sched.c 222.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82
#include "sched_autogroup.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127
static inline int rt_policy(int policy)
{
128
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 130 131 132 133 134 135 136 137
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
138
/*
I
Ingo Molnar 已提交
139
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
140
 */
I
Ingo Molnar 已提交
141 142 143 144 145
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

146
struct rt_bandwidth {
I
Ingo Molnar 已提交
147
	/* nests inside the rq lock: */
148
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
149 150 151
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

185
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
186

187 188 189 190 191
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

192 193 194
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
195 196 197 198 199 200
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

201
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

207
	raw_spin_lock(&rt_b->rt_runtime_lock);
208
	for (;;) {
209 210 211
		unsigned long delta;
		ktime_t soft, hard;

212 213 214 215 216
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 218 219 220 221

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222
				HRTIMER_MODE_ABS_PINNED, 0);
223
	}
224
	raw_spin_unlock(&rt_b->rt_runtime_lock);
225 226 227 228 229 230 231 232 233
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

234 235 236 237 238 239
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
240
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
241

242 243
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
244 245
struct cfs_rq;

P
Peter Zijlstra 已提交
246 247
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
248
/* task group related information */
249
struct task_group {
250
	struct cgroup_subsys_state css;
251

252
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
258 259

	atomic_t load_weight;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
275 276 277 278

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
279 280
};

281
/* task_group_lock serializes the addition/removal of task groups */
282
static DEFINE_SPINLOCK(task_group_lock);
283

284 285
#ifdef CONFIG_FAIR_GROUP_SCHED

286
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
287

288
/*
289 290 291 292
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
293 294 295
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
296
#define MIN_SHARES	2
297
#define MAX_SHARES	(1UL << 18)
298

299
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 301
#endif

S
Srivatsa Vaddagiri 已提交
302
/* Default task group.
I
Ingo Molnar 已提交
303
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
304
 */
305
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
306

D
Dhaval Giani 已提交
307
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
308

I
Ingo Molnar 已提交
309 310 311 312 313 314
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
315
	u64 min_vruntime;
I
Ingo Molnar 已提交
316 317 318

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
319 320 321 322 323 324

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
325 326
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
327
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
328

P
Peter Zijlstra 已提交
329
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
332 333
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
334 335
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
336 337 338 339 340 341
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
342
	int on_list;
I
Ingo Molnar 已提交
343 344
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
345 346 347

#ifdef CONFIG_SMP
	/*
348
	 * the part of load.weight contributed by tasks
349
	 */
350
	unsigned long task_weight;
351

352 353 354 355 356 357 358
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
359

360
	/*
361 362 363 364 365
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
366
	 */
P
Peter Zijlstra 已提交
367 368
	u64 load_avg;
	u64 load_period;
369
	u64 load_stamp, load_last, load_unacc_exec_time;
370

P
Peter Zijlstra 已提交
371
	unsigned long load_contribution;
372
#endif
I
Ingo Molnar 已提交
373 374
#endif
};
L
Linus Torvalds 已提交
375

I
Ingo Molnar 已提交
376 377 378
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
379
	unsigned long rt_nr_running;
380
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 382
	struct {
		int curr; /* highest queued rt task prio */
383
#ifdef CONFIG_SMP
384
		int next; /* next highest */
385
#endif
386
	} highest_prio;
P
Peter Zijlstra 已提交
387
#endif
P
Peter Zijlstra 已提交
388
#ifdef CONFIG_SMP
389
	unsigned long rt_nr_migratory;
390
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
391
	int overloaded;
392
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
393
#endif
P
Peter Zijlstra 已提交
394
	int rt_throttled;
P
Peter Zijlstra 已提交
395
	u64 rt_time;
P
Peter Zijlstra 已提交
396
	u64 rt_runtime;
I
Ingo Molnar 已提交
397
	/* Nests inside the rq lock: */
398
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
403 404 405 406
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
407 408
};

G
Gregory Haskins 已提交
409 410 411 412
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
413 414
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
415 416 417 418 419 420
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
421 422
	cpumask_var_t span;
	cpumask_var_t online;
423

I
Ingo Molnar 已提交
424
	/*
425 426 427
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
428
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
429
	atomic_t rto_count;
430
	struct cpupri cpupri;
G
Gregory Haskins 已提交
431 432
};

433 434 435 436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
437 438
static struct root_domain def_root_domain;

439
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
440

L
Linus Torvalds 已提交
441 442 443 444 445 446 447
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
448
struct rq {
449
	/* runqueue lock: */
450
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
451 452 453 454 455 456

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
457 458
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459
	unsigned long last_load_update_tick;
460
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
461
	u64 nohz_stamp;
462
	unsigned char nohz_balance_kick;
463
#endif
464 465
	unsigned int skip_clock_update;

466 467
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
468 469 470 471
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
472 473
	struct rt_rq rt;

I
Ingo Molnar 已提交
474
#ifdef CONFIG_FAIR_GROUP_SCHED
475 476
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
477 478
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

490
	struct task_struct *curr, *idle, *stop;
491
	unsigned long next_balance;
L
Linus Torvalds 已提交
492
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
493

494
	u64 clock;
495
	u64 clock_task;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

527 528 529 530
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
531
#ifdef CONFIG_SCHED_HRTICK
532 533 534 535
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
536 537 538
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
539 540 541
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
542 543
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
544 545

	/* sys_sched_yield() stats */
546
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
556 557

	/* BKL stats */
558
	unsigned int bkl_count;
L
Linus Torvalds 已提交
559 560 561
#endif
};

562
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
563

564

565
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
566

567 568 569 570 571 572 573 574 575
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

576
#define rcu_dereference_check_sched_domain(p) \
577 578 579 580
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
581 582
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
584 585 586 587
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
588
#define for_each_domain(cpu, __sd) \
589
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
590 591 592 593 594

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
595
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
596

597 598 599 600 601 602 603 604 605 606 607 608
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
609
	struct task_group *tg;
610 611 612 613
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
614 615 616
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

643
static void update_rq_clock_task(struct rq *rq, s64 delta);
644

645
static void update_rq_clock(struct rq *rq)
646
{
647
	s64 delta;
648

649 650
	if (rq->skip_clock_update)
		return;
651

652 653 654
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
655 656
}

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
666 667
/**
 * runqueue_is_locked
668
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
669 670 671 672 673
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
674
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
675
{
676
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
677 678
}

I
Ingo Molnar 已提交
679 680 681
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
682 683 684 685

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
686
enum {
P
Peter Zijlstra 已提交
687
#include "sched_features.h"
I
Ingo Molnar 已提交
688 689
};

P
Peter Zijlstra 已提交
690 691 692 693 694
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
695
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702 703 704
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

705
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
706 707 708 709 710 711
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
712
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
713 714 715 716
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
717 718 719
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
720
	}
L
Li Zefan 已提交
721
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
722

L
Li Zefan 已提交
723
	return 0;
P
Peter Zijlstra 已提交
724 725 726 727 728 729 730
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
731
	char *cmp;
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738 739 740 741
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
742
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
743

I
Ingo Molnar 已提交
744
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
745 746 747 748 749
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
750
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759 760 761
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

762
	*ppos += cnt;
P
Peter Zijlstra 已提交
763 764 765 766

	return cnt;
}

L
Li Zefan 已提交
767 768 769 770 771
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

772
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
773 774 775 776 777
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
792

793 794 795 796 797 798
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916
/*
P
Peter Zijlstra 已提交
917 918
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
919 920 921
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935
		rq = task_rq(p);
936
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
937
		if (likely(rq == task_rq(p)))
938
			return rq;
939
		raw_spin_unlock(&rq->lock);
940 941 942
	}
}

L
Linus Torvalds 已提交
943 944
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
945
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
946 947
 * explicitly disabling preemption.
 */
948
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
949 950
	__acquires(rq->lock)
{
951
	struct rq *rq;
L
Linus Torvalds 已提交
952

953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
956
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
957
		if (likely(rq == task_rq(p)))
958
			return rq;
959
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
960 961 962
	}
}

A
Alexey Dobriyan 已提交
963
static void __task_rq_unlock(struct rq *rq)
964 965
	__releases(rq->lock)
{
966
	raw_spin_unlock(&rq->lock);
967 968
}

969
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
973 974 975
}

/*
976
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
977
 */
A
Alexey Dobriyan 已提交
978
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
979 980
	__acquires(rq->lock)
{
981
	struct rq *rq;
L
Linus Torvalds 已提交
982 983 984

	local_irq_disable();
	rq = this_rq();
985
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
986 987 988 989

	return rq;
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1011
	if (!cpu_active(cpu_of(rq)))
1012
		return 0;
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1032
	raw_spin_lock(&rq->lock);
1033
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1034
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1036 1037 1038 1039

	return HRTIMER_NORESTART;
}

1040
#ifdef CONFIG_SMP
1041 1042 1043 1044
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1045
{
1046
	struct rq *rq = arg;
1047

1048
	raw_spin_lock(&rq->lock);
1049 1050
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1051
	raw_spin_unlock(&rq->lock);
1052 1053
}

1054 1055 1056 1057 1058 1059
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1060
{
1061 1062
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063

1064
	hrtimer_set_expires(timer, time);
1065 1066 1067 1068

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1069
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 1071
		rq->hrtick_csd_pending = 1;
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1086
		hrtick_clear(cpu_rq(cpu));
1087 1088 1089 1090 1091 1092
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1093
static __init void init_hrtick(void)
1094 1095 1096
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1097 1098 1099 1100 1101 1102 1103 1104
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1105
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106
			HRTIMER_MODE_REL_PINNED, 0);
1107
}
1108

A
Andrew Morton 已提交
1109
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1110 1111
{
}
1112
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1113

1114
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1115
{
1116 1117
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1118

1119 1120 1121 1122
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1123

1124 1125
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1126
}
A
Andrew Morton 已提交
1127
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1136 1137 1138
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1139
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140

I
Ingo Molnar 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1154
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1155 1156 1157
{
	int cpu;

1158
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1159

1160
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1161 1162
		return;

1163
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1180
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1181 1182
		return;
	resched_task(cpu_curr(cpu));
1183
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1184
}
1185 1186

#ifdef CONFIG_NO_HZ
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1240
	set_tsk_need_resched(rq->idle);
1241 1242 1243 1244 1245 1246

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1247

1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 1261 1262 1263 1264 1265
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1277
#else /* !CONFIG_SMP */
1278
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1279
{
1280
	assert_raw_spin_locked(&task_rq(p)->lock);
1281
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1282
}
1283 1284 1285 1286

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1287 1288 1289 1290

static void sched_avg_update(struct rq *rq)
{
}
1291
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1292

1293 1294 1295 1296 1297 1298 1299 1300
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1301 1302 1303
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1304
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1305

1306 1307 1308
/*
 * delta *= weight / lw
 */
1309
static unsigned long
1310 1311 1312 1313 1314
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1315 1316 1317 1318 1319 1320 1321
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1322 1323 1324 1325 1326

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1327
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1328
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1329 1330
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1331
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332

1333
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 1335
}

1336
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 1338
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 1344
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1345
	lw->inv_weight = 0;
1346 1347
}

P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1354 1355 1356 1357
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1358
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 1360 1361 1362
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1363 1364
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 1375 1376
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1377 1378
 */
static const int prio_to_weight[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1387 1388
};

1389 1390 1391 1392 1393 1394 1395
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1396
static const u32 prio_to_wmult[40] = {
1397 1398 1399 1400 1401 1402 1403 1404
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1405
};
1406

1407 1408 1409 1410 1411 1412 1413 1414
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 1418
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1419 1420
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 1422
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1423 1424
#endif

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1435
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1436
typedef int (*tg_visitor)(struct task_group *, void *);
1437 1438 1439 1440 1441

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1442
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 1444
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1445
	int ret;
1446 1447 1448 1449

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1450 1451 1452
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1453 1454 1455 1456 1457 1458 1459
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1468
out_unlock:
1469
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1470 1471

	return ret;
1472 1473
}

P
Peter Zijlstra 已提交
1474 1475 1476
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1477
}
P
Peter Zijlstra 已提交
1478 1479 1480
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1520 1521
static unsigned long power_of(int cpu)
{
1522
	return cpu_rq(cpu)->cpu_power;
1523 1524
}

P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1530
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1531

1532 1533
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1534 1535
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1541 1542

/*
1543 1544 1545
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1546
 */
P
Peter Zijlstra 已提交
1547
static int tg_load_down(struct task_group *tg, void *data)
1548
{
1549
	unsigned long load;
P
Peter Zijlstra 已提交
1550
	long cpu = (long)data;
1551

1552 1553 1554 1555
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1556
		load *= tg->se[cpu]->load.weight;
1557 1558
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1559

1560
	tg->cfs_rq[cpu]->h_load = load;
1561

P
Peter Zijlstra 已提交
1562
	return 0;
1563 1564
}

P
Peter Zijlstra 已提交
1565
static void update_h_load(long cpu)
1566
{
P
Peter Zijlstra 已提交
1567
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 1569
}

1570 1571
#endif

1572 1573
#ifdef CONFIG_PREEMPT

1574 1575
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1576
/*
1577 1578 1579 1580 1581 1582
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1583
 */
1584 1585 1586 1587 1588
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1589
	raw_spin_unlock(&this_rq->lock);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 1605 1606 1607 1608 1609
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1610
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611
		if (busiest < this_rq) {
1612 1613 1614 1615
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1616 1617
			ret = 1;
		} else
1618 1619
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1620 1621 1622 1623
	}
	return ret;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1633
		raw_spin_unlock(&this_rq->lock);
1634 1635 1636 1637 1638 1639
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1640 1641 1642
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1643
	raw_spin_unlock(&busiest->lock);
1644 1645
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1689 1690
#endif

1691
static void calc_load_account_idle(struct rq *this_rq);
1692
static void update_sysctl(void);
1693
static int get_update_sysctl_factor(void);
1694
static void update_cpu_load(struct rq *this_rq);
1695

