. Fall thru. */
7597
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7598
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7599
		kthread_stop(cpu_rq(cpu)->migration_thread);
7600
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7601 7602
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7603

L
Linus Torvalds 已提交
7604
	case CPU_DEAD:
7605
	case CPU_DEAD_FROZEN:
7606
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7607 7608 7609
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7610
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7611 7612
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7613
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7614
		update_rq_clock(rq);
7615
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7616
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7617 7618
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7619
		migrate_dead_tasks(cpu);
7620
		spin_unlock_irq(&rq->lock);
7621
		cpuset_unlock();
L
Linus Torvalds 已提交
7622 7623
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7624
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7625 7626 7627 7628 7629
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7630 7631
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7632 7633
			struct migration_req *req;

L
Linus Torvalds 已提交
7634
			req = list_entry(rq->migration_queue.next,
7635
					 struct migration_req, list);
L
Linus Torvalds 已提交
7636
			list_del_init(&req->list);
B
Brian King 已提交
7637
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7638
			complete(&req->done);
B
Brian King 已提交
7639
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7640 7641 7642
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7643

7644 7645
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7646 7647 7648 7649
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7650
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7651
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7652 7653 7654
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7655 7656 7657 7658 7659
#endif
	}
	return NOTIFY_OK;
}

7660 7661 7662 7663
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7664
 */
7665
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7666 7667 7668 7669
	.notifier_call = migration_call,
	.priority = 10
};

7670
static int __init migration_init(void)
L
Linus Torvalds 已提交
7671 7672
{
	void *cpu = (void *)(long)smp_processor_id();
7673
	int err;
7674 7675

	/* Start one for the boot CPU: */
7676 7677
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7678 7679
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7680

7681
	return 0;
L
Linus Torvalds 已提交
7682
}
7683
early_initcall(migration_init);
L
Linus Torvalds 已提交
7684 7685 7686
#endif

#ifdef CONFIG_SMP
7687

7688
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7689

7690
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7691
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7692
{
I
Ingo Molnar 已提交
7693
	struct sched_group *group = sd->groups;
7694
	char str[256];
L
Linus Torvalds 已提交
7695

R
Rusty Russell 已提交
7696
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7697
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7698 7699 7700 7701 7702 7703 7704 7705 7706

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7707 7708
	}

7709
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7710

7711
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7712 7713 7714
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7715
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7716 7717 7718
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7719

I
Ingo Molnar 已提交
7720
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7721
	do {
I
Ingo Molnar 已提交
7722 7723 7724
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7725 7726 7727
			break;
		}

I
Ingo Molnar 已提交
7728 7729 7730 7731 7732 7733
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7734

7735
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7736 7737 7738 7739
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7740

7741
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7742 7743 7744 7745
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7746

7747
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7748

R
Rusty Russell 已提交
7749
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7750 7751 7752 7753 7754 7755

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7756

I
Ingo Molnar 已提交
7757 7758 7759
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7760

7761
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7762
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7763

7764 7765
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7766 7767 7768 7769
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7770

I
Ingo Molnar 已提交
7771 7772
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7773
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7774
	int level = 0;
L
Linus Torvalds 已提交
7775

I
Ingo Molnar 已提交
7776 7777 7778 7779
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7780

I
Ingo Molnar 已提交
7781 7782
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7783
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7784 7785 7786 7787
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7788
	for (;;) {
7789
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7790
			break;
L
Linus Torvalds 已提交
7791 7792
		level++;
		sd = sd->parent;
7793
		if (!sd)
I
Ingo Molnar 已提交
7794 7795
			break;
	}
7796
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7797
}
7798
#else /* !CONFIG_SCHED_DEBUG */
7799
# define sched_domain_debug(sd, cpu) do { } while (0)
7800
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7801

7802
static int sd_degenerate(struct sched_domain *sd)
7803
{
7804
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7805 7806 7807 7808 7809 7810
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7811 7812 7813
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7827 7828
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7829 7830 7831 7832 7833 7834
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7835
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7847 7848 7849
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7850 7851
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7852 7853 7854 7855 7856 7857 7858
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7859 7860
static void free_rootdomain(struct root_domain *rd)
{
7861 7862
	cpupri_cleanup(&rd->cpupri);

7863 7864 7865 7866 7867 7868
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7869 7870
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7871
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7872 7873 7874 7875 7876
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7877
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7878

7879
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7880
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7881

7882
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7883

I
Ingo Molnar 已提交
7884 7885 7886 7887 7888 7889 7890
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7891 7892 7893 7894 7895
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7896 7897
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7898
		set_rq_online(rq);
G
Gregory Haskins 已提交
7899 7900

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7901 7902 7903

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7904 7905
}

L
Li Zefan 已提交
7906
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7907
{
7908 7909
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7910 7911
	memset(rd, 0, sizeof(*rd));

7912 7913
	if (bootmem)
		gfp = GFP_NOWAIT;
7914

7915
	if (!alloc_cpumask_var(&rd->span, gfp))
7916
		goto out;
7917
	if (!alloc_cpumask_var(&rd->online, gfp))
7918
		goto free_span;
7919
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7920
		goto free_online;
7921

P
Pekka Enberg 已提交
7922
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7923
		goto free_rto_mask;
7924
	return 0;
7925

7926 7927
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7928 7929 7930 7931
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7932
out:
7933
	return -ENOMEM;
G
Gregory Haskins 已提交
7934 7935 7936 7937
}

static void init_defrootdomain(void)
{
7938 7939
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7940 7941 7942
	atomic_set(&def_root_domain.refcount, 1);
}

7943
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7944 7945 7946 7947 7948 7949 7950
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7951 7952 7953 7954
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7955 7956 7957 7958

	return rd;
}

L
Linus Torvalds 已提交
7959
/*
I
Ingo Molnar 已提交
7960
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7961 7962
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7963 7964
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7965
{
7966
	struct rq *rq = cpu_rq(cpu);
7967 7968 7969
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7970
	for (tmp = sd; tmp; ) {
7971 7972 7973
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7974

7975
		if (sd_parent_degenerate(tmp, parent)) {
7976
			tmp->parent = parent->parent;
7977 7978
			if (parent->parent)
				parent->parent->child = tmp;
7979 7980
		} else
			tmp = tmp->parent;
7981 7982
	}

7983
	if (sd && sd_degenerate(sd)) {
7984
		sd = sd->parent;
7985 7986 7987
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7988 7989 7990

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7991
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7992
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7993 7994 7995
}

/* cpus with isolated domains */
7996
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7997 7998 7999 8000

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8001
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8002 8003 8004
	return 1;
}

I
Ingo Molnar 已提交
8005
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8006 8007

/*
8008 8009
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8010 8011
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8012 8013 8014 8015 8016
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8017
static void
8018 8019 8020
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8021
					struct sched_group **sg,
8022 8023
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8024 8025 8026 8027
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8028
	cpumask_clear(covered);
8029

8030
	for_each_cpu(i, span) {
8031
		struct sched_group *sg;
8032
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8033 8034
		int j;

8035
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8036 8037
			continue;

8038
		cpumask_clear(sched_group_cpus(sg));
8039
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8040

8041
		for_each_cpu(j, span) {
8042
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8043 8044
				continue;

8045
			cpumask_set_cpu(j, covered);
8046
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8057
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8058

8059
#ifdef CONFIG_NUMA
8060

8061 8062 8063 8064 8065
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8066
 * Find the next node to include in a given scheduling domain. Simply
8067 8068 8069 8070
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8071
static int find_next_best_node(int node, nodemask_t *used_nodes)
8072 8073 8074 8075 8076
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8077
	for (i = 0; i < nr_node_ids; i++) {
8078
		/* Start at @node */
8079
		n = (node + i) % nr_node_ids;
8080 8081 8082 8083 8084

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8085
		if (node_isset(n, *used_nodes))
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8097
	node_set(best_node, *used_nodes);
8098 8099 8100 8101 8102 8103
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8104
 * @span: resulting cpumask
8105
 *
I
Ingo Molnar 已提交
8106
 * Given a node, construct a good cpumask for its sched_domain to span. It
8107 8108 8109
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8110
static void sched_domain_node_span(int node, struct cpumask *span)
8111
{
8112
	nodemask_t used_nodes;
8113
	int i;
8114

8115
	cpumask_clear(span);
8116
	nodes_clear(used_nodes);
8117

8118
	cpumask_or(span, span, cpumask_of_node(node));
8119
	node_set(node, used_nodes);
8120 8121

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8122
		int next_node = find_next_best_node(node, &used_nodes);
8123

8124
		cpumask_or(span, span, cpumask_of_node(next_node));
8125 8126
	}
}
8127
#endif /* CONFIG_NUMA */
8128

8129
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8130

8131 8132
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8133 8134 8135
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8147
/*
8148
 * SMT sched-domains:
8149
 */
L
Linus Torvalds 已提交
8150
#ifdef CONFIG_SCHED_SMT
8151 8152
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8153

I
Ingo Molnar 已提交
8154
static int
8155 8156
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8157
{
8158
	if (sg)
8159
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8160 8161
	return cpu;
}
8162
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8163

8164 8165 8166
/*
 * multi-core sched-domains:
 */
8167
#ifdef CONFIG_SCHED_MC
8168 8169
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8170
#endif /* CONFIG_SCHED_MC */
8171 8172

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8173
static int
8174 8175
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8176
{
8177
	int group;
8178

8179
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8180
	group = cpumask_first(mask);
8181
	if (sg)
8182
		*sg = &per_cpu(sched_group_core, group).sg;
8183
	return group;
8184 8185
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8186
static int
8187 8188
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8189
{
8190
	if (sg)
8191
		*sg = &per_cpu(sched_group_core, cpu).sg;
8192 8193 8194 8195
	return cpu;
}
#endif

8196 8197
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8198

I
Ingo Molnar 已提交
8199
static int
8200 8201
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8202
{
8203
	int group;
8204
#ifdef CONFIG_SCHED_MC
8205
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8206
	group = cpumask_first(mask);
8207
#elif defined(CONFIG_SCHED_SMT)
8208
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8209
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8210
#else
8211
	group = cpu;
L
Linus Torvalds 已提交
8212
#endif
8213
	if (sg)
8214
		*sg = &per_cpu(sched_group_phys, group).sg;
8215
	return group;
L
Linus Torvalds 已提交
8216 8217 8218 8219
}

#ifdef CONFIG_NUMA
/*
8220 8221 8222
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8223
 */
8224
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8225
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8226

8227
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8228
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8229

8230 8231 8232
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8233
{
8234 8235
	int group;

8236
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8237
	group = cpumask_first(nodemask);
8238 8239

	if (sg)
8240
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8241
	return group;
L
Linus Torvalds 已提交
8242
}
8243

8244 8245 8246 8247 8248 8249 8250
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8251
	do {
8252
		for_each_cpu(j, sched_group_cpus(sg)) {
8253
			struct sched_domain *sd;
8254

8255
			sd = &per_cpu(phys_domains, j).sd;
8256
			if (j != group_first_cpu(sd->groups)) {
8257 8258 8259 8260 8261 8262
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8263

8264 8265 8266 8267
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8268
}
8269
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8270

8271
#ifdef CONFIG_NUMA
8272
/* Free memory allocated for various sched_group structures */
8273 8274
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8275
{
8276
	int cpu, i;
8277

8278
	for_each_cpu(cpu, cpu_map) {
8279 8280 8281 8282 8283 8284
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8285
		for (i = 0; i < nr_node_ids; i++) {
8286 8287
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8288
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8289
			if (cpumask_empty(nodemask))
8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8306
#else /* !CONFIG_NUMA */
8307 8308
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8309 8310
{
}
8311
#endif /* CONFIG_NUMA */
8312

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8334
	if (cpu != group_first_cpu(sd->groups))
8335 8336 8337 8338
		return;

	child = sd->child;

8339 8340
	sd->groups->__cpu_power = 0;

8341 8342 8343 8344 8345 8346 8347 8348 8349 8350
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8351
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8352 8353 8354 8355 8356 8357 8358 8359
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8360
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8361 8362 8363 8364
		group = group->next;
	} while (group != child->groups);
}

8365 8366 8367 8368 8369
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8370 8371 8372 8373 8374 8375
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8376
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8377

8378 8379 8380 8381 8382
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8383
	sd->level = SD_LV_##type;				\
8384
	SD_INIT_NAME(sd, type);					\
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8399 8400 8401 8402
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8403 8404 8405 8406 8407 8408
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8434
/*
8435 8436
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8437
 */
8438
static int __build_sched_domains(const struct cpumask *cpu_map,
8439
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8440
{
8441
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8442
	struct root_domain *rd;
8443 8444
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8445
#ifdef CONFIG_NUMA
8446
	cpumask_var_t domainspan, covered, notcovered;
8447
	struct sched_group **sched_group_nodes = NULL;
8448
	int sd_allnodes = 0;
8449

8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8470 8471 8472
	/*
	 * Allocate the per-node list of sched groups
	 */
8473
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8474
				    GFP_KERNEL);
8475 8476
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8477
		goto free_tmpmask;
8478 8479
	}
#endif
L
Linus Torvalds 已提交
8480

8481
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8482 8483
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8484
		goto free_sched_groups;
G
Gregory Haskins 已提交
8485 8486
	}

8487
#ifdef CONFIG_NUMA
8488
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8489 8490
#endif

L
Linus Torvalds 已提交
8491
	/*
8492
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8493
	 */
8494
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8495 8496
		struct sched_domain *sd = NULL, *p;

8497
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8498 8499

#ifdef CONFIG_NUMA
8500 8501
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8502
			sd = &per_cpu(allnodes_domains, i).sd;
8503
			SD_INIT(sd, ALLNODES);
8504
			set_domain_attribute(sd, attr);
8505
			cpumask_copy(sched_domain_span(sd), cpu_map);
8506
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8507
			p = sd;
8508
			sd_allnodes = 1;
8509 8510 8511
		} else
			p = NULL;

8512
		sd = &per_cpu(node_domains, i).sd;
8513
		SD_INIT(sd, NODE);
8514
		set_domain_attribute(sd, attr);
8515
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8516
		sd->parent = p;
8517 8518
		if (p)
			p->child = sd;
8519 8520
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8521 8522 8523
#endif

		p = sd;
8524
		sd = &per_cpu(phys_domains, i).sd;
8525
		SD_INIT(sd, CPU);
8526
		set_domain_attribute(sd, attr);
8527
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8528
		sd->parent = p;
8529 8530
		if (p)
			p->child = sd;
8531
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8532

8533 8534
#ifdef CONFIG_SCHED_MC
		p = sd;
8535
		sd = &per_cpu(core_domains, i).sd;
8536
		SD_INIT(sd, MC);
8537
		set_domain_attribute(sd, attr);
8538 8539
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8540
		sd->parent = p;
8541
		p->child = sd;
8542
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8543 8544
#endif

L
Linus Torvalds 已提交
8545 8546
#ifdef CONFIG_SCHED_SMT
		p = sd;
8547
		sd = &per_cpu(cpu_domains, i).sd;
8548
		SD_INIT(sd, SIBLING);
8549
		set_domain_attribute(sd, attr);
8550
		cpumask_and(sched_domain_span(sd),
8551
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8552
		sd->parent = p;
8553
		p->child = sd;
8554
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8555 8556 8557 8558 8559
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8560
	for_each_cpu(i, cpu_map) {
8561
		cpumask_and(this_sibling_map,
8562
			    topology_thread_cpumask(i), cpu_map);
8563
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8564 8565
			continue;

I
Ingo Molnar 已提交
8566
		init_sched_build_groups(this_sibling_map, cpu_map,
8567 8568
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8569 8570 8571
	}
#endif

8572 8573
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8574
	for_each_cpu(i, cpu_map) {
8575
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8576
		if (i != cpumask_first(this_core_map))
8577
			continue;
8578

I
Ingo Molnar 已提交
8579
		init_sched_build_groups(this_core_map, cpu_map,
8580 8581
					&cpu_to_core_group,
					send_covered, tmpmask);
8582 8583 8584
	}
#endif

L
Linus Torvalds 已提交
8585
	/* Set up physical groups */
8586
	for (i = 0; i < nr_node_ids; i++) {
8587
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8588
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8589 8590
			continue;

8591 8592 8593
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8594 8595 8596 8597
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8598 8599 8600 8601 8602
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8603

8604
	for (i = 0; i < nr_node_ids; i++) {
8605 8606 8607 8608
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8609
		cpumask_clear(covered);
8610
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8611
		if (cpumask_empty(nodemask)) {
8612
			sched_group_nodes[i] = NULL;
8613
			continue;
8614
		}
8615

8616
		sched_domain_node_span(i, domainspan);
8617
		cpumask_and(domainspan, domainspan, cpu_map);
8618

8619 8620
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8621 8622 8623 8624 8625
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8626
		sched_group_nodes[i] = sg;
8627
		for_each_cpu(j, nodemask) {
8628
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8629

8630
			sd = &per_cpu(node_domains, j).sd;
8631 8632
			sd->groups = sg;
		}
8633
		sg->__cpu_power = 0;
8634
		cpumask_copy(sched_group_cpus(sg), nodemask);
8635
		sg->next = sg;
8636
		cpumask_or(covered, covered, nodemask);
8637 8638
		prev = sg;

8639 8640
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8641

8642 8643 8644 8645
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8646 8647
				break;

8648
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8649
			if (cpumask_empty(tmpmask))
8650 8651
				continue;

8652 8653
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8654
					  GFP_KERNEL, i);
8655 8656 8657
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8658
				goto error;
8659
			}
8660
			sg->__cpu_power = 0;
8661
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8662
			sg->next = prev->next;
8663
			cpumask_or(covered, covered, tmpmask);
8664 8665 8666 8667
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8668 8669 8670
#endif

	/* Calculate CPU power for physical packages and nodes */
8671
#ifdef CONFIG_SCHED_SMT
8672
	for_each_cpu(i, cpu_map) {
8673
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8674

8675
		init_sched_groups_power(i, sd);
8676
	}
L
Linus Torvalds 已提交
8677
#endif
8678
#ifdef CONFIG_SCHED_MC
8679
	for_each_cpu(i, cpu_map) {
8680
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8681

8682
		init_sched_groups_power(i, sd);
8683 8684
	}
#endif
8685

8686
	for_each_cpu(i, cpu_map) {
8687
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8688

8689
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8690 8691
	}

8692
#ifdef CONFIG_NUMA
8693
	for (i = 0; i < nr_node_ids; i++)
8694
		init_numa_sched_groups_power(sched_group_nodes[i]);
8695

8696 8697
	if (sd_allnodes) {
		struct sched_group *sg;
8698

8699
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8700
								tmpmask);
8701 8702
		init_numa_sched_groups_power(sg);
	}
8703 8704
#endif

L
Linus Torvalds 已提交
8705
	/* Attach the domains */
8706
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8707 8708
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8709
		sd = &per_cpu(cpu_domains, i).sd;
8710
#elif defined(CONFIG_SCHED_MC)
8711
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8712
#else
8713
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8714
#endif
G
Gregory Haskins 已提交
8715
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8716
	}
8717

8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8746

8747
#ifdef CONFIG_NUMA
8748
error:
8749
	free_sched_groups(cpu_map, tmpmask);
8750
	free_rootdomain(rd);
8751
	goto free_tmpmask;
8752
#endif
L
Linus Torvalds 已提交
8753
}
P
Paul Jackson 已提交
8754

8755
static int build_sched_domains(const struct cpumask *cpu_map)
8756 8757 8758 8759
{
	return __build_sched_domains(cpu_map, NULL);
}

8760
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8761
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8762 8763
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8764 8765 8766

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8767 8768
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8769
 */
8770
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8771

8772 8773 8774 8775 8776 8777
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8778
{
8779
	return 0;
8780 8781
}

8782
/*
I
Ingo Molnar 已提交
8783
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8784 8785
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8786
 */
8787
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8788
{
8789 8790
	int err;

8791
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8792
	ndoms_cur = 1;
8793
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8794
	if (!doms_cur)
8795
		doms_cur = fallback_doms;
8796
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8797
	dattr_cur = NULL;
8798
	err = build_sched_domains(doms_cur);
8799
	register_sched_domain_sysctl();
8800 8801

	return err;
8802 8803
}

8804 8805
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8806
{
8807
	free_sched_groups(cpu_map, tmpmask);
8808
}
L
Linus Torvalds 已提交
8809

8810 8811 8812 8813
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8814
static void detach_destroy_domains(const struct cpumask *cpu_map)
8815
{
8816 8817
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8818 8819
	int i;

8820
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8821
		cpu_attach_domain(NULL, &def_root_domain, i);
8822
	synchronize_sched();
8823
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8824 8825
}

8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8842 8843
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8844
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8845 8846 8847
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8848
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8849 8850 8851
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8852 8853 8854
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8855 8856
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8857 8858 8859 8860
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8861
 *
8862
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8863 8864
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8865
 *
P
Paul Jackson 已提交
8866 8867
 * Call with hotplug lock held
 */
8868 8869
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8870
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8871
{
8872
	int i, j, n;
8873
	int new_topology;
P
Paul Jackson 已提交
8874

8875
	mutex_lock(&sched_domains_mutex);
8876

8877 8878 8879
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8880 8881 8882
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8883
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8884 8885 8886

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8887
		for (j = 0; j < n && !new_topology; j++) {
8888
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8889
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8890 8891 8892 8893 8894 8895 8896 8897
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8898 8899
	if (doms_new == NULL) {
		ndoms_cur = 0;
8900
		doms_new = fallback_doms;
8901
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8902
		WARN_ON_ONCE(dattr_new);
8903 8904
	}

P
Paul Jackson 已提交
8905 8906
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8907
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8908
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8909
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8910 8911 8912
				goto match2;
		}
		/* no match - add a new doms_new */
8913 8914
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8915 8916 8917 8918 8919
match2:
		;
	}

	/* Remember the new sched domains */
8920
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8921
		kfree(doms_cur);
8922
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8923
	doms_cur = doms_new;
8924
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8925
	ndoms_cur = ndoms_new;
8926 8927

	register_sched_domain_sysctl();
8928

8929
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8930 8931
}

8932
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8933
static void arch_reinit_sched_domains(void)
8934
{
8935
	get_online_cpus();
8936 8937 8938 8939

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8940
	rebuild_sched_domains();
8941
	put_online_cpus();
8942 8943 8944 8945
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8946
	unsigned int level = 0;
8947

8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8959 8960 8961
		return -EINVAL;

	if (smt)
8962
		sched_smt_power_savings = level;
8963
	else
8964
		sched_mc_power_savings = level;
8965

8966
	arch_reinit_sched_domains();
8967

8968
	return count;
8969 8970 8971
}

#ifdef CONFIG_SCHED_MC
8972 8973
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8974 8975 8976
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8977
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8978
					    const char *buf, size_t count)
8979 8980 8981
{
	return sched_power_savings_store(buf, count, 0);
}
8982 8983 8984
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8985 8986 8987
#endif

#ifdef CONFIG_SCHED_SMT
8988 8989
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8990 8991 8992
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8993
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8994
					     const char *buf, size_t count)
8995 8996 8997
{
	return sched_power_savings_store(buf, count, 1);
}
8998 8999
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9000 9001 9002
		   sched_smt_power_savings_store);
#endif

9003
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9019
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9020

9021
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9022
/*
9023 9024
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9025 9026 9027
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9028 9029 9030 9031 9032 9033
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9034
		partition_sched_domains(1, NULL, NULL);
9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9045
{
P
Peter Zijlstra 已提交
9046 9047
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9048 9049
	switch (action) {
	case CPU_DOWN_PREPARE:
9050
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9051
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9052 9053 9054
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9055
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9056
	case CPU_ONLINE:
9057
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9058
		enable_runtime(cpu_rq(cpu));
9059 9060
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9061 9062 9063 9064 9065 9066 9067
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9068 9069 9070
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9071

9072 9073 9074 9075 9076
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9077
	get_online_cpus();
9078
	mutex_lock(&sched_domains_mutex);
9079 9080 9081 9082
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9083
	mutex_unlock(&sched_domains_mutex);
9084
	put_online_cpus();
9085 9086

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9087 9088
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9089 9090 9091 9092 9093
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9094
	init_hrtick();
9095 9096

	/* Move init over to a non-isolated CPU */
9097
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9098
		BUG();
I
Ingo Molnar 已提交
9099
	sched_init_granularity();
9100
	free_cpumask_var(non_isolated_cpus);
9101 9102

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9103
	init_sched_rt_class();
L
Linus Torvalds 已提交
9104 9105 9106 9107
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9108
	sched_init_granularity();
L
Linus Torvalds 已提交
9109 9110 9111
}
#endif /* CONFIG_SMP */

9112 9113
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9114 9115 9116 9117 9118 9119 9120
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9121
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9122 9123
{
	cfs_rq->tasks_timeline = RB_ROOT;
9124
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9125 9126 9127
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9128
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9129 9130
}

P
Peter Zijlstra 已提交
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9144
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9145
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9146
#ifdef CONFIG_SMP
9147
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9148 9149
#endif
#endif
P
Peter Zijlstra 已提交
9150 9151 9152
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9153
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9154 9155 9156 9157
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9158 9159
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9160

9161
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9162
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9163 9164
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9165 9166
}

P
Peter Zijlstra 已提交
9167
#ifdef CONFIG_FAIR_GROUP_SCHED
9168 9169 9170
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9171
{
9172
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9173 9174 9175 9176 9177 9178 9179
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9180 9181 9182 9183
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9184 9185 9186 9187 9188
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9189 9190
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9191
	se->load.inv_weight = 0;
9192
	se->parent = parent;
P
Peter Zijlstra 已提交
9193
}
9194
#endif
P
Peter Zijlstra 已提交
9195

9196
#ifdef CONFIG_RT_GROUP_SCHED
9197 9198 9199
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9200
{
9201 9202
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9203 9204 9205 9206
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9207
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9208 9209 9210 9211
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9212 9213 9214
	if (!rt_se)
		return;

9215 9216 9217 9218 9219
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9220
	rt_se->my_q = rt_rq;
9221
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9222 9223 9224 9225
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9226 9227
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9228
	int i, j;
9229 9230 9231 9232 9233 9234 9235
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9236 9237 9238
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9239 9240
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9241
	alloc_size += num_possible_cpus() * cpumask_size();
9242 9243 9244 9245 9246 9247
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9248
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9249 9250 9251 9252 9253 9254 9255

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9256 9257 9258 9259 9260 9261 9262

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9263 9264
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9265 9266 9267 9268 9269
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9270 9271 9272 9273 9274 9275 9276 9277
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9278 9279
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9280 9281 9282 9283 9284 9285
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9286
	}
I
Ingo Molnar 已提交
9287

G
Gregory Haskins 已提交
9288 9289 9290 9291
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9292 9293 9294 9295 9296 9297
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9298 9299 9300
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9301 9302
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9303

9304
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9305
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9306 9307 9308 9309 9310 9311
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9312 9313
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9314

9315
	for_each_possible_cpu(i) {
9316
		struct rq *rq;
L
Linus Torvalds 已提交
9317 9318 9319

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9320
		rq->nr_running = 0;
9321 9322
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9323
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9324
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9325
#ifdef CONFIG_FAIR_GROUP_SCHED
9326
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9327
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9343
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9344 9345 9346 9347
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9348
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9349
#elif defined CONFIG_USER_SCHED
9350 9351
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9363
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9364
				&per_cpu(init_cfs_rq, i),
9365 9366
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9367

9368
#endif
D
Dhaval Giani 已提交
9369 9370 9371
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9373
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9374
#ifdef CONFIG_CGROUP_SCHED
9375
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9376
#elif defined CONFIG_USER_SCHED
9377
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9378
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9379
				&per_cpu(init_rt_rq, i),
9380 9381
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9382
#endif
I
Ingo Molnar 已提交
9383
#endif
L
Linus Torvalds 已提交
9384

I
Ingo Molnar 已提交
9385 9386
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9387
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9388
		rq->sd = NULL;
G
Gregory Haskins 已提交
9389
		rq->rd = NULL;
L
Linus Torvalds 已提交
9390
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9391
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9392
		rq->push_cpu = 0;
9393
		rq->cpu = i;
9394
		rq->online = 0;
L
Linus Torvalds 已提交
9395 9396
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9397
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9398
#endif
P
Peter Zijlstra 已提交
9399
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9400 9401 9402
		atomic_set(&rq->nr_iowait, 0);
	}

9403
	set_load_weight(&init_task);
9404

9405 9406 9407 9408
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9409
#ifdef CONFIG_SMP
9410
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9411 9412
#endif

9413 9414 9415 9416
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9430 9431 9432

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9433 9434 9435 9436
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9437

9438
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9439
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9440
#ifdef CONFIG_SMP
9441
#ifdef CONFIG_NO_HZ
9442 9443
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9444
#endif
9445
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9446
#endif /* SMP */
9447

9448 9449
	perf_counter_init();

9450
	scheduler_running = 1;
L
Linus Torvalds 已提交
9451 9452 9453
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9454 9455 9456 9457 9458 9459 9460 9461
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9462
{
9463
#ifdef in_atomic
L
Linus Torvalds 已提交
9464 9465
	static unsigned long prev_jiffy;	/* ratelimiting */

9466 9467
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9485 9486 9487 9488 9489 9490
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9491 9492 9493
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9494

9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9506 9507
void normalize_rt_tasks(void)
{
9508
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9509
	unsigned long flags;
9510
	struct rq *rq;
L
Linus Torvalds 已提交
9511

9512
	read_lock_irqsave(&tasklist_lock, flags);
9513
	do_each_thread(g, p) {
9514 9515 9516 9517 9518 9519
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9520 9521
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9522 9523 9524
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9525
#endif
I
Ingo Molnar 已提交
9526 9527 9528 9529 9530 9531 9532 9533

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9534
			continue;
I
Ingo Molnar 已提交
9535
		}
L
Linus Torvalds 已提交
9536

9537
		spin_lock(&p->pi_lock);
9538
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9539

9540
		normalize_task(rq, p);
9541

9542
		__task_rq_unlock(rq);
9543
		spin_unlock(&p->pi_lock);
9544 9545
	} while_each_thread(g, p);

9546
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9547 9548 9549
}

#endif /* CONFIG_MAGIC_SYSRQ */
9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9568
struct task_struct *curr_task(int cpu)
9569 9570 9571 9572 9573 9574 9575 9576 9577 9578
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9579 9580
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9581 9582 9583 9584 9585 9586 9587
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9588
void set_curr_task(int cpu, struct task_struct *p)
9589 9590 9591 9592 9593
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9594

9595 9596
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9611 9612
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9613 9614
{
	struct cfs_rq *cfs_rq;
9615
	struct sched_entity *se;
9616
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9617 9618
	int i;

9619
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9620 9621
	if (!tg->cfs_rq)
		goto err;
9622
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9623 9624
	if (!tg->se)
		goto err;
9625 9626

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9627 9628

	for_each_possible_cpu(i) {
9629
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9630

9631 9632
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9633 9634 9635
		if (!cfs_rq)
			goto err;

9636 9637
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9638 9639 9640
		if (!se)
			goto err;

9641
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9660
#else /* !CONFG_FAIR_GROUP_SCHED */
9661 9662 9663 9664
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9665 9666
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9678
#endif /* CONFIG_FAIR_GROUP_SCHED */
9679 9680

#ifdef CONFIG_RT_GROUP_SCHED
9681 9682 9683 9684
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9685 9686
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9698 9699
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9700 9701
{
	struct rt_rq *rt_rq;
9702
	struct sched_rt_entity *rt_se;
9703 9704 9705
	struct rq *rq;
	int i;

9706
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9707 9708
	if (!tg->rt_rq)
		goto err;
9709
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9710 9711 9712
	if (!tg->rt_se)
		goto err;

9713 9714
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9715 9716 9717 9718

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9719 9720
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9721 9722
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9723

9724 9725
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9726 9727
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9728

9729
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9730 9731
	}

9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9748
#else /* !CONFIG_RT_GROUP_SCHED */
9749 9750 9751 9752
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9753 9754
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9766
#endif /* CONFIG_RT_GROUP_SCHED */
9767

9768
#ifdef CONFIG_GROUP_SCHED
9769 9770 9771 9772 9773 9774 9775 9776
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9777
struct task_group *sched_create_group(struct task_group *parent)
9778 9779 9780 9781 9782 9783 9784 9785 9786
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9787
	if (!alloc_fair_sched_group(tg, parent))
9788 9789
		goto err;

9790
	if (!alloc_rt_sched_group(tg, parent))
9791 9792
		goto err;

9793
	spin_lock_irqsave(&task_group_lock, flags);
9794
	for_each_possible_cpu(i) {
9795 9796
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9797
	}
P
Peter Zijlstra 已提交
9798
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9799 9800 9801 9802 9803

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9804
	list_add_rcu(&tg->siblings, &parent->children);
9805
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9806

9807
	return tg;
S
Srivatsa Vaddagiri 已提交
9808 9809

err:
P
Peter Zijlstra 已提交
9810
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9811 9812 9813
	return ERR_PTR(-ENOMEM);
}

9814
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9815
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9816 9817
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9818
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9819 9820
}

9821
/* Destroy runqueue etc associated with a task group */
9822
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9823
{
9824
	unsigned long flags;
9825
	int i;
S
Srivatsa Vaddagiri 已提交
9826

9827
	spin_lock_irqsave(&task_group_lock, flags);
9828
	for_each_possible_cpu(i) {
9829 9830
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9831
	}
P
Peter Zijlstra 已提交
9832
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9833
	list_del_rcu(&tg->siblings);
9834
	spin_unlock_irqrestore(&task_group_lock, flags);
9835 9836

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9837
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9838 9839
}

9840
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9841 9842 9843
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9844 9845
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9846 9847 9848 9849 9850 9851 9852 9853 9854
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9855
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9856 9857
	on_rq = tsk->se.on_rq;

9858
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9859
		dequeue_task(rq, tsk, 0);
9860 9861
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9862

P
Peter Zijlstra 已提交
9863
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9864

P
Peter Zijlstra 已提交
9865 9866 9867 9868 9869
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9870 9871 9872
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9873
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9874 9875 9876

	task_rq_unlock(rq, &flags);
}
9877
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9878

9879
#ifdef CONFIG_FAIR_GROUP_SCHED
9880
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9881 9882 9883 9884 9885
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9886
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9887 9888 9889
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9890
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9891

9892
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9893
		enqueue_entity(cfs_rq, se, 0);
9894
}
9895

9896 9897 9898 9899 9900 9901 9902 9903 9904
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9905 9906
}

9907 9908
static DEFINE_MUTEX(shares_mutex);

9909
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9910 9911
{
	int i;
9912
	unsigned long flags;
9913

9914 9915 9916 9917 9918 9919
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9920 9921
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9922 9923
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9924

9925
	mutex_lock(&shares_mutex);
9926
	if (tg->shares == shares)
9927
		goto done;
S
Srivatsa Vaddagiri 已提交
9928

9929
	spin_lock_irqsave(&task_group_lock, flags);
9930 9931
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9932
	list_del_rcu(&tg->siblings);
9933
	spin_unlock_irqrestore(&task_group_lock, flags);
9934 9935 9936 9937 9938 9939 9940 9941

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9942
	tg->shares = shares;
9943 9944 9945 9946 9947
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9948
		set_se_shares(tg->se[i], shares);
9949
	}
S
Srivatsa Vaddagiri 已提交
9950

9951 9952 9953 9954
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9955
	spin_lock_irqsave(&task_group_lock, flags);
9956 9957
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9958
	list_add_rcu(&tg->siblings, &tg->parent->children);
9959
	spin_unlock_irqrestore(&task_group_lock, flags);
9960
done:
9961
	mutex_unlock(&shares_mutex);
9962
	return 0;
S
Srivatsa Vaddagiri 已提交
9963 9964
}

9965 9966 9967 9968
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9969
#endif
9970

9971
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9972
/*
P
Peter Zijlstra 已提交
9973
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9974
 */
P
Peter Zijlstra 已提交
9975 9976 9977 9978 9979
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9980
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9981

P
Peter Zijlstra 已提交
9982
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9983 9984
}

P
Peter Zijlstra 已提交
9985 9986
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9987
{
P
Peter Zijlstra 已提交
9988
	struct task_struct *g, *p;
9989

P
Peter Zijlstra 已提交
9990 9991 9992 9993
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9994

P
Peter Zijlstra 已提交
9995 9996
	return 0;
}
9997

P
Peter Zijlstra 已提交
9998 9999 10000 10001 10002
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10003

P
Peter Zijlstra 已提交
10004 10005 10006 10007 10008 10009
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10010

P
Peter Zijlstra 已提交
10011 10012
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10013

P
Peter Zijlstra 已提交
10014 10015 10016
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10017 10018
	}

10019 10020 10021 10022 10023 10024 10025
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10026 10027 10028 10029 10030
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10031

10032 10033 10034
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10035 10036
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10037

P
Peter Zijlstra 已提交
10038
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10039

10040 10041 10042 10043 10044
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10045

10046 10047 10048
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10049 10050 10051
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10052

P
Peter Zijlstra 已提交
10053 10054 10055 10056
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10057

P
Peter Zijlstra 已提交
10058
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10059
	}
P
Peter Zijlstra 已提交
10060

P
Peter Zijlstra 已提交
10061 10062 10063 10064
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10065 10066
}

P
Peter Zijlstra 已提交
10067
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10068
{
P
Peter Zijlstra 已提交
10069 10070 10071 10072 10073 10074 10075
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10076 10077
}

10078 10079
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10080
{
P
Peter Zijlstra 已提交
10081
	int i, err = 0;
P
Peter Zijlstra 已提交
10082 10083

	mutex_lock(&rt_constraints_mutex);
10084
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10085 10086
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10087
		goto unlock;
P
Peter Zijlstra 已提交
10088 10089

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10090 10091
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10092 10093 10094 10095 10096 10097 10098 10099 10100

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10101
 unlock:
10102
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10103 10104 10105
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10106 10107
}

10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10120 10121 10122 10123
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10124
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10125 10126
		return -1;

10127
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10128 10129 10130
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10131 10132 10133 10134 10135 10136 10137 10138

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10139 10140 10141
	if (rt_period == 0)
		return -EINVAL;

10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10156
	u64 runtime, period;
10157 10158
	int ret = 0;

10159 10160 10161
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10162 10163 10164 10165 10166 10167 10168 10169
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10170

10171
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10172
	read_lock(&tasklist_lock);
10173
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10174
	read_unlock(&tasklist_lock);
10175 10176 10177 10178
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10179 10180 10181 10182 10183 10184 10185 10186 10187 10188

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10189
#else /* !CONFIG_RT_GROUP_SCHED */
10190 10191
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10192 10193 10194
	unsigned long flags;
	int i;

10195 10196 10197
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10198 10199 10200 10201 10202 10203 10204
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10205 10206 10207 10208 10209 10210 10211 10212 10213 10214
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10215 10216
	return 0;
}
10217
#endif /* CONFIG_RT_GROUP_SCHED */
10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10248

10249
#ifdef CONFIG_CGROUP_SCHED
10250 10251

/* return corresponding task_group object of a cgroup */
10252
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10253
{
10254 10255
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10256 10257 10258
}

static struct cgroup_subsys_state *
10259
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10260
{
10261
	struct task_group *tg, *parent;
10262

10263
	if (!cgrp->parent) {
10264 10265 10266 10267
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10268 10269
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10270 10271 10272 10273 10274 10275
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10276 10277
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10278
{
10279
	struct task_group *tg = cgroup_tg(cgrp);
10280 10281 10282 10283

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10284 10285 10286
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10287
{
10288
#ifdef CONFIG_RT_GROUP_SCHED
10289
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10290 10291
		return -EINVAL;
#else
10292 10293 10294
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10295
#endif
10296 10297 10298 10299 10300

	return 0;
}

static void
10301
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10302 10303 10304 10305 10306
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10307
#ifdef CONFIG_FAIR_GROUP_SCHED
10308
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10309
				u64 shareval)
10310
{
10311
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10312 10313
}

10314
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10315
{
10316
	struct task_group *tg = cgroup_tg(cgrp);
10317 10318 10319

	return (u64) tg->shares;
}
10320
#endif /* CONFIG_FAIR_GROUP_SCHED */
10321

10322
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10323
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10324
				s64 val)
P
Peter Zijlstra 已提交
10325
{
10326
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10327 10328
}

10329
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10330
{
10331
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10332
}
10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10344
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10345

10346
static struct cftype cpu_files[] = {
10347
#ifdef CONFIG_FAIR_GROUP_SCHED
10348 10349
	{
		.name = "shares",
10350 10351
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10352
	},
10353 10354
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10355
	{
P
Peter Zijlstra 已提交
10356
		.name = "rt_runtime_us",
10357 10358
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10359
	},
10360 10361
	{
		.name = "rt_period_us",
10362 10363
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10364
	},
10365
#endif
10366 10367 10368 10369
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10370
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10371 10372 10373
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10374 10375 10376 10377 10378 10379 10380
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10381 10382 10383
	.early_init	= 1,
};

10384
#endif	/* CONFIG_CGROUP_SCHED */
10385 10386 10387 10388 10389 10390 10391 10392 10393 10394

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10395
/* track cpu usage of a group of tasks and its child groups */
10396 10397 10398 10399
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10400
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10401
	struct cpuacct *parent;
10402 10403 10404 10405 10406
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10407
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10408
{
10409
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10422
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10423 10424
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10425
	int i;
10426 10427

	if (!ca)
10428
		goto out;
10429 10430

	ca->cpuusage = alloc_percpu(u64);
10431 10432 10433 10434 10435 10436
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10437

10438 10439 10440
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10441
	return &ca->css;
10442 10443 10444 10445 10446 10447 10448 10449 10450

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10451 10452 10453
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10454
static void
10455
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10456
{
10457
	struct cpuacct *ca = cgroup_ca(cgrp);
10458
	int i;
10459

10460 10461
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10462 10463 10464 10465
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10466 10467
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10468
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10487
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10501
/* return total cpu usage (in nanoseconds) of a group */
10502
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10503
{
10504
	struct cpuacct *ca = cgroup_ca(cgrp);
10505 10506 10507
	u64 totalcpuusage = 0;
	int i;

10508 10509
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10510 10511 10512 10513

	return totalcpuusage;
}

10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10526 10527
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10528 10529 10530 10531 10532

out:
	return err;
}

10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10567 10568 10569
static struct cftype files[] = {
	{
		.name = "usage",
10570 10571
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10572
	},
10573 10574 10575 10576
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10577 10578 10579 10580
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10581 10582
};

10583
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10584
{
10585
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10586 10587 10588 10589 10590 10591 10592 10593 10594 10595
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10596
	int cpu;
10597

L
Li Zefan 已提交
10598
	if (unlikely(!cpuacct_subsys.active))
10599 10600
		return;

10601
	cpu = task_cpu(tsk);
10602 10603 10604

	rcu_read_lock();

10605 10606
	ca = task_ca(tsk);

10607
	for (; ca; ca = ca->parent) {
10608
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10609 10610
		*cpuusage += cputime;
	}
10611 10612

	rcu_read_unlock();
10613 10614
}

10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10636 10637 10638 10639 10640 10641 10642 10643
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */