sched.c 269.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
473
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527
	/* runqueue lock: */
528
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
817
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

826 827 828 829 830 831 832 833
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896
	raw_spin_unlock_irq(&rq->lock);
897 898 899
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920
	raw_spin_unlock_irq(&rq->lock);
921
#else
922
	raw_spin_unlock(&rq->lock);
923 924 925
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951
	for (;;) {
		struct rq *rq = task_rq(p);
952
		raw_spin_lock(&rq->lock);
953 954
		if (likely(rq == task_rq(p)))
			return rq;
955
		raw_spin_unlock(&rq->lock);
956 957 958
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
972
		raw_spin_lock(&rq->lock);
973 974
		if (likely(rq == task_rq(p)))
			return rq;
975
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
976 977 978
	}
}

979 980 981 982 983
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984
	raw_spin_unlock_wait(&rq->lock);
985 986
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989
	__releases(rq->lock)
{
990
	raw_spin_unlock(&rq->lock);
991 992
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995
	__releases(rq->lock)
{
996
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
997 998 999
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008

	local_irq_disable();
	rq = this_rq();
1009
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1010 1011 1012 1013

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1056
	raw_spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1060 1061 1062 1063

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072
	raw_spin_lock(&rq->lock);
1073 1074
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1075
	raw_spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1093
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 1095
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1129
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130
			HRTIMER_MODE_REL_PINNED, 0);
1131
}
1132

A
Andrew Morton 已提交
1133
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1134 1135
{
}
1136
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1137

1138
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1139
{
1140 1141
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1142

1143 1144 1145 1146
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1147

1148 1149
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181
{
	int cpu;

1182
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1183

1184
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1204
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1205 1206
		return;
	resched_task(cpu_curr(cpu));
1207
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1208
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1243
	set_tsk_need_resched(rq->idle);
1244 1245 1246 1247 1248 1249

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1273
#else /* !CONFIG_SMP */
1274
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1275
{
1276
	assert_raw_spin_locked(&task_rq(p)->lock);
1277
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1278
}
1279 1280 1281 1282

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1283
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1293 1294 1295
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1296
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1297

1298 1299 1300
/*
 * delta *= weight / lw
 */
1301
static unsigned long
1302 1303 1304 1305 1306
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1307 1308 1309 1310 1311 1312 1313
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1314 1315 1316 1317 1318

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1319
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1320
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1321 1322
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1323
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324

1325
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 1327
}

1328
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 1330
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 1336
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340 1341 1342 1343
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1344
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 1346 1347 1348
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1349 1350
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 1361 1362
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1363 1364
 */
static const int prio_to_weight[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1373 1374
};

1375 1376 1377 1378 1379 1380 1381
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1382
static const u32 prio_to_wmult[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1391
};
1392

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1427 1428
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 1430
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1431 1432
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 1434
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1435 1436
#endif

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1447
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1448
typedef int (*tg_visitor)(struct task_group *, void *);
1449 1450 1451 1452 1453

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1454
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 1456
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1457
	int ret;
1458 1459 1460 1461

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469 1470 1471
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1472 1473 1474
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1475 1476 1477 1478 1479

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1480
out_unlock:
1481
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1482 1483

	return ret;
1484 1485
}

P
Peter Zijlstra 已提交
1486 1487 1488
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1489
}
P
Peter Zijlstra 已提交
1490 1491 1492
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1557
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1558

1559 1560
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1561 1562
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1568

1569
static __read_mostly unsigned long *update_shares_data;
1570

1571 1572 1573 1574 1575
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1576 1577 1578
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1579
				    unsigned long *usd_rq_weight)
1580
{
1581
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1582
	int boost = 0;
1583

1584
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1585 1586 1587 1588
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1589

1590
	/*
P
Peter Zijlstra 已提交
1591 1592 1593
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1594
	 */
1595
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1596
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597

1598 1599 1600 1601
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1602

1603
		raw_spin_lock_irqsave(&rq->lock, flags);
1604
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1605
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606
		__set_se_shares(tg->se[cpu], shares);
1607
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1608
	}
1609
}
1610 1611

/*
1612 1613 1614
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1615
 */
P
Peter Zijlstra 已提交
1616
static int tg_shares_up(struct task_group *tg, void *data)
1617
{
1618
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1620
	struct sched_domain *sd = data;
1621
	unsigned long flags;
1622
	int i;
1623

1624 1625 1626 1627
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1628
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629

1630
	for_each_cpu(i, sched_domain_span(sd)) {
1631
		weight = tg->cfs_rq[i]->load.weight;
1632
		usd_rq_weight[i] = weight;
1633

1634
		rq_weight += weight;
1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1643
		sum_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649
	if (!rq_weight)
		rq_weight = sum_weight;

1650 1651 1652 1653 1654
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1655

1656
	for_each_cpu(i, sched_domain_span(sd))
1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658 1659

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1660 1661

	return 0;
1662 1663 1664
}

/*
1665 1666 1667
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1668
 */
P
Peter Zijlstra 已提交
1669
static int tg_load_down(struct task_group *tg, void *data)
1670
{
1671
	unsigned long load;
P
Peter Zijlstra 已提交
1672
	long cpu = (long)data;
1673

1674 1675 1676 1677 1678 1679 1680
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1681

1682
	tg->cfs_rq[cpu]->h_load = load;
1683

P
Peter Zijlstra 已提交
1684
	return 0;
1685 1686
}

1687
static void update_shares(struct sched_domain *sd)
1688
{
1689 1690 1691 1692 1693 1694 1695 1696
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1697 1698 1699

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1700
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704 1705
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1706 1707 1708
	if (root_task_group_empty())
		return;

1709
	raw_spin_unlock(&rq->lock);
1710
	update_shares(sd);
1711
	raw_spin_lock(&rq->lock);
1712 1713
}

P
Peter Zijlstra 已提交
1714
static void update_h_load(long cpu)
1715
{
1716 1717 1718
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1719
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 1721 1722 1723
}

#else

1724
static inline void update_shares(struct sched_domain *sd)
1725 1726 1727
{
}

1728 1729 1730 1731
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1732 1733
#endif

1734 1735
#ifdef CONFIG_PREEMPT

1736 1737
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1738
/*
1739 1740 1741 1742 1743 1744
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1745
 */
1746 1747 1748 1749 1750
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1751
	raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 1767 1768 1769 1770 1771
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1772
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773
		if (busiest < this_rq) {
1774 1775 1776 1777
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1778 1779
			ret = 1;
		} else
1780 1781
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1782 1783 1784 1785
	}
	return ret;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1795
		raw_spin_unlock(&this_rq->lock);
1796 1797 1798 1799 1800 1801
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1802 1803 1804
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1805
	raw_spin_unlock(&busiest->lock);
1806 1807
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1808 1809
#endif

V
Vegard Nossum 已提交
1810
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1811 1812
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1813
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1814 1815 1816
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1817
#endif
1818

1819
static void calc_load_account_active(struct rq *this_rq);
1820
static void update_sysctl(void);
1821
static int get_update_sysctl_factor(void);
1822

P
Peter Zijlstra 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1836

I
Ingo Molnar 已提交
1837 1838
#include "sched_stats.h"
#include "sched_idletask.c"
1839 1840
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1841 1842 1843 1844 1845
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849
static void inc_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running++;
}

1854
static void dec_nr_running(struct rq *rq)
1855 1856 1857 1858
{
	rq->nr_running--;
}

1859 1860 1861
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1862 1863 1864 1865
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1875

I
Ingo Molnar 已提交
1876 1877
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 1879
}

1880 1881 1882 1883 1884 1885
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1886
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887
{
P
Peter Zijlstra 已提交
1888 1889 1890
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1891
	sched_info_queued(p);
1892
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1893
	p->se.on_rq = 1;
1894 1895
}

1896
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897
{
P
Peter Zijlstra 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1907 1908
	}

1909
	sched_info_dequeued(p);
1910
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1911
	p->se.on_rq = 0;
1912 1913
}

1914
/*
I
Ingo Molnar 已提交
1915
 * __normal_prio - return the priority that is based on the static prio
1916 1917 1918
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1919
	return p->static_prio;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1929
static inline int normal_prio(struct task_struct *p)
1930 1931 1932
{
	int prio;

1933
	if (task_has_rt_policy(p))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1947
static int effective_prio(struct task_struct *p)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1960
/*
I
Ingo Molnar 已提交
1961
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1962
 */
I
Ingo Molnar 已提交
1963
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1964
{
1965
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1966
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1967

1968
	enqueue_task(rq, p, wakeup);
1969
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1975
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1976
{
1977
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1978 1979
		rq->nr_uninterruptible++;

1980
	dequeue_task(rq, p, sleep);
1981
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1988
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1989 1990 1991 1992
{
	return cpu_curr(task_cpu(p)) == p;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2005
#ifdef CONFIG_SMP
2006 2007 2008
/*
 * Is this task likely cache-hot:
 */
2009
static int
2010 2011 2012 2013
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2014 2015 2016
	if (p->sched_class != &fair_sched_class)
		return 0;

2017 2018 2019
	/*
	 * Buddy candidates are cache hot:
	 */
2020
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2021 2022
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2023 2024
		return 1;

2025 2026 2027 2028 2029
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2030 2031 2032 2033 2034
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2035
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2036
{
2037 2038 2039 2040 2041
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2042 2043
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 2045
#endif

2046
	trace_sched_migrate_task(p, new_cpu);
2047

P
Peter Zijlstra 已提交
2048 2049 2050 2051 2052
	if (task_cpu(p) == new_cpu)
		return;

	p->se.nr_migrations++;
	perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
I
Ingo Molnar 已提交
2053 2054

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2055 2056
}

2057
struct migration_req {
L
Linus Torvalds 已提交
2058 2059
	struct list_head list;

2060
	struct task_struct *task;
L
Linus Torvalds 已提交
2061 2062 2063
	int dest_cpu;

	struct completion done;
2064
};
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2070
static int
2071
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2072
{
2073
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2074 2075 2076

	/*
	 * If the task is not on a runqueue (and not running), then
2077
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2078
	 */
2079
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2086

L
Linus Torvalds 已提交
2087 2088 2089
	return 1;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2133 2134 2135
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2136 2137 2138 2139 2140 2141 2142
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2149
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2150 2151
{
	unsigned long flags;
I
Ingo Molnar 已提交
2152
	int running, on_rq;
R
Roland McGrath 已提交
2153
	unsigned long ncsw;
2154
	struct rq *rq;
L
Linus Torvalds 已提交
2155

2156 2157 2158 2159 2160 2161 2162 2163
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2176 2177 2178
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2179
			cpu_relax();
R
Roland McGrath 已提交
2180
		}
2181

2182 2183 2184 2185 2186 2187
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2188
		trace_sched_wait_task(rq, p);
2189 2190
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2191
		ncsw = 0;
2192
		if (!match_state || p->state == match_state)
2193
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2194
		task_rq_unlock(rq, &flags);
2195

R
Roland McGrath 已提交
2196 2197 2198 2199 2200 2201
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2212

2213 2214 2215 2216 2217
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2218
		 * So if it was still runnable (but just not actively
2219 2220 2221 2222 2223 2224 2225
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2226

2227 2228 2229 2230 2231 2232 2233
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2234 2235

	return ncsw;
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2251
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2261
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2262
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2263

T
Thomas Gleixner 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2285
#ifdef CONFIG_SMP
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2323 2324 2325 2326 2327
/*
 * Called from:
 *
 *  - fork, @p is stable because it isn't on the tasklist yet
 *
P
Peter Zijlstra 已提交
2328
 *  - exec, @p is unstable, retry loop
2329 2330 2331 2332
 *
 *  - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
 *             we should be good.
 */
2333 2334 2335
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2349 2350
		     !cpu_active(cpu)))
		cpu = select_fallback_rq(task_cpu(p), p);
2351 2352

	return cpu;
2353 2354 2355
}
#endif

L
Linus Torvalds 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2370 2371
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2372
{
2373
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2374
	unsigned long flags;
2375
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2376

2377
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2378
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2379

P
Peter Zijlstra 已提交
2380
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2381

2382
	smp_wmb();
2383
	rq = orig_rq = task_rq_lock(p, &flags);
2384
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2385
	if (!(p->state & state))
L
Linus Torvalds 已提交
2386 2387
		goto out;

I
Ingo Molnar 已提交
2388
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2389 2390 2391
		goto out_running;

	cpu = task_cpu(p);
2392
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2393 2394 2395 2396 2397

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2398 2399 2400
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2401 2402
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2403
	 */
2404 2405
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2406
	p->state = TASK_WAKING;
2407 2408 2409 2410

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2411
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2412

2413
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2414
	if (cpu != orig_cpu)
2415
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2416 2417 2418

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2419

P
Peter Zijlstra 已提交
2420 2421
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2422

2423 2424 2425 2426 2427 2428 2429
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2430
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 2432 2433 2434 2435
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2436
#endif /* CONFIG_SCHEDSTATS */
2437

L
Linus Torvalds 已提交
2438 2439
out_activate:
#endif /* CONFIG_SMP */
2440
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2441
	if (wake_flags & WF_SYNC)
2442 2443 2444 2445 2446 2447 2448
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2449
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2450 2451
	success = 1;

P
Peter Zijlstra 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2468
out_running:
2469
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2470
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2471

L
Linus Torvalds 已提交
2472
	p->state = TASK_RUNNING;
2473
#ifdef CONFIG_SMP
2474 2475
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2487
#endif
L
Linus Torvalds 已提交
2488 2489
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2490
	put_cpu();
L
Linus Torvalds 已提交
2491 2492 2493 2494

	return success;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2506
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2507
{
2508
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2509 2510 2511
}
EXPORT_SYMBOL(wake_up_process);

2512
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2520 2521 2522 2523 2524 2525 2526
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2527
	p->se.prev_sum_exec_runtime	= 0;
2528
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2529 2530
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2531 2532
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2533 2534

#ifdef CONFIG_SCHEDSTATS
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2565
#endif
N
Nick Piggin 已提交
2566

P
Peter Zijlstra 已提交
2567
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2568
	p->se.on_rq = 0;
2569
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2570

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2584 2585 2586 2587 2588 2589
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2590

2591 2592 2593 2594
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2595
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596
			p->policy = SCHED_NORMAL;
2597 2598
			p->normal_prio = p->static_prio;
		}
2599

2600 2601
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2602
			p->normal_prio = p->static_prio;
2603 2604 2605
			set_load_weight(p);
		}

2606 2607 2608 2609 2610 2611
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2612

2613 2614 2615 2616 2617
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2618 2619
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2620

P
Peter Zijlstra 已提交
2621 2622 2623
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2624
#ifdef CONFIG_SMP
2625
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2626 2627 2628
#endif
	set_task_cpu(p, cpu);

2629
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2630
	if (likely(sched_info_on()))
2631
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2632
#endif
2633
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2634 2635
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2636
#ifdef CONFIG_PREEMPT
2637
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2638
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2639
#endif
2640 2641
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2642
	put_cpu();
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2652
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2653 2654
{
	unsigned long flags;
I
Ingo Molnar 已提交
2655
	struct rq *rq;
L
Linus Torvalds 已提交
2656 2657

	rq = task_rq_lock(p, &flags);
2658 2659
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2660
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2661
	activate_task(rq, p, 0);
2662
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2663
	check_preempt_curr(rq, p, WF_FORK);
2664
#ifdef CONFIG_SMP
2665 2666
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2667
#endif
I
Ingo Molnar 已提交
2668
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2669 2670
}