P
Peter Zijlstra 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1709

1710
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1711

1712
#define sched_class_highest (&stop_sched_class)
1713 1714
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1715

1716 1717
#include "sched_stats.h"

1718
static void inc_nr_running(struct rq *rq)
1719 1720 1721 1722
{
	rq->nr_running++;
}

1723
static void dec_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running--;
}

1728 1729
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1738

I
Ingo Molnar 已提交
1739 1740
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 1742
}

1743
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744
{
1745
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1746
	sched_info_queued(p);
1747
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1748
	p->se.on_rq = 1;
1749 1750
}

1751
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752
{
1753
	update_rq_clock(rq);
1754
	sched_info_dequeued(p);
1755
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1756
	p->se.on_rq = 0;
1757 1758
}

1759 1760 1761
/*
 * activate_task - move a task to the runqueue.
 */
1762
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763 1764 1765 1766
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1767
	enqueue_task(rq, p, flags);
1768 1769 1770 1771 1772 1773
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1774
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775 1776 1777 1778
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1779
	dequeue_task(rq, p, flags);
1780 1781 1782
	dec_nr_running(rq);
}

1783 1784
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1785 1786 1787 1788 1789 1790 1791
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1792 1793 1794
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1795
 */
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1850 1851 1852
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1853
#endif /* CONFIG_64BIT */
1854

1855 1856 1857 1858
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1859 1860 1861
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1862
	s64 delta;
1863 1864 1865 1866 1867 1868 1869 1870
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1871 1872 1873
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1874
	irq_time_write_begin();
1875 1876 1877 1878 1879 1880 1881
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1882
		__this_cpu_add(cpu_hardirq_time, delta);
1883
	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1884
		__this_cpu_add(cpu_softirq_time, delta);
1885

1886
	irq_time_write_end();
1887 1888
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1889
EXPORT_SYMBOL_GPL(account_system_vtime);
1890

1891
static void update_rq_clock_task(struct rq *rq, s64 delta)
1892
{
1893 1894
	s64 irq_delta;

1895
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1921 1922
}

1923
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1924

1925
static void update_rq_clock_task(struct rq *rq, s64 delta)
1926
{
1927
	rq->clock_task += delta;
1928 1929
}

1930
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1931

1932 1933 1934
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1935
#include "sched_autogroup.c"
1936
#include "sched_stoptask.c"
1937 1938 1939 1940
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1971
/*
I
Ingo Molnar 已提交
1972
 * __normal_prio - return the priority that is based on the static prio
1973 1974 1975
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1976
	return p->static_prio;
1977 1978
}

1979 1980 1981 1982 1983 1984 1985
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1986
static inline int normal_prio(struct task_struct *p)
1987 1988 1989
{
	int prio;

1990
	if (task_has_rt_policy(p))
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2004
static int effective_prio(struct task_struct *p)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2017 2018 2019 2020
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2021
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2022 2023 2024 2025
{
	return cpu_curr(task_cpu(p)) == p;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2059
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2060 2061 2062
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2063
#ifdef CONFIG_SMP
2064 2065 2066
/*
 * Is this task likely cache-hot:
 */
2067
static int
2068 2069 2070 2071
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2072 2073 2074
	if (p->sched_class != &fair_sched_class)
		return 0;

2075 2076 2077
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2078 2079 2080
	/*
	 * Buddy candidates are cache hot:
	 */
2081
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2082 2083
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2084 2085
		return 1;

2086 2087 2088 2089 2090
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2091 2092 2093 2094 2095
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2096
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2097
{
2098 2099 2100 2101 2102
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2103 2104
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2105 2106
#endif

2107
	trace_sched_migrate_task(p, new_cpu);
2108

2109 2110 2111 2112
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2113 2114

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2115 2116
}

2117
struct migration_arg {
2118
	struct task_struct *task;
L
Linus Torvalds 已提交
2119
	int dest_cpu;
2120
};
L
Linus Torvalds 已提交
2121

2122 2123
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2124 2125 2126 2127
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2128
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2129 2130 2131
{
	/*
	 * If the task is not on a runqueue (and not running), then
2132
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2133
	 */
2134
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2140 2141 2142 2143 2144 2145 2146
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2153
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2154 2155
{
	unsigned long flags;
I
Ingo Molnar 已提交
2156
	int running, on_rq;
R
Roland McGrath 已提交
2157
	unsigned long ncsw;
2158
	struct rq *rq;
L
Linus Torvalds 已提交
2159

2160 2161 2162 2163 2164 2165 2166 2167
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2180 2181 2182
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2183
			cpu_relax();
R
Roland McGrath 已提交
2184
		}
2185

2186 2187 2188 2189 2190 2191
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2192
		trace_sched_wait_task(p);
2193 2194
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2195
		ncsw = 0;
2196
		if (!match_state || p->state == match_state)
2197
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2198
		task_rq_unlock(rq, &flags);
2199

R
Roland McGrath 已提交
2200 2201 2202 2203 2204 2205
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2216

2217 2218 2219 2220 2221
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2222
		 * So if it was still runnable (but just not actively
2223 2224 2225 2226 2227 2228 2229
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2230

2231 2232 2233 2234 2235 2236 2237
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2238 2239

	return ncsw;
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2255
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2265
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2266
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2267

T
Thomas Gleixner 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2289
#ifdef CONFIG_SMP
2290 2291 2292
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2309 2310 2311 2312 2313 2314 2315 2316 2317
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2318 2319 2320 2321 2322
	}

	return dest_cpu;
}

2323
/*
2324
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2325
 */
2326
static inline
2327
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2328
{
2329
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2342
		     !cpu_online(cpu)))
2343
		cpu = select_fallback_rq(task_cpu(p), p);
2344 2345

	return cpu;
2346
}
2347 2348 2349 2350 2351 2352

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2353 2354
#endif

T
Tejun Heo 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2394 2395 2396
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2397 2398 2399
}

/**
L
Linus Torvalds 已提交
2400
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2401
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2402
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2403
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2411 2412
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2413
 */
P
Peter Zijlstra 已提交
2414 2415
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2416
{
2417
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2418
	unsigned long flags;
2419
	unsigned long en_flags = ENQUEUE_WAKEUP;
2420
	struct rq *rq;
L
Linus Torvalds 已提交
2421

P
Peter Zijlstra 已提交
2422
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2423

2424
	smp_wmb();
2425
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2426
	if (!(p->state & state))
L
Linus Torvalds 已提交
2427 2428
		goto out;

I
Ingo Molnar 已提交
2429
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2430 2431 2432
		goto out_running;

	cpu = task_cpu(p);
2433
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2439 2440 2441
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2442 2443
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2444
	 */
2445 2446 2447 2448 2449 2450
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2451
	p->state = TASK_WAKING;
2452

2453
	if (p->sched_class->task_waking) {
2454
		p->sched_class->task_waking(rq, p);
2455 2456
		en_flags |= ENQUEUE_WAKING;
	}
2457

2458 2459
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2460
		set_task_cpu(p, cpu);
2461
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2462

2463 2464
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2465

2466 2467 2468 2469 2470 2471 2472
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2473
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2474

2475 2476 2477 2478 2479 2480 2481
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2482
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2483 2484 2485 2486 2487
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2488
#endif /* CONFIG_SCHEDSTATS */
2489

L
Linus Torvalds 已提交
2490 2491
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2492 2493
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2494 2495
	success = 1;
out_running:
T
Tejun Heo 已提交
2496
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2497 2498
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2499
	put_cpu();
L
Linus Torvalds 已提交
2500 2501 2502 2503

	return success;
}

T
Tejun Heo 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2546
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2547
{
2548
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2549 2550 2551
}
EXPORT_SYMBOL(wake_up_process);

2552
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558 2559
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2560 2561 2562 2563 2564 2565 2566
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2567
	p->se.prev_sum_exec_runtime	= 0;
2568
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2569 2570

#ifdef CONFIG_SCHEDSTATS
2571
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2572
#endif
N
Nick Piggin 已提交
2573

P
Peter Zijlstra 已提交
2574
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2575
	p->se.on_rq = 0;
2576
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2577

2578 2579 2580
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2591
	/*
2592
	 * We mark the process as running here. This guarantees that
2593 2594 2595
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2596
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2597

2598 2599 2600 2601
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2602
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2603
			p->policy = SCHED_NORMAL;
2604 2605
			p->normal_prio = p->static_prio;
		}
2606

2607 2608
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2609
			p->normal_prio = p->static_prio;
2610 2611 2612
			set_load_weight(p);
		}

2613 2614 2615 2616 2617 2618
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2619

2620 2621 2622 2623 2624
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2625 2626
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2627

P
Peter Zijlstra 已提交
2628 2629 2630
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2631 2632 2633 2634 2635 2636 2637 2638
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2639
	set_task_cpu(p, cpu);
2640
	rcu_read_unlock();
2641

2642
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2643
	if (likely(sched_info_on()))
2644
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2645
#endif
2646
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2647 2648
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2649
#ifdef CONFIG_PREEMPT
2650
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2651
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2652
#endif
2653
#ifdef CONFIG_SMP
2654
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2655
#endif
2656

N
Nick Piggin 已提交
2657
	put_cpu();
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2667
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2668 2669
{
	unsigned long flags;
I
Ingo Molnar 已提交
2670
	struct rq *rq;
2671
	int cpu __maybe_unused = get_cpu();
2672 2673

#ifdef CONFIG_SMP
2674 2675 2676
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2677 2678 2679 2680 2681
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2682 2683
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2684
	 */
2685
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2686
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2687

2688
	p->state = TASK_RUNNING;
2689 2690 2691 2692
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2693
	activate_task(rq, p, 0);
2694
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2695
	check_preempt_curr(rq, p, WF_FORK);
2696
#ifdef CONFIG_SMP
2697 2698
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2699
#endif
I
Ingo Molnar 已提交
2700
	task_rq_unlock(rq, &flags);
2701
	put_cpu();
L
Linus Torvalds 已提交
2702 2703
}

2704 2705 2706
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2707
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2708
 * @notifier: notifier struct to register
2709 2710 2711 2712 2713 2714 2715 2716 2717
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2718
 * @notifier: notifier struct to unregister
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2748
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2760
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2761

2762 2763 2764
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2765
 * @prev: the current task that is being switched out
2766 2767 2768 2769 2770 2771 2772 2773 2774
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2775 2776 2777
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2778
{
2779
	fire_sched_out_preempt_notifiers(prev, next);
2780 2781 2782 2783
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2784 2785
/**
 * finish_task_switch - clean up after a task-switch
2786
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2787 2788
 * @prev: the thread we just switched away from.
 *
2789 2790 2791 2792
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2793 2794
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2795
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2796 2797 2798
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2799
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2800 2801 2802
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2803
	long prev_state;
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2809
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2810 2811
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2812
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2818
	prev_state = prev->state;
2819
	finish_arch_switch(prev);
2820 2821 2822
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823
	perf_event_task_sched_in(current);
2824 2825 2826
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2828

2829
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2830 2831
	if (mm)
		mmdrop(mm);
2832
	if (unlikely(prev_state == TASK_DEAD)) {
2833 2834 2835
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2836
		 */
2837
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2838
		put_task_struct(prev);
2839
	}
L
Linus Torvalds 已提交
2840 2841
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2857
		raw_spin_lock_irqsave(&rq->lock, flags);
2858 2859
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2860
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2861 2862 2863 2864 2865 2866

		rq->post_schedule = 0;
	}
}

#else
2867

2868 2869 2870 2871 2872 2873
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2874 2875
}

2876 2877
#endif

L
Linus Torvalds 已提交
2878 2879 2880 2881
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2882
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2883 2884
	__releases(rq->lock)
{
2885 2886
	struct rq *rq = this_rq();

2887
	finish_task_switch(rq, prev);
2888

2889 2890 2891 2892 2893
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2894

2895 2896 2897 2898
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2899
	if (current->set_child_tid)
2900
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2907
static inline void
2908
context_switch(struct rq *rq, struct task_struct *prev,
2909
	       struct task_struct *next)
L
Linus Torvalds 已提交
2910
{
I
Ingo Molnar 已提交
2911
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2912

2913
	prepare_task_switch(rq, prev, next);
2914
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2915 2916
	mm = next->mm;
	oldmm = prev->active_mm;
2917 2918 2919 2920 2921
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2922
	arch_start_context_switch(prev);
2923

2924
	if (!mm) {
L
Linus Torvalds 已提交
2925 2926 2927 2928 2929 2930
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2931
	if (!prev->mm) {
L
Linus Torvalds 已提交
2932 2933 2934
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2935 2936 2937 2938 2939 2940 2941
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2943
#endif
L
Linus Torvalds 已提交
2944 2945 2946 2947

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2948 2949 2950 2951 2952 2953 2954
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2972
}
L
Linus Torvalds 已提交
2973 2974

unsigned long nr_uninterruptible(void)
2975
{
L
Linus Torvalds 已提交
2976
	unsigned long i, sum = 0;
2977

2978
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2979
		sum += cpu_rq(i)->nr_uninterruptible;
2980 2981

	/*
L
Linus Torvalds 已提交
2982 2983
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2984
	 */
L
Linus Torvalds 已提交
2985 2986
	if (unlikely((long)sum < 0))
		sum = 0;
2987

L
Linus Torvalds 已提交
2988
	return sum;
2989 2990
}

L
Linus Torvalds 已提交
2991
unsigned long long nr_context_switches(void)
2992
{
2993 2994
	int i;
	unsigned long long sum = 0;
2995

2996
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2997
		sum += cpu_rq(i)->nr_switches;
2998

L
Linus Torvalds 已提交
2999 3000
	return sum;
}
3001

L
Linus Torvalds 已提交
3002 3003 3004
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3005

3006
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3007
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3008

L
Linus Torvalds 已提交
3009 3010
	return sum;
}
3011

3012
unsigned long nr_iowait_cpu(int cpu)
3013
{
3014
	struct rq *this = cpu_rq(cpu);
3015 3016
	return atomic_read(&this->nr_iowait);
}
3017

3018 3019 3020 3021 3022
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3023

3024

3025 3026 3027 3028 3029
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3046 3047 3048 3049 3050 3051 3052 3053 3054
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3206 3207 3208 3209 3210 3211 3212 3213 3214
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3215 3216 3217 3218

static void calc_global_nohz(unsigned long ticks)
{
}
3219 3220
#endif

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3234 3235 3236
}

/*
3237 3238
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3239
 */
3240
void calc_global_load(unsigned long ticks)
3241
{
3242
	long active;
L
Linus Torvalds 已提交
3243

3244 3245 3246
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3247
		return;
L
Linus Torvalds 已提交
3248

3249 3250
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3251

3252 3253 3254
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3255

3256 3257
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3258

3259
/*
3260 3261
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3262 3263 3264
 */
static void calc_load_account_active(struct rq *this_rq)
{
3265
	long delta;
3266

3267 3268
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3269

3270 3271 3272
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3273
		atomic_long_add(delta, &calc_load_tasks);
3274 3275

	this_rq->calc_load_update += LOAD_FREQ;
3276 3277
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3345
/*
I
Ingo Molnar 已提交
3346
 * Update rq->cpu_load[] statistics. This function is usually called every
3347 3348
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3349
 */
I
Ingo Molnar 已提交
3350
static void update_cpu_load(struct rq *this_rq)
3351
{
3352
	unsigned long this_load = this_rq->load.weight;
3353 3354
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3355
	int i, scale;
3356

I
Ingo Molnar 已提交
3357
	this_rq->nr_load_updates++;
3358

3359 3360 3361 3362 3363 3364 3365
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3366
	/* Update our load: */
3367 3368
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3369
		unsigned long old_load, new_load;
3370

I
Ingo Molnar 已提交
3371
		/* scale is effectively 1 << i now, and >> i divides by scale */
3372

I
Ingo Molnar 已提交
3373
		old_load = this_rq->cpu_load[i];
3374
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3375
		new_load = this_load;
I
Ingo Molnar 已提交
3376 3377 3378 3379 3380 3381
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3382 3383 3384
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3385
	}
3386 3387

	sched_avg_update(this_rq);
3388 3389 3390 3391 3392
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3393

3394
	calc_load_account_active(this_rq);
3395 3396
}

I
Ingo Molnar 已提交
3397
#ifdef CONFIG_SMP
3398

3399
/*
P
Peter Zijlstra 已提交
3400 3401
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3402
 */
P
Peter Zijlstra 已提交
3403
void sched_exec(void)
3404
{
P
Peter Zijlstra 已提交
3405
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3406
	unsigned long flags;
3407
	struct rq *rq;
3408
	int dest_cpu;
3409

L
Linus Torvalds 已提交
3410
	rq = task_rq_lock(p, &flags);
3411 3412 3413
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3414

3415
	/*
P
Peter Zijlstra 已提交
3416
	 * select_task_rq() can race against ->cpus_allowed
3417
	 */
3418
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3419
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3420
		struct migration_arg arg = { p, dest_cpu };
3421

L
Linus Torvalds 已提交
3422
		task_rq_unlock(rq, &flags);
3423
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3424 3425
		return;
	}
3426
unlock:
L
Linus Torvalds 已提交
3427 3428
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3429

L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3437
 * Return any ns on the sched_clock that have not yet been accounted in
3438
 * @p in case that task is currently running.
3439 3440
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3441
 */
3442 3443 3444 3445 3446 3447
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3448
		ns = rq->clock_task - p->se.exec_start;
3449 3450 3451 3452 3453 3454 3455
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3456
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3457 3458
{
	unsigned long flags;
3459
	struct rq *rq;
3460
	u64 ns = 0;
3461

3462
	rq = task_rq_lock(p, &flags);
3463 3464
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3465

3466 3467
	return ns;
}
3468

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3506
	task_rq_unlock(rq, &flags);
3507

L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513 3514
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3515
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3516
 */
3517 3518
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3519 3520 3521 3522
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3523
	/* Add user time to process. */
L
Linus Torvalds 已提交
3524
	p->utime = cputime_add(p->utime, cputime);
3525
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3526
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3534 3535

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3536 3537
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3538 3539
}

3540 3541 3542 3543
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3544
 * @cputime_scaled: cputime scaled by cpu frequency
3545
 */
3546 3547
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3548 3549 3550 3551 3552 3553
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3554
	/* Add guest time to process. */
3555
	p->utime = cputime_add(p->utime, cputime);
3556
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3557
	account_group_user_time(p, cputime);
3558 3559
	p->gtime = cputime_add(p->gtime, cputime);

3560
	/* Add guest time to cpustat. */
3561 3562 3563 3564 3565 3566 3567
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3568 3569
}

L
Linus Torvalds 已提交
3570 3571 3572 3573 3574
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3575
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3576 3577
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3578
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3579 3580 3581 3582
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3583
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3584
		account_guest_time(p, cputime, cputime_scaled);
3585 3586
		return;
	}
3587

3588
	/* Add system time to process. */
L
Linus Torvalds 已提交
3589
	p->stime = cputime_add(p->stime, cputime);
3590
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3591
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3597
	else if (in_serving_softirq())
L
Linus Torvalds 已提交
3598 3599
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3600 3601
		cpustat->system = cputime64_add(cpustat->system, tmp);

3602 3603
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3604 3605 3606 3607
	/* Account for system time used */
	acct_update_integrals(p);
}

3608
/*
L
Linus Torvalds 已提交
3609 3610
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3611
 */
3612
void account_steal_time(cputime_t cputime)
3613
{
3614 3615 3616 3617
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3618 3619
}

L
Linus Torvalds 已提交
3620
/*
3621 3622
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3623
 */
3624
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3625 3626
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3627
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3628
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3629

3630 3631 3632 3633
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3634 3635
}

3636 3637 3638 3639 3640 3641 3642 3643 3644
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3645
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3646 3647 3648
	struct rq *rq = this_rq();

	if (user_tick)
3649
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3650
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3651
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3652 3653
				    one_jiffy_scaled);
	else
3654
		account_idle_time(cputime_one_jiffy);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3674 3675
}

3676 3677
#endif

3678 3679 3680 3681
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3682
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3683
{
3684 3685
	*ut = p->utime;
	*st = p->stime;
3686 3687
}

3688
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3689
{
3690 3691 3692 3693 3694 3695
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3696 3697
}
#else
3698 3699

#ifndef nsecs_to_cputime
3700
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3701 3702
#endif

3703
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3704
{
3705
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3706 3707 3708 3709

	/*
	 * Use CFS's precise accounting:
	 */
3710
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3711 3712

	if (total) {
3713
		u64 temp = rtime;
3714

3715
		temp *= utime;
3716
		do_div(temp, total);
3717 3718 3719
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3720

3721 3722 3723
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3724
	p->prev_utime = max(p->prev_utime, utime);
3725
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3726

3727 3728
	*ut = p->prev_utime;
	*st = p->prev_stime;
3729 3730
}

3731 3732 3733 3734
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3735
{
3736 3737 3738
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3739

3740
	thread_group_cputime(p, &cputime);
3741

3742 3743
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3744

3745
	if (total) {
3746
		u64 temp = rtime;
3747

3748
		temp *= cputime.utime;
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3760 3761 3762
}
#endif

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3774
	struct task_struct *curr = rq->curr;
3775 3776

	sched_clock_tick();
I
Ingo Molnar 已提交
3777

3778
	raw_spin_lock(&rq->lock);
3779
	update_rq_clock(rq);
3780
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3781
	curr->sched_class->task_tick(rq, curr, 0);
3782
	raw_spin_unlock(&rq->lock);
3783

3784
	perf_event_task_tick();
3785

3786
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3787 3788
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3789
#endif
L
Linus Torvalds 已提交
3790 3791
}

3792
notrace unsigned long get_parent_ip(unsigned long addr)
3793 3794 3795 3796 3797 3798 3799 3800
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3801

3802 3803 3804
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3805
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3806
{
3807
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3808 3809 3810
	/*
	 * Underflow?
	 */
3811 3812
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3813
#endif
L
Linus Torvalds 已提交
3814
	preempt_count() += val;
3815
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3816 3817 3818
	/*
	 * Spinlock count overflowing soon?
	 */
3819 3820
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3821 3822 3823
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3824 3825 3826
}
EXPORT_SYMBOL(add_preempt_count);

3827
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3828
{
3829
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3830 3831 3832
	/*
	 * Underflow?
	 */
3833
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3834
		return;
L
Linus Torvalds 已提交
3835 3836 3837
	/*
	 * Is the spinlock portion underflowing?
	 */
3838 3839 3840
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3841
#endif
3842

3843 3844
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849 3850 3851
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3852
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3853
 */
I
Ingo Molnar 已提交
3854
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3855
{
3856 3857
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3858 3859
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3860

I
Ingo Molnar 已提交
3861
	debug_show_held_locks(prev);
3862
	print_modules();
I
Ingo Molnar 已提交
3863 3864
	if (irqs_disabled())
		print_irqtrace_events(prev);
3865 3866 3867 3868 3869

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3870
}
L
Linus Torvalds 已提交
3871

I
Ingo Molnar 已提交
3872 3873 3874 3875 3876
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3877
	/*
I
Ingo Molnar 已提交
3878
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3879 3880 3881
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3882
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3883 3884
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3885 3886
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3887
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3888 3889
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3890 3891
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3892 3893
	}
#endif
I
Ingo Molnar 已提交
3894 3895
}

P
Peter Zijlstra 已提交
3896
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3897
{
3898 3899
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3900
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3901 3902
}

I
Ingo Molnar 已提交
3903 3904 3905 3906
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3907
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3908
{
3909
	const struct sched_class *class;
I
Ingo Molnar 已提交
3910
	struct task_struct *p;
L
Linus Torvalds 已提交
3911 3912

	/*
I
Ingo Molnar 已提交
3913 3914
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3915
	 */
I
Ingo Molnar 已提交
3916
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3917
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3918 3919
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3920 3921
	}

3922
	for_each_class(class) {
3923
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3924 3925 3926
		if (p)
			return p;
	}
3927 3928

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3929
}
L
Linus Torvalds 已提交
3930

I
Ingo Molnar 已提交
3931 3932 3933
/*
 * schedule() is the main scheduler function.
 */
3934
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3935 3936
{
	struct task_struct *prev, *next;
3937
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3938
	struct rq *rq;
3939
	int cpu;
I
Ingo Molnar 已提交
3940

3941 3942
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3943 3944
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3945
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3946 3947 3948 3949 3950 3951
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3952

3953
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3954
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3955

3956
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3957

3958
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3959
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3960
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3961
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3976
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3977
		}
I
Ingo Molnar 已提交
3978
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3979 3980
	}

3981
	pre_schedule(rq, prev);
3982

I
Ingo Molnar 已提交
3983
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3984 3985
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3986
	put_prev_task(rq, prev);
3987
	next = pick_next_task(rq);
3988 3989
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3990 3991

	if (likely(prev != next)) {
3992
		sched_info_switch(prev, next);
3993
		perf_event_task_sched_out(prev, next);
3994

L
Linus Torvalds 已提交
3995 3996 3997 3998
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3999
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4000
		/*
4001 4002 4003 4004
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4005 4006 4007
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4008
	} else
4009
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4010

4011
	post_schedule(rq);
L
Linus Torvalds 已提交
4012

4013
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
4014
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4015

L
Linus Torvalds 已提交
4016
	preempt_enable_no_resched();
4017
	if (need_resched())
L
Linus Torvalds 已提交
4018 4019 4020 4021
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4022
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4042
		return 0;
4043 4044 4045 4046 4047 4048 4049 4050 4051
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4052
		return 0;
4053 4054 4055 4056 4057 4058

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4059
		return 0;
4060 4061 4062 4063 4064 4065 4066

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4067 4068 4069 4070 4071 4072 4073 4074
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4075
			break;
4076
		}
4077 4078 4079 4080 4081 4082 4083

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4084
		arch_mutex_cpu_relax();
4085
	}
4086

4087 4088 4089 4090
	return 1;
}
#endif

L
Linus Torvalds 已提交
4091 4092
#ifdef CONFIG_PREEMPT
/*
4093
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4094
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4095 4096
 * occur there and call schedule directly.
 */
4097
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4098 4099
{
	struct thread_info *ti = current_thread_info();
4100

L
Linus Torvalds 已提交
4101 4102
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4103
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4104
	 */
N
Nick Piggin 已提交
4105
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4106 4107
		return;

4108
	do {
4109
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4110
		schedule();
4111
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4112

4113 4114 4115 4116 4117
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4118
	} while (need_resched());
L
Linus Torvalds 已提交
4119 4120 4121 4122
}
EXPORT_SYMBOL(preempt_schedule);

/*
4123
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4124 4125 4126 4127 4128 4129 4130
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4131

4132
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4133 4134
	BUG_ON(ti->preempt_count || !irqs_disabled());

4135 4136 4137 4138 4139 4140
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4141

4142 4143 4144 4145 4146
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4147
	} while (need_resched());
L
Linus Torvalds 已提交
4148 4149 4150 4151
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4152
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4153
			  void *key)
L
Linus Torvalds 已提交
4154
{
P
Peter Zijlstra 已提交
4155
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4156 4157 4158 4159
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4160 4161
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4162 4163 4164
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4165
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4166 4167
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4168
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4169
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4170
{
4171
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4172

4173
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4174 4175
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4176
		if (curr->func(curr, mode, wake_flags, key) &&
4177
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4187
 * @key: is directly passed to the wakeup function
4188 4189 4190
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4191
 */
4192
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4193
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4206
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4207 4208 4209
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4210
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4211

4212 4213 4214 4215 4216
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4217
/**
4218
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4219 4220 4221
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4222
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4230 4231 4232
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4233
 */
4234 4235
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4236 4237
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4238
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4239 4240 4241 4242 4243

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4244
		wake_flags = 0;
L
Linus Torvalds 已提交
4245 4246

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4247
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4248 4249
	spin_unlock_irqrestore(&q->lock, flags);
}
4250 4251 4252 4253 4254 4255 4256 4257 4258
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4259 4260
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4261 4262 4263 4264 4265 4266 4267 4268
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4269 4270 4271
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4272
 */
4273
void complete(struct completion *x)
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4279
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4280 4281 4282 4283
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4284 4285 4286 4287 4288
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4289 4290 4291
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4292
 */
4293
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4299
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4300 4301 4302 4303
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4304 4305
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4306 4307 4308 4309
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4310
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4311
		do {
4312
			if (signal_pending_state(state, current)) {
4313 4314
				timeout = -ERESTARTSYS;
				break;
4315 4316
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4317 4318 4319
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4320
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4321
		__remove_wait_queue(&x->wait, &wait);
4322 4323
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4324 4325
	}
	x->done--;
4326
	return timeout ?: 1;
L
Linus Torvalds 已提交
4327 4328
}

4329 4330
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4331 4332 4333 4334
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4335
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4336
	spin_unlock_irq(&x->wait.lock);
4337 4338
	return timeout;
}
L
Linus Torvalds 已提交
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4350
void __sched wait_for_completion(struct completion *x)
4351 4352
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4353
}
4354
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4355

4356 4357 4358 4359 4360 4361 4362 4363 4364
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4365
unsigned long __sched
4366
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4367
{
4368
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4369
}
4370
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4371

4372 4373 4374 4375 4376 4377 4378
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4379
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4380
{
4381 4382 4383 4384
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4385
}
4386
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4387

4388 4389 4390 4391 4392 4393 4394 4395
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4396
long __sched
4397 4398
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4399
{
4400
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4401
}
4402
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4403

4404 4405 4406 4407 4408 4409 4410
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4420 4421 4422 4423 4424 4425 4426 4427 4428
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4429
long __sched
4430 4431 4432 4433 4434 4435 4436
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4451
	unsigned long flags;
4452 4453
	int ret = 1;

4454
	spin_lock_irqsave(&x->wait.lock, flags);
4455 4456 4457 4458
	if (!x->done)
		ret = 0;
	else
		x->done--;
4459
	spin_unlock_irqrestore(&x->wait.lock, flags);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4474
	unsigned long flags;
4475 4476
	int ret = 1;

4477
	spin_lock_irqsave(&x->wait.lock, flags);
4478 4479
	if (!x->done)
		ret = 0;
4480
	spin_unlock_irqrestore(&x->wait.lock, flags);
4481 4482 4483 4484
	return ret;
}
EXPORT_SYMBOL(completion_done);

4485 4486
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4487
{
I
Ingo Molnar 已提交
4488 4489 4490 4491
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4492

4493
	__set_current_state(state);
L
Linus Torvalds 已提交
4494

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4509 4510 4511
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4512
long __sched
I
Ingo Molnar 已提交
4513
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4514
{
4515
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4516 4517 4518
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4519
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4520
{
4521
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4522 4523 4524
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4525
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4526
{
4527
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4528 4529 4530
}
EXPORT_SYMBOL(sleep_on_timeout);

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4543
void rt_mutex_setprio(struct task_struct *p, int prio)
4544 4545
{
	unsigned long flags;
4546
	int oldprio, on_rq, running;
4547
	struct rq *rq;
4548
	const struct sched_class *prev_class;
4549 4550 4551 4552 4553

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4554
	trace_sched_pi_setprio(p, prio);
4555
	oldprio = p->prio;
4556
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4557
	on_rq = p->se.on_rq;
4558
	running = task_current(rq, p);
4559
	if (on_rq)
4560
		dequeue_task(rq, p, 0);
4561 4562
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4563 4564 4565 4566 4567 4568

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4569 4570
	p->prio = prio;

4571 4572
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4573
	if (on_rq) {
4574
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4575 4576

		check_class_changed(rq, p, prev_class, oldprio, running);
4577 4578 4579 4580 4581 4582
	}
	task_rq_unlock(rq, &flags);
}

#endif

4583
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4584
{
I
Ingo Molnar 已提交
4585
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4586
	unsigned long flags;
4587
	struct rq *rq;
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4600
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4601
	 */
4602
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4603 4604 4605
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4606
	on_rq = p->se.on_rq;
4607
	if (on_rq)
4608
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4609 4610

	p->static_prio = NICE_TO_PRIO(nice);
4611
	set_load_weight(p);
4612 4613 4614
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4615

I
Ingo Molnar 已提交
4616
	if (on_rq) {
4617
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4618
		/*
4619 4620
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4621
		 */
4622
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4630 4631 4632 4633 4634
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4635
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4636
{
4637 4638
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4639

4640
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4641 4642 4643
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4653
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4654
{
4655
	long nice, retval;
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4662 4663
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4664 4665 4666
	if (increment > 40)
		increment = 40;

4667
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4673 4674 4675
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4694
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4703
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4704 4705 4706
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4707
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4722
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727 4728 4729 4730
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4731
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4732
{
4733
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4734 4735 4736
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4737 4738
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4739
{
I
Ingo Molnar 已提交
4740
	BUG_ON(p->se.on_rq);
4741

L
Linus Torvalds 已提交
4742 4743
	p->policy = policy;
	p->rt_priority = prio;
4744 4745 4746
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4747 4748 4749 4750
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4751
	set_load_weight(p);
L
Linus Torvalds 已提交
4752 4753
}

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4770
static int __sched_setscheduler(struct task_struct *p, int policy,
4771
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4772
{
4773
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4774
	unsigned long flags;
4775
	const struct sched_class *prev_class;
4776
	struct rq *rq;
4777
	int reset_on_fork;
L
Linus Torvalds 已提交
4778

4779 4780
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4781 4782
recheck:
	/* double check policy once rq lock held */
4783 4784
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4785
		policy = oldpolicy = p->policy;
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4796 4797
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4798 4799
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4800 4801
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4802
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4803
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4804
		return -EINVAL;
4805
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4806 4807
		return -EINVAL;

4808 4809 4810
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4811
	if (user && !capable(CAP_SYS_NICE)) {
4812
		if (rt_policy(policy)) {
4813 4814
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4825 4826 4827 4828 4829 4830
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4831

4832
		/* can't change other user's priorities */
4833
		if (!check_same_owner(p))
4834
			return -EPERM;
4835 4836 4837 4838

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4839
	}
L
Linus Torvalds 已提交
4840

4841
	if (user) {
4842
		retval = security_task_setscheduler(p);
4843 4844 4845 4846
		if (retval)
			return retval;
	}

4847 4848 4849 4850
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4851
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4852 4853 4854 4855
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4856
	rq = __task_rq_lock(p);
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4882 4883 4884
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4885
		__task_rq_unlock(rq);
4886
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4887 4888
		goto recheck;
	}
I
Ingo Molnar 已提交
4889
	on_rq = p->se.on_rq;
4890
	running = task_current(rq, p);
4891
	if (on_rq)
4892
		deactivate_task(rq, p, 0);
4893 4894
	if (running)
		p->sched_class->put_prev_task(rq, p);
4895

4896 4897
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4898
	oldprio = p->prio;
4899
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4900
	__setscheduler(rq, p, policy, param->sched_priority);
4901

4902 4903
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4904 4905
	if (on_rq) {
		activate_task(rq, p, 0);
4906 4907

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4908
	}
4909
	__task_rq_unlock(rq);
4910
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4911

4912 4913
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4914 4915
	return 0;
}
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4926
		       const struct sched_param *param)
4927 4928 4929
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4930 4931
EXPORT_SYMBOL_GPL(sched_setscheduler);

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4944
			       const struct sched_param *param)
4945 4946 4947 4948
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4949 4950
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4951 4952 4953
{
	struct sched_param lparam;
	struct task_struct *p;
4954
	int retval;
L
Linus Torvalds 已提交
4955 4956 4957 4958 4959

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4960 4961 4962

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4963
	p = find_process_by_pid(pid);
4964 4965 4966
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4967

L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4977 4978
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4979
{
4980 4981 4982 4983
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4992
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998 4999 5000
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5001
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5002
{
5003
	struct task_struct *p;
5004
	int retval;
L
Linus Torvalds 已提交
5005 5006

	if (pid < 0)
5007
		return -EINVAL;
L
Linus Torvalds 已提交
5008 5009

	retval = -ESRCH;
5010
	rcu_read_lock();
L
Linus Torvalds 已提交
5011 5012 5013 5014
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5015 5016
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5017
	}
5018
	rcu_read_unlock();
L
Linus Torvalds 已提交
5019 5020 5021 5022
	return retval;
}

/**
5023
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5024 5025 5026
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5027
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5028 5029
{
	struct sched_param lp;
5030
	struct task_struct *p;
5031
	int retval;
L
Linus Torvalds 已提交
5032 5033

	if (!param || pid < 0)
5034
		return -EINVAL;
L
Linus Torvalds 已提交
5035

5036
	rcu_read_lock();
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5047
	rcu_read_unlock();
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5057
	rcu_read_unlock();
L
Linus Torvalds 已提交
5058 5059 5060
	return retval;
}

5061
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5062
{
5063
	cpumask_var_t cpus_allowed, new_mask;
5064 5065
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5066

5067
	get_online_cpus();
5068
	rcu_read_lock();
L
Linus Torvalds 已提交
5069 5070 5071

	p = find_process_by_pid(pid);
	if (!p) {
5072
		rcu_read_unlock();
5073
		put_online_cpus();
L
Linus Torvalds 已提交
5074 5075 5076
		return -ESRCH;
	}

5077
	/* Prevent p going away */
L
Linus Torvalds 已提交
5078
	get_task_struct(p);
5079
	rcu_read_unlock();
L
Linus Torvalds 已提交
5080

5081 5082 5083 5084 5085 5086 5087 5088
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5089
	retval = -EPERM;
5090
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5091 5092
		goto out_unlock;

5093
	retval = security_task_setscheduler(p);
5094 5095 5096
	if (retval)
		goto out_unlock;

5097 5098
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5099
again:
5100
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5101

P
Paul Menage 已提交
5102
	if (!retval) {
5103 5104
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5105 5106 5107 5108 5109
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5110
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5111 5112 5113
			goto again;
		}
	}
L
Linus Torvalds 已提交
5114
out_unlock:
5115 5116 5117 5118
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5119
	put_task_struct(p);
5120
	put_online_cpus();
L
Linus Torvalds 已提交
5121 5122 5123 5124
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5125
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5126
{
5127 5128 5129 5130 5131
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5141 5142
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5143
{
5144
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5145 5146
	int retval;

5147 5148
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5149

5150 5151 5152 5153 5154
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5155 5156
}

5157
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5158
{
5159
	struct task_struct *p;
5160 5161
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5162 5163
	int retval;

5164
	get_online_cpus();
5165
	rcu_read_lock();
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5172 5173 5174 5175
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5176
	rq = task_rq_lock(p, &flags);
5177
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5178
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5179 5180

out_unlock:
5181
	rcu_read_unlock();
5182
	put_online_cpus();
L
Linus Torvalds 已提交
5183

5184
	return retval;
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5193 5194
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5195 5196
{
	int ret;
5197
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5198

A
Anton Blanchard 已提交
5199
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5200 5201
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5202 5203
		return -EINVAL;

5204 5205
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5206

5207 5208
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5209
		size_t retlen = min_t(size_t, len, cpumask_size());
5210 5211

		if (copy_to_user(user_mask_ptr, mask, retlen))
5212 5213
			ret = -EFAULT;
		else
5214
			ret = retlen;
5215 5216
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5217

5218
	return ret;
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5224 5225
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5226
 */
5227
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5228
{
5229
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5230

5231
	schedstat_inc(rq, yld_count);
5232
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5239
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5240
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5248 5249 5250 5251 5252
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5253
static void __cond_resched(void)
L
Linus Torvalds 已提交
5254
{
5255 5256 5257
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5258 5259
}

5260
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5261
{
P
Peter Zijlstra 已提交
5262
	if (should_resched()) {
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267
		__cond_resched();
		return 1;
	}
	return 0;
}
5268
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5269 5270

/*
5271
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5272 5273
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5274
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5275 5276 5277
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5278
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5279
{
P
Peter Zijlstra 已提交
5280
	int resched = should_resched();
J
Jan Kara 已提交
5281 5282
	int ret = 0;

5283 5284
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5285
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5286
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5287
		if (resched)
N
Nick Piggin 已提交
5288 5289 5290
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5291
		ret = 1;
L
Linus Torvalds 已提交
5292 5293
		spin_lock(lock);
	}
J
Jan Kara 已提交
5294
	return ret;
L
Linus Torvalds 已提交
5295
}
5296
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5297

5298
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5299 5300 5301
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5302
	if (should_resched()) {
5303
		local_bh_enable();
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5310
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5311 5312 5313 5314

/**
 * yield - yield the current processor to other threads.
 *
5315
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5326
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5327 5328 5329 5330
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5331
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5332

5333
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5334
	atomic_inc(&rq->nr_iowait);
5335
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5336
	schedule();
5337
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5338
	atomic_dec(&rq->nr_iowait);
5339
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5345
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5346 5347
	long ret;

5348
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5349
	atomic_inc(&rq->nr_iowait);
5350
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5351
	ret = schedule_timeout(timeout);
5352
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5353
	atomic_dec(&rq->nr_iowait);
5354
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5365
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5375
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5376
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5390
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5400
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5401
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5415
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5416
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5417
{
5418
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5419
	unsigned int time_slice;
5420 5421
	unsigned long flags;
	struct rq *rq;
5422
	int retval;
L
Linus Torvalds 已提交
5423 5424 5425
	struct timespec t;

	if (pid < 0)
5426
		return -EINVAL;
L
Linus Torvalds 已提交
5427 5428

	retval = -ESRCH;
5429
	rcu_read_lock();
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5438 5439 5440
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5441

5442
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5443
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5444 5445
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5446

L
Linus Torvalds 已提交
5447
out_unlock:
5448
	rcu_read_unlock();
L
Linus Torvalds 已提交
5449 5450 5451
	return retval;
}

5452
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5453

5454
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5455 5456
{
	unsigned long free = 0;
5457
	unsigned state;
L
Linus Torvalds 已提交
5458 5459

	state = p->state ? __ffs(p->state) + 1 : 0;
5460
	printk(KERN_INFO "%-15.15s %c", p->comm,
5461
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5462
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5463
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5464
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5465
	else
P
Peter Zijlstra 已提交
5466
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5467 5468
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5469
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5470
	else
P
Peter Zijlstra 已提交
5471
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5472 5473
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5474
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5475
#endif
P
Peter Zijlstra 已提交
5476
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5477 5478
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5479

5480
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5481 5482
}

I
Ingo Molnar 已提交
5483
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5484
{
5485
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5486

5487
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5488 5489
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5490
#else
P
Peter Zijlstra 已提交
5491 5492
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5493 5494 5495 5496 5497 5498 5499 5500
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5501
		if (!state_filter || (p->state & state_filter))
5502
			sched_show_task(p);
L
Linus Torvalds 已提交
5503 5504
	} while_each_thread(g, p);

5505 5506
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5507 5508 5509
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5510
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5511 5512 5513
	/*
	 * Only show locks if all tasks are dumped:
	 */
5514
	if (!state_filter)
I
Ingo Molnar 已提交
5515
		debug_show_all_locks();
L
Linus Torvalds 已提交
5516 5517
}

I
Ingo Molnar 已提交
5518 5519
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5520
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5521 5522
}

5523 5524 5525 5526 5527 5528 5529 5530
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5531
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5532
{
5533
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5534 5535
	unsigned long flags;

5536
	raw_spin_lock_irqsave(&rq->lock, flags);
5537

I
Ingo Molnar 已提交
5538
	__sched_fork(idle);
5539
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5540 5541
	idle->se.exec_start = sched_clock();

5542
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5554
	__set_task_cpu(idle, cpu);
5555
	rcu_read_unlock();
L
Linus Torvalds 已提交
5556 5557

	rq->curr = rq->idle = idle;
5558 5559 5560
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5561
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5562 5563

	/* Set the preempt count _outside_ the spinlocks! */
5564 5565 5566
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5567
	task_thread_info(idle)->preempt_count = 0;
5568
#endif
I
Ingo Molnar 已提交
5569 5570 5571 5572
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5573
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5581
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5582
 */
5583
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5584

I
Ingo Molnar 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5594
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5595
{
5596
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5611

5612 5613
	return factor;
}
I
Ingo Molnar 已提交
5614

5615 5616 5617
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5618

5619 5620 5621 5622 5623 5624 5625
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5626

5627 5628 5629
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5630 5631
}

L
Linus Torvalds 已提交
5632 5633 5634 5635
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5636 5637 5638 5639 5640 5641
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5642
 *    it and puts it into the right queue.
5643 5644
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650 5651 5652
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5653
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5654 5655
 * call is not atomic; no spinlocks may be held.
 */
5656
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5657 5658
{
	unsigned long flags;
5659
	struct rq *rq;
5660
	unsigned int dest_cpu;
5661
	int ret = 0;
L
Linus Torvalds 已提交
5662

P
Peter Zijlstra 已提交
5663 5664 5665 5666 5667 5668 5669
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5670
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5671 5672 5673 5674
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5675

5676
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5677 5678 5679 5680
		ret = -EINVAL;
		goto out;
	}

5681
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5682
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5683 5684 5685 5686
		ret = -EINVAL;
		goto out;
	}

5687
	if (p->sched_class->set_cpus_allowed)
5688
		p->sched_class->set_cpus_allowed(p, new_mask);
5689
	else {
5690 5691
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5692 5693
	}

L
Linus Torvalds 已提交
5694
	/* Can the task run on the task's current CPU? If so, we're done */
5695
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5696 5697
		goto out;

5698
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5699
	if (migrate_task(p, rq)) {
5700
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5701 5702
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5703
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5709

L
Linus Torvalds 已提交
5710 5711
	return ret;
}
5712
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5713 5714

/*
I
Ingo Molnar 已提交
5715
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5716 5717 5718 5719 5720 5721
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5722 5723
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5724
 */
5725
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5726
{
5727
	struct rq *rq_dest, *rq_src;
5728
	int ret = 0;
L
Linus Torvalds 已提交
5729

5730
	if (unlikely(!cpu_active(dest_cpu)))
5731
		return ret;
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736 5737 5738

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5739
		goto done;
L
Linus Torvalds 已提交
5740
	/* Affinity changed (again). */
5741
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5742
		goto fail;
L
Linus Torvalds 已提交
5743

5744 5745 5746 5747 5748
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5749
		deactivate_task(rq_src, p, 0);
5750
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5751
		activate_task(rq_dest, p, 0);
5752
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5753
	}
L
Linus Torvalds 已提交
5754
done:
5755
	ret = 1;
L
Linus Torvalds 已提交
5756
fail:
L
Linus Torvalds 已提交
5757
	double_rq_unlock(rq_src, rq_dest);
5758
	return ret;
L
Linus Torvalds 已提交
5759 5760 5761
}

/*
5762 5763 5764
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5765
 */
5766
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5767
{
5768
	struct migration_arg *arg = data;
5769

5770 5771 5772 5773
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5774
	local_irq_disable();
5775
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5776
	local_irq_enable();
L
Linus Torvalds 已提交
5777
	return 0;
5778 5779
}

L
Linus Torvalds 已提交
5780
#ifdef CONFIG_HOTPLUG_CPU
5781

5782
/*
5783 5784
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5785
 */
5786
void idle_task_exit(void)
L
Linus Torvalds 已提交
5787
{
5788
	struct mm_struct *mm = current->active_mm;
5789

5790
	BUG_ON(cpu_online(smp_processor_id()));
5791

5792 5793 5794
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5804
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5805
{
5806
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5807 5808 5809 5810 5811

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5812
/*
5813
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5814
 */
5815
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5816
{
5817 5818
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5819 5820
}

5821
/*
5822 5823 5824 5825 5826 5827
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5828
 */
5829
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5830
{
5831
	struct rq *rq = cpu_rq(dead_cpu);
5832 5833
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5834 5835

	/*
5836 5837 5838 5839 5840 5841 5842
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5843
	 */
5844
	rq->stop = NULL;
5845

I
Ingo Molnar 已提交
5846
	for ( ; ; ) {
5847 5848 5849 5850 5851
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5852
			break;
5853

5854
		next = pick_next_task(rq);
5855
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5856
		next->sched_class->put_prev_task(rq, next);
5857

5858 5859 5860 5861 5862 5863 5864
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5865
	}
5866

5867
	rq->stop = stop;
5868
}
5869

L
Linus Torvalds 已提交
5870 5871
#endif /* CONFIG_HOTPLUG_CPU */

5872 5873 5874
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5875 5876
	{
		.procname	= "sched_domain",
5877
		.mode		= 0555,
5878
	},
5879
	{}
5880 5881 5882
};

static struct ctl_table sd_ctl_root[] = {
5883 5884
	{
		.procname	= "kernel",
5885
		.mode		= 0555,
5886 5887
		.child		= sd_ctl_dir,
	},
5888
	{}
5889 5890 5891 5892 5893
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5894
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5895 5896 5897 5898

	return entry;
}

5899 5900
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5901
	struct ctl_table *entry;
5902

5903 5904 5905
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5906
	 * will always be set. In the lowest directory the names are
5907 5908 5909
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5910 5911
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5912 5913 5914
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5915 5916 5917 5918 5919

	kfree(*tablep);
	*tablep = NULL;
}

5920
static void
5921
set_table_entry(struct ctl_table *entry,
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5935
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5936

5937 5938 5939
	if (table == NULL)
		return NULL;

5940
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5941
		sizeof(long), 0644, proc_doulongvec_minmax);
5942
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5943
		sizeof(long), 0644, proc_doulongvec_minmax);
5944
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5945
		sizeof(int), 0644, proc_dointvec_minmax);
5946
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5947
		sizeof(int), 0644, proc_dointvec_minmax);
5948
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5949
		sizeof(int), 0644, proc_dointvec_minmax);
5950
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5951
		sizeof(int), 0644, proc_dointvec_minmax);
5952
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5953
		sizeof(int), 0644, proc_dointvec_minmax);
5954
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5955
		sizeof(int), 0644, proc_dointvec_minmax);
5956
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5957
		sizeof(int), 0644, proc_dointvec_minmax);
5958
	set_table_entry(&table[9], "cache_nice_tries",
5959 5960
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5961
	set_table_entry(&table[10], "flags", &sd->flags,
5962
		sizeof(int), 0644, proc_dointvec_minmax);
5963 5964 5965
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5966 5967 5968 5969

	return table;
}

5970
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5971 5972 5973 5974 5975 5976 5977 5978 5979
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5980 5981
	if (table == NULL)
		return NULL;
5982 5983 5984 5985 5986

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5987
		entry->mode = 0555;
5988 5989 5990 5991 5992 5993 5994 5995
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5996
static void register_sched_domain_sysctl(void)
5997
{
5998
	int i, cpu_num = num_possible_cpus();
5999 6000 6001
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6002 6003 6004
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6005 6006 6007
	if (entry == NULL)
		return;

6008
	for_each_possible_cpu(i) {
6009 6010
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6011
		entry->mode = 0555;
6012
		entry->child = sd_alloc_ctl_cpu_table(i);
6013
		entry++;
6014
	}
6015 6016

	WARN_ON(sd_sysctl_header);
6017 6018
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6019

6020
/* may be called multiple times per register */
6021 6022
static void unregister_sched_domain_sysctl(void)
{
6023 6024
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6025
	sd_sysctl_header = NULL;
6026 6027
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6028
}
6029
#else
6030 6031 6032 6033
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6034 6035 6036 6037
{
}
#endif

6038 6039 6040 6041 6042
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6043
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6063
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6064 6065 6066 6067
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6068 6069 6070 6071
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6072 6073
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6074
{
6075
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6076
	unsigned long flags;
6077
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6078

6079
	switch (action & ~CPU_TASKS_FROZEN) {
6080

L
Linus Torvalds 已提交
6081
	case CPU_UP_PREPARE:
6082
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6083
		break;
6084

L
Linus Torvalds 已提交
6085
	case CPU_ONLINE:
6086
		/* Update our root-domain */
6087
		raw_spin_lock_irqsave(&rq->lock, flags);
6088
		if (rq->rd) {
6089
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6090 6091

			set_rq_online(rq);
6092
		}
6093
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6094
		break;
6095

L
Linus Torvalds 已提交
6096
#ifdef CONFIG_HOTPLUG_CPU
6097
	case CPU_DYING:
G
Gregory Haskins 已提交
6098
		/* Update our root-domain */
6099
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6100
		if (rq->rd) {
6101
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6102
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6103
		}
6104 6105
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6106
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6107 6108 6109

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6110
		break;
L
Linus Torvalds 已提交
6111 6112 6113 6114 6115
#endif
	}
	return NOTIFY_OK;
}

6116 6117 6118
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6119
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6120
 */
6121
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6122
	.notifier_call = migration_call,
6123
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6124 6125
};

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6151
static int __init migration_init(void)
L
Linus Torvalds 已提交
6152 6153
{
	void *cpu = (void *)(long)smp_processor_id();
6154
	int err;
6155

6156
	/* Initialize migration for the boot CPU */
6157 6158
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6159 6160
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6161

6162 6163 6164 6165
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6166
	return 0;
L
Linus Torvalds 已提交
6167
}
6168
early_initcall(migration_init);
L
Linus Torvalds 已提交
6169 6170 6171
#endif

#ifdef CONFIG_SMP
6172

6173
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6174

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6185
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6186
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6187
{
I
Ingo Molnar 已提交
6188
	struct sched_group *group = sd->groups;
6189
	char str[256];
L
Linus Torvalds 已提交
6190

R
Rusty Russell 已提交
6191
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6192
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6193 6194 6195 6196

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6197
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6198
		if (sd->parent)
P
Peter Zijlstra 已提交
6199 6200
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6201
		return -1;
N
Nick Piggin 已提交
6202 6203
	}

P
Peter Zijlstra 已提交
6204
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6205

6206
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6207 6208
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6209
	}
6210
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6211 6212
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6213
	}
L
Linus Torvalds 已提交
6214

I
Ingo Molnar 已提交
6215
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6216
	do {
I
Ingo Molnar 已提交
6217
		if (!group) {
P
Peter Zijlstra 已提交
6218 6219
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6220 6221 6222
			break;
		}

6223
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6224 6225 6226
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6227 6228
			break;
		}
L
Linus Torvalds 已提交
6229

6230
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6231 6232
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6233 6234
			break;
		}
L
Linus Torvalds 已提交
6235

6236
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6237 6238
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6239 6240
			break;
		}
L
Linus Torvalds 已提交
6241

6242
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6243

R
Rusty Russell 已提交
6244
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6245

P
Peter Zijlstra 已提交
6246
		printk(KERN_CONT " %s", str);
6247
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6248 6249
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6250
		}
L
Linus Torvalds 已提交
6251

I
Ingo Molnar 已提交
6252 6253
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6254
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6255

6256
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6257
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6258

6259 6260
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6261 6262
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6263 6264
	return 0;
}
L
Linus Torvalds 已提交
6265

I
Ingo Molnar 已提交
6266 6267
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6268
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6269
	int level = 0;
L
Linus Torvalds 已提交
6270

6271 6272 6273
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6274 6275 6276 6277
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6278

I
Ingo Molnar 已提交
6279 6280
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6281
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6282 6283 6284 6285
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6286
	for (;;) {
6287
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6288
			break;
L
Linus Torvalds 已提交
6289 6290
		level++;
		sd = sd->parent;
6291
		if (!sd)
I
Ingo Molnar 已提交
6292 6293
			break;
	}
6294
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6295
}
6296
#else /* !CONFIG_SCHED_DEBUG */
6297
# define sched_domain_debug(sd, cpu) do { } while (0)
6298
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6299

6300
static int sd_degenerate(struct sched_domain *sd)
6301
{
6302
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6303 6304 6305 6306 6307 6308
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6309 6310 6311
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6312 6313 6314 6315 6316
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6317
	if (sd->flags & (SD_WAKE_AFFINE))
6318 6319 6320 6321 6322
		return 0;

	return 1;
}

6323 6324
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6325 6326 6327 6328 6329 6330
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6331
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6332 6333 6334 6335 6336 6337 6338
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6339 6340 6341
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6342 6343
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6344 6345 6346 6347 6348 6349 6350
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6351 6352
static void free_rootdomain(struct root_domain *rd)
{
6353 6354
	synchronize_sched();

6355 6356
	cpupri_cleanup(&rd->cpupri);

6357 6358 6359 6360 6361 6362
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6363 6364
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6365
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6366 6367
	unsigned long flags;

6368
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6369 6370

	if (rq->rd) {
I
Ingo Molnar 已提交
6371
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6372

6373
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6374
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6375

6376
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6377

I
Ingo Molnar 已提交
6378 6379 6380 6381 6382 6383 6384
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6385 6386 6387 6388 6389
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6390
	cpumask_set_cpu(rq->cpu, rd->span);
6391
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6392
		set_rq_online(rq);
G
Gregory Haskins 已提交
6393

6394
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6395 6396 6397

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6398 6399
}

6400
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6401 6402 6403
{
	memset(rd, 0, sizeof(*rd));

6404
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6405
		goto out;
6406
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6407
		goto free_span;
6408
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6409
		goto free_online;
6410

6411
	if (cpupri_init(&rd->cpupri) != 0)
6412
		goto free_rto_mask;
6413
	return 0;
6414

6415 6416
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6417 6418 6419 6420
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6421
out:
6422
	return -ENOMEM;
G
Gregory Haskins 已提交
6423 6424 6425 6426
}

static void init_defrootdomain(void)
{
6427
	init_rootdomain(&def_root_domain);
6428

G
Gregory Haskins 已提交
6429 6430 6431
	atomic_set(&def_root_domain.refcount, 1);
}

6432
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6433 6434 6435 6436 6437 6438 6439
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6440
	if (init_rootdomain(rd) != 0) {
6441 6442 6443
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6444 6445 6446 6447

	return rd;
}

L
Linus Torvalds 已提交
6448
/*
I
Ingo Molnar 已提交
6449
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6450 6451
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6452 6453
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6454
{
6455
	struct rq *rq = cpu_rq(cpu);
6456 6457
	struct sched_domain *tmp;

6458 6459 6460
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6461
	/* Remove the sched domains which do not contribute to scheduling. */
6462
	for (tmp = sd; tmp; ) {
6463 6464 6465
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6466

6467
		if (sd_parent_degenerate(tmp, parent)) {
6468
			tmp->parent = parent->parent;
6469 6470
			if (parent->parent)
				parent->parent->child = tmp;
6471 6472
		} else
			tmp = tmp->parent;
6473 6474
	}

6475
	if (sd && sd_degenerate(sd)) {
6476
		sd = sd->parent;
6477 6478 6479
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6480 6481 6482

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6483
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6484
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6485 6486 6487
}

/* cpus with isolated domains */
6488
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6489 6490 6491 6492

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6493
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6494
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6495 6496 6497
	return 1;
}

I
Ingo Molnar 已提交
6498
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6499 6500

/*
6501 6502
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6503 6504
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6510
static void
6511 6512 6513
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6514
					struct sched_group **sg,
6515 6516
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6517 6518 6519 6520
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6521
	cpumask_clear(covered);
6522

6523
	for_each_cpu(i, span) {
6524
		struct sched_group *sg;
6525
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6526 6527
		int j;

6528
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6529 6530
			continue;

6531
		cpumask_clear(sched_group_cpus(sg));
6532
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6533

6534
		for_each_cpu(j, span) {
6535
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6536 6537
				continue;

6538
			cpumask_set_cpu(j, covered);
6539
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6550
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6551

6552
#ifdef CONFIG_NUMA
6553

6554 6555 6556 6557 6558
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6559
 * Find the next node to include in a given scheduling domain. Simply
6560 6561 6562 6563
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6564
static int find_next_best_node(int node, nodemask_t *used_nodes)
6565 6566 6567 6568 6569
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6570
	for (i = 0; i < nr_node_ids; i++) {
6571
		/* Start at @node */
6572
		n = (node + i) % nr_node_ids;
6573 6574 6575 6576 6577

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6578
		if (node_isset(n, *used_nodes))
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6590
	node_set(best_node, *used_nodes);
6591 6592 6593 6594 6595 6596
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6597
 * @span: resulting cpumask
6598
 *
I
Ingo Molnar 已提交
6599
 * Given a node, construct a good cpumask for its sched_domain to span. It
6600 6601 6602
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6603
static void sched_domain_node_span(int node, struct cpumask *span)
6604
{
6605
	nodemask_t used_nodes;
6606
	int i;
6607

6608
	cpumask_clear(span);
6609
	nodes_clear(used_nodes);
6610

6611
	cpumask_or(span, span, cpumask_of_node(node));
6612
	node_set(node, used_nodes);
6613 6614

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6615
		int next_node = find_next_best_node(node, &used_nodes);
6616

6617
		cpumask_or(span, span, cpumask_of_node(next_node));
6618 6619
	}
}
6620
#endif /* CONFIG_NUMA */
6621

6622
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6623

6624 6625
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6626 6627 6628
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6650
	cpumask_var_t		this_book_map;
6651 6652 6653 6654 6655 6656
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6657 6658 6659 6660 6661
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6662
	sa_this_book_map,
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6675
/*
6676
 * SMT sched-domains:
6677
 */
L
Linus Torvalds 已提交
6678
#ifdef CONFIG_SCHED_SMT
6679
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6680
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6681

I
Ingo Molnar 已提交
6682
static int
6683 6684
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6685
{
6686
	if (sg)
6687
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6688 6689
	return cpu;
}
6690
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6691

6692 6693 6694
/*
 * multi-core sched-domains:
 */
6695
#ifdef CONFIG_SCHED_MC
6696 6697
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6698

I
Ingo Molnar 已提交
6699
static int
6700 6701
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6702
{
6703
	int group;
6704
#ifdef CONFIG_SCHED_SMT
6705
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6706
	group = cpumask_first(mask);
6707 6708 6709
#else
	group = cpu;
#endif
6710
	if (sg)
6711
		*sg = &per_cpu(sched_group_core, group).sg;
6712
	return group;
6713
}
6714
#endif /* CONFIG_SCHED_MC */
6715

6716 6717 6718 6719 6720 6721 6722
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6723
static int
6724 6725
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6726
{
6727 6728 6729 6730 6731 6732 6733 6734
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6735
	if (sg)
6736 6737
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6738
}
6739
#endif /* CONFIG_SCHED_BOOK */
6740

6741 6742
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6743

I
Ingo Molnar 已提交
6744
static int
6745 6746
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6747
{
6748
	int group;
6749 6750 6751 6752
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6753
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6754
	group = cpumask_first(mask);
6755
#elif defined(CONFIG_SCHED_SMT)
6756
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6757
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6758
#else
6759
	group = cpu;
L
Linus Torvalds 已提交
6760
#endif
6761
	if (sg)
6762
		*sg = &per_cpu(sched_group_phys, group).sg;
6763
	return group;
L
Linus Torvalds 已提交
6764 6765 6766 6767
}

#ifdef CONFIG_NUMA
/*
6768 6769 6770
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6771
 */
6772
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6773
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6774

6775
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6776
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6777

6778 6779 6780
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6781
{
6782 6783
	int group;

6784
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6785
	group = cpumask_first(nodemask);
6786 6787

	if (sg)
6788
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6789
	return group;
L
Linus Torvalds 已提交
6790
}
6791

6792 6793 6794 6795 6796 6797 6798
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6799
	do {
6800
		for_each_cpu(j, sched_group_cpus(sg)) {
6801
			struct sched_domain *sd;
6802

6803
			sd = &per_cpu(phys_domains, j).sd;
6804
			if (j != group_first_cpu(sd->groups)) {
6805 6806 6807 6808 6809 6810
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6811

6812
			sg->cpu_power += sd->groups->cpu_power;
6813 6814 6815
		}
		sg = sg->next;
	} while (sg != group_head);
6816
}
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6838 6839
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6840 6841 6842 6843 6844 6845 6846 6847 6848
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6849
	sg->cpu_power = 0;
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6868 6869
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6870 6871
			return -ENOMEM;
		}
6872
		sg->cpu_power = 0;
6873 6874 6875 6876 6877 6878 6879 6880 6881
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6882
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6883

6884
#ifdef CONFIG_NUMA
6885
/* Free memory allocated for various sched_group structures */
6886 6887
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6888
{
6889
	int cpu, i;
6890

6891
	for_each_cpu(cpu, cpu_map) {
6892 6893 6894 6895 6896 6897
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6898
		for (i = 0; i < nr_node_ids; i++) {
6899 6900
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6901
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6902
			if (cpumask_empty(nodemask))
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6919
#else /* !CONFIG_NUMA */
6920 6921
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6922 6923
{
}
6924
#endif /* CONFIG_NUMA */
6925

6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6940 6941
	long power;
	int weight;
6942 6943 6944

	WARN_ON(!sd || !sd->groups);

6945
	if (cpu != group_first_cpu(sd->groups))
6946 6947
		return;

6948 6949
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

6950 6951
	child = sd->child;

6952
	sd->groups->cpu_power = 0;
6953

6954 6955 6956 6957 6958
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6959 6960 6961
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6962
		 */
P
Peter Zijlstra 已提交
6963 6964
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6965
			power /= weight;
P
Peter Zijlstra 已提交
6966 6967
			power >>= SCHED_LOAD_SHIFT;
		}
6968
		sd->groups->cpu_power += power;
6969 6970 6971 6972
		return;
	}

	/*
6973
	 * Add cpu_power of each child group to this groups cpu_power.
6974 6975 6976
	 */
	group = child->groups;
	do {
6977
		sd->groups->cpu_power += group->cpu_power;
6978 6979 6980 6981
		group = group->next;
	} while (group != child->groups);
}

6982 6983 6984 6985 6986
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6987 6988 6989 6990 6991 6992
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6993
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6994

6995 6996 6997 6998 6999
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7000
	sd->level = SD_LV_##type;				\
7001
	SD_INIT_NAME(sd, type);					\
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7015 7016 7017
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7018

7019 7020 7021 7022
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7023 7024 7025 7026 7027 7028
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7047
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7048 7049
	} else {
		/* turn on idle balance on this domain */
7050
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7051 7052 7053
	}
}

7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7067 7068
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7069 7070 7071 7072 7073 7074 7075
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7076
#ifdef CONFIG_NUMA
7077 7078 7079 7080 7081 7082 7083
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7084
#endif
7085 7086 7087 7088
	case sa_none:
		break;
	}
}
7089

7090 7091 7092
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7093
#ifdef CONFIG_NUMA
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7104
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7105
		return sa_notcovered;
7106
	}
7107
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7108
#endif
7109 7110 7111 7112 7113 7114
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7115
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7116
		return sa_this_core_map;
7117 7118
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7119 7120 7121 7122
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7123
		printk(KERN_WARNING "Cannot alloc root domain\n");
7124
		return sa_tmpmask;
G
Gregory Haskins 已提交
7125
	}
7126 7127
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7128

7129 7130 7131 7132
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7133
#ifdef CONFIG_NUMA
7134
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7135

7136 7137 7138 7139 7140
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7141
		set_domain_attribute(sd, attr);
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7156
#endif
7157 7158
	return sd;
}
L
Linus Torvalds 已提交
7159

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7175

7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7193 7194 7195 7196 7197
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7198
#ifdef CONFIG_SCHED_MC
7199 7200 7201 7202 7203 7204 7205
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7206
#endif
7207 7208
	return sd;
}
7209

7210 7211 7212 7213 7214
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7215
#ifdef CONFIG_SCHED_SMT
7216 7217 7218 7219 7220 7221 7222
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7223
#endif
7224 7225
	return sd;
}
L
Linus Torvalds 已提交
7226

7227 7228 7229 7230
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7231
#ifdef CONFIG_SCHED_SMT
7232 7233 7234 7235 7236 7237 7238 7239
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7240
#endif
7241
#ifdef CONFIG_SCHED_MC
7242 7243 7244 7245 7246 7247 7248
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7249 7250 7251 7252 7253 7254 7255 7256 7257
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7258
#endif
7259 7260 7261 7262 7263 7264 7265
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7266
#ifdef CONFIG_NUMA
7267 7268 7269 7270 7271
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7272 7273
	default:
		break;
7274
	}
7275
}
7276

7277 7278 7279 7280 7281 7282 7283 7284 7285
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7286
	struct sched_domain *sd;
7287
	int i;
7288
#ifdef CONFIG_NUMA
7289
	d.sd_allnodes = 0;
7290
#endif
7291

7292 7293 7294 7295
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7296

L
Linus Torvalds 已提交
7297
	/*
7298
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7299
	 */
7300
	for_each_cpu(i, cpu_map) {
7301 7302
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7303

7304
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7305
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7306
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7307
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7308
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7309
	}
7310

7311
	for_each_cpu(i, cpu_map) {
7312
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7313
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7314
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7315
	}
7316

L
Linus Torvalds 已提交
7317
	/* Set up physical groups */
7318 7319
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7320

L
Linus Torvalds 已提交
7321 7322
#ifdef CONFIG_NUMA
	/* Set up node groups */
7323 7324
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7325

7326 7327
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7328
			goto error;
L
Linus Torvalds 已提交
7329 7330 7331
#endif

	/* Calculate CPU power for physical packages and nodes */
7332
#ifdef CONFIG_SCHED_SMT
7333
	for_each_cpu(i, cpu_map) {
7334
		sd = &per_cpu(cpu_domains, i).sd;
7335
		init_sched_groups_power(i, sd);
7336
	}
L
Linus Torvalds 已提交
7337
#endif
7338
#ifdef CONFIG_SCHED_MC
7339
	for_each_cpu(i, cpu_map) {
7340
		sd = &per_cpu(core_domains, i).sd;
7341
		init_sched_groups_power(i, sd);
7342 7343
	}
#endif
7344 7345 7346 7347 7348 7349
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7350

7351
	for_each_cpu(i, cpu_map) {
7352
		sd = &per_cpu(phys_domains, i).sd;
7353
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7354 7355
	}

7356
#ifdef CONFIG_NUMA
7357
	for (i = 0; i < nr_node_ids; i++)
7358
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7359

7360
	if (d.sd_allnodes) {
7361
		struct sched_group *sg;
7362

7363
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7364
								d.tmpmask);
7365 7366
		init_numa_sched_groups_power(sg);
	}
7367 7368
#endif

L
Linus Torvalds 已提交
7369
	/* Attach the domains */
7370
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7371
#ifdef CONFIG_SCHED_SMT
7372
		sd = &per_cpu(cpu_domains, i).sd;
7373
#elif defined(CONFIG_SCHED_MC)
7374
		sd = &per_cpu(core_domains, i).sd;
7375 7376
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7377
#else
7378
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7379
#endif
7380
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7381
	}
7382

7383 7384 7385
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7386 7387

error:
7388 7389
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7390
}
P
Paul Jackson 已提交
7391

7392
static int build_sched_domains(const struct cpumask *cpu_map)
7393 7394 7395 7396
{
	return __build_sched_domains(cpu_map, NULL);
}

7397
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7398
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7399 7400
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7401 7402 7403

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7404 7405
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7406
 */
7407
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7408

7409 7410 7411 7412 7413 7414
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7415
{
7416
	return 0;
7417 7418
}

7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7444
/*
I
Ingo Molnar 已提交
7445
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7446 7447
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7448
 */
7449
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7450
{
7451 7452
	int err;

7453
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7454
	ndoms_cur = 1;
7455
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7456
	if (!doms_cur)
7457 7458
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7459
	dattr_cur = NULL;
7460
	err = build_sched_domains(doms_cur[0]);
7461
	register_sched_domain_sysctl();
7462 7463

	return err;
7464 7465
}

7466 7467
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7468
{
7469
	free_sched_groups(cpu_map, tmpmask);
7470
}
L
Linus Torvalds 已提交
7471

7472 7473 7474 7475
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7476
static void detach_destroy_domains(const struct cpumask *cpu_map)
7477
{
7478 7479
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7480 7481
	int i;

7482
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7483
		cpu_attach_domain(NULL, &def_root_domain, i);
7484
	synchronize_sched();
7485
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7486 7487
}

7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7504 7505
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7506
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7507 7508 7509
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7510
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7511 7512 7513
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7514 7515 7516
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7517 7518 7519 7520 7521 7522
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7523
 *
7524
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7525 7526
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7527
 *
P
Paul Jackson 已提交
7528 7529
 * Call with hotplug lock held
 */
7530
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7531
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7532
{
7533
	int i, j, n;
7534
	int new_topology;
P
Paul Jackson 已提交
7535

7536
	mutex_lock(&sched_domains_mutex);
7537

7538 7539 7540
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7541 7542 7543
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7544
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7545 7546 7547

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7548
		for (j = 0; j < n && !new_topology; j++) {
7549
			if (cpumask_equal(doms_cur[i], doms_new[j])
7550
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7551 7552 7553
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7554
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7555 7556 7557 7558
match1:
		;
	}

7559 7560
	if (doms_new == NULL) {
		ndoms_cur = 0;
7561
		doms_new = &fallback_doms;
7562
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7563
		WARN_ON_ONCE(dattr_new);
7564 7565
	}

P
Paul Jackson 已提交
7566 7567
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7568
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7569
			if (cpumask_equal(doms_new[i], doms_cur[j])
7570
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7571 7572 7573
				goto match2;
		}
		/* no match - add a new doms_new */
7574
		__build_sched_domains(doms_new[i],
7575
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7576 7577 7578 7579 7580
match2:
		;
	}

	/* Remember the new sched domains */
7581 7582
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7583
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7584
	doms_cur = doms_new;
7585
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7586
	ndoms_cur = ndoms_new;
7587 7588

	register_sched_domain_sysctl();
7589

7590
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7591 7592
}

7593
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7594
static void arch_reinit_sched_domains(void)
7595
{
7596
	get_online_cpus();
7597 7598 7599 7600

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7601
	rebuild_sched_domains();
7602
	put_online_cpus();
7603 7604 7605 7606
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7607
	unsigned int level = 0;
7608

7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7620 7621 7622
		return -EINVAL;

	if (smt)
7623
		sched_smt_power_savings = level;
7624
	else
7625
		sched_mc_power_savings = level;
7626

7627
	arch_reinit_sched_domains();
7628

7629
	return count;
7630 7631 7632
}

#ifdef CONFIG_SCHED_MC
7633
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7634
					   struct sysdev_class_attribute *attr,
7635
					   char *page)
7636 7637 7638
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7639
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7640
					    struct sysdev_class_attribute *attr,
7641
					    const char *buf, size_t count)
7642 7643 7644
{
	return sched_power_savings_store(buf, count, 0);
}
7645 7646 7647
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7648 7649 7650
#endif

#ifdef CONFIG_SCHED_SMT
7651
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7652
					    struct sysdev_class_attribute *attr,
7653
					    char *page)
7654 7655 7656
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7657
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7658
					     struct sysdev_class_attribute *attr,
7659
					     const char *buf, size_t count)
7660 7661 7662
{
	return sched_power_savings_store(buf, count, 1);
}
7663 7664
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7665 7666 7667
		   sched_smt_power_savings_store);
#endif

7668
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7684
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7685

L
Linus Torvalds 已提交
7686
/*
7687 7688 7689
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7690
 */
7691 7692
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7693
{
7694
	switch (action & ~CPU_TASKS_FROZEN) {
7695
	case CPU_ONLINE:
7696
	case CPU_DOWN_FAILED:
7697
		cpuset_update_active_cpus();
7698
		return NOTIFY_OK;
7699 7700 7701 7702
	default:
		return NOTIFY_DONE;
	}
}
7703

7704 7705
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7706 7707 7708 7709 7710
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7711 7712 7713 7714 7715 7716 7717
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7718
{
P
Peter Zijlstra 已提交
7719 7720
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7721 7722
	switch (action) {
	case CPU_DOWN_PREPARE:
7723
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7724
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7725 7726 7727
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7728
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7729
	case CPU_ONLINE:
7730
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7731
		enable_runtime(cpu_rq(cpu));
7732 7733
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7734 7735 7736 7737 7738 7739 7740
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7741 7742 7743
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7744
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7745

7746 7747 7748 7749 7750
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7751
	get_online_cpus();
7752
	mutex_lock(&sched_domains_mutex);
7753
	arch_init_sched_domains(cpu_active_mask);
7754 7755 7756
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7757
	mutex_unlock(&sched_domains_mutex);
7758
	put_online_cpus();
7759

7760 7761
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7762 7763 7764 7765

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7766
	init_hrtick();
7767 7768

	/* Move init over to a non-isolated CPU */
7769
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7770
		BUG();
I
Ingo Molnar 已提交
7771
	sched_init_granularity();
7772
	free_cpumask_var(non_isolated_cpus);
7773

7774
	init_sched_rt_class();
L
Linus Torvalds 已提交
7775 7776 7777 7778
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7779
	sched_init_granularity();
L
Linus Torvalds 已提交
7780 7781 7782
}
#endif /* CONFIG_SMP */

7783 7784
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7785 7786 7787 7788 7789 7790 7791
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7792
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7793 7794
{
	cfs_rq->tasks_timeline = RB_ROOT;
7795
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7796 7797 7798
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7799
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7800 7801
}

P
Peter Zijlstra 已提交
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7815
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7816
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7817
#ifdef CONFIG_SMP
7818
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7819 7820
#endif
#endif
P
Peter Zijlstra 已提交
7821 7822 7823
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7824
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7825 7826 7827 7828
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7829
	rt_rq->rt_runtime = 0;
7830
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7831

7832
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7833
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7834 7835
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7836 7837
}

P
Peter Zijlstra 已提交
7838
#ifdef CONFIG_FAIR_GROUP_SCHED
7839
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7840
				struct sched_entity *se, int cpu,
7841
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7842
{
7843
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7844 7845 7846 7847 7848
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
7849
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7850 7851 7852
	if (!se)
		return;

7853 7854 7855 7856 7857
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7858
	se->my_q = cfs_rq;
7859
	update_load_set(&se->load, 0);
7860
	se->parent = parent;
P
Peter Zijlstra 已提交
7861
}
7862
#endif
P
Peter Zijlstra 已提交
7863

7864
#ifdef CONFIG_RT_GROUP_SCHED
7865
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7866
		struct sched_rt_entity *rt_se, int cpu,
7867
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7868
{
7869 7870
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7871 7872 7873
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7874
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7875 7876

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7877 7878 7879
	if (!rt_se)
		return;

7880 7881 7882 7883 7884
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7885
	rt_se->my_q = rt_rq;
7886
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7887 7888 7889 7890
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7891 7892
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7893
	int i, j;
7894 7895 7896 7897 7898 7899 7900
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7901
#endif
7902
#ifdef CONFIG_CPUMASK_OFFSTACK
7903
	alloc_size += num_possible_cpus() * cpumask_size();
7904 7905
#endif
	if (alloc_size) {
7906
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7907 7908

#ifdef CONFIG_FAIR_GROUP_SCHED
7909
		root_task_group.se = (struct sched_entity **)ptr;
7910 7911
		ptr += nr_cpu_ids * sizeof(void **);

7912
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7913
		ptr += nr_cpu_ids * sizeof(void **);
7914

7915
#endif /* CONFIG_FAIR_GROUP_SCHED */
7916
#ifdef CONFIG_RT_GROUP_SCHED
7917
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7918 7919
		ptr += nr_cpu_ids * sizeof(void **);

7920
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7921 7922
		ptr += nr_cpu_ids * sizeof(void **);

7923
#endif /* CONFIG_RT_GROUP_SCHED */
7924 7925 7926 7927 7928 7929
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7930
	}
I
Ingo Molnar 已提交
7931

G
Gregory Haskins 已提交
7932 7933 7934 7935
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7936 7937 7938 7939
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7940
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7941
			global_rt_period(), global_rt_runtime());
7942
#endif /* CONFIG_RT_GROUP_SCHED */
7943

D
Dhaval Giani 已提交
7944
#ifdef CONFIG_CGROUP_SCHED
7945 7946
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7947
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7948
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7949

7950
	for_each_possible_cpu(i) {
7951
		struct rq *rq;
L
Linus Torvalds 已提交
7952 7953

		rq = cpu_rq(i);
7954
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7955
		rq->nr_running = 0;
7956 7957
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7958
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7959
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7960
#ifdef CONFIG_FAIR_GROUP_SCHED
7961
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
7962
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7963
		/*
7964
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7965 7966 7967 7968
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7969
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7970 7971 7972
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7973
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7974 7975 7976
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7977
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7978
		 *
7979 7980
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7981
		 */
7982
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7983 7984 7985
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7986
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7987
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7988
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7989
#endif
L
Linus Torvalds 已提交
7990

I
Ingo Molnar 已提交
7991 7992
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7993 7994 7995

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7996
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7997
		rq->sd = NULL;
G
Gregory Haskins 已提交
7998
		rq->rd = NULL;
7999
		rq->cpu_power = SCHED_LOAD_SCALE;
8000
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8001
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8002
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8003
		rq->push_cpu = 0;
8004
		rq->cpu = i;
8005
		rq->online = 0;
8006 8007
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8008
		rq_attach_root(rq, &def_root_domain);
8009 8010 8011 8012
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8013
#endif
P
Peter Zijlstra 已提交
8014
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8015 8016 8017
		atomic_set(&rq->nr_iowait, 0);
	}

8018
	set_load_weight(&init_task);
8019

8020 8021 8022 8023
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8024
#ifdef CONFIG_SMP
8025
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8026 8027
#endif

8028
#ifdef CONFIG_RT_MUTEXES
8029
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8030 8031
#endif

L
Linus Torvalds 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8045 8046 8047

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8048 8049 8050 8051
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8052

8053
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8054
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8055
#ifdef CONFIG_SMP
8056
#ifdef CONFIG_NO_HZ
8057 8058 8059 8060 8061
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8062
#endif
R
Rusty Russell 已提交
8063 8064 8065
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8066
#endif /* SMP */
8067

8068
	scheduler_running = 1;
L
Linus Torvalds 已提交
8069 8070 8071
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8072 8073
static inline int preempt_count_equals(int preempt_offset)
{
8074
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8075 8076 8077 8078

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

8079
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8080
{
8081
#ifdef in_atomic
L
Linus Torvalds 已提交
8082 8083
	static unsigned long prev_jiffy;	/* ratelimiting */

8084 8085
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8086 8087 8088 8089 8090
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8091 8092 8093 8094 8095 8096 8097
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8098 8099 8100 8101 8102

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8103 8104 8105 8106 8107 8108
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8109 8110 8111
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8112

8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8123 8124
void normalize_rt_tasks(void)
{
8125
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8126
	unsigned long flags;
8127
	struct rq *rq;
L
Linus Torvalds 已提交
8128

8129
	read_lock_irqsave(&tasklist_lock, flags);
8130
	do_each_thread(g, p) {
8131 8132 8133 8134 8135 8136
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8137 8138
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8139 8140 8141
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8142
#endif
I
Ingo Molnar 已提交
8143 8144 8145 8146 8147 8148 8149 8150

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8151
			continue;
I
Ingo Molnar 已提交
8152
		}
L
Linus Torvalds 已提交
8153

8154
		raw_spin_lock(&p->pi_lock);
8155
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8156

8157
		normalize_task(rq, p);
8158

8159
		__task_rq_unlock(rq);
8160
		raw_spin_unlock(&p->pi_lock);
8161 8162
	} while_each_thread(g, p);

8163
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8164 8165 8166
}

#endif /* CONFIG_MAGIC_SYSRQ */
8167

8168
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8169
/*
8170
 * These functions are only useful for the IA64 MCA handling, or kdb.
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8185
struct task_struct *curr_task(int cpu)
8186 8187 8188 8189
{
	return cpu_curr(cpu);
}

8190 8191 8192
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8193 8194 8195 8196 8197 8198
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8199 8200
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8201 8202 8203 8204 8205 8206 8207
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8208
void set_curr_task(int cpu, struct task_struct *p)
8209 8210 8211 8212 8213
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8214

8215 8216
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8231 8232
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8233 8234
{
	struct cfs_rq *cfs_rq;
8235
	struct sched_entity *se;
8236
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8237 8238
	int i;

8239
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8240 8241
	if (!tg->cfs_rq)
		goto err;
8242
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8243 8244
	if (!tg->se)
		goto err;
8245 8246

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8247 8248

	for_each_possible_cpu(i) {
8249
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8250

8251 8252
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8253 8254 8255
		if (!cfs_rq)
			goto err;

8256 8257
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8258
		if (!se)
8259
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8260

8261
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8262 8263 8264 8265
	}

	return 1;

P
Peter Zijlstra 已提交
8266
err_free_rq:
8267
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8268
err:
8269 8270 8271 8272 8273
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8285
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8286
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8287
}
8288
#else /* !CONFG_FAIR_GROUP_SCHED */
8289 8290 8291 8292
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8293 8294
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8295 8296 8297 8298 8299 8300 8301
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8302
#endif /* CONFIG_FAIR_GROUP_SCHED */
8303 8304

#ifdef CONFIG_RT_GROUP_SCHED
8305 8306 8307 8308
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8309 8310
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8322 8323
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8324 8325
{
	struct rt_rq *rt_rq;
8326
	struct sched_rt_entity *rt_se;
8327 8328 8329
	struct rq *rq;
	int i;

8330
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8331 8332
	if (!tg->rt_rq)
		goto err;
8333
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8334 8335 8336
	if (!tg->rt_se)
		goto err;

8337 8338
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8339 8340 8341 8342

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8343 8344
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8345 8346
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8347

8348 8349
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8350
		if (!rt_se)
8351
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8352

8353
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8354 8355
	}

8356 8357
	return 1;

P
Peter Zijlstra 已提交
8358
err_free_rq:
8359
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8360
err:
8361 8362
	return 0;
}
8363
#else /* !CONFIG_RT_GROUP_SCHED */
8364 8365 8366 8367
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8368 8369
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8370 8371 8372
{
	return 1;
}
8373
#endif /* CONFIG_RT_GROUP_SCHED */
8374

D
Dhaval Giani 已提交
8375
#ifdef CONFIG_CGROUP_SCHED
8376 8377 8378 8379
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8380
	autogroup_free(tg);
8381 8382 8383 8384
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8385
struct task_group *sched_create_group(struct task_group *parent)
8386 8387 8388 8389 8390 8391 8392 8393
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8394
	if (!alloc_fair_sched_group(tg, parent))
8395 8396
		goto err;

8397
	if (!alloc_rt_sched_group(tg, parent))
8398 8399
		goto err;

8400
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8401
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8402 8403 8404 8405 8406

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8407
	list_add_rcu(&tg->siblings, &parent->children);
8408
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8409

8410
	return tg;
S
Srivatsa Vaddagiri 已提交
8411 8412

err:
P
Peter Zijlstra 已提交
8413
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8414 8415 8416
	return ERR_PTR(-ENOMEM);
}

8417
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8418
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8419 8420
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8421
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8422 8423
}

8424
/* Destroy runqueue etc associated with a task group */
8425
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8426
{
8427
	unsigned long flags;
8428
	int i;
S
Srivatsa Vaddagiri 已提交
8429

8430 8431
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8432
		unregister_fair_sched_group(tg, i);
8433 8434

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8435
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8436
	list_del_rcu(&tg->siblings);
8437
	spin_unlock_irqrestore(&task_group_lock, flags);
8438 8439

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8440
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8441 8442
}

8443
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8444 8445 8446
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8447 8448
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8449 8450 8451 8452 8453 8454 8455
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8456
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8457 8458
	on_rq = tsk->se.on_rq;

8459
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8460
		dequeue_task(rq, tsk, 0);
8461 8462
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8463

P
Peter Zijlstra 已提交
8464
#ifdef CONFIG_FAIR_GROUP_SCHED
8465 8466 8467
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8468
#endif
8469
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8470

8471 8472 8473
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8474
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8475 8476 8477

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8478
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8479

8480
#ifdef CONFIG_FAIR_GROUP_SCHED
8481 8482
static DEFINE_MUTEX(shares_mutex);

8483
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8484 8485
{
	int i;
8486
	unsigned long flags;
8487

8488 8489 8490 8491 8492 8493
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8494 8495
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8496 8497
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8498

8499
	mutex_lock(&shares_mutex);
8500
	if (tg->shares == shares)
8501
		goto done;
S
Srivatsa Vaddagiri 已提交
8502

8503
	tg->shares = shares;
8504
	for_each_possible_cpu(i) {
8505 8506 8507 8508 8509 8510 8511 8512 8513
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se), 0);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8514
	}
S
Srivatsa Vaddagiri 已提交
8515

8516
done:
8517
	mutex_unlock(&shares_mutex);
8518
	return 0;
S
Srivatsa Vaddagiri 已提交
8519 8520
}

8521 8522 8523 8524
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8525
#endif
8526

8527
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8528
/*
P
Peter Zijlstra 已提交
8529
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8530
 */
P
Peter Zijlstra 已提交
8531 8532 8533 8534 8535
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8536
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8537

P
Peter Zijlstra 已提交
8538
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8539 8540
}

P
Peter Zijlstra 已提交
8541 8542
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8543
{
P
Peter Zijlstra 已提交
8544
	struct task_struct *g, *p;
8545

P
Peter Zijlstra 已提交
8546 8547 8548 8549
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8550

P
Peter Zijlstra 已提交
8551 8552
	return 0;
}
8553

P
Peter Zijlstra 已提交
8554 8555 8556 8557 8558
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8559

P
Peter Zijlstra 已提交
8560 8561 8562 8563 8564 8565
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8566

P
Peter Zijlstra 已提交
8567 8568
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8569

P
Peter Zijlstra 已提交
8570 8571 8572
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8573 8574
	}

8575 8576 8577 8578 8579
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8580

8581 8582 8583
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8584 8585
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8586

P
Peter Zijlstra 已提交
8587
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8588

8589 8590 8591 8592 8593
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8594

8595 8596 8597
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8598 8599 8600
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8601

P
Peter Zijlstra 已提交
8602 8603 8604 8605
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8606

P
Peter Zijlstra 已提交
8607
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8608
	}
P
Peter Zijlstra 已提交
8609

P
Peter Zijlstra 已提交
8610 8611 8612 8613
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8614 8615
}

P
Peter Zijlstra 已提交
8616
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8617
{
P
Peter Zijlstra 已提交
8618 8619 8620 8621 8622 8623 8624
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8625 8626
}

8627 8628
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8629
{
P
Peter Zijlstra 已提交
8630
	int i, err = 0;
P
Peter Zijlstra 已提交
8631 8632

	mutex_lock(&rt_constraints_mutex);
8633
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8634 8635
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8636
		goto unlock;
P
Peter Zijlstra 已提交
8637

8638
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8639 8640
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8641 8642 8643 8644

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8645
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8646
		rt_rq->rt_runtime = rt_runtime;
8647
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8648
	}
8649
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8650
unlock:
8651
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8652 8653 8654
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8655 8656
}

8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8669 8670 8671 8672
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8673
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8674 8675
		return -1;

8676
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8677 8678 8679
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8680 8681 8682 8683 8684 8685 8686 8687

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8688 8689 8690
	if (rt_period == 0)
		return -EINVAL;

8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8705
	u64 runtime, period;
8706 8707
	int ret = 0;

8708 8709 8710
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8711 8712 8713 8714 8715 8716 8717 8718
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8719

8720
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8721
	read_lock(&tasklist_lock);
8722
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8723
	read_unlock(&tasklist_lock);
8724 8725 8726 8727
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8728 8729 8730 8731 8732 8733 8734 8735 8736 8737

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8738
#else /* !CONFIG_RT_GROUP_SCHED */
8739 8740
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8741 8742 8743
	unsigned long flags;
	int i;

8744 8745 8746
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8747 8748 8749 8750 8751 8752 8753
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8754
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8755 8756 8757
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8758
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8759
		rt_rq->rt_runtime = global_rt_runtime();
8760
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8761
	}
8762
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8763

8764 8765
	return 0;
}
8766
#endif /* CONFIG_RT_GROUP_SCHED */
8767 8768

int sched_rt_handler(struct ctl_table *table, int write,
8769
		void __user *buffer, size_t *lenp,
8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8780
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8797

8798
#ifdef CONFIG_CGROUP_SCHED
8799 8800

/* return corresponding task_group object of a cgroup */
8801
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8802
{
8803 8804
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8805 8806 8807
}

static struct cgroup_subsys_state *
8808
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8809
{
8810
	struct task_group *tg, *parent;
8811

8812
	if (!cgrp->parent) {
8813
		/* This is early initialization for the top cgroup */
8814
		return &root_task_group.css;
8815 8816
	}

8817 8818
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8819 8820 8821 8822 8823 8824
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8825 8826
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8827
{
8828
	struct task_group *tg = cgroup_tg(cgrp);
8829 8830 8831 8832

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8833
static int
8834
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8835
{
8836
#ifdef CONFIG_RT_GROUP_SCHED
8837
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8838 8839
		return -EINVAL;
#else
8840 8841 8842
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8843
#endif
8844 8845
	return 0;
}
8846

8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8866 8867 8868 8869
	return 0;
}

static void
8870
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8871 8872
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8873 8874
{
	sched_move_task(tsk);
8875 8876 8877 8878 8879 8880 8881 8882
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8883 8884
}

8885
#ifdef CONFIG_FAIR_GROUP_SCHED
8886
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8887
				u64 shareval)
8888
{
8889
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8890 8891
}

8892
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8893
{
8894
	struct task_group *tg = cgroup_tg(cgrp);
8895 8896 8897

	return (u64) tg->shares;
}
8898
#endif /* CONFIG_FAIR_GROUP_SCHED */
8899

8900
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8901
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8902
				s64 val)
P
Peter Zijlstra 已提交
8903
{
8904
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8905 8906
}

8907
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8908
{
8909
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8910
}
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8922
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8923

8924
static struct cftype cpu_files[] = {
8925
#ifdef CONFIG_FAIR_GROUP_SCHED
8926 8927
	{
		.name = "shares",
8928 8929
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8930
	},
8931 8932
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8933
	{
P
Peter Zijlstra 已提交
8934
		.name = "rt_runtime_us",
8935 8936
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8937
	},
8938 8939
	{
		.name = "rt_period_us",
8940 8941
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8942
	},
8943
#endif
8944 8945 8946 8947
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8948
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8949 8950 8951
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8952 8953 8954 8955 8956 8957 8958
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8959 8960 8961
	.early_init	= 1,
};

8962
#endif	/* CONFIG_CGROUP_SCHED */
8963 8964 8965 8966 8967 8968 8969 8970 8971 8972

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8973
/* track cpu usage of a group of tasks and its child groups */
8974 8975 8976
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8977
	u64 __percpu *cpuusage;
8978
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8979
	struct cpuacct *parent;
8980 8981 8982 8983 8984
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8985
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8986
{
8987
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9000
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9001 9002
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9003
	int i;
9004 9005

	if (!ca)
9006
		goto out;
9007 9008

	ca->cpuusage = alloc_percpu(u64);
9009 9010 9011 9012 9013 9014
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9015

9016 9017 9018
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9019
	return &ca->css;
9020 9021 9022 9023 9024 9025 9026 9027 9028

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9029 9030 9031
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9032
static void
9033
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9034
{
9035
	struct cpuacct *ca = cgroup_ca(cgrp);
9036
	int i;
9037

9038 9039
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9040 9041 9042 9043
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9044 9045
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9046
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9047 9048 9049 9050 9051 9052
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9053
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9054
	data = *cpuusage;
9055
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9056 9057 9058 9059 9060 9061 9062 9063 9064
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9065
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9066 9067 9068 9069 9070

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9071
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9072
	*cpuusage = val;
9073
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9074 9075 9076 9077 9078
#else
	*cpuusage = val;
#endif
}

9079
/* return total cpu usage (in nanoseconds) of a group */
9080
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9081
{
9082
	struct cpuacct *ca = cgroup_ca(cgrp);
9083 9084 9085
	u64 totalcpuusage = 0;
	int i;

9086 9087
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9088 9089 9090 9091

	return totalcpuusage;
}

9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9104 9105
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9106 9107 9108 9109 9110

out:
	return err;
}

9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9145 9146 9147
static struct cftype files[] = {
	{
		.name = "usage",
9148 9149
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9150
	},
9151 9152 9153 9154
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9155 9156 9157 9158
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9159 9160
};

9161
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9162
{
9163
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9164 9165 9166 9167 9168 9169 9170 9171 9172 9173
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9174
	int cpu;
9175

L
Li Zefan 已提交
9176
	if (unlikely(!cpuacct_subsys.active))
9177 9178
		return;

9179
	cpu = task_cpu(tsk);
9180 9181 9182

	rcu_read_lock();

9183 9184
	ca = task_ca(tsk);

9185
	for (; ca; ca = ca->parent) {
9186
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9187 9188
		*cpuusage += cputime;
	}
9189 9190

	rcu_read_unlock();
9191 9192
}

9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9210 9211 9212 9213 9214 9215 9216
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9217
	int batch = CPUACCT_BATCH;
9218 9219 9220 9221 9222 9223 9224 9225

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9226
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9227 9228 9229 9230 9231
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9232 9233 9234 9235 9236 9237 9238 9239
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9240