2671 2672 2673
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2674
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2675
 * @notifier: notifier struct to register
2676 2677 2678 2679 2680 2681 2682 2683 2684
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2685
 * @notifier: notifier struct to unregister
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2715
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2727
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2728

2729 2730 2731
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2732
 * @prev: the current task that is being switched out
2733 2734 2735 2736 2737 2738 2739 2740 2741
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2742 2743 2744
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2745
{
2746
	fire_sched_out_preempt_notifiers(prev, next);
2747 2748 2749 2750
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2751 2752
/**
 * finish_task_switch - clean up after a task-switch
2753
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2754 2755
 * @prev: the thread we just switched away from.
 *
2756 2757 2758 2759
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2760 2761
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2762
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2763 2764 2765
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2766
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2767 2768 2769
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2770
	long prev_state;
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2776
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2777 2778
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2779
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2785
	prev_state = prev->state;
2786
	finish_arch_switch(prev);
2787
	perf_event_task_sched_in(current, cpu_of(rq));
2788
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2789

2790
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2791 2792
	if (mm)
		mmdrop(mm);
2793
	if (unlikely(prev_state == TASK_DEAD)) {
2794 2795 2796
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2797
		 */
2798
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2799
		put_task_struct(prev);
2800
	}
L
Linus Torvalds 已提交
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2818
		raw_spin_lock_irqsave(&rq->lock, flags);
2819 2820
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2821
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2822 2823 2824 2825 2826 2827

		rq->post_schedule = 0;
	}
}

#else
2828

2829 2830 2831 2832 2833 2834
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2835 2836
}

2837 2838
#endif

L
Linus Torvalds 已提交
2839 2840 2841 2842
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2843
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2844 2845
	__releases(rq->lock)
{
2846 2847
	struct rq *rq = this_rq();

2848
	finish_task_switch(rq, prev);
2849

2850 2851 2852 2853 2854
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2855

2856 2857 2858 2859
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2860
	if (current->set_child_tid)
2861
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866 2867
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2868
static inline void
2869
context_switch(struct rq *rq, struct task_struct *prev,
2870
	       struct task_struct *next)
L
Linus Torvalds 已提交
2871
{
I
Ingo Molnar 已提交
2872
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2873

2874
	prepare_task_switch(rq, prev, next);
2875
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2876 2877
	mm = next->mm;
	oldmm = prev->active_mm;
2878 2879 2880 2881 2882
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2883
	arch_start_context_switch(prev);
2884

2885
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2892
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2893 2894 2895
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2896 2897 2898 2899 2900 2901 2902
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2903
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2904
#endif
L
Linus Torvalds 已提交
2905 2906 2907 2908

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2909 2910 2911 2912 2913 2914 2915
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2939
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2954 2955
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2956

2957
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2967
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2986 2987 2988 2989 2990 2991
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3007 3008
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3009
{
3010 3011 3012 3013
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3026

3027 3028
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3052 3053
}

3054
/*
I
Ingo Molnar 已提交
3055 3056
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3057
 */
I
Ingo Molnar 已提交
3058
static void update_cpu_load(struct rq *this_rq)
3059
{
3060
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3073 3074 3075 3076 3077 3078 3079
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3080 3081
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3082 3083 3084 3085 3086

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3087 3088
}

I
Ingo Molnar 已提交
3089 3090
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3097
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3098 3099 3100
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3101
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3102
	if (rq1 == rq2) {
3103
		raw_spin_lock(&rq1->lock);
L
Linus Torvalds 已提交
3104 3105
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3106
		if (rq1 < rq2) {
3107 3108
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3109
		} else {
3110 3111
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3112 3113
		}
	}
3114 3115
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121 3122 3123
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3124
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3125 3126 3127
	__releases(rq1->lock)
	__releases(rq2->lock)
{
3128
	raw_spin_unlock(&rq1->lock);
L
Linus Torvalds 已提交
3129
	if (rq1 != rq2)
3130
		raw_spin_unlock(&rq2->lock);
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135
	else
		__release(rq2->lock);
}

/*
P
Peter Zijlstra 已提交
3136 3137
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3138
 */
P
Peter Zijlstra 已提交
3139
void sched_exec(void)
L
Linus Torvalds 已提交
3140
{
P
Peter Zijlstra 已提交
3141
	struct task_struct *p = current;
3142
	struct migration_req req;
P
Peter Zijlstra 已提交
3143
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3144
	unsigned long flags;
3145
	struct rq *rq;
L
Linus Torvalds 已提交
3146

P
Peter Zijlstra 已提交
3147 3148 3149 3150 3151 3152 3153 3154
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
	}

L
Linus Torvalds 已提交
3155
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3156 3157 3158 3159 3160
	put_cpu();

	/*
	 * select_task_rq() can race against ->cpus_allowed
	 */
3161
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3162 3163 3164 3165
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
L
Linus Torvalds 已提交
3166 3167 3168 3169 3170

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3171

L
Linus Torvalds 已提交
3172 3173 3174 3175 3176
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3177

L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186
		return;
	}
	task_rq_unlock(rq, &flags);
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3187 3188
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3189
{
3190
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3191
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3192
	activate_task(this_rq, p, 0);
3193
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3199
static
3200
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3201
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3202
		     int *all_pinned)
L
Linus Torvalds 已提交
3203
{
3204
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3205 3206 3207 3208 3209 3210
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3211
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3212
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3213
		return 0;
3214
	}
3215 3216
	*all_pinned = 0;

3217 3218
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3219
		return 0;
3220
	}
L
Linus Torvalds 已提交
3221

3222 3223 3224 3225 3226 3227
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3228 3229 3230
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3231
#ifdef CONFIG_SCHEDSTATS
3232
		if (tsk_cache_hot) {
3233
			schedstat_inc(sd, lb_hot_gained[idle]);
3234 3235
			schedstat_inc(p, se.nr_forced_migrations);
		}
3236 3237 3238 3239
#endif
		return 1;
	}

3240
	if (tsk_cache_hot) {
3241
		schedstat_inc(p, se.nr_failed_migrations_hot);
3242
		return 0;
3243
	}
L
Linus Torvalds 已提交
3244 3245 3246
	return 1;
}

3247 3248 3249 3250 3251
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3252
{
3253
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3254 3255
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3256

3257
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3258 3259
		goto out;

3260 3261
	pinned = 1;

L
Linus Torvalds 已提交
3262
	/*
I
Ingo Molnar 已提交
3263
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3264
	 */
I
Ingo Molnar 已提交
3265 3266
	p = iterator->start(iterator->arg);
next:
3267
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3268
		goto out;
3269 3270

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3271 3272 3273
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3274 3275
	}

I
Ingo Molnar 已提交
3276
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3277
	pulled++;
I
Ingo Molnar 已提交
3278
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3279

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3290
	/*
3291
	 * We only want to steal up to the prescribed amount of weighted load.
3292
	 */
3293
	if (rem_load_move > 0) {
3294 3295
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3296 3297
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3298 3299 3300
	}
out:
	/*
3301
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3302 3303 3304 3305
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3306 3307 3308

	if (all_pinned)
		*all_pinned = pinned;
3309 3310

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3311 3312
}

I
Ingo Molnar 已提交
3313
/*
P
Peter Williams 已提交
3314 3315 3316
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3317 3318 3319 3320
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3321
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3322 3323 3324
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3325
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3326
	unsigned long total_load_moved = 0;
3327
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3328 3329

	do {
P
Peter Williams 已提交
3330 3331
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3332
				max_load_move - total_load_moved,
3333
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3334
		class = class->next;
3335

3336 3337 3338 3339 3340 3341
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3342 3343
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3344
#endif
P
Peter Williams 已提交
3345
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3346

P
Peter Williams 已提交
3347 3348 3349
	return total_load_moved > 0;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3386
	const struct sched_class *class;
P
Peter Williams 已提交
3387

3388
	for_each_class(class) {
3389
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3390
			return 1;
3391
	}
P
Peter Williams 已提交
3392 3393

	return 0;
I
Ingo Molnar 已提交
3394
}
3395
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3396
/*
3397 3398
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3399
 */
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3418
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3419 3420 3421 3422 3423 3424
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3425
#endif
3426
};
L
Linus Torvalds 已提交
3427

3428
/*
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3461
		load_idx = sd->busy_idx;
3462 3463 3464
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3465
		load_idx = sd->newidle_idx;
3466 3467
		break;
	default:
N
Nick Piggin 已提交
3468
		load_idx = sd->idle_idx;
3469 3470
		break;
	}
L
Linus Torvalds 已提交
3471

3472 3473
	return load_idx;
}
L
Linus Torvalds 已提交
3474 3475


3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3514

3515 3516
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3517

3518 3519 3520 3521 3522 3523 3524
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3525

3526 3527 3528 3529 3530 3531 3532 3533
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3548

3549 3550 3551 3552 3553
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3554
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3555
		return;
L
Linus Torvalds 已提交
3556

3557 3558 3559 3560 3561 3562 3563
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3564

3565
/**
3566
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3567 3568 3569 3570 3571
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3572 3573 3574 3575 3576
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3577 3578 3579 3580 3581 3582 3583 3584
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3585

3586 3587 3588
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3589

3590 3591
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3592

3593
	return 1;
L
Linus Torvalds 已提交
3594

3595 3596 3597 3598 3599 3600 3601
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3602

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3628 3629 3630 3631 3632 3633 3634 3635 3636
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3637 3638 3639 3640 3641
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3660 3661 3662 3663 3664 3665
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3666 3667 3668 3669 3670
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3671
	power >>= SCHED_LOAD_SHIFT;
3672 3673

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3674 3675 3676 3677 3678
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3679 3680 3681
		power >>= SCHED_LOAD_SHIFT;
	}

3682 3683 3684 3685 3686
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3687

3688
	sdg->cpu_power = power;
3689 3690 3691
}

static void update_group_power(struct sched_domain *sd, int cpu)
3692 3693 3694
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3695
	unsigned long power;
3696 3697

	if (!child) {
3698
		update_cpu_power(sd, cpu);
3699 3700 3701
		return;
	}

3702
	power = 0;
3703 3704 3705

	group = child->groups;
	do {
3706
		power += group->cpu_power;
3707 3708
		group = group->next;
	} while (group != child->groups);
3709 3710

	sdg->cpu_power = power;
3711
}
3712

3713 3714
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3715
 * @sd: The sched_domain whose statistics are to be updated.
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3726 3727
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3738
	if (local_group) {
3739
		balance_cpu = group_first_cpu(group);
3740
		if (balance_cpu == this_cpu)
3741
			update_group_power(sd, this_cpu);
3742
	}
3743 3744 3745 3746 3747

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3748

3749 3750
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3751

3752 3753
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3754

3755
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3756
		if (local_group) {
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3769
		}
3770

3771 3772 3773
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3774

3775 3776
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3789

3790
	/* Adjust by relative CPU power of the group */
3791
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3803 3804
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3805 3806 3807 3808

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3809
	sgs->group_capacity =
3810
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3811
}
I
Ingo Molnar 已提交
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3822
 */
3823 3824 3825 3826
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3827
{
P
Peter Zijlstra 已提交
3828
	struct sched_domain *child = sd->child;
3829
	struct sched_group *group = sd->groups;
3830
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3831 3832 3833 3834
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3835

3836
	init_sd_power_savings_stats(sd, sds, idle);
3837
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3838 3839 3840 3841

	do {
		int local_group;

3842 3843
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3844
		memset(&sgs, 0, sizeof(sgs));
3845
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3846
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3847

3848 3849
		if (local_group && balance && !(*balance))
			return;
3850

3851
		sds->total_load += sgs.group_load;
3852
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3853

P
Peter Zijlstra 已提交
3854 3855 3856 3857 3858 3859
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3860
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3861 3862

		if (local_group) {
3863 3864 3865 3866 3867
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3868 3869
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3870 3871 3872 3873 3874
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3875
		}
3876

3877
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3878 3879
		group = group->next;
	} while (group != sd->groups);
3880
}
L
Linus Torvalds 已提交
3881

3882 3883
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3884 3885
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3904

3905 3906 3907 3908 3909
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3910

L
Linus Torvalds 已提交
3911
	/*
3912 3913 3914
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3915
	 */
3916

3917
	pwr_now += sds->busiest->cpu_power *
3918
			min(sds->busiest_load_per_task, sds->max_load);
3919
	pwr_now += sds->this->cpu_power *
3920 3921 3922 3923
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3924 3925
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3926
	if (sds->max_load > tmp)
3927
		pwr_move += sds->busiest->cpu_power *
3928 3929 3930
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3931
	if (sds->max_load * sds->busiest->cpu_power <
3932
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3933 3934
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3935
	else
3936 3937 3938
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3939 3940 3941 3942 3943 3944 3945
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3958 3959 3960 3961 3962
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3963
	if (sds->max_load < sds->avg_load) {
3964
		*imbalance = 0;
3965
		return fix_small_imbalance(sds, this_cpu, imbalance);
3966
	}
3967 3968

	/* Don't want to pull so many tasks that a group would go idle */
3969 3970
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3971

L
Linus Torvalds 已提交
3972
	/* How much load to actually move to equalise the imbalance */
3973 3974
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3975 3976
			/ SCHED_LOAD_SCALE;

3977 3978 3979 3980 3981 3982
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3983 3984
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3985

3986
}
3987
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4013 4014 4015 4016 4017 4018 4019
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4020

4021
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4022

4023 4024 4025 4026 4027 4028 4029
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4040 4041
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4042

4043 4044
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4045

4046
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4047 4048
		goto out_balanced;

4049
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4050

4051 4052 4053 4054
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4055 4056
		goto out_balanced;

4057 4058 4059 4060
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4061

L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4070
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4071 4072
	 * appear as very large values with unsigned longs.
	 */
4073
	if (sds.max_load <= sds.busiest_load_per_task)
4074 4075
		goto out_balanced;

4076 4077
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4078
	return sds.busiest;
L
Linus Torvalds 已提交
4079 4080

out_balanced:
4081 4082 4083 4084 4085 4086
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4087
ret:
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4095
static struct rq *
I
Ingo Molnar 已提交
4096
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4097
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4098
{
4099
	struct rq *busiest = NULL, *rq;
4100
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4101 4102
	int i;

4103
	for_each_cpu(i, sched_group_cpus(group)) {
4104 4105
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4106
		unsigned long wl;
4107

4108
		if (!cpumask_test_cpu(i, cpus))
4109 4110
			continue;

4111
		rq = cpu_rq(i);
4112 4113
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4114

4115
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4116
			continue;
L
Linus Torvalds 已提交
4117

I
Ingo Molnar 已提交
4118 4119
		if (wl > max_load) {
			max_load = wl;
4120
			busiest = rq;
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126
		}
	}

	return busiest;
}

4127 4128 4129 4130 4131 4132
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4133 4134 4135
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4136 4137 4138 4139
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4140
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4141
			struct sched_domain *sd, enum cpu_idle_type idle,
4142
			int *balance)
L
Linus Torvalds 已提交
4143
{
P
Peter Williams 已提交
4144
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4145 4146
	struct sched_group *group;
	unsigned long imbalance;
4147
	struct rq *busiest;
4148
	unsigned long flags;
4149
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4150

4151
	cpumask_copy(cpus, cpu_active_mask);
4152

4153 4154 4155
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4156
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4157
	 * portraying it as CPU_NOT_IDLE.
4158
	 */
I
Ingo Molnar 已提交
4159
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4160
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4161
		sd_idle = 1;
L
Linus Torvalds 已提交
4162

4163
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4164

4165
redo:
4166
	update_shares(sd);
4167
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4168
				   cpus, balance);
4169

4170
	if (*balance == 0)
4171 4172
		goto out_balanced;

L
Linus Torvalds 已提交
4173 4174 4175 4176 4177
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4178
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4179 4180 4181 4182 4183
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4184
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4185 4186 4187

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4188
	ld_moved = 0;
L
Linus Torvalds 已提交
4189 4190 4191 4192
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4193
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4194 4195
		 * correctly treated as an imbalance.
		 */
4196
		local_irq_save(flags);
N
Nick Piggin 已提交
4197
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4198
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4199
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4200
		double_rq_unlock(this_rq, busiest);
4201
		local_irq_restore(flags);
4202

4203 4204 4205
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4206
		if (ld_moved && this_cpu != smp_processor_id())
4207 4208
			resched_cpu(this_cpu);

4209
		/* All tasks on this runqueue were pinned by CPU affinity */
4210
		if (unlikely(all_pinned)) {
4211 4212
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4213
				goto redo;
4214
			goto out_balanced;
4215
		}
L
Linus Torvalds 已提交
4216
	}
4217

P
Peter Williams 已提交
4218
	if (!ld_moved) {
L
Linus Torvalds 已提交
4219 4220 4221 4222 4223
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4224
			raw_spin_lock_irqsave(&busiest->lock, flags);
4225 4226 4227 4228

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4229 4230
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4231 4232
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4233 4234 4235 4236
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4237 4238 4239
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4240
				active_balance = 1;
L
Linus Torvalds 已提交
4241
			}
4242
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4243
			if (active_balance)
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4250
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4251
		}
4252
	} else
L
Linus Torvalds 已提交
4253 4254
		sd->nr_balance_failed = 0;

4255
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4256 4257
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4258 4259 4260 4261 4262 4263 4264 4265 4266
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4267 4268
	}

P
Peter Williams 已提交
4269
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4270
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4271 4272 4273
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4274 4275 4276 4277

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4278
	sd->nr_balance_failed = 0;
4279 4280

out_one_pinned:
L
Linus Torvalds 已提交
4281
	/* tune up the balancing interval */
4282 4283
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4284 4285
		sd->balance_interval *= 2;

4286
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4287
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4288 4289 4290 4291
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4292 4293
	if (ld_moved)
		update_shares(sd);
4294
	return ld_moved;
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4301
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4302 4303
 * this_rq is locked.
 */
4304
static int
4305
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4306 4307
{
	struct sched_group *group;
4308
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4309
	unsigned long imbalance;
P
Peter Williams 已提交
4310
	int ld_moved = 0;
N
Nick Piggin 已提交
4311
	int sd_idle = 0;
4312
	int all_pinned = 0;
4313
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4314

4315
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4316

4317 4318 4319 4320
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4321
	 * portraying it as CPU_NOT_IDLE.
4322 4323 4324
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4325
		sd_idle = 1;
L
Linus Torvalds 已提交
4326

4327
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4328
redo:
4329
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4330
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4331
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4332
	if (!group) {
I
Ingo Molnar 已提交
4333
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4334
		goto out_balanced;
L
Linus Torvalds 已提交
4335 4336
	}

4337
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4338
	if (!busiest) {
I
Ingo Molnar 已提交
4339
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4340
		goto out_balanced;
L
Linus Torvalds 已提交
4341 4342
	}

N
Nick Piggin 已提交
4343 4344
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4345
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4346

P
Peter Williams 已提交
4347
	ld_moved = 0;
4348 4349 4350
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4351 4352
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4353
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4354 4355
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4356
		double_unlock_balance(this_rq, busiest);
4357

4358
		if (unlikely(all_pinned)) {
4359 4360
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4361 4362
				goto redo;
		}
4363 4364
	}

P
Peter Williams 已提交
4365
	if (!ld_moved) {
4366
		int active_balance = 0;
4367

I
Ingo Molnar 已提交
4368
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4369 4370
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4371
			return -1;
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4408
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4421 4422 4423
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
4424
		raw_spin_unlock(&this_rq->lock);
4425 4426
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4427
		raw_spin_lock(&this_rq->lock);
4428

N
Nick Piggin 已提交
4429
	} else
4430
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4431

4432
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4433
	return ld_moved;
4434 4435

out_balanced:
I
Ingo Molnar 已提交
4436
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4437
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4438
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4439
		return -1;
4440
	sd->nr_balance_failed = 0;
4441

4442
	return 0;
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4449
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4450 4451
{
	struct sched_domain *sd;
4452
	int pulled_task = 0;
I
Ingo Molnar 已提交
4453
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4454

M
Mike Galbraith 已提交
4455 4456 4457 4458 4459
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4460
	for_each_domain(this_cpu, sd) {
4461 4462 4463 4464 4465 4466
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4467
			/* If we've pulled tasks over stop searching: */
4468
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4469
							   sd);
4470 4471 4472 4473

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4474 4475
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4476
			break;
M
Mike Galbraith 已提交
4477
		}
L
Linus Torvalds 已提交
4478
	}
I
Ingo Molnar 已提交
4479
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4480 4481 4482 4483 4484
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4485
	}
L
Linus Torvalds 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4496
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4497
{
4498
	int target_cpu = busiest_rq->push_cpu;
4499 4500
	struct sched_domain *sd;
	struct rq *target_rq;
4501

4502
	/* Is there any task to move? */
4503 4504 4505 4506
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4507 4508

	/*
4509
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4510
	 * we need to fix it. Originally reported by
4511
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4512
	 */
4513
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4514

4515 4516
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4517 4518
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4519 4520

	/* Search for an sd spanning us and the target CPU. */
4521
	for_each_domain(target_cpu, sd) {
4522
		if ((sd->flags & SD_LOAD_BALANCE) &&
4523
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4524
				break;
4525
	}
4526

4527
	if (likely(sd)) {
4528
		schedstat_inc(sd, alb_count);
4529

P
Peter Williams 已提交
4530 4531
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4532 4533 4534 4535
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4536
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4537 4538
}

4539 4540 4541
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4542
	cpumask_var_t cpu_mask;
4543
	cpumask_var_t ilb_grp_nohz_mask;
4544 4545 4546 4547
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4548 4549 4550 4551 4552
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4664
	return cpumask_first(nohz.cpu_mask);
4665 4666 4667
}
#endif

4668
/*
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4679
 *
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4695 4696 4697 4698 4699 4700 4701 4702
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4703 4704
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4705

4706 4707 4708
			return 0;
		}

4709 4710
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4711
		/* time for ilb owner also to sleep */
4712
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4713 4714 4715 4716 4717 4718 4719 4720 4721
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4738
			return 1;
4739
		}
4740
	} else {
4741
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4742 4743
			return 0;

4744
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4757 4758 4759 4760 4761
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4762
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4763
{
4764 4765
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4766 4767
	unsigned long interval;
	struct sched_domain *sd;
4768
	/* Earliest time when we have to do rebalance again */
4769
	unsigned long next_balance = jiffies + 60*HZ;
4770
	int update_next_balance = 0;
4771
	int need_serialize;
L
Linus Torvalds 已提交
4772

4773
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4774 4775 4776 4777
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4778
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783 4784
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4785 4786 4787
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4788
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4789

4790
		if (need_serialize) {
4791 4792 4793 4794
			if (!spin_trylock(&balancing))
				goto out;
		}

4795
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4796
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4797 4798
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4799 4800 4801
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4802
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4803
			}
4804
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4805
		}
4806
		if (need_serialize)
4807 4808
			spin_unlock(&balancing);
out:
4809
		if (time_after(next_balance, sd->last_balance + interval)) {
4810
			next_balance = sd->last_balance + interval;
4811 4812
			update_next_balance = 1;
		}
4813 4814 4815 4816 4817 4818 4819 4820

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4821
	}
4822 4823 4824 4825 4826 4827 4828 4829

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4830 4831 4832 4833 4834 4835 4836 4837 4838
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4839 4840 4841 4842
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4843

I
Ingo Molnar 已提交
4844
	rebalance_domains(this_cpu, idle);
4845 4846 4847 4848 4849 4850 4851

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4852 4853
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4854 4855 4856
		struct rq *rq;
		int balance_cpu;

4857 4858 4859 4860
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4861 4862 4863 4864 4865 4866 4867 4868
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4869
			rebalance_domains(balance_cpu, CPU_IDLE);
4870 4871

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4872 4873
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4874 4875 4876 4877 4878
		}
	}
#endif
}

4879 4880 4881 4882 4883
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4884 4885 4886 4887 4888 4889 4890
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4891
static inline void trigger_load_balance(struct rq *rq, int cpu)
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4903
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4904 4905 4906 4907
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4908
			int ilb = find_new_ilb(cpu);
4909

4910
			if (ilb < nr_cpu_ids)
4911 4912 4913 4914 4915 4916 4917 4918 4919
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4920
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4921 4922 4923 4924 4925 4926 4927 4928 4929
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4930
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4931 4932
		return;
#endif
4933 4934 4935
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4936
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4937
}
I
Ingo Molnar 已提交
4938 4939 4940

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4941 4942 4943
/*
 * on UP we do not need to balance between CPUs:
 */
4944
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4945 4946
{
}
I
Ingo Molnar 已提交
4947

L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4955
 * Return any ns on the sched_clock that have not yet been accounted in
4956
 * @p in case that task is currently running.
4957 4958
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4959
 */
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4974
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4975 4976
{
	unsigned long flags;
4977
	struct rq *rq;
4978
	u64 ns = 0;
4979

4980
	rq = task_rq_lock(p, &flags);
4981 4982
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4983

4984 4985
	return ns;
}
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5024
	task_rq_unlock(rq, &flags);
5025

L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5033
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5034
 */
5035 5036
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5037 5038 5039 5040
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5041
	/* Add user time to process. */
L
Linus Torvalds 已提交
5042
	p->utime = cputime_add(p->utime, cputime);
5043
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5045 5046 5047 5048 5049 5050 5051

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5052 5053

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5054 5055
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5056 5057
}

5058 5059 5060 5061
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5062
 * @cputime_scaled: cputime scaled by cpu frequency
5063
 */
5064 5065
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5066 5067 5068 5069 5070 5071
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5072
	/* Add guest time to process. */
5073
	p->utime = cputime_add(p->utime, cputime);
5074
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5075
	account_group_user_time(p, cputime);
5076 5077
	p->gtime = cputime_add(p->gtime, cputime);

5078
	/* Add guest time to cpustat. */
5079 5080 5081 5082 5083 5084 5085
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5086 5087
}

L
Linus Torvalds 已提交
5088 5089 5090 5091 5092
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5093
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5094 5095
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5096
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5097 5098 5099 5100
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5101
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5102
		account_guest_time(p, cputime, cputime_scaled);
5103 5104
		return;
	}
5105

5106
	/* Add system time to process. */
L
Linus Torvalds 已提交
5107
	p->stime = cputime_add(p->stime, cputime);
5108
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5109
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5118 5119
		cpustat->system = cputime64_add(cpustat->system, tmp);

5120 5121
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5122 5123 5124 5125
	/* Account for system time used */
	acct_update_integrals(p);
}

5126
/*
L
Linus Torvalds 已提交
5127 5128
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5129
 */
5130
void account_steal_time(cputime_t cputime)
5131
{
5132 5133 5134 5135
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5136 5137
}

L
Linus Torvalds 已提交
5138
/*
5139 5140
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5141
 */
5142
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5143 5144
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5145
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5146
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5147

5148 5149 5150 5151
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5152 5153
}

5154 5155 5156 5157 5158 5159 5160 5161 5162
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5163
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5164 5165 5166
	struct rq *rq = this_rq();

	if (user_tick)
5167
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5168
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5169
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5170 5171
				    one_jiffy_scaled);
	else
5172
		account_idle_time(cputime_one_jiffy);
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5192 5193
}

5194 5195
#endif

5196 5197 5198 5199
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5200
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5201
{
5202 5203
	*ut = p->utime;
	*st = p->stime;
5204 5205
}

5206
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5207
{
5208 5209 5210 5211 5212 5213
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5214 5215
}
#else
5216 5217

#ifndef nsecs_to_cputime
5218
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5219 5220
#endif

5221
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5222
{
5223
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5224 5225 5226 5227

	/*
	 * Use CFS's precise accounting:
	 */
5228
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5229 5230

	if (total) {
5231 5232 5233
		u64 temp;

		temp = (u64)(rtime * utime);
5234
		do_div(temp, total);
5235 5236 5237
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5238

5239 5240 5241
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5242
	p->prev_utime = max(p->prev_utime, utime);
5243
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5244

5245 5246
	*ut = p->prev_utime;
	*st = p->prev_stime;
5247 5248
}

5249 5250 5251 5252
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5253
{
5254 5255 5256
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5257

5258
	thread_group_cputime(p, &cputime);
5259

5260 5261
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5262

5263 5264
	if (total) {
		u64 temp;
5265

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5278 5279 5280
}
#endif

5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5292
	struct task_struct *curr = rq->curr;
5293 5294

	sched_clock_tick();
I
Ingo Molnar 已提交
5295

5296
	raw_spin_lock(&rq->lock);
5297
	update_rq_clock(rq);
5298
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5299
	curr->sched_class->task_tick(rq, curr, 0);
5300
	raw_spin_unlock(&rq->lock);
5301

5302
	perf_event_task_tick(curr, cpu);
5303

5304
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5305 5306
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5307
#endif
L
Linus Torvalds 已提交
5308 5309
}

5310
notrace unsigned long get_parent_ip(unsigned long addr)
5311 5312 5313 5314 5315 5316 5317 5318
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5319

5320 5321 5322
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5323
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5324
{
5325
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5326 5327 5328
	/*
	 * Underflow?
	 */
5329 5330
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5331
#endif
L
Linus Torvalds 已提交
5332
	preempt_count() += val;
5333
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5334 5335 5336
	/*
	 * Spinlock count overflowing soon?
	 */
5337 5338
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5339 5340 5341
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5342 5343 5344
}
EXPORT_SYMBOL(add_preempt_count);

5345
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5346
{
5347
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5348 5349 5350
	/*
	 * Underflow?
	 */
5351
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5352
		return;
L
Linus Torvalds 已提交
5353 5354 5355
	/*
	 * Is the spinlock portion underflowing?
	 */
5356 5357 5358
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5359
#endif
5360

5361 5362
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5363 5364 5365 5366 5367 5368 5369
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5370
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5371
 */
I
Ingo Molnar 已提交
5372
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5373
{
5374 5375
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
5376 5377
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
5378

I
Ingo Molnar 已提交
5379
	debug_show_held_locks(prev);
5380
	print_modules();
I
Ingo Molnar 已提交
5381 5382
	if (irqs_disabled())
		print_irqtrace_events(prev);
5383 5384 5385 5386 5387

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5388
}
L
Linus Torvalds 已提交
5389

I
Ingo Molnar 已提交
5390 5391 5392 5393 5394
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5395
	/*
I
Ingo Molnar 已提交
5396
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5397 5398 5399
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5400
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5401 5402
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5403 5404
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5405
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5406 5407
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5408 5409
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5410 5411
	}
#endif
I
Ingo Molnar 已提交
5412 5413
}

P
Peter Zijlstra 已提交
5414
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5415
{
P
Peter Zijlstra 已提交
5416 5417
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5418

P
Peter Zijlstra 已提交
5419 5420
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5431
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5432
	}
P
Peter Zijlstra 已提交
5433
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5434 5435
}

I
Ingo Molnar 已提交
5436 5437 5438 5439
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5440
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5441
{
5442
	const struct sched_class *class;
I
Ingo Molnar 已提交
5443
	struct task_struct *p;
L
Linus Torvalds 已提交
5444 5445

	/*
I
Ingo Molnar 已提交
5446 5447
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5448
	 */
I
Ingo Molnar 已提交
5449
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5450
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5451 5452
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5453 5454
	}

I
Ingo Molnar 已提交
5455 5456
	class = sched_class_highest;
	for ( ; ; ) {
5457
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5467

I
Ingo Molnar 已提交
5468 5469 5470
/*
 * schedule() is the main scheduler function.
 */
5471
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5472 5473
{
	struct task_struct *prev, *next;
5474
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5475
	struct rq *rq;
5476
	int cpu;
I
Ingo Molnar 已提交
5477

5478 5479
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5480 5481
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5482
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5483 5484 5485 5486 5487 5488 5489
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5490

5491
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5492
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5493

5494
	raw_spin_lock_irq(&rq->lock);
5495
	update_rq_clock(rq);
5496
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5497 5498

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5499
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5500
			prev->state = TASK_RUNNING;
5501
		else
5502
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5503
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5504 5505
	}

5506
	pre_schedule(rq, prev);
5507

I
Ingo Molnar 已提交
5508
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5509 5510
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5511
	put_prev_task(rq, prev);
5512
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5513 5514

	if (likely(prev != next)) {
5515
		sched_info_switch(prev, next);
5516
		perf_event_task_sched_out(prev, next, cpu);
5517

L
Linus Torvalds 已提交
5518 5519 5520 5521
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5522
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5523 5524 5525 5526 5527 5528
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5529
	} else
5530
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5531

5532
	post_schedule(rq);
L
Linus Torvalds 已提交
5533

P
Peter Zijlstra 已提交
5534
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5535
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5536

L
Linus Torvalds 已提交
5537
	preempt_enable_no_resched();
5538
	if (need_resched())
L
Linus Torvalds 已提交
5539 5540 5541 5542
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5543
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5604 5605
#ifdef CONFIG_PREEMPT
/*
5606
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5607
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5613

L
Linus Torvalds 已提交
5614 5615
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5616
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5617
	 */
N
Nick Piggin 已提交
5618
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5619 5620
		return;

5621 5622 5623 5624
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5625

5626 5627 5628 5629 5630
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5631
	} while (need_resched());
L
Linus Torvalds 已提交
5632 5633 5634 5635
}
EXPORT_SYMBOL(preempt_schedule);

/*
5636
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641 5642 5643
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5644

5645
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5646 5647
	BUG_ON(ti->preempt_count || !irqs_disabled());

5648 5649 5650 5651 5652 5653
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5654

5655 5656 5657 5658 5659
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5660
	} while (need_resched());
L
Linus Torvalds 已提交
5661 5662 5663 5664
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5665
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5666
			  void *key)
L
Linus Torvalds 已提交
5667
{
P
Peter Zijlstra 已提交
5668
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5669 5670 5671 5672
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5673 5674
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5675 5676 5677
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5678
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5679 5680
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5681
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5682
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5683
{
5684
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5685

5686
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5687 5688
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5689
		if (curr->func(curr, mode, wake_flags, key) &&
5690
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698 5699
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5700
 * @key: is directly passed to the wakeup function
5701 5702 5703
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5704
 */
5705
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5706
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5719
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5720 5721 5722 5723
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5724 5725 5726 5727 5728
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5729
/**
5730
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5731 5732 5733
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5734
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5735 5736 5737 5738 5739 5740 5741
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5742 5743 5744
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5745
 */
5746 5747
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5748 5749
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5750
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5751 5752 5753 5754 5755

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5756
		wake_flags = 0;
L
Linus Torvalds 已提交
5757 5758

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5759
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5760 5761
	spin_unlock_irqrestore(&q->lock, flags);
}
5762 5763 5764 5765 5766 5767 5768 5769 5770
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5771 5772
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5773 5774 5775 5776 5777 5778 5779 5780
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5781 5782 5783
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5784
 */
5785
void complete(struct completion *x)
L
Linus Torvalds 已提交
5786 5787 5788 5789 5790
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5791
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5792 5793 5794 5795
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5796 5797 5798 5799 5800
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5801 5802 5803
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5804
 */
5805
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5811
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5812 5813 5814 5815
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5816 5817
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5818 5819 5820 5821 5822 5823 5824
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5825
			if (signal_pending_state(state, current)) {
5826 5827
				timeout = -ERESTARTSYS;
				break;
5828 5829
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5830 5831 5832
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5833
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5834
		__remove_wait_queue(&x->wait, &wait);
5835 5836
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5837 5838
	}
	x->done--;
5839
	return timeout ?: 1;
L
Linus Torvalds 已提交
5840 5841
}

5842 5843
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5844 5845 5846 5847
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5848
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5849
	spin_unlock_irq(&x->wait.lock);
5850 5851
	return timeout;
}
L
Linus Torvalds 已提交
5852

5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5863
void __sched wait_for_completion(struct completion *x)
5864 5865
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5866
}
5867
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5878
unsigned long __sched
5879
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5880
{
5881
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5882
}
5883
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5884

5885 5886 5887 5888 5889 5890 5891
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5892
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5893
{
5894 5895 5896 5897
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5898
}
5899
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5900

5901 5902 5903 5904 5905 5906 5907 5908
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5909
unsigned long __sched
5910 5911
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5912
{
5913
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5914
}
5915
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5916

5917 5918 5919 5920 5921 5922 5923
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
5947
	unsigned long flags;
5948 5949
	int ret = 1;

5950
	spin_lock_irqsave(&x->wait.lock, flags);
5951 5952 5953 5954
	if (!x->done)
		ret = 0;
	else
		x->done--;
5955
	spin_unlock_irqrestore(&x->wait.lock, flags);
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
5970
	unsigned long flags;
5971 5972
	int ret = 1;

5973
	spin_lock_irqsave(&x->wait.lock, flags);
5974 5975
	if (!x->done)
		ret = 0;
5976
	spin_unlock_irqrestore(&x->wait.lock, flags);
5977 5978 5979 5980
	return ret;
}
EXPORT_SYMBOL(completion_done);

5981 5982
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5983
{
I
Ingo Molnar 已提交
5984 5985 5986 5987
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5988

5989
	__set_current_state(state);
L
Linus Torvalds 已提交
5990

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6005 6006 6007
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6008
long __sched
I
Ingo Molnar 已提交
6009
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6010
{
6011
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6012 6013 6014
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6015
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6016
{
6017
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6018 6019 6020
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6021
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6022
{
6023
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6024 6025 6026
}
EXPORT_SYMBOL(sleep_on_timeout);

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6039
void rt_mutex_setprio(struct task_struct *p, int prio)
6040 6041
{
	unsigned long flags;
6042
	int oldprio, on_rq, running;
6043
	struct rq *rq;
6044
	const struct sched_class *prev_class = p->sched_class;
6045 6046 6047 6048

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6049
	update_rq_clock(rq);
6050

6051
	oldprio = p->prio;
I
Ingo Molnar 已提交
6052
	on_rq = p->se.on_rq;
6053
	running = task_current(rq, p);
6054
	if (on_rq)
6055
		dequeue_task(rq, p, 0);
6056 6057
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6058 6059 6060 6061 6062 6063

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6064 6065
	p->prio = prio;

6066 6067
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6068
	if (on_rq) {
6069
		enqueue_task(rq, p, 0);
6070 6071

		check_class_changed(rq, p, prev_class, oldprio, running);
6072 6073 6074 6075 6076 6077
	}
	task_rq_unlock(rq, &flags);
}

#endif

6078
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6079
{
I
Ingo Molnar 已提交
6080
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6081
	unsigned long flags;
6082
	struct rq *rq;
L
Linus Torvalds 已提交
6083 6084 6085 6086 6087 6088 6089 6090

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6091
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6092 6093 6094 6095
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6096
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6097
	 */
6098
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6099 6100 6101
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6102
	on_rq = p->se.on_rq;
6103
	if (on_rq)
6104
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6105 6106

	p->static_prio = NICE_TO_PRIO(nice);
6107
	set_load_weight(p);
6108 6109 6110
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6111

I
Ingo Molnar 已提交
6112
	if (on_rq) {
6113
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6114
		/*
6115 6116
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6117
		 */
6118
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6119 6120 6121 6122 6123 6124 6125
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6126 6127 6128 6129 6130
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6131
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6132
{
6133 6134
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6135

M
Matt Mackall 已提交
6136 6137 6138 6139
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6149
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6150
{
6151
	long nice, retval;
L
Linus Torvalds 已提交
6152 6153 6154 6155 6156 6157

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6158 6159
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6160 6161 6162
	if (increment > 40)
		increment = 40;

6163
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6164 6165 6166 6167 6168
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6169 6170 6171
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6190
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6191 6192 6193 6194 6195 6196 6197 6198
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6199
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6200 6201 6202
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6203
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6218
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6219 6220 6221 6222 6223 6224 6225 6226
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6227
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6228
{
6229
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6230 6231 6232
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6233 6234
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6235
{
I
Ingo Molnar 已提交
6236
	BUG_ON(p->se.on_rq);
6237

L
Linus Torvalds 已提交
6238 6239
	p->policy = policy;
	p->rt_priority = prio;
6240 6241 6242
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6243 6244 6245 6246
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6247
	set_load_weight(p);
L
Linus Torvalds 已提交
6248 6249
}

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6266 6267
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6268
{
6269
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6270
	unsigned long flags;
6271
	const struct sched_class *prev_class = p->sched_class;
6272
	struct rq *rq;
6273
	int reset_on_fork;
L
Linus Torvalds 已提交
6274

6275 6276
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6277 6278
recheck:
	/* double check policy once rq lock held */
6279 6280
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6281
		policy = oldpolicy = p->policy;
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6292 6293
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6294 6295
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6296 6297
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6298
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6299
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6300
		return -EINVAL;
6301
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6302 6303
		return -EINVAL;

6304 6305 6306
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6307
	if (user && !capable(CAP_SYS_NICE)) {
6308
		if (rt_policy(policy)) {
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6325 6326 6327 6328 6329 6330
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6331

6332
		/* can't change other user's priorities */
6333
		if (!check_same_owner(p))
6334
			return -EPERM;
6335 6336 6337 6338

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6339
	}
L
Linus Torvalds 已提交
6340

6341
	if (user) {
6342
#ifdef CONFIG_RT_GROUP_SCHED
6343 6344 6345 6346
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6347 6348
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6349
			return -EPERM;
6350 6351
#endif

6352 6353 6354 6355 6356
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6357 6358 6359 6360
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
6361
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6362 6363 6364 6365
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6366
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6367 6368 6369
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6370
		__task_rq_unlock(rq);
6371
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6372 6373
		goto recheck;
	}
I
Ingo Molnar 已提交
6374
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6375
	on_rq = p->se.on_rq;
6376
	running = task_current(rq, p);
6377
	if (on_rq)
6378
		deactivate_task(rq, p, 0);
6379 6380
	if (running)
		p->sched_class->put_prev_task(rq, p);
6381

6382 6383
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6384
	oldprio = p->prio;
I
Ingo Molnar 已提交
6385
	__setscheduler(rq, p, policy, param->sched_priority);
6386

6387 6388
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6389 6390
	if (on_rq) {
		activate_task(rq, p, 0);
6391 6392

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6393
	}
6394
	__task_rq_unlock(rq);
6395
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6396

6397 6398
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6399 6400
	return 0;
}
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6415 6416
EXPORT_SYMBOL_GPL(sched_setscheduler);

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6434 6435
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6436 6437 6438
{
	struct sched_param lparam;
	struct task_struct *p;
6439
	int retval;
L
Linus Torvalds 已提交
6440 6441 6442 6443 6444

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6445 6446 6447

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6448
	p = find_process_by_pid(pid);
6449 6450 6451
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6452

L
Linus Torvalds 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6462 6463
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6464
{
6465 6466 6467 6468
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6469 6470 6471 6472 6473 6474 6475 6476
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6477
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6478 6479 6480 6481 6482 6483 6484 6485
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6486
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6487
{
6488
	struct task_struct *p;
6489
	int retval;
L
Linus Torvalds 已提交
6490 6491

	if (pid < 0)
6492
		return -EINVAL;
L
Linus Torvalds 已提交
6493 6494

	retval = -ESRCH;
6495
	rcu_read_lock();
L
Linus Torvalds 已提交
6496 6497 6498 6499
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6500 6501
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6502
	}
6503
	rcu_read_unlock();
L
Linus Torvalds 已提交
6504 6505 6506 6507
	return retval;
}

/**
6508
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6509 6510 6511
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6512
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6513 6514
{
	struct sched_param lp;
6515
	struct task_struct *p;
6516
	int retval;
L
Linus Torvalds 已提交
6517 6518

	if (!param || pid < 0)
6519
		return -EINVAL;
L
Linus Torvalds 已提交
6520

6521
	rcu_read_lock();
L
Linus Torvalds 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
6532
	rcu_read_unlock();
L
Linus Torvalds 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
6542
	rcu_read_unlock();
L
Linus Torvalds 已提交
6543 6544 6545
	return retval;
}

6546
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6547
{
6548
	cpumask_var_t cpus_allowed, new_mask;
6549 6550
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6551

6552
	get_online_cpus();
6553
	rcu_read_lock();
L
Linus Torvalds 已提交
6554 6555 6556

	p = find_process_by_pid(pid);
	if (!p) {
6557
		rcu_read_unlock();
6558
		put_online_cpus();
L
Linus Torvalds 已提交
6559 6560 6561
		return -ESRCH;
	}

6562
	/* Prevent p going away */
L
Linus Torvalds 已提交
6563
	get_task_struct(p);
6564
	rcu_read_unlock();
L
Linus Torvalds 已提交
6565

6566 6567 6568 6569 6570 6571 6572 6573
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6574
	retval = -EPERM;
6575
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6576 6577
		goto out_unlock;

6578 6579 6580 6581
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6582 6583
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6584
 again:
6585
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6586

P
Paul Menage 已提交
6587
	if (!retval) {
6588 6589
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6590 6591 6592 6593 6594
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6595
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6596 6597 6598
			goto again;
		}
	}
L
Linus Torvalds 已提交
6599
out_unlock:
6600 6601 6602 6603
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6604
	put_task_struct(p);
6605
	put_online_cpus();
L
Linus Torvalds 已提交
6606 6607 6608 6609
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6610
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6611
{
6612 6613 6614 6615 6616
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6617 6618 6619 6620 6621 6622 6623 6624 6625
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6626 6627
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6628
{
6629
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6630 6631
	int retval;

6632 6633
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6634

6635 6636 6637 6638 6639
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6640 6641
}

6642
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6643
{
6644
	struct task_struct *p;
6645 6646
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6647 6648
	int retval;

6649
	get_online_cpus();
6650
	rcu_read_lock();
L
Linus Torvalds 已提交
6651 6652 6653 6654 6655 6656

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6657 6658 6659 6660
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6661
	rq = task_rq_lock(p, &flags);
6662
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6663
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6664 6665

out_unlock:
6666
	rcu_read_unlock();
6667
	put_online_cpus();
L
Linus Torvalds 已提交
6668

6669
	return retval;
L
Linus Torvalds 已提交
6670 6671 6672 6673 6674 6675 6676 6677
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6678 6679
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6680 6681
{
	int ret;
6682
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6683

6684
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6685 6686
		return -EINVAL;

6687 6688
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6689

6690 6691 6692 6693 6694 6695 6696 6697
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6698

6699
	return ret;
L
Linus Torvalds 已提交
6700 6701 6702 6703 6704
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6705 6706
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6707
 */
6708
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6709
{
6710
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6711

6712
	schedstat_inc(rq, yld_count);
6713
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6714 6715 6716 6717 6718 6719

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6720
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6721
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
6722 6723 6724 6725 6726 6727 6728
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6729 6730 6731 6732 6733
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6734
static void __cond_resched(void)
L
Linus Torvalds 已提交
6735
{
6736 6737 6738
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6739 6740
}

6741
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6742
{
P
Peter Zijlstra 已提交
6743
	if (should_resched()) {
L
Linus Torvalds 已提交
6744 6745 6746 6747 6748
		__cond_resched();
		return 1;
	}
	return 0;
}
6749
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6750 6751

/*
6752
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6753 6754
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6755
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6756 6757 6758
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6759
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6760
{
P
Peter Zijlstra 已提交
6761
	int resched = should_resched();
J
Jan Kara 已提交
6762 6763
	int ret = 0;

6764 6765
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6766
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6767
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6768
		if (resched)
N
Nick Piggin 已提交
6769 6770 6771
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6772
		ret = 1;
L
Linus Torvalds 已提交
6773 6774
		spin_lock(lock);
	}
J
Jan Kara 已提交
6775
	return ret;
L
Linus Torvalds 已提交
6776
}
6777
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6778

6779
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6780 6781 6782
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6783
	if (should_resched()) {
6784
		local_bh_enable();
L
Linus Torvalds 已提交
6785 6786 6787 6788 6789 6790
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6791
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6792 6793 6794 6795

/**
 * yield - yield the current processor to other threads.
 *
6796
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6807
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6808 6809 6810 6811
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6812
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6813

6814
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6815
	atomic_inc(&rq->nr_iowait);
6816
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6817
	schedule();
6818
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6819
	atomic_dec(&rq->nr_iowait);
6820
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6826
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6827 6828
	long ret;

6829
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6830
	atomic_inc(&rq->nr_iowait);
6831
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6832
	ret = schedule_timeout(timeout);
6833
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6834
	atomic_dec(&rq->nr_iowait);
6835
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6846
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6856
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6857
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6871
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6881
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6882
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6896
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6897
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6898
{
6899
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6900
	unsigned int time_slice;
6901 6902
	unsigned long flags;
	struct rq *rq;
6903
	int retval;
L
Linus Torvalds 已提交
6904 6905 6906
	struct timespec t;

	if (pid < 0)
6907
		return -EINVAL;
L
Linus Torvalds 已提交
6908 6909

	retval = -ESRCH;
6910
	rcu_read_lock();
L
Linus Torvalds 已提交
6911 6912 6913 6914 6915 6916 6917 6918
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6919 6920 6921
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6922

6923
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
6924
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6925 6926
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6927

L
Linus Torvalds 已提交
6928
out_unlock:
6929
	rcu_read_unlock();
L
Linus Torvalds 已提交
6930 6931 6932
	return retval;
}

6933
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6934

6935
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6936 6937
{
	unsigned long free = 0;
6938
	unsigned state;
L
Linus Torvalds 已提交
6939 6940

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
6941
	printk(KERN_INFO "%-13.13s %c", p->comm,
6942
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6943
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6944
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
6945
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6946
	else
P
Peter Zijlstra 已提交
6947
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6948 6949
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
6950
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6951
	else
P
Peter Zijlstra 已提交
6952
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6953 6954
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6955
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6956
#endif
P
Peter Zijlstra 已提交
6957
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6958 6959
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6960

6961
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6962 6963
}

I
Ingo Molnar 已提交
6964
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6965
{
6966
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6967

6968
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
6969 6970
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6971
#else
P
Peter Zijlstra 已提交
6972 6973
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6974 6975 6976 6977 6978 6979 6980 6981
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6982
		if (!state_filter || (p->state & state_filter))
6983
			sched_show_task(p);
L
Linus Torvalds 已提交
6984 6985
	} while_each_thread(g, p);

6986 6987
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6988 6989 6990
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6991
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6992 6993 6994
	/*
	 * Only show locks if all tasks are dumped:
	 */
6995
	if (!state_filter)
I
Ingo Molnar 已提交
6996
		debug_show_all_locks();
L
Linus Torvalds 已提交
6997 6998
}

I
Ingo Molnar 已提交
6999 7000
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7001
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7002 7003
}

7004 7005 7006 7007 7008 7009 7010 7011
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7012
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7013
{
7014
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7015 7016
	unsigned long flags;

7017
	raw_spin_lock_irqsave(&rq->lock, flags);
7018

I
Ingo Molnar 已提交
7019
	__sched_fork(idle);
7020
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
7021 7022
	idle->se.exec_start = sched_clock();

7023
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7024
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7025 7026

	rq->curr = rq->idle = idle;
7027 7028 7029
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
7030
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7031 7032

	/* Set the preempt count _outside_ the spinlocks! */
7033 7034 7035
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7036
	task_thread_info(idle)->preempt_count = 0;
7037
#endif
I
Ingo Molnar 已提交
7038 7039 7040 7041
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7042
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7043 7044 7045 7046 7047 7048 7049
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7050
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7051
 */
7052
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7053

I
Ingo Molnar 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7063
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
7064
{
7065
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
7080

7081 7082
	return factor;
}
I
Ingo Molnar 已提交
7083

7084 7085 7086
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
7087

7088 7089 7090 7091 7092 7093 7094 7095
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7096

7097 7098 7099
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7100 7101
}

L
Linus Torvalds 已提交
7102 7103 7104 7105
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7106
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7125
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7126 7127
 * call is not atomic; no spinlocks may be held.
 */
7128
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7129
{
7130
	struct migration_req req;
L
Linus Torvalds 已提交
7131
	unsigned long flags;
7132
	struct rq *rq;
7133
	int ret = 0;
L
Linus Torvalds 已提交
7134

7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	/*
	 * Since we rely on wake-ups to migrate sleeping tasks, don't change
	 * the ->cpus_allowed mask from under waking tasks, which would be
	 * possible when we change rq->lock in ttwu(), so synchronize against
	 * TASK_WAKING to avoid that.
	 */
again:
	while (p->state == TASK_WAKING)
		cpu_relax();

L
Linus Torvalds 已提交
7145
	rq = task_rq_lock(p, &flags);
7146 7147 7148 7149 7150 7151

	if (p->state == TASK_WAKING) {
		task_rq_unlock(rq, &flags);
		goto again;
	}

7152
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7153 7154 7155 7156
		ret = -EINVAL;
		goto out;
	}

7157
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7158
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7159 7160 7161 7162
		ret = -EINVAL;
		goto out;
	}

7163
	if (p->sched_class->set_cpus_allowed)
7164
		p->sched_class->set_cpus_allowed(p, new_mask);
7165
	else {
7166 7167
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7168 7169
	}

L
Linus Torvalds 已提交
7170
	/* Can the task run on the task's current CPU? If so, we're done */
7171
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7172 7173
		goto out;

7174
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7175
		/* Need help from migration thread: drop lock and wait. */
7176 7177 7178
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7179 7180
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7181
		put_task_struct(mt);
L
Linus Torvalds 已提交
7182 7183 7184 7185 7186 7187
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7188

L
Linus Torvalds 已提交
7189 7190
	return ret;
}
7191
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7192 7193

/*
I
Ingo Molnar 已提交
7194
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7195 7196 7197 7198 7199 7200
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7201 7202
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7203
 */
7204
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7205
{
7206
	struct rq *rq_dest, *rq_src;
7207
	int ret = 0;
L
Linus Torvalds 已提交
7208

7209
	if (unlikely(!cpu_active(dest_cpu)))
7210
		return ret;
L
Linus Torvalds 已提交
7211 7212 7213 7214 7215 7216 7217

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7218
		goto done;
L
Linus Torvalds 已提交
7219
	/* Affinity changed (again). */
7220
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7221
		goto fail;
L
Linus Torvalds 已提交
7222

7223 7224 7225 7226 7227
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
7228
		deactivate_task(rq_src, p, 0);
7229
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7230
		activate_task(rq_dest, p, 0);
7231
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7232
	}
L
Linus Torvalds 已提交
7233
done:
7234
	ret = 1;
L
Linus Torvalds 已提交
7235
fail:
L
Linus Torvalds 已提交
7236
	double_rq_unlock(rq_src, rq_dest);
7237
	return ret;
L
Linus Torvalds 已提交
7238 7239
}

7240 7241 7242 7243 7244
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7245 7246 7247 7248 7249
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7250
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7251
{
7252
	int badcpu;
L
Linus Torvalds 已提交
7253
	int cpu = (long)data;
7254
	struct rq *rq;
L
Linus Torvalds 已提交
7255 7256 7257 7258 7259 7260

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7261
		struct migration_req *req;
L
Linus Torvalds 已提交
7262 7263
		struct list_head *head;

7264
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7265 7266

		if (cpu_is_offline(cpu)) {
7267
			raw_spin_unlock_irq(&rq->lock);
7268
			break;
L
Linus Torvalds 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
7279
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7280 7281 7282 7283
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7284
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7285 7286
		list_del_init(head->next);

7287
		if (req->task != NULL) {
7288
			raw_spin_unlock(&rq->lock);
7289 7290 7291
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
7292
			raw_spin_unlock(&rq->lock);
7293 7294
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7295
			raw_spin_unlock(&rq->lock);
7296 7297
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7298
		local_irq_enable();
L
Linus Torvalds 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7319
/*
7320
 * Figure out where task on dead CPU should go, use force if necessary.
7321
 */
7322
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7323
{
7324
	int dest_cpu;
7325 7326

again:
7327
	dest_cpu = select_fallback_rq(dead_cpu, p);
7328 7329 7330 7331

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7332 7333 7334 7335 7336 7337 7338 7339 7340
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7341
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7342
{
7343
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7357
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7358

7359
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7360

7361 7362
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7363 7364
			continue;

7365 7366 7367
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7368

7369
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7370 7371
}

I
Ingo Molnar 已提交
7372 7373
/*
 * Schedules idle task to be the next runnable task on current CPU.
7374 7375
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7376 7377 7378
 */
void sched_idle_next(void)
{
7379
	int this_cpu = smp_processor_id();
7380
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7381 7382 7383 7384
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7385
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7386

7387 7388 7389
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7390
	 */
7391
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
7392

I
Ingo Molnar 已提交
7393
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7394

7395 7396
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7397

7398
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7399 7400
}

7401 7402
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7416
/* called under rq->lock with disabled interrupts */
7417
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7418
{
7419
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7420 7421

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7422
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7423 7424

	/* Cannot have done final schedule yet: would have vanished. */
7425
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7426

7427
	get_task_struct(p);
L
Linus Torvalds 已提交
7428 7429 7430

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7431
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7432 7433
	 * fine.
	 */
7434
	raw_spin_unlock_irq(&rq->lock);
7435
	move_task_off_dead_cpu(dead_cpu, p);
7436
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7437

7438
	put_task_struct(p);
L
Linus Torvalds 已提交
7439 7440 7441 7442 7443
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7444
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7445
	struct task_struct *next;
7446

I
Ingo Molnar 已提交
7447 7448 7449
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7450
		update_rq_clock(rq);
7451
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7452 7453
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7454
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7455
		migrate_dead(dead_cpu, next);
7456

L
Linus Torvalds 已提交
7457 7458
	}
}
7459 7460 7461 7462 7463 7464 7465

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7466
	rq->calc_load_active = 0;
7467
}
L
Linus Torvalds 已提交
7468 7469
#endif /* CONFIG_HOTPLUG_CPU */

7470 7471 7472
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7473 7474
	{
		.procname	= "sched_domain",
7475
		.mode		= 0555,
7476
	},
7477
	{}
7478 7479 7480
};

static struct ctl_table sd_ctl_root[] = {
7481 7482
	{
		.procname	= "kernel",
7483
		.mode		= 0555,
7484 7485
		.child		= sd_ctl_dir,
	},
7486
	{}
7487 7488 7489 7490 7491
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7492
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7493 7494 7495 7496

	return entry;
}

7497 7498
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7499
	struct ctl_table *entry;
7500

7501 7502 7503
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7504
	 * will always be set. In the lowest directory the names are
7505 7506 7507
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7508 7509
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7510 7511 7512
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7513 7514 7515 7516 7517

	kfree(*tablep);
	*tablep = NULL;
}

7518
static void
7519
set_table_entry(struct ctl_table *entry,
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7533
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7534

7535 7536 7537
	if (table == NULL)
		return NULL;

7538
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7539
		sizeof(long), 0644, proc_doulongvec_minmax);
7540
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7541
		sizeof(long), 0644, proc_doulongvec_minmax);
7542
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7543
		sizeof(int), 0644, proc_dointvec_minmax);
7544
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7545
		sizeof(int), 0644, proc_dointvec_minmax);
7546
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7547
		sizeof(int), 0644, proc_dointvec_minmax);
7548
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7549
		sizeof(int), 0644, proc_dointvec_minmax);
7550
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7551
		sizeof(int), 0644, proc_dointvec_minmax);
7552
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7553
		sizeof(int), 0644, proc_dointvec_minmax);
7554
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7555
		sizeof(int), 0644, proc_dointvec_minmax);
7556
	set_table_entry(&table[9], "cache_nice_tries",
7557 7558
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7559
	set_table_entry(&table[10], "flags", &sd->flags,
7560
		sizeof(int), 0644, proc_dointvec_minmax);
7561 7562 7563
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7564 7565 7566 7567

	return table;
}

7568
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7569 7570 7571 7572 7573 7574 7575 7576 7577
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7578 7579
	if (table == NULL)
		return NULL;
7580 7581 7582 7583 7584

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7585
		entry->mode = 0555;
7586 7587 7588 7589 7590 7591 7592 7593
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7594
static void register_sched_domain_sysctl(void)
7595
{
7596
	int i, cpu_num = num_possible_cpus();
7597 7598 7599
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7600 7601 7602
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7603 7604 7605
	if (entry == NULL)
		return;

7606
	for_each_possible_cpu(i) {
7607 7608
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7609
		entry->mode = 0555;
7610
		entry->child = sd_alloc_ctl_cpu_table(i);
7611
		entry++;
7612
	}
7613 7614

	WARN_ON(sd_sysctl_header);
7615 7616
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7617

7618
/* may be called multiple times per register */
7619 7620
static void unregister_sched_domain_sysctl(void)
{
7621 7622
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7623
	sd_sysctl_header = NULL;
7624 7625
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7626
}
7627
#else
7628 7629 7630 7631
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7632 7633 7634 7635
{
}
#endif

7636 7637 7638 7639 7640
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7641
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7661
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7662 7663 7664 7665
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7666 7667 7668 7669
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7670 7671
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7672 7673
{
	struct task_struct *p;
7674
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7675
	unsigned long flags;
7676
	struct rq *rq;
L
Linus Torvalds 已提交
7677 7678

	switch (action) {
7679

L
Linus Torvalds 已提交
7680
	case CPU_UP_PREPARE:
7681
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7682
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7683 7684 7685 7686 7687
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7688
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7689
		task_rq_unlock(rq, &flags);
7690
		get_task_struct(p);
L
Linus Torvalds 已提交
7691
		cpu_rq(cpu)->migration_thread = p;
7692
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7693
		break;
7694

L
Linus Torvalds 已提交
7695
	case CPU_ONLINE:
7696
	case CPU_ONLINE_FROZEN:
7697
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7698
		wake_up_process(cpu_rq(cpu)->migration_thread);
7699 7700 7701

		/* Update our root-domain */
		rq = cpu_rq(cpu);
7702
		raw_spin_lock_irqsave(&rq->lock, flags);
7703
		if (rq->rd) {
7704
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7705 7706

			set_rq_online(rq);
7707
		}
7708
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7709
		break;
7710

L
Linus Torvalds 已提交
7711 7712
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7713
	case CPU_UP_CANCELED_FROZEN:
7714 7715
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7716
		/* Unbind it from offline cpu so it can run. Fall thru. */
7717
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7718
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7719
		kthread_stop(cpu_rq(cpu)->migration_thread);
7720
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7721 7722
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7723

L
Linus Torvalds 已提交
7724
	case CPU_DEAD:
7725
	case CPU_DEAD_FROZEN:
7726
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7727 7728 7729
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7730
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7731 7732
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7733
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7734
		update_rq_clock(rq);
7735
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7736 7737
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7738
		migrate_dead_tasks(cpu);
7739
		raw_spin_unlock_irq(&rq->lock);
7740
		cpuset_unlock();
L
Linus Torvalds 已提交
7741 7742
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7743
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7744 7745 7746 7747 7748
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
7749
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7750
		while (!list_empty(&rq->migration_queue)) {
7751 7752
			struct migration_req *req;

L
Linus Torvalds 已提交
7753
			req = list_entry(rq->migration_queue.next,
7754
					 struct migration_req, list);
L
Linus Torvalds 已提交
7755
			list_del_init(&req->list);
7756
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7757
			complete(&req->done);
7758
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7759
		}
7760
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7761
		break;
G
Gregory Haskins 已提交
7762

7763 7764
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7765 7766
		/* Update our root-domain */
		rq = cpu_rq(cpu);
7767
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7768
		if (rq->rd) {
7769
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7770
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7771
		}
7772
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
7773
		break;
L
Linus Torvalds 已提交
7774 7775 7776 7777 7778
#endif
	}
	return NOTIFY_OK;
}

7779 7780 7781
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7782
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7783
 */
7784
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7785 7786 7787 7788
	.notifier_call = migration_call,
	.priority = 10
};

7789
static int __init migration_init(void)
L
Linus Torvalds 已提交
7790 7791
{
	void *cpu = (void *)(long)smp_processor_id();
7792
	int err;
7793 7794

	/* Start one for the boot CPU: */
7795 7796
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7797 7798
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7799

7800
	return 0;
L
Linus Torvalds 已提交
7801
}
7802
early_initcall(migration_init);
L
Linus Torvalds 已提交
7803 7804 7805
#endif

#ifdef CONFIG_SMP
7806

7807
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7808

7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7819
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7820
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7821
{
I
Ingo Molnar 已提交
7822
	struct sched_group *group = sd->groups;
7823
	char str[256];
L
Linus Torvalds 已提交
7824

R
Rusty Russell 已提交
7825
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7826
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7827 7828 7829 7830

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
7831
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
7832
		if (sd->parent)
P
Peter Zijlstra 已提交
7833 7834
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
7835
		return -1;
N
Nick Piggin 已提交
7836 7837
	}

P
Peter Zijlstra 已提交
7838
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7839

7840
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
7841 7842
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
7843
	}
7844
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7845 7846
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
7847
	}
L
Linus Torvalds 已提交
7848

I
Ingo Molnar 已提交
7849
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7850
	do {
I
Ingo Molnar 已提交
7851
		if (!group) {
P
Peter Zijlstra 已提交
7852 7853
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7854 7855 7856
			break;
		}

7857
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
7858 7859 7860
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
7861 7862
			break;
		}
L
Linus Torvalds 已提交
7863

7864
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7865 7866
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
7867 7868
			break;
		}
L
Linus Torvalds 已提交
7869

7870
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
7871 7872
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
7873 7874
			break;
		}
L
Linus Torvalds 已提交
7875

7876
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7877

R
Rusty Russell 已提交
7878
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7879

P
Peter Zijlstra 已提交
7880
		printk(KERN_CONT " %s", str);
7881
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
7882 7883
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7884
		}
L
Linus Torvalds 已提交
7885

I
Ingo Molnar 已提交
7886 7887
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
7888
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7889

7890
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
7891
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7892

7893 7894
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
7895 7896
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
7897 7898
	return 0;
}
L
Linus Torvalds 已提交
7899

I
Ingo Molnar 已提交
7900 7901
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7902
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7903
	int level = 0;
L
Linus Torvalds 已提交
7904

7905 7906 7907
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7908 7909 7910 7911
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7912

I
Ingo Molnar 已提交
7913 7914
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7915
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7916 7917 7918 7919
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7920
	for (;;) {
7921
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7922
			break;
L
Linus Torvalds 已提交
7923 7924
		level++;
		sd = sd->parent;
7925
		if (!sd)
I
Ingo Molnar 已提交
7926 7927
			break;
	}
7928
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7929
}
7930
#else /* !CONFIG_SCHED_DEBUG */
7931
# define sched_domain_debug(sd, cpu) do { } while (0)
7932
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7933

7934
static int sd_degenerate(struct sched_domain *sd)
7935
{
7936
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7937 7938 7939 7940 7941 7942
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7943 7944 7945
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7946 7947 7948 7949 7950
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7951
	if (sd->flags & (SD_WAKE_AFFINE))
7952 7953 7954 7955 7956
		return 0;

	return 1;
}

7957 7958
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7959 7960 7961 7962 7963 7964
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7965
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7966 7967 7968 7969 7970 7971 7972
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7973 7974 7975
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7976 7977
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7978 7979 7980 7981 7982 7983 7984
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7985 7986
static void free_rootdomain(struct root_domain *rd)
{
7987 7988
	synchronize_sched();

7989 7990
	cpupri_cleanup(&rd->cpupri);

7991 7992 7993 7994 7995 7996
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7997 7998
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7999
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
8000 8001
	unsigned long flags;

8002
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
8003 8004

	if (rq->rd) {
I
Ingo Molnar 已提交
8005
		old_rd = rq->rd;
G
Gregory Haskins 已提交
8006

8007
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
8008
			set_rq_offline(rq);
G
Gregory Haskins 已提交
8009

8010
		cpumask_clear_cpu(rq->cpu, old_rd->span);
8011

I
Ingo Molnar 已提交
8012 8013 8014 8015 8016 8017 8018
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8019 8020 8021 8022 8023
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8024
	cpumask_set_cpu(rq->cpu, rd->span);
8025
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8026
		set_rq_online(rq);
G
Gregory Haskins 已提交
8027

8028
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8029 8030 8031

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8032 8033
}

L
Li Zefan 已提交
8034
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8035
{
8036 8037
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8038 8039
	memset(rd, 0, sizeof(*rd));

8040 8041
	if (bootmem)
		gfp = GFP_NOWAIT;
8042

8043
	if (!alloc_cpumask_var(&rd->span, gfp))
8044
		goto out;
8045
	if (!alloc_cpumask_var(&rd->online, gfp))
8046
		goto free_span;
8047
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8048
		goto free_online;
8049

P
Pekka Enberg 已提交
8050
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8051
		goto free_rto_mask;
8052
	return 0;
8053

8054 8055
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8056 8057 8058 8059
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8060
out:
8061
	return -ENOMEM;
G
Gregory Haskins 已提交
8062 8063 8064 8065
}

static void init_defrootdomain(void)
{
8066 8067
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8068 8069 8070
	atomic_set(&def_root_domain.refcount, 1);
}

8071
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8072 8073 8074 8075 8076 8077 8078
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8079 8080 8081 8082
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8083 8084 8085 8086

	return rd;
}

L
Linus Torvalds 已提交
8087
/*
I
Ingo Molnar 已提交
8088
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8089 8090
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8091 8092
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8093
{
8094
	struct rq *rq = cpu_rq(cpu);
8095 8096 8097
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8098
	for (tmp = sd; tmp; ) {
8099 8100 8101
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8102

8103
		if (sd_parent_degenerate(tmp, parent)) {
8104
			tmp->parent = parent->parent;
8105 8106
			if (parent->parent)
				parent->parent->child = tmp;
8107 8108
		} else
			tmp = tmp->parent;
8109 8110
	}

8111
	if (sd && sd_degenerate(sd)) {
8112
		sd = sd->parent;
8113 8114 8115
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8116 8117 8118

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8119
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8120
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8121 8122 8123
}

/* cpus with isolated domains */
8124
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8125 8126 8127 8128

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8129
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8130
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8131 8132 8133
	return 1;
}

I
Ingo Molnar 已提交
8134
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8135 8136

/*
8137 8138
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8139 8140
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8141 8142 8143 8144 8145
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8146
static void
8147 8148 8149
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8150
					struct sched_group **sg,
8151 8152
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8153 8154 8155 8156
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8157
	cpumask_clear(covered);
8158

8159
	for_each_cpu(i, span) {
8160
		struct sched_group *sg;
8161
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8162 8163
		int j;

8164
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8165 8166
			continue;

8167
		cpumask_clear(sched_group_cpus(sg));
8168
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8169

8170
		for_each_cpu(j, span) {
8171
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8172 8173
				continue;

8174
			cpumask_set_cpu(j, covered);
8175
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8186
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8187

8188
#ifdef CONFIG_NUMA
8189

8190 8191 8192 8193 8194
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8195
 * Find the next node to include in a given scheduling domain. Simply
8196 8197 8198 8199
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8200
static int find_next_best_node(int node, nodemask_t *used_nodes)
8201 8202 8203 8204 8205
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8206
	for (i = 0; i < nr_node_ids; i++) {
8207
		/* Start at @node */
8208
		n = (node + i) % nr_node_ids;
8209 8210 8211 8212 8213

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8214
		if (node_isset(n, *used_nodes))
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8226
	node_set(best_node, *used_nodes);
8227 8228 8229 8230 8231 8232
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8233
 * @span: resulting cpumask
8234
 *
I
Ingo Molnar 已提交
8235
 * Given a node, construct a good cpumask for its sched_domain to span. It
8236 8237 8238
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8239
static void sched_domain_node_span(int node, struct cpumask *span)
8240
{
8241
	nodemask_t used_nodes;
8242
	int i;
8243

8244
	cpumask_clear(span);
8245
	nodes_clear(used_nodes);
8246

8247
	cpumask_or(span, span, cpumask_of_node(node));
8248
	node_set(node, used_nodes);
8249 8250

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8251
		int next_node = find_next_best_node(node, &used_nodes);
8252

8253
		cpumask_or(span, span, cpumask_of_node(next_node));
8254 8255
	}
}
8256
#endif /* CONFIG_NUMA */
8257

8258
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8259

8260 8261
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8262 8263 8264
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8309
/*
8310
 * SMT sched-domains:
8311
 */
L
Linus Torvalds 已提交
8312
#ifdef CONFIG_SCHED_SMT
8313
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8314
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8315

I
Ingo Molnar 已提交
8316
static int
8317 8318
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8319
{
8320
	if (sg)
8321
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
8322 8323
	return cpu;
}
8324
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8325

8326 8327 8328
/*
 * multi-core sched-domains:
 */
8329
#ifdef CONFIG_SCHED_MC
8330 8331
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8332
#endif /* CONFIG_SCHED_MC */
8333 8334

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8335
static int
8336 8337
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8338
{
8339
	int group;
8340

8341
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8342
	group = cpumask_first(mask);
8343
	if (sg)
8344
		*sg = &per_cpu(sched_group_core, group).sg;
8345
	return group;
8346 8347
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8348
static int
8349 8350
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8351
{
8352
	if (sg)
8353
		*sg = &per_cpu(sched_group_core, cpu).sg;
8354 8355 8356 8357
	return cpu;
}
#endif

8358 8359
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8360

I
Ingo Molnar 已提交
8361
static int
8362 8363
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8364
{
8365
	int group;
8366
#ifdef CONFIG_SCHED_MC
8367
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8368
	group = cpumask_first(mask);
8369
#elif defined(CONFIG_SCHED_SMT)
8370
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8371
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8372
#else
8373
	group = cpu;
L
Linus Torvalds 已提交
8374
#endif
8375
	if (sg)
8376
		*sg = &per_cpu(sched_group_phys, group).sg;
8377
	return group;
L
Linus Torvalds 已提交
8378 8379 8380 8381
}

#ifdef CONFIG_NUMA
/*
8382 8383 8384
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8385
 */
8386
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8387
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8388

8389
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8390
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8391

8392 8393 8394
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8395
{
8396 8397
	int group;

8398
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8399
	group = cpumask_first(nodemask);
8400 8401

	if (sg)
8402
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8403
	return group;
L
Linus Torvalds 已提交
8404
}
8405

8406 8407 8408 8409 8410 8411 8412
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8413
	do {
8414
		for_each_cpu(j, sched_group_cpus(sg)) {
8415
			struct sched_domain *sd;
8416

8417
			sd = &per_cpu(phys_domains, j).sd;
8418
			if (j != group_first_cpu(sd->groups)) {
8419 8420 8421 8422 8423 8424
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8425

8426
			sg->cpu_power += sd->groups->cpu_power;
8427 8428 8429
		}
		sg = sg->next;
	} while (sg != group_head);
8430
}
8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
8452 8453
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
8454 8455 8456 8457 8458 8459 8460 8461 8462
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8463
	sg->cpu_power = 0;
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
8482 8483
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
8484 8485
			return -ENOMEM;
		}
8486
		sg->cpu_power = 0;
8487 8488 8489 8490 8491 8492 8493 8494 8495
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8496
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8497

8498
#ifdef CONFIG_NUMA
8499
/* Free memory allocated for various sched_group structures */
8500 8501
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8502
{
8503
	int cpu, i;
8504

8505
	for_each_cpu(cpu, cpu_map) {
8506 8507 8508 8509 8510 8511
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8512
		for (i = 0; i < nr_node_ids; i++) {
8513 8514
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8515
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8516
			if (cpumask_empty(nodemask))
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8533
#else /* !CONFIG_NUMA */
8534 8535
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8536 8537
{
}
8538
#endif /* CONFIG_NUMA */
8539

8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8554 8555
	long power;
	int weight;
8556 8557 8558

	WARN_ON(!sd || !sd->groups);

8559
	if (cpu != group_first_cpu(sd->groups))
8560 8561 8562 8563
		return;

	child = sd->child;

8564
	sd->groups->cpu_power = 0;
8565

8566 8567 8568 8569 8570
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8571 8572 8573
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8574
		 */
P
Peter Zijlstra 已提交
8575 8576
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8577
			power /= weight;
P
Peter Zijlstra 已提交
8578 8579
			power >>= SCHED_LOAD_SHIFT;
		}
8580
		sd->groups->cpu_power += power;
8581 8582 8583 8584
		return;
	}

	/*
8585
	 * Add cpu_power of each child group to this groups cpu_power.
8586 8587 8588
	 */
	group = child->groups;
	do {
8589
		sd->groups->cpu_power += group->cpu_power;
8590 8591 8592 8593
		group = group->next;
	} while (group != child->groups);
}

8594 8595 8596 8597 8598
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8599 8600 8601 8602 8603 8604
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8605
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8606

8607 8608 8609 8610 8611
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8612
	sd->level = SD_LV_##type;				\
8613
	SD_INIT_NAME(sd, type);					\
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8628 8629 8630 8631
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8632 8633 8634 8635 8636 8637
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8656
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8657 8658
	} else {
		/* turn on idle balance on this domain */
8659
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8660 8661 8662
	}
}

8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8683
#ifdef CONFIG_NUMA
8684 8685 8686 8687 8688 8689 8690
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8691
#endif
8692 8693 8694 8695
	case sa_none:
		break;
	}
}
8696

8697 8698 8699
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8700
#ifdef CONFIG_NUMA
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
8711
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8712
		return sa_notcovered;
8713
	}
8714
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8715
#endif
8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
8728
		printk(KERN_WARNING "Cannot alloc root domain\n");
8729
		return sa_tmpmask;
G
Gregory Haskins 已提交
8730
	}
8731 8732
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8733

8734 8735 8736 8737
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8738
#ifdef CONFIG_NUMA
8739
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8740

8741 8742 8743 8744 8745
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8746
		set_domain_attribute(sd, attr);
8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8761
#endif
8762 8763
	return sd;
}
L
Linus Torvalds 已提交
8764

8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8780

8781 8782 8783 8784 8785
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8786
#ifdef CONFIG_SCHED_MC
8787 8788 8789 8790 8791 8792 8793
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8794
#endif
8795 8796
	return sd;
}
8797

8798 8799 8800 8801 8802
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8803
#ifdef CONFIG_SCHED_SMT
8804 8805 8806 8807 8808 8809 8810
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8811
#endif
8812 8813
	return sd;
}
L
Linus Torvalds 已提交
8814

8815 8816 8817 8818
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8819
#ifdef CONFIG_SCHED_SMT
8820 8821 8822 8823 8824 8825 8826 8827
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8828
#endif
8829
#ifdef CONFIG_SCHED_MC
8830 8831 8832 8833 8834 8835 8836
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8837
#endif
8838 8839 8840 8841 8842 8843 8844
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8845
#ifdef CONFIG_NUMA
8846 8847 8848 8849 8850
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8851 8852
	default:
		break;
8853
	}
8854
}
8855

8856 8857 8858 8859 8860 8861 8862 8863 8864
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8865
	struct sched_domain *sd;
8866
	int i;
8867
#ifdef CONFIG_NUMA
8868
	d.sd_allnodes = 0;
8869
#endif
8870

8871 8872 8873 8874
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8875

L
Linus Torvalds 已提交
8876
	/*
8877
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8878
	 */
8879
	for_each_cpu(i, cpu_map) {
8880 8881
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8882

8883
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8884
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8885
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8886
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8887
	}
8888

8889
	for_each_cpu(i, cpu_map) {
8890
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8891
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8892
	}
8893

L
Linus Torvalds 已提交
8894
	/* Set up physical groups */
8895 8896
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8897

L
Linus Torvalds 已提交
8898 8899
#ifdef CONFIG_NUMA
	/* Set up node groups */
8900 8901
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8902

8903 8904
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8905
			goto error;
L
Linus Torvalds 已提交
8906 8907 8908
#endif

	/* Calculate CPU power for physical packages and nodes */
8909
#ifdef CONFIG_SCHED_SMT
8910
	for_each_cpu(i, cpu_map) {
8911
		sd = &per_cpu(cpu_domains, i).sd;
8912
		init_sched_groups_power(i, sd);
8913
	}
L
Linus Torvalds 已提交
8914
#endif
8915
#ifdef CONFIG_SCHED_MC
8916
	for_each_cpu(i, cpu_map) {
8917
		sd = &per_cpu(core_domains, i).sd;
8918
		init_sched_groups_power(i, sd);
8919 8920
	}
#endif
8921

8922
	for_each_cpu(i, cpu_map) {
8923
		sd = &per_cpu(phys_domains, i).sd;
8924
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8925 8926
	}

8927
#ifdef CONFIG_NUMA
8928
	for (i = 0; i < nr_node_ids; i++)
8929
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8930

8931
	if (d.sd_allnodes) {
8932
		struct sched_group *sg;
8933

8934
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8935
								d.tmpmask);
8936 8937
		init_numa_sched_groups_power(sg);
	}
8938 8939
#endif

L
Linus Torvalds 已提交
8940
	/* Attach the domains */
8941
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8942
#ifdef CONFIG_SCHED_SMT
8943
		sd = &per_cpu(cpu_domains, i).sd;
8944
#elif defined(CONFIG_SCHED_MC)
8945
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8946
#else
8947
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8948
#endif
8949
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8950
	}
8951

8952 8953 8954
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8955 8956

error:
8957 8958
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8959
}
P
Paul Jackson 已提交
8960

8961
static int build_sched_domains(const struct cpumask *cpu_map)
8962 8963 8964 8965
{
	return __build_sched_domains(cpu_map, NULL);
}

8966
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8967
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8968 8969
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8970 8971 8972

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8973 8974
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8975
 */
8976
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8977

8978 8979 8980 8981 8982 8983
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8984
{
8985
	return 0;
8986 8987
}

8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

9013
/*
I
Ingo Molnar 已提交
9014
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
9015 9016
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
9017
 */
9018
static int arch_init_sched_domains(const struct cpumask *cpu_map)
9019
{
9020 9021
	int err;

9022
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9023
	ndoms_cur = 1;
9024
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
9025
	if (!doms_cur)
9026 9027
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9028
	dattr_cur = NULL;
9029
	err = build_sched_domains(doms_cur[0]);
9030
	register_sched_domain_sysctl();
9031 9032

	return err;
9033 9034
}

9035 9036
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9037
{
9038
	free_sched_groups(cpu_map, tmpmask);
9039
}
L
Linus Torvalds 已提交
9040

9041 9042 9043 9044
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9045
static void detach_destroy_domains(const struct cpumask *cpu_map)
9046
{
9047 9048
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9049 9050
	int i;

9051
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9052
		cpu_attach_domain(NULL, &def_root_domain, i);
9053
	synchronize_sched();
9054
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9055 9056
}

9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9073 9074
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9075
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9076 9077 9078
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9079
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9080 9081 9082
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9083 9084 9085
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9086 9087 9088 9089 9090 9091
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9092
 *
9093
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9094 9095
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9096
 *
P
Paul Jackson 已提交
9097 9098
 * Call with hotplug lock held
 */
9099
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9100
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9101
{
9102
	int i, j, n;
9103
	int new_topology;
P
Paul Jackson 已提交
9104

9105
	mutex_lock(&sched_domains_mutex);
9106

9107 9108 9109
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9110 9111 9112
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9113
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9114 9115 9116

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9117
		for (j = 0; j < n && !new_topology; j++) {
9118
			if (cpumask_equal(doms_cur[i], doms_new[j])
9119
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9120 9121 9122
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9123
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9124 9125 9126 9127
match1:
		;
	}

9128 9129
	if (doms_new == NULL) {
		ndoms_cur = 0;
9130
		doms_new = &fallback_doms;
9131
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9132
		WARN_ON_ONCE(dattr_new);
9133 9134
	}

P
Paul Jackson 已提交
9135 9136
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9137
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9138
			if (cpumask_equal(doms_new[i], doms_cur[j])
9139
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9140 9141 9142
				goto match2;
		}
		/* no match - add a new doms_new */
9143
		__build_sched_domains(doms_new[i],
9144
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9145 9146 9147 9148 9149
match2:
		;
	}

	/* Remember the new sched domains */
9150 9151
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9152
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9153
	doms_cur = doms_new;
9154
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9155
	ndoms_cur = ndoms_new;
9156 9157

	register_sched_domain_sysctl();
9158

9159
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9160 9161
}

9162
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9163
static void arch_reinit_sched_domains(void)
9164
{
9165
	get_online_cpus();
9166 9167 9168 9169

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9170
	rebuild_sched_domains();
9171
	put_online_cpus();
9172 9173 9174 9175
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9176
	unsigned int level = 0;
9177

9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9189 9190 9191
		return -EINVAL;

	if (smt)
9192
		sched_smt_power_savings = level;
9193
	else
9194
		sched_mc_power_savings = level;
9195

9196
	arch_reinit_sched_domains();
9197

9198
	return count;
9199 9200 9201
}

#ifdef CONFIG_SCHED_MC
9202 9203
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9204 9205 9206
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9207
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9208
					    const char *buf, size_t count)
9209 9210 9211
{
	return sched_power_savings_store(buf, count, 0);
}
9212 9213 9214
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9215 9216 9217
#endif

#ifdef CONFIG_SCHED_SMT
9218 9219
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9220 9221 9222
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9223
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9224
					     const char *buf, size_t count)
9225 9226 9227
{
	return sched_power_savings_store(buf, count, 1);
}
9228 9229
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9230 9231 9232
		   sched_smt_power_savings_store);
#endif

9233
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9249
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9250

9251
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9252
/*
9253 9254
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9255 9256 9257
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9258 9259 9260 9261
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9262 9263 9264 9265
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9266
		partition_sched_domains(1, NULL, NULL);
9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9277
{
P
Peter Zijlstra 已提交
9278 9279
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9280 9281
	switch (action) {
	case CPU_DOWN_PREPARE:
9282
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9283
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9284 9285 9286
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9287
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9288
	case CPU_ONLINE:
9289
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9290
		enable_runtime(cpu_rq(cpu));
9291 9292
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9293 9294 9295 9296 9297 9298 9299
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9300 9301 9302
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9303
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9304

9305 9306 9307 9308 9309
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9310
	get_online_cpus();
9311
	mutex_lock(&sched_domains_mutex);
9312
	arch_init_sched_domains(cpu_active_mask);
9313 9314 9315
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9316
	mutex_unlock(&sched_domains_mutex);
9317
	put_online_cpus();
9318 9319

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9320 9321
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9322 9323 9324 9325 9326
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9327
	init_hrtick();
9328 9329

	/* Move init over to a non-isolated CPU */
9330
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9331
		BUG();
I
Ingo Molnar 已提交
9332
	sched_init_granularity();
9333
	free_cpumask_var(non_isolated_cpus);
9334

9335
	init_sched_rt_class();
L
Linus Torvalds 已提交
9336 9337 9338 9339
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9340
	sched_init_granularity();
L
Linus Torvalds 已提交
9341 9342 9343
}
#endif /* CONFIG_SMP */

9344 9345
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9346 9347 9348 9349 9350 9351 9352
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9353
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9354 9355
{
	cfs_rq->tasks_timeline = RB_ROOT;
9356
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9357 9358 9359
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9360
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9361 9362
}

P
Peter Zijlstra 已提交
9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9376
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9377
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9378
#ifdef CONFIG_SMP
9379
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9380 9381
#endif
#endif
P
Peter Zijlstra 已提交
9382 9383 9384
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9385
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9386 9387 9388 9389
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9390
	rt_rq->rt_runtime = 0;
9391
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9392

9393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9394
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9395 9396
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9397 9398
}

P
Peter Zijlstra 已提交
9399
#ifdef CONFIG_FAIR_GROUP_SCHED
9400 9401 9402
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9403
{
9404
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9405 9406 9407 9408 9409 9410 9411
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9412 9413 9414 9415
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9416 9417 9418 9419 9420
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9421 9422
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9423
	se->load.inv_weight = 0;
9424
	se->parent = parent;
P
Peter Zijlstra 已提交
9425
}
9426
#endif
P
Peter Zijlstra 已提交
9427

9428
#ifdef CONFIG_RT_GROUP_SCHED
9429 9430 9431
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9432
{
9433 9434
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9435 9436 9437 9438
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9439
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9440 9441 9442 9443
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9444 9445 9446
	if (!rt_se)
		return;

9447 9448 9449 9450 9451
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9452
	rt_se->my_q = rt_rq;
9453
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9454 9455 9456 9457
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9458 9459
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9460
	int i, j;
9461 9462 9463 9464 9465 9466 9467
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9468 9469 9470
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9471 9472
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9473
	alloc_size += num_possible_cpus() * cpumask_size();
9474 9475
#endif
	if (alloc_size) {
9476
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9477 9478 9479 9480 9481 9482 9483

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9484 9485 9486 9487 9488 9489 9490

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9491 9492
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9493 9494 9495 9496 9497
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9498 9499 9500 9501 9502 9503 9504 9505
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9506 9507
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9508 9509 9510 9511 9512 9513
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9514
	}
I
Ingo Molnar 已提交
9515

G
Gregory Haskins 已提交
9516 9517 9518 9519
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9520 9521 9522 9523 9524 9525
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9526 9527 9528
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9529 9530
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9531

9532
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9533
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9534 9535 9536 9537 9538 9539
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9540 9541
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9542

9543 9544 9545 9546
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9547
	for_each_possible_cpu(i) {
9548
		struct rq *rq;
L
Linus Torvalds 已提交
9549 9550

		rq = cpu_rq(i);
9551
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9552
		rq->nr_running = 0;
9553 9554
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9555
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9556
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9557
#ifdef CONFIG_FAIR_GROUP_SCHED
9558
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9559
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9575
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9576 9577 9578 9579
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9580
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9581
#elif defined CONFIG_USER_SCHED
9582 9583
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9584 9585 9586 9587 9588 9589 9590 9591
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9592
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9593 9594
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9595
		init_tg_cfs_entry(&init_task_group,
9596
				&per_cpu(init_tg_cfs_rq, i),
9597 9598
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9599

9600
#endif
D
Dhaval Giani 已提交
9601 9602 9603
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9604
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9605
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9606
#ifdef CONFIG_CGROUP_SCHED
9607
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9608
#elif defined CONFIG_USER_SCHED
9609
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9610
		init_tg_rt_entry(&init_task_group,
9611
				&per_cpu(init_rt_rq_var, i),
9612 9613
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9614
#endif
I
Ingo Molnar 已提交
9615
#endif
L
Linus Torvalds 已提交
9616

I
Ingo Molnar 已提交
9617 9618
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9619
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9620
		rq->sd = NULL;
G
Gregory Haskins 已提交
9621
		rq->rd = NULL;
9622
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9623
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9624
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9625
		rq->push_cpu = 0;
9626
		rq->cpu = i;
9627
		rq->online = 0;
L
Linus Torvalds 已提交
9628
		rq->migration_thread = NULL;
9629 9630
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9631
		INIT_LIST_HEAD(&rq->migration_queue);
9632
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9633
#endif
P
Peter Zijlstra 已提交
9634
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9635 9636 9637
		atomic_set(&rq->nr_iowait, 0);
	}

9638
	set_load_weight(&init_task);
9639

9640 9641 9642 9643
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9644
#ifdef CONFIG_SMP
9645
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9646 9647
#endif

9648
#ifdef CONFIG_RT_MUTEXES
9649
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9650 9651
#endif

L
Linus Torvalds 已提交
9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9665 9666 9667

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9668 9669 9670 9671
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9672

9673
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9674
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9675
#ifdef CONFIG_SMP
9676
#ifdef CONFIG_NO_HZ
9677
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9678
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9679
#endif
R
Rusty Russell 已提交
9680 9681 9682
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9683
#endif /* SMP */
9684

9685
	perf_event_init();
9686

9687
	scheduler_running = 1;
L
Linus Torvalds 已提交
9688 9689 9690
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9691 9692
static inline int preempt_count_equals(int preempt_offset)
{
9693
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9694 9695 9696 9697 9698

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9699
{
9700
#ifdef in_atomic
L
Linus Torvalds 已提交
9701 9702
	static unsigned long prev_jiffy;	/* ratelimiting */

9703 9704
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9705 9706 9707 9708 9709
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
9710 9711 9712 9713 9714 9715 9716
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
9717 9718 9719 9720 9721

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9722 9723 9724 9725 9726 9727
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9728 9729 9730
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9731

9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9743 9744
void normalize_rt_tasks(void)
{
9745
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9746
	unsigned long flags;
9747
	struct rq *rq;
L
Linus Torvalds 已提交
9748

9749
	read_lock_irqsave(&tasklist_lock, flags);
9750
	do_each_thread(g, p) {
9751 9752 9753 9754 9755 9756
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9757 9758
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9759 9760 9761
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9762
#endif
I
Ingo Molnar 已提交
9763 9764 9765 9766 9767 9768 9769 9770

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9771
			continue;
I
Ingo Molnar 已提交
9772
		}
L
Linus Torvalds 已提交
9773

9774
		raw_spin_lock(&p->pi_lock);
9775
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9776

9777
		normalize_task(rq, p);
9778

9779
		__task_rq_unlock(rq);
9780
		raw_spin_unlock(&p->pi_lock);
9781 9782
	} while_each_thread(g, p);

9783
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9784 9785 9786
}

#endif /* CONFIG_MAGIC_SYSRQ */
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9805
struct task_struct *curr_task(int cpu)
9806 9807 9808 9809 9810 9811 9812 9813 9814 9815
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9816 9817
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9818 9819 9820 9821 9822 9823 9824
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9825
void set_curr_task(int cpu, struct task_struct *p)
9826 9827 9828 9829 9830
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9831

9832 9833
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9848 9849
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9850 9851
{
	struct cfs_rq *cfs_rq;
9852
	struct sched_entity *se;
9853
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9854 9855
	int i;

9856
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9857 9858
	if (!tg->cfs_rq)
		goto err;
9859
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9860 9861
	if (!tg->se)
		goto err;
9862 9863

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9864 9865

	for_each_possible_cpu(i) {
9866
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9867

9868 9869
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9870 9871 9872
		if (!cfs_rq)
			goto err;

9873 9874
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9875
		if (!se)
9876
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9877

9878
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9879 9880 9881 9882
	}

	return 1;

9883 9884
 err_free_rq:
	kfree(cfs_rq);
9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9899
#else /* !CONFG_FAIR_GROUP_SCHED */
9900 9901 9902 9903
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9904 9905
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9917
#endif /* CONFIG_FAIR_GROUP_SCHED */
9918 9919

#ifdef CONFIG_RT_GROUP_SCHED
9920 9921 9922 9923
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9924 9925
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9937 9938
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9939 9940
{
	struct rt_rq *rt_rq;
9941
	struct sched_rt_entity *rt_se;
9942 9943 9944
	struct rq *rq;
	int i;

9945
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9946 9947
	if (!tg->rt_rq)
		goto err;
9948
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9949 9950 9951
	if (!tg->rt_se)
		goto err;

9952 9953
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9954 9955 9956 9957

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9958 9959
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9960 9961
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9962

9963 9964
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9965
		if (!rt_se)
9966
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9967

9968
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9969 9970
	}

9971 9972
	return 1;

9973 9974
 err_free_rq:
	kfree(rt_rq);
9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9989
#else /* !CONFIG_RT_GROUP_SCHED */
9990 9991 9992 9993
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9994 9995
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
10007
#endif /* CONFIG_RT_GROUP_SCHED */
10008

10009
#ifdef CONFIG_GROUP_SCHED
10010 10011 10012 10013 10014 10015 10016 10017
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
10018
struct task_group *sched_create_group(struct task_group *parent)
10019 10020 10021 10022 10023 10024 10025 10026 10027
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10028
	if (!alloc_fair_sched_group(tg, parent))
10029 10030
		goto err;

10031
	if (!alloc_rt_sched_group(tg, parent))
10032 10033
		goto err;

10034
	spin_lock_irqsave(&task_group_lock, flags);
10035
	for_each_possible_cpu(i) {
10036 10037
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10038
	}
P
Peter Zijlstra 已提交
10039
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10040 10041 10042 10043 10044

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10045
	list_add_rcu(&tg->siblings, &parent->children);
10046
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10047

10048
	return tg;
S
Srivatsa Vaddagiri 已提交
10049 10050

err:
P
Peter Zijlstra 已提交
10051
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10052 10053 10054
	return ERR_PTR(-ENOMEM);
}

10055
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10056
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10057 10058
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10059
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10060 10061
}

10062
/* Destroy runqueue etc associated with a task group */
10063
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10064
{
10065
	unsigned long flags;
10066
	int i;
S
Srivatsa Vaddagiri 已提交
10067

10068
	spin_lock_irqsave(&task_group_lock, flags);
10069
	for_each_possible_cpu(i) {
10070 10071
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10072
	}
P
Peter Zijlstra 已提交
10073
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10074
	list_del_rcu(&tg->siblings);
10075
	spin_unlock_irqrestore(&task_group_lock, flags);
10076 10077

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10078
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10079 10080
}

10081
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10082 10083 10084
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10085 10086
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10087 10088 10089 10090 10091 10092 10093 10094 10095
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10096
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10097 10098
	on_rq = tsk->se.on_rq;

10099
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10100
		dequeue_task(rq, tsk, 0);
10101 10102
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10103

P
Peter Zijlstra 已提交
10104
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10105

P
Peter Zijlstra 已提交
10106 10107
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
10108
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
10109 10110
#endif

10111 10112 10113
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10114
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10115 10116 10117

	task_rq_unlock(rq, &flags);
}
10118
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10119

10120
#ifdef CONFIG_FAIR_GROUP_SCHED
10121
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10122 10123 10124 10125 10126
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10127
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10128 10129 10130
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10131
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10132

10133
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10134
		enqueue_entity(cfs_rq, se, 0);
10135
}
10136

10137 10138 10139 10140 10141 10142
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

10143
	raw_spin_lock_irqsave(&rq->lock, flags);
10144
	__set_se_shares(se, shares);
10145
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10146 10147
}

10148 10149
static DEFINE_MUTEX(shares_mutex);

10150
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10151 10152
{
	int i;
10153
	unsigned long flags;
10154

10155 10156 10157 10158 10159 10160
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10161 10162
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10163 10164
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10165

10166
	mutex_lock(&shares_mutex);
10167
	if (tg->shares == shares)
10168
		goto done;
S
Srivatsa Vaddagiri 已提交
10169

10170
	spin_lock_irqsave(&task_group_lock, flags);
10171 10172
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10173
	list_del_rcu(&tg->siblings);
10174
	spin_unlock_irqrestore(&task_group_lock, flags);
10175 10176 10177 10178 10179 10180 10181 10182

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10183
	tg->shares = shares;
10184 10185 10186 10187 10188
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10189
		set_se_shares(tg->se[i], shares);
10190
	}
S
Srivatsa Vaddagiri 已提交
10191

10192 10193 10194 10195
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10196
	spin_lock_irqsave(&task_group_lock, flags);
10197 10198
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10199
	list_add_rcu(&tg->siblings, &tg->parent->children);
10200
	spin_unlock_irqrestore(&task_group_lock, flags);
10201
done:
10202
	mutex_unlock(&shares_mutex);
10203
	return 0;
S
Srivatsa Vaddagiri 已提交
10204 10205
}

10206 10207 10208 10209
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10210
#endif
10211

10212
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10213
/*
P
Peter Zijlstra 已提交
10214
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10215
 */
P
Peter Zijlstra 已提交
10216 10217 10218 10219 10220
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10221
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10222

P
Peter Zijlstra 已提交
10223
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10224 10225
}

P
Peter Zijlstra 已提交
10226 10227
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10228
{
P
Peter Zijlstra 已提交
10229
	struct task_struct *g, *p;
10230

P
Peter Zijlstra 已提交
10231 10232 10233 10234
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10235

P
Peter Zijlstra 已提交
10236 10237
	return 0;
}
10238

P
Peter Zijlstra 已提交
10239 10240 10241 10242 10243
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10244

P
Peter Zijlstra 已提交
10245 10246 10247 10248 10249 10250
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10251

P
Peter Zijlstra 已提交
10252 10253
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10254

P
Peter Zijlstra 已提交
10255 10256 10257
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10258 10259
	}

10260 10261 10262 10263 10264 10265 10266
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10267 10268 10269 10270 10271
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10272

10273 10274 10275
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10276 10277
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10278

P
Peter Zijlstra 已提交
10279
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10280

10281 10282 10283 10284 10285
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10286

10287 10288 10289
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10290 10291 10292
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10293

P
Peter Zijlstra 已提交
10294 10295 10296 10297
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10298

P
Peter Zijlstra 已提交
10299
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10300
	}
P
Peter Zijlstra 已提交
10301

P
Peter Zijlstra 已提交
10302 10303 10304 10305
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10306 10307
}

P
Peter Zijlstra 已提交
10308
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10309
{
P
Peter Zijlstra 已提交
10310 10311 10312 10313 10314 10315 10316
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10317 10318
}

10319 10320
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10321
{
P
Peter Zijlstra 已提交
10322
	int i, err = 0;
P
Peter Zijlstra 已提交
10323 10324

	mutex_lock(&rt_constraints_mutex);
10325
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10326 10327
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10328
		goto unlock;
P
Peter Zijlstra 已提交
10329

10330
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10331 10332
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10333 10334 10335 10336

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

10337
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10338
		rt_rq->rt_runtime = rt_runtime;
10339
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10340
	}
10341
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10342
 unlock:
10343
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10344 10345 10346
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10347 10348
}

10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10361 10362 10363 10364
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10365
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10366 10367
		return -1;

10368
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10369 10370 10371
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10372 10373 10374 10375 10376 10377 10378 10379

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10380 10381 10382
	if (rt_period == 0)
		return -EINVAL;

10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10397
	u64 runtime, period;
10398 10399
	int ret = 0;

10400 10401 10402
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10403 10404 10405 10406 10407 10408 10409 10410
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10411

10412
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10413
	read_lock(&tasklist_lock);
10414
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10415
	read_unlock(&tasklist_lock);
10416 10417 10418 10419
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10420 10421 10422 10423 10424 10425 10426 10427 10428 10429

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10430
#else /* !CONFIG_RT_GROUP_SCHED */
10431 10432
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10433 10434 10435
	unsigned long flags;
	int i;

10436 10437 10438
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10439 10440 10441 10442 10443 10444 10445
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

10446
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10447 10448 10449
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

10450
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10451
		rt_rq->rt_runtime = global_rt_runtime();
10452
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10453
	}
10454
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10455

10456 10457
	return 0;
}
10458
#endif /* CONFIG_RT_GROUP_SCHED */
10459 10460

int sched_rt_handler(struct ctl_table *table, int write,
10461
		void __user *buffer, size_t *lenp,
10462 10463 10464 10465 10466 10467 10468 10469 10470 10471
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10472
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10489

10490
#ifdef CONFIG_CGROUP_SCHED
10491 10492

/* return corresponding task_group object of a cgroup */
10493
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10494
{
10495 10496
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10497 10498 10499
}

static struct cgroup_subsys_state *
10500
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10501
{
10502
	struct task_group *tg, *parent;
10503

10504
	if (!cgrp->parent) {
10505 10506 10507 10508
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10509 10510
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10511 10512 10513 10514 10515 10516
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10517 10518
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10519
{
10520
	struct task_group *tg = cgroup_tg(cgrp);
10521 10522 10523 10524

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10525
static int
10526
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10527
{
10528
#ifdef CONFIG_RT_GROUP_SCHED
10529
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10530 10531
		return -EINVAL;
#else
10532 10533 10534
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10535
#endif
10536 10537
	return 0;
}
10538

10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10558 10559 10560 10561
	return 0;
}

static void
10562
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10563 10564
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10565 10566
{
	sched_move_task(tsk);
10567 10568 10569 10570 10571 10572 10573 10574
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10575 10576
}

10577
#ifdef CONFIG_FAIR_GROUP_SCHED
10578
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10579
				u64 shareval)
10580
{
10581
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10582 10583
}

10584
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10585
{
10586
	struct task_group *tg = cgroup_tg(cgrp);
10587 10588 10589

	return (u64) tg->shares;
}
10590
#endif /* CONFIG_FAIR_GROUP_SCHED */
10591

10592
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10593
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10594
				s64 val)
P
Peter Zijlstra 已提交
10595
{
10596
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10597 10598
}

10599
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10600
{
10601
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10602
}
10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10614
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10615

10616
static struct cftype cpu_files[] = {
10617
#ifdef CONFIG_FAIR_GROUP_SCHED
10618 10619
	{
		.name = "shares",
10620 10621
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10622
	},
10623 10624
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10625
	{
P
Peter Zijlstra 已提交
10626
		.name = "rt_runtime_us",
10627 10628
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10629
	},
10630 10631
	{
		.name = "rt_period_us",
10632 10633
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10634
	},
10635
#endif
10636 10637 10638 10639
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10640
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10641 10642 10643
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10644 10645 10646 10647 10648 10649 10650
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10651 10652 10653
	.early_init	= 1,
};

10654
#endif	/* CONFIG_CGROUP_SCHED */
10655 10656 10657 10658 10659 10660 10661 10662 10663 10664

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10665
/* track cpu usage of a group of tasks and its child groups */
10666 10667 10668 10669
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10670
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10671
	struct cpuacct *parent;
10672 10673 10674 10675 10676
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10677
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10678
{
10679
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10692
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10693 10694
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10695
	int i;
10696 10697

	if (!ca)
10698
		goto out;
10699 10700

	ca->cpuusage = alloc_percpu(u64);
10701 10702 10703 10704 10705 10706
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10707

10708 10709 10710
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10711
	return &ca->css;
10712 10713 10714 10715 10716 10717 10718 10719 10720

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10721 10722 10723
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10724
static void
10725
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10726
{
10727
	struct cpuacct *ca = cgroup_ca(cgrp);
10728
	int i;
10729

10730 10731
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10732 10733 10734 10735
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10736 10737
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10738
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10739 10740 10741 10742 10743 10744
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
10745
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10746
	data = *cpuusage;
10747
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10748 10749 10750 10751 10752 10753 10754 10755 10756
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10757
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10758 10759 10760 10761 10762

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
10763
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10764
	*cpuusage = val;
10765
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10766 10767 10768 10769 10770
#else
	*cpuusage = val;
#endif
}

10771
/* return total cpu usage (in nanoseconds) of a group */
10772
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10773
{
10774
	struct cpuacct *ca = cgroup_ca(cgrp);
10775 10776 10777
	u64 totalcpuusage = 0;
	int i;

10778 10779
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10780 10781 10782 10783

	return totalcpuusage;
}

10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10796 10797
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10798 10799 10800 10801 10802

out:
	return err;
}

10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10837 10838 10839
static struct cftype files[] = {
	{
		.name = "usage",
10840 10841
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10842
	},
10843 10844 10845 10846
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10847 10848 10849 10850
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10851 10852
};

10853
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10854
{
10855
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10856 10857 10858 10859 10860 10861 10862 10863 10864 10865
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10866
	int cpu;
10867

L
Li Zefan 已提交
10868
	if (unlikely(!cpuacct_subsys.active))
10869 10870
		return;

10871
	cpu = task_cpu(tsk);
10872 10873 10874

	rcu_read_lock();

10875 10876
	ca = task_ca(tsk);

10877
	for (; ca; ca = ca->parent) {
10878
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10879 10880
		*cpuusage += cputime;
	}
10881 10882

	rcu_read_unlock();
10883 10884
}

10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10906 10907 10908 10909 10910 10911 10912 10913
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
10999
		raw_spin_lock_irqsave(&rq->lock, flags);
11000
		list_add(&req->list, &rq->migration_queue);
11001
		raw_spin_unlock_irqrestore(&rq->lock, flags);
11002 11003 11004 11005 11006 11007 11008
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
11009
		raw_spin_lock_irqsave(&rq->lock, flags);
11010 11011 11012
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
11013
		raw_spin_unlock_irqrestore(&rq->lock, flags);
11014 11015
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11016
	synchronize_sched_expedited_count++;
11017 11018 11019 11020 11021 11022 11023 11024
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */