sched.c 258.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242 243

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
				HRTIMER_MODE_ABS, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
496
	int overloaded;
497
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
498
#endif
P
Peter Zijlstra 已提交
499
	int rt_throttled;
P
Peter Zijlstra 已提交
500
	u64 rt_time;
P
Peter Zijlstra 已提交
501
	u64 rt_runtime;
I
Ingo Molnar 已提交
502
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
503
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
504

505
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
506 507
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
508 509 510 511 512
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
513 514
};

G
Gregory Haskins 已提交
515 516 517 518
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
519 520
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
521 522 523 524 525 526
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
527 528
	cpumask_var_t span;
	cpumask_var_t online;
529

I
Ingo Molnar 已提交
530
	/*
531 532 533
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
534
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
535
	atomic_t rto_count;
536 537 538
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
539 540 541 542 543 544 545 546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
547 548
};

549 550 551 552
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
553 554 555 556
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
557 558 559 560 561 562 563
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
564
struct rq {
565 566
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
567 568 569 570 571 572

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
573 574
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575
#ifdef CONFIG_NO_HZ
576
	unsigned long last_tick_seen;
577 578
	unsigned char in_nohz_recently;
#endif
579 580
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
581 582
	unsigned long nr_load_updates;
	u64 nr_switches;
583
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
584 585

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
586 587
	struct rt_rq rt;

I
Ingo Molnar 已提交
588
#ifdef CONFIG_FAIR_GROUP_SCHED
589 590
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
591 592
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
593
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
594 595 596 597 598 599 600 601 602 603
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

604
	struct task_struct *curr, *idle;
605
	unsigned long next_balance;
L
Linus Torvalds 已提交
606
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
607

608
	u64 clock;
I
Ingo Molnar 已提交
609

L
Linus Torvalds 已提交
610 611 612
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
613
	struct root_domain *rd;
L
Linus Torvalds 已提交
614 615
	struct sched_domain *sd;

616
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
617 618 619
	/* For active balancing */
	int active_balance;
	int push_cpu;
620 621
	/* cpu of this runqueue: */
	int cpu;
622
	int online;
L
Linus Torvalds 已提交
623

624
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
625

626
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
627 628 629
	struct list_head migration_queue;
#endif

630 631 632 633
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
634
#ifdef CONFIG_SCHED_HRTICK
635 636 637 638
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
639 640 641
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
642 643 644
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
645 646
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
647 648

	/* sys_sched_yield() stats */
649
	unsigned int yld_count;
L
Linus Torvalds 已提交
650 651

	/* schedule() stats */
652 653 654
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
655 656

	/* try_to_wake_up() stats */
657 658
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
659 660

	/* BKL stats */
661
	unsigned int bkl_count;
L
Linus Torvalds 已提交
662 663 664
#endif
};

665
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
666

667
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
668
{
669
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
670 671
}

672 673 674 675 676 677 678 679 680
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
681 682
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
684 685 686 687
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
688 689
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
690 691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
696
inline void update_rq_clock(struct rq *rq)
697 698 699 700
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
701 702 703 704 705 706 707 708 709
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
728 729 730
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
731 732 733 734

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
735
enum {
P
Peter Zijlstra 已提交
736
#include "sched_features.h"
I
Ingo Molnar 已提交
737 738
};

P
Peter Zijlstra 已提交
739 740 741 742 743
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
744
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

754
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
755 756 757 758 759 760
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
761
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
762 763 764 765
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
766 767 768
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
769
	}
L
Li Zefan 已提交
770
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
771

L
Li Zefan 已提交
772
	return 0;
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
792
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
817 818 819 820 821
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
822
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
823 824 825 826 827
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
842

843 844 845 846 847 848
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
849 850
/*
 * ratelimit for updating the group shares.
851
 * default: 0.25ms
P
Peter Zijlstra 已提交
852
 */
853
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
854

855 856 857 858 859 860 861
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
862
/*
P
Peter Zijlstra 已提交
863
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
864 865
 * default: 1s
 */
P
Peter Zijlstra 已提交
866
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
867

868 869
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
870 871 872 873 874
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
875

876 877 878 879 880 881 882
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
883
	if (sysctl_sched_rt_runtime < 0)
884 885 886 887
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
888

L
Linus Torvalds 已提交
889
#ifndef prepare_arch_switch
890 891 892 893 894 895
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

896 897 898 899 900
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

901
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903
{
904
	return task_current(rq, p);
905 906
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910
{
}

911
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912
{
913 914 915 916
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
917 918 919 920 921 922 923
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

924 925 926 927
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
928
static inline int task_running(struct rq *rq, struct task_struct *p)
929 930 931 932
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
933
	return task_current(rq, p);
934 935 936
#endif
}

937
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

954
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 956 957 958 959 960 961 962 963 964 965 966
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
967
#endif
968 969
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
970

971 972 973 974
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
975
static inline struct rq *__task_rq_lock(struct task_struct *p)
976 977
	__acquires(rq->lock)
{
978 979 980 981 982
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
983 984 985 986
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
987 988
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
989
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
990 991
 * explicitly disabling preemption.
 */
992
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
993 994
	__acquires(rq->lock)
{
995
	struct rq *rq;
L
Linus Torvalds 已提交
996

997 998 999 1000 1001 1002
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1007 1008 1009 1010 1011 1012 1013 1014
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1015
static void __task_rq_unlock(struct rq *rq)
1016 1017 1018 1019 1020
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1021
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1028
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1029
 */
A
Alexey Dobriyan 已提交
1030
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1031 1032
	__acquires(rq->lock)
{
1033
	struct rq *rq;
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1063
	if (!cpu_active(cpu_of(rq)))
1064
		return 0;
P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1085
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1092
#ifdef CONFIG_SMP
1093 1094 1095 1096
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1097
{
1098
	struct rq *rq = arg;
1099

1100 1101 1102 1103
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1104 1105
}

1106 1107 1108 1109 1110 1111
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1112
{
1113 1114
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115

1116
	hrtimer_set_expires(timer, time);
1117 1118 1119 1120

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1121
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 1123
		rq->hrtick_csd_pending = 1;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1138
		hrtick_clear(cpu_rq(cpu));
1139 1140 1141 1142 1143 1144
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1145
static __init void init_hrtick(void)
1146 1147 1148
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1149 1150 1151 1152 1153 1154 1155 1156
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1157 1158
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
			HRTIMER_MODE_REL, 0);
1159
}
1160

A
Andrew Morton 已提交
1161
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1162 1163
{
}
1164
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1165

1166
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1167
{
1168 1169
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1170

1171 1172 1173 1174
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1175

1176 1177
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1178
}
A
Andrew Morton 已提交
1179
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1180 1181 1182 1183 1184 1185 1186 1187
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1188 1189 1190
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1191
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1192

I
Ingo Molnar 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1206
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1212
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1213 1214
		return;

1215
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1271
	set_tsk_need_resched(rq->idle);
1272 1273 1274 1275 1276 1277

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1278
#endif /* CONFIG_NO_HZ */
1279

1280
#else /* !CONFIG_SMP */
1281
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1282 1283
{
	assert_spin_locked(&task_rq(p)->lock);
1284
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1285
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1430 1431
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 1433
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1434 1435
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 1437
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1438 1439
#endif

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1450
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1451
typedef int (*tg_visitor)(struct task_group *, void *);
1452 1453 1454 1455 1456

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1457
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 1459
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1460
	int ret;
1461 1462 1463 1464

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1465 1466 1467
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1468 1469 1470 1471 1472 1473 1474
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1475 1476 1477
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1483
out_unlock:
1484
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1485 1486

	return ret;
1487 1488
}

P
Peter Zijlstra 已提交
1489 1490 1491
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1492
}
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1503
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1504

1505 1506
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1507 1508
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1514 1515 1516 1517 1518 1519 1520

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1521 1522
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1523
{
1524 1525 1526
	unsigned long shares;
	unsigned long rq_weight;

1527
	if (!tg->se[cpu])
1528 1529
		return;

1530
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531

1532 1533 1534 1535 1536 1537
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1538
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1539
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540

1541 1542 1543 1544
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1545

1546
		spin_lock_irqsave(&rq->lock, flags);
1547
		tg->cfs_rq[cpu]->shares = shares;
1548

1549 1550 1551
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1552
}
1553 1554

/*
1555 1556 1557
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1558
 */
P
Peter Zijlstra 已提交
1559
static int tg_shares_up(struct task_group *tg, void *data)
1560
{
1561
	unsigned long weight, rq_weight = 0;
1562
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1563
	struct sched_domain *sd = data;
1564
	int i;
1565

1566
	for_each_cpu(i, sched_domain_span(sd)) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1578
		shares += tg->cfs_rq[i]->shares;
1579 1580
	}

1581 1582 1583 1584 1585
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1586

1587
	for_each_cpu(i, sched_domain_span(sd))
1588
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1589 1590

	return 0;
1591 1592 1593
}

/*
1594 1595 1596
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1597
 */
P
Peter Zijlstra 已提交
1598
static int tg_load_down(struct task_group *tg, void *data)
1599
{
1600
	unsigned long load;
P
Peter Zijlstra 已提交
1601
	long cpu = (long)data;
1602

1603 1604 1605 1606 1607 1608 1609
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1610

1611
	tg->cfs_rq[cpu]->h_load = load;
1612

P
Peter Zijlstra 已提交
1613
	return 0;
1614 1615
}

1616
static void update_shares(struct sched_domain *sd)
1617
{
P
Peter Zijlstra 已提交
1618 1619 1620 1621 1622
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1623
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1624
	}
1625 1626
}

1627 1628 1629 1630 1631 1632 1633
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1634
static void update_h_load(long cpu)
1635
{
P
Peter Zijlstra 已提交
1636
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 1638 1639 1640
}

#else

1641
static inline void update_shares(struct sched_domain *sd)
1642 1643 1644
{
}

1645 1646 1647 1648
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1649 1650
#endif

1651 1652
#ifdef CONFIG_PREEMPT

1653
/*
1654 1655 1656 1657 1658 1659
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1660
 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1715 1716 1717 1718 1719 1720
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1721 1722
#endif

V
Vegard Nossum 已提交
1723
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1724 1725
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1726
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1727 1728 1729
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1730
#endif
1731

1732 1733
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1734 1735
#include "sched_stats.h"
#include "sched_idletask.c"
1736 1737
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1738 1739 1740 1741 1742
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1743 1744
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1745

1746
static void inc_nr_running(struct rq *rq)
1747 1748 1749 1750
{
	rq->nr_running++;
}

1751
static void dec_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running--;
}

1756 1757 1758
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1759 1760 1761 1762
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1763

I
Ingo Molnar 已提交
1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1772

I
Ingo Molnar 已提交
1773 1774
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 1776
}

1777 1778 1779 1780 1781 1782
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1783
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784
{
P
Peter Zijlstra 已提交
1785 1786 1787
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1788
	sched_info_queued(p);
1789
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1790
	p->se.on_rq = 1;
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794
{
P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1804 1805
	}

1806
	sched_info_dequeued(p);
1807
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1808
	p->se.on_rq = 0;
1809 1810
}

1811
/*
I
Ingo Molnar 已提交
1812
 * __normal_prio - return the priority that is based on the static prio
1813 1814 1815
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1816
	return p->static_prio;
1817 1818
}

1819 1820 1821 1822 1823 1824 1825
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1826
static inline int normal_prio(struct task_struct *p)
1827 1828 1829
{
	int prio;

1830
	if (task_has_rt_policy(p))
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1844
static int effective_prio(struct task_struct *p)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1857
/*
I
Ingo Molnar 已提交
1858
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1859
 */
I
Ingo Molnar 已提交
1860
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1861
{
1862
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1863
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1864

1865
	enqueue_task(rq, p, wakeup);
1866
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1872
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1873
{
1874
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1875 1876
		rq->nr_uninterruptible++;

1877
	dequeue_task(rq, p, sleep);
1878
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1885
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1886 1887 1888 1889
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1890 1891
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1892
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1893
#ifdef CONFIG_SMP
1894 1895 1896 1897 1898 1899
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1900 1901
	task_thread_info(p)->cpu = cpu;
#endif
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1916
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1917

1918 1919 1920 1921 1922 1923
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1924 1925 1926
/*
 * Is this task likely cache-hot:
 */
1927
static int
1928 1929 1930 1931
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1932 1933 1934
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1935 1936 1937
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1938 1939
		return 1;

1940 1941 1942
	if (p->sched_class != &fair_sched_class)
		return 0;

1943 1944 1945 1946 1947
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1948 1949 1950 1951 1952 1953
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1954
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1955
{
I
Ingo Molnar 已提交
1956 1957
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 1959
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960
	u64 clock_offset;
I
Ingo Molnar 已提交
1961 1962

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1963

1964
	trace_sched_migrate_task(p, new_cpu);
1965

I
Ingo Molnar 已提交
1966 1967 1968
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1969 1970 1971 1972
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1973
#endif
1974
	if (old_cpu != new_cpu) {
1975
		p->se.nr_migrations++;
1976
		new_rq->nr_migrations_in++;
1977
#ifdef CONFIG_SCHEDSTATS
1978 1979
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1980
#endif
1981
		perf_counter_task_migration(p, new_cpu);
1982
	}
1983 1984
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1985 1986

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1987 1988
}

1989
struct migration_req {
L
Linus Torvalds 已提交
1990 1991
	struct list_head list;

1992
	struct task_struct *task;
L
Linus Torvalds 已提交
1993 1994 1995
	int dest_cpu;

	struct completion done;
1996
};
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2002
static int
2003
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2004
{
2005
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2011
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2020

L
Linus Torvalds 已提交
2021 2022 2023
	return 1;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2067 2068 2069
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2070 2071 2072 2073 2074 2075 2076
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2083
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2084 2085
{
	unsigned long flags;
I
Ingo Molnar 已提交
2086
	int running, on_rq;
R
Roland McGrath 已提交
2087
	unsigned long ncsw;
2088
	struct rq *rq;
L
Linus Torvalds 已提交
2089

2090 2091 2092 2093 2094 2095 2096 2097
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2110 2111 2112
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2113
			cpu_relax();
R
Roland McGrath 已提交
2114
		}
2115

2116 2117 2118 2119 2120 2121
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2122
		trace_sched_wait_task(rq, p);
2123 2124
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2125
		ncsw = 0;
2126
		if (!match_state || p->state == match_state)
2127
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128
		task_rq_unlock(rq, &flags);
2129

R
Roland McGrath 已提交
2130 2131 2132 2133 2134 2135
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2146

2147 2148 2149 2150 2151
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2152
		 * So if it was still runnable (but just not actively
2153 2154 2155 2156 2157 2158 2159
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2160

2161 2162 2163 2164 2165 2166 2167
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2168 2169

	return ncsw;
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2185
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2195
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2196 2197

/*
2198 2199
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2200 2201 2202 2203
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2204
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2205
{
2206
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2207
	unsigned long total = weighted_cpuload(cpu);
2208

2209
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2210
		return total;
2211

I
Ingo Molnar 已提交
2212
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2213 2214 2215
}

/*
2216 2217
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2218
 */
A
Alexey Dobriyan 已提交
2219
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2220
{
2221
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2222
	unsigned long total = weighted_cpuload(cpu);
2223

2224
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2225
		return total;
2226

I
Ingo Molnar 已提交
2227
	return max(rq->cpu_load[type-1], total);
2228 2229
}

N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2247
		/* Skip over this group if it has no CPUs allowed */
2248 2249
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2250
			continue;
2251

2252 2253
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2254 2255 2256 2257

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2258
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2269 2270
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2271 2272 2273 2274 2275 2276 2277 2278

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2279
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2280 2281 2282 2283 2284 2285 2286

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2287
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2288
 */
I
Ingo Molnar 已提交
2289
static int
2290
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2291 2292 2293 2294 2295
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2296
	/* Traverse only the allowed CPUs */
2297
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2324

2325
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2326 2327 2328
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2329 2330
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2331 2332
		if (tmp->flags & flag)
			sd = tmp;
2333
	}
N
Nick Piggin 已提交
2334

2335 2336 2337
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2338 2339
	while (sd) {
		struct sched_group *group;
2340 2341 2342 2343 2344 2345
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2346 2347

		group = find_idlest_group(sd, t, cpu);
2348 2349 2350 2351
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2352

2353
		new_cpu = find_idlest_cpu(group, t, cpu);
2354 2355 2356 2357 2358
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2359

2360
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2361
		cpu = new_cpu;
2362
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2363 2364
		sd = NULL;
		for_each_domain(cpu, tmp) {
2365
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2377

T
Thomas Gleixner 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2413
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2414
{
2415
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2416 2417
	unsigned long flags;
	long old_state;
2418
	struct rq *rq;
L
Linus Torvalds 已提交
2419

2420 2421 2422
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2423
#ifdef CONFIG_SMP
2424
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2425 2426 2427 2428 2429 2430
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2431
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2432 2433 2434 2435 2436 2437 2438
				update_shares(sd);
				break;
			}
		}
	}
#endif

2439
	smp_wmb();
L
Linus Torvalds 已提交
2440
	rq = task_rq_lock(p, &flags);
2441
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2442 2443 2444 2445
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2446
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2447 2448 2449
		goto out_running;

	cpu = task_cpu(p);
2450
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2451 2452 2453 2454 2455 2456
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2457 2458 2459
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2466
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2473 2474 2475 2476 2477 2478 2479
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2480
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 2482 2483 2484 2485
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2486
#endif /* CONFIG_SCHEDSTATS */
2487

L
Linus Torvalds 已提交
2488 2489
out_activate:
#endif /* CONFIG_SMP */
2490 2491 2492 2493 2494 2495 2496 2497 2498
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2499
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2500 2501
	success = 1;

P
Peter Zijlstra 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2518
out_running:
2519
	trace_sched_wakeup(rq, p, success);
2520
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2521

L
Linus Torvalds 已提交
2522
	p->state = TASK_RUNNING;
2523 2524 2525 2526
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2544
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2545
{
2546
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2547 2548 2549
}
EXPORT_SYMBOL(wake_up_process);

2550
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2558 2559 2560 2561 2562 2563 2564
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2565
	p->se.prev_sum_exec_runtime	= 0;
2566
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2567 2568
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2569 2570
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2571 2572 2573

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2574 2575 2576 2577 2578 2579
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2580
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2581
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2582
#endif
N
Nick Piggin 已提交
2583

P
Peter Zijlstra 已提交
2584
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2585
	p->se.on_rq = 0;
2586
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2587

2588 2589 2590 2591
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2613
	set_task_cpu(p, cpu);
2614 2615

	/*
2616 2617
	 * Revert to default priority/policy on fork if requested. Make sure we
	 * do not leak PI boosting priority to the child.
2618
	 */
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	if (current->sched_reset_on_fork &&
			(p->policy == SCHED_FIFO || p->policy == SCHED_RR))
		p->policy = SCHED_NORMAL;

	if (current->sched_reset_on_fork &&
			(current->normal_prio < DEFAULT_PRIO))
		p->prio = DEFAULT_PRIO;
	else
		p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2629 2630
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2631

2632 2633 2634 2635 2636 2637
	/*
	 * We don't need the reset flag anymore after the fork. It has
	 * fulfilled its duty:
	 */
	p->sched_reset_on_fork = 0;

2638
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2639
	if (likely(sched_info_on()))
2640
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2641
#endif
2642
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2643 2644
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2645
#ifdef CONFIG_PREEMPT
2646
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2647
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2648
#endif
2649 2650
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2651
	put_cpu();
L
Linus Torvalds 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2661
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2662 2663
{
	unsigned long flags;
I
Ingo Molnar 已提交
2664
	struct rq *rq;
L
Linus Torvalds 已提交
2665 2666

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2667
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2668
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2669 2670 2671

	p->prio = effective_prio(p);

2672
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2673
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2674 2675
	} else {
		/*
I
Ingo Molnar 已提交
2676 2677
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2678
		 */
2679
		p->sched_class->task_new(rq, p);
2680
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2681
	}
2682
	trace_sched_wakeup_new(rq, p, 1);
2683
	check_preempt_curr(rq, p, 0);
2684 2685 2686 2687
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2688
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2689 2690
}

2691 2692 2693
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2694
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2695
 * @notifier: notifier struct to register
2696 2697 2698 2699 2700 2701 2702 2703 2704
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2705
 * @notifier: notifier struct to unregister
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2735
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2747
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2748

2749 2750 2751
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2752
 * @prev: the current task that is being switched out
2753 2754 2755 2756 2757 2758 2759 2760 2761
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2762 2763 2764
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2765
{
2766
	fire_sched_out_preempt_notifiers(prev, next);
2767 2768 2769 2770
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2771 2772
/**
 * finish_task_switch - clean up after a task-switch
2773
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2774 2775
 * @prev: the thread we just switched away from.
 *
2776 2777 2778 2779
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2780 2781
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2782
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2783 2784 2785
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2786
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2787 2788 2789
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2790
	long prev_state;
2791 2792 2793 2794 2795 2796
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2802
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2803 2804
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2805
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2811
	prev_state = prev->state;
2812
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2813
	perf_counter_task_sched_in(current, cpu_of(rq));
2814
	finish_lock_switch(rq, prev);
2815
#ifdef CONFIG_SMP
2816
	if (post_schedule)
2817 2818
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2819

2820
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2821 2822
	if (mm)
		mmdrop(mm);
2823
	if (unlikely(prev_state == TASK_DEAD)) {
2824 2825 2826
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2827
		 */
2828
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2829
		put_task_struct(prev);
2830
	}
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2837
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2838 2839
	__releases(rq->lock)
{
2840 2841
	struct rq *rq = this_rq();

2842 2843 2844 2845 2846
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2847
	if (current->set_child_tid)
2848
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2855
static inline void
2856
context_switch(struct rq *rq, struct task_struct *prev,
2857
	       struct task_struct *next)
L
Linus Torvalds 已提交
2858
{
I
Ingo Molnar 已提交
2859
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2860

2861
	prepare_task_switch(rq, prev, next);
2862
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2863 2864
	mm = next->mm;
	oldmm = prev->active_mm;
2865 2866 2867 2868 2869
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2870
	arch_start_context_switch(prev);
2871

I
Ingo Molnar 已提交
2872
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2879
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2880 2881 2882
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2883 2884 2885 2886 2887 2888 2889
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2890
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2891
#endif
L
Linus Torvalds 已提交
2892 2893 2894 2895

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2896 2897 2898 2899 2900 2901 2902
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2926
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2941 2942
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2943

2944
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2954
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2960 2961 2962 2963 2964 2965
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2981 2982
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2983
{
2984 2985 2986 2987
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3000

3001 3002
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3037
/*
I
Ingo Molnar 已提交
3038 3039
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3040
 */
I
Ingo Molnar 已提交
3041
static void update_cpu_load(struct rq *this_rq)
3042
{
3043
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3056 3057 3058 3059 3060 3061 3062
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3063 3064
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3065 3066 3067 3068 3069

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3070 3071
}

I
Ingo Molnar 已提交
3072 3073
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3074 3075 3076 3077 3078 3079
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3080
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3081 3082 3083
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3084
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3085 3086 3087 3088
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3089
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3090
			spin_lock(&rq1->lock);
3091
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3092 3093
		} else {
			spin_lock(&rq2->lock);
3094
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3095 3096
		}
	}
3097 3098
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105 3106
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3107
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3121
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3122 3123
 * the cpu_allowed mask is restored.
 */
3124
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3125
{
3126
	struct migration_req req;
L
Linus Torvalds 已提交
3127
	unsigned long flags;
3128
	struct rq *rq;
L
Linus Torvalds 已提交
3129 3130

	rq = task_rq_lock(p, &flags);
3131
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3132
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3139

L
Linus Torvalds 已提交
3140 3141 3142 3143 3144
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3145

L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3153 3154
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3155 3156 3157 3158
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3159
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3160
	put_cpu();
N
Nick Piggin 已提交
3161 3162
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3169 3170
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3171
{
3172
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3173
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3174
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3175 3176 3177 3178
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3179
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3185
static
3186
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3187
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3188
		     int *all_pinned)
L
Linus Torvalds 已提交
3189
{
3190
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3197
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3198
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3199
		return 0;
3200
	}
3201 3202
	*all_pinned = 0;

3203 3204
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3205
		return 0;
3206
	}
L
Linus Torvalds 已提交
3207

3208 3209 3210 3211 3212 3213
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3214 3215 3216
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3217
#ifdef CONFIG_SCHEDSTATS
3218
		if (tsk_cache_hot) {
3219
			schedstat_inc(sd, lb_hot_gained[idle]);
3220 3221
			schedstat_inc(p, se.nr_forced_migrations);
		}
3222 3223 3224 3225
#endif
		return 1;
	}

3226
	if (tsk_cache_hot) {
3227
		schedstat_inc(p, se.nr_failed_migrations_hot);
3228
		return 0;
3229
	}
L
Linus Torvalds 已提交
3230 3231 3232
	return 1;
}

3233 3234 3235 3236 3237
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3238
{
3239
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3240 3241
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3242

3243
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3244 3245
		goto out;

3246 3247
	pinned = 1;

L
Linus Torvalds 已提交
3248
	/*
I
Ingo Molnar 已提交
3249
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3250
	 */
I
Ingo Molnar 已提交
3251 3252
	p = iterator->start(iterator->arg);
next:
3253
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3254
		goto out;
3255 3256

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3257 3258 3259
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3260 3261
	}

I
Ingo Molnar 已提交
3262
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3263
	pulled++;
I
Ingo Molnar 已提交
3264
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3276
	/*
3277
	 * We only want to steal up to the prescribed amount of weighted load.
3278
	 */
3279
	if (rem_load_move > 0) {
3280 3281
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3282 3283
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3284 3285 3286
	}
out:
	/*
3287
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3288 3289 3290 3291
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3292 3293 3294

	if (all_pinned)
		*all_pinned = pinned;
3295 3296

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3297 3298
}

I
Ingo Molnar 已提交
3299
/*
P
Peter Williams 已提交
3300 3301 3302
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3303 3304 3305 3306
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3307
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3308 3309 3310
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3311
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3312
	unsigned long total_load_moved = 0;
3313
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3314 3315

	do {
P
Peter Williams 已提交
3316 3317
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3318
				max_load_move - total_load_moved,
3319
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3320
		class = class->next;
3321

3322 3323 3324 3325 3326 3327
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3328 3329
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3330
#endif
P
Peter Williams 已提交
3331
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3332

P
Peter Williams 已提交
3333 3334 3335
	return total_load_moved > 0;
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3372
	const struct sched_class *class;
P
Peter Williams 已提交
3373 3374

	for (class = sched_class_highest; class; class = class->next)
3375
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3376 3377 3378
			return 1;

	return 0;
I
Ingo Molnar 已提交
3379
}
3380
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3381
/*
3382 3383
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3384
 */
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3403
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3404 3405 3406 3407 3408 3409
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3410
#endif
3411
};
L
Linus Torvalds 已提交
3412

3413
/*
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3446
		load_idx = sd->busy_idx;
3447 3448 3449
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3450
		load_idx = sd->newidle_idx;
3451 3452
		break;
	default:
N
Nick Piggin 已提交
3453
		load_idx = sd->idle_idx;
3454 3455
		break;
	}
L
Linus Torvalds 已提交
3456

3457 3458
	return load_idx;
}
L
Linus Torvalds 已提交
3459 3460


3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3485

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3499

3500 3501
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3502

3503 3504 3505 3506 3507 3508 3509
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3510

3511 3512 3513 3514 3515 3516 3517 3518
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3533

3534 3535 3536 3537 3538 3539 3540
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3541

3542 3543 3544 3545 3546 3547 3548
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3549

3550
/**
3551
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3552 3553 3554 3555 3556
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3557 3558 3559 3560 3561
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3562 3563 3564 3565 3566 3567 3568 3569
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3570

3571 3572 3573
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3574

3575 3576
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3577

3578 3579 3580 3581 3582 3583
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3584

3585 3586 3587 3588 3589 3590 3591
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3637

3638 3639
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3640

3641 3642
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3643

3644
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3645
		if (local_group) {
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3658
		}
3659

3660 3661 3662
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3663

3664 3665
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3678

3679 3680 3681
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3712
 */
3713 3714 3715 3716
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3717
{
3718
	struct sched_group *group = sd->groups;
3719
	struct sg_lb_stats sgs;
3720 3721
	int load_idx;

3722
	init_sd_power_savings_stats(sd, sds, idle);
3723
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3724 3725 3726 3727

	do {
		int local_group;

3728 3729
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3730
		memset(&sgs, 0, sizeof(sgs));
3731 3732
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3733

3734 3735
		if (local_group && balance && !(*balance))
			return;
3736

3737 3738
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3739 3740

		if (local_group) {
3741 3742 3743 3744 3745
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3746 3747
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3748 3749 3750 3751 3752
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3753
		}
3754

3755
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3756 3757 3758
		group = group->next;
	} while (group != sd->groups);

3759
}
L
Linus Torvalds 已提交
3760

3761 3762
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3763 3764
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3783

3784 3785 3786 3787 3788
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3789

L
Linus Torvalds 已提交
3790
	/*
3791 3792 3793
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3794
	 */
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3837 3838 3839 3840 3841
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3842
	if (sds->max_load < sds->avg_load) {
3843
		*imbalance = 0;
3844
		return fix_small_imbalance(sds, this_cpu, imbalance);
3845
	}
3846 3847

	/* Don't want to pull so many tasks that a group would go idle */
3848 3849
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3850

L
Linus Torvalds 已提交
3851
	/* How much load to actually move to equalise the imbalance */
3852 3853
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3854 3855
			/ SCHED_LOAD_SCALE;

3856 3857 3858 3859 3860 3861
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3862 3863
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3864

3865
}
3866
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3892 3893 3894 3895 3896 3897 3898
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3899

3900
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3901

3902 3903 3904 3905 3906 3907 3908
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3919 3920
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3921

3922 3923
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3924

3925
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3926 3927
		goto out_balanced;

3928
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3929

3930 3931 3932 3933
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3934 3935
		goto out_balanced;

3936 3937 3938 3939
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3940

L
Linus Torvalds 已提交
3941 3942 3943 3944 3945 3946 3947 3948
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3949
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3950 3951
	 * appear as very large values with unsigned longs.
	 */
3952
	if (sds.max_load <= sds.busiest_load_per_task)
3953 3954
		goto out_balanced;

3955 3956
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3957
	return sds.busiest;
L
Linus Torvalds 已提交
3958 3959

out_balanced:
3960 3961 3962 3963 3964 3965
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3966
ret:
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3974
static struct rq *
I
Ingo Molnar 已提交
3975
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3976
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3977
{
3978
	struct rq *busiest = NULL, *rq;
3979
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3980 3981
	int i;

3982
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3983
		unsigned long wl;
3984

3985
		if (!cpumask_test_cpu(i, cpus))
3986 3987
			continue;

3988
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3989
		wl = weighted_cpuload(i);
3990

I
Ingo Molnar 已提交
3991
		if (rq->nr_running == 1 && wl > imbalance)
3992
			continue;
L
Linus Torvalds 已提交
3993

I
Ingo Molnar 已提交
3994 3995
		if (wl > max_load) {
			max_load = wl;
3996
			busiest = rq;
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002
		}
	}

	return busiest;
}

4003 4004 4005 4006 4007 4008
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4009 4010 4011
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4012 4013 4014 4015
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4016
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4017
			struct sched_domain *sd, enum cpu_idle_type idle,
4018
			int *balance)
L
Linus Torvalds 已提交
4019
{
P
Peter Williams 已提交
4020
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4021 4022
	struct sched_group *group;
	unsigned long imbalance;
4023
	struct rq *busiest;
4024
	unsigned long flags;
4025
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4026

4027
	cpumask_setall(cpus);
4028

4029 4030 4031
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4032
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4033
	 * portraying it as CPU_NOT_IDLE.
4034
	 */
I
Ingo Molnar 已提交
4035
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4036
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4037
		sd_idle = 1;
L
Linus Torvalds 已提交
4038

4039
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4040

4041
redo:
4042
	update_shares(sd);
4043
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4044
				   cpus, balance);
4045

4046
	if (*balance == 0)
4047 4048
		goto out_balanced;

L
Linus Torvalds 已提交
4049 4050 4051 4052 4053
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4054
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4060
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4061 4062 4063

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4064
	ld_moved = 0;
L
Linus Torvalds 已提交
4065 4066 4067 4068
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4069
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4070 4071
		 * correctly treated as an imbalance.
		 */
4072
		local_irq_save(flags);
N
Nick Piggin 已提交
4073
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4074
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4075
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4076
		double_rq_unlock(this_rq, busiest);
4077
		local_irq_restore(flags);
4078

4079 4080 4081
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4082
		if (ld_moved && this_cpu != smp_processor_id())
4083 4084
			resched_cpu(this_cpu);

4085
		/* All tasks on this runqueue were pinned by CPU affinity */
4086
		if (unlikely(all_pinned)) {
4087 4088
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4089
				goto redo;
4090
			goto out_balanced;
4091
		}
L
Linus Torvalds 已提交
4092
	}
4093

P
Peter Williams 已提交
4094
	if (!ld_moved) {
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4100
			spin_lock_irqsave(&busiest->lock, flags);
4101 4102 4103 4104

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4105 4106
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4107
				spin_unlock_irqrestore(&busiest->lock, flags);
4108 4109 4110 4111
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4112 4113 4114
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4115
				active_balance = 1;
L
Linus Torvalds 已提交
4116
			}
4117
			spin_unlock_irqrestore(&busiest->lock, flags);
4118
			if (active_balance)
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4125
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4126
		}
4127
	} else
L
Linus Torvalds 已提交
4128 4129
		sd->nr_balance_failed = 0;

4130
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4131 4132
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4133 4134 4135 4136 4137 4138 4139 4140 4141
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4142 4143
	}

P
Peter Williams 已提交
4144
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4146 4147 4148
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4149 4150 4151 4152

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4153
	sd->nr_balance_failed = 0;
4154 4155

out_one_pinned:
L
Linus Torvalds 已提交
4156
	/* tune up the balancing interval */
4157 4158
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4159 4160
		sd->balance_interval *= 2;

4161
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4162
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4163 4164 4165 4166
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4167 4168
	if (ld_moved)
		update_shares(sd);
4169
	return ld_moved;
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4176
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4177 4178
 * this_rq is locked.
 */
4179
static int
4180
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4181 4182
{
	struct sched_group *group;
4183
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4184
	unsigned long imbalance;
P
Peter Williams 已提交
4185
	int ld_moved = 0;
N
Nick Piggin 已提交
4186
	int sd_idle = 0;
4187
	int all_pinned = 0;
4188
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4189

4190
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4191

4192 4193 4194 4195
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4196
	 * portraying it as CPU_NOT_IDLE.
4197 4198 4199
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4200
		sd_idle = 1;
L
Linus Torvalds 已提交
4201

4202
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4203
redo:
4204
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4205
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4206
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4207
	if (!group) {
I
Ingo Molnar 已提交
4208
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4209
		goto out_balanced;
L
Linus Torvalds 已提交
4210 4211
	}

4212
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4213
	if (!busiest) {
I
Ingo Molnar 已提交
4214
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4215
		goto out_balanced;
L
Linus Torvalds 已提交
4216 4217
	}

N
Nick Piggin 已提交
4218 4219
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4220
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4221

P
Peter Williams 已提交
4222
	ld_moved = 0;
4223 4224 4225
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4226 4227
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4228
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4229 4230
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4231
		double_unlock_balance(this_rq, busiest);
4232

4233
		if (unlikely(all_pinned)) {
4234 4235
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4236 4237
				goto redo;
		}
4238 4239
	}

P
Peter Williams 已提交
4240
	if (!ld_moved) {
4241
		int active_balance = 0;
4242

I
Ingo Molnar 已提交
4243
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4244 4245
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4246
			return -1;
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4283
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4296 4297 4298 4299
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4300 4301
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4302
		spin_lock(&this_rq->lock);
4303

N
Nick Piggin 已提交
4304
	} else
4305
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4306

4307
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4308
	return ld_moved;
4309 4310

out_balanced:
I
Ingo Molnar 已提交
4311
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4312
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4313
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4314
		return -1;
4315
	sd->nr_balance_failed = 0;
4316

4317
	return 0;
L
Linus Torvalds 已提交
4318 4319 4320 4321 4322 4323
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4324
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4325 4326
{
	struct sched_domain *sd;
4327
	int pulled_task = 0;
I
Ingo Molnar 已提交
4328
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4329 4330

	for_each_domain(this_cpu, sd) {
4331 4332 4333 4334 4335 4336
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4337
			/* If we've pulled tasks over stop searching: */
4338
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4339
							   sd);
4340 4341 4342 4343 4344 4345

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4346
	}
I
Ingo Molnar 已提交
4347
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4348 4349 4350 4351 4352
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4353
	}
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4364
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4365
{
4366
	int target_cpu = busiest_rq->push_cpu;
4367 4368
	struct sched_domain *sd;
	struct rq *target_rq;
4369

4370
	/* Is there any task to move? */
4371 4372 4373 4374
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4375 4376

	/*
4377
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4378
	 * we need to fix it. Originally reported by
4379
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4380
	 */
4381
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4382

4383 4384
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4385 4386
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4387 4388

	/* Search for an sd spanning us and the target CPU. */
4389
	for_each_domain(target_cpu, sd) {
4390
		if ((sd->flags & SD_LOAD_BALANCE) &&
4391
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4392
				break;
4393
	}
4394

4395
	if (likely(sd)) {
4396
		schedstat_inc(sd, alb_count);
4397

P
Peter Williams 已提交
4398 4399
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4400 4401 4402 4403
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4404
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4405 4406
}

4407 4408 4409
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4410
	cpumask_var_t cpu_mask;
4411
	cpumask_var_t ilb_grp_nohz_mask;
4412 4413 4414 4415
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4527
	return cpumask_first(nohz.cpu_mask);
4528 4529 4530
}
#endif

4531
/*
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4542
 *
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4558 4559 4560 4561 4562 4563 4564 4565
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4566 4567
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4568

4569 4570 4571
			return 0;
		}

4572 4573
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4574
		/* time for ilb owner also to sleep */
4575
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4576 4577 4578 4579 4580 4581 4582 4583 4584
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4601
			return 1;
4602
		}
4603
	} else {
4604
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4605 4606
			return 0;

4607
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4620 4621 4622 4623 4624
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4625
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4626
{
4627 4628
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4629 4630
	unsigned long interval;
	struct sched_domain *sd;
4631
	/* Earliest time when we have to do rebalance again */
4632
	unsigned long next_balance = jiffies + 60*HZ;
4633
	int update_next_balance = 0;
4634
	int need_serialize;
L
Linus Torvalds 已提交
4635

4636
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4637 4638 4639 4640
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4641
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4648 4649 4650
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4651
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4652

4653
		if (need_serialize) {
4654 4655 4656 4657
			if (!spin_trylock(&balancing))
				goto out;
		}

4658
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4659
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4660 4661
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4662 4663 4664
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4665
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4666
			}
4667
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4668
		}
4669
		if (need_serialize)
4670 4671
			spin_unlock(&balancing);
out:
4672
		if (time_after(next_balance, sd->last_balance + interval)) {
4673
			next_balance = sd->last_balance + interval;
4674 4675
			update_next_balance = 1;
		}
4676 4677 4678 4679 4680 4681 4682 4683

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4684
	}
4685 4686 4687 4688 4689 4690 4691 4692

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4693 4694 4695 4696 4697 4698 4699 4700 4701
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4702 4703 4704 4705
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4706

I
Ingo Molnar 已提交
4707
	rebalance_domains(this_cpu, idle);
4708 4709 4710 4711 4712 4713 4714

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4715 4716
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4717 4718 4719
		struct rq *rq;
		int balance_cpu;

4720 4721 4722 4723
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4724 4725 4726 4727 4728 4729 4730 4731
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4732
			rebalance_domains(balance_cpu, CPU_IDLE);
4733 4734

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4735 4736
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4737 4738 4739 4740 4741
		}
	}
#endif
}

4742 4743 4744 4745 4746
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4747 4748 4749 4750 4751 4752 4753
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4754
static inline void trigger_load_balance(struct rq *rq, int cpu)
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4766
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4767 4768 4769 4770
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4771
			int ilb = find_new_ilb(cpu);
4772

4773
			if (ilb < nr_cpu_ids)
4774 4775 4776 4777 4778 4779 4780 4781 4782
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4783
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4784 4785 4786 4787 4788 4789 4790 4791 4792
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4793
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4794 4795
		return;
#endif
4796 4797 4798
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4799
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4800
}
I
Ingo Molnar 已提交
4801 4802 4803

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4804 4805 4806
/*
 * on UP we do not need to balance between CPUs:
 */
4807
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4808 4809
{
}
I
Ingo Molnar 已提交
4810

L
Linus Torvalds 已提交
4811 4812 4813 4814 4815 4816 4817
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4818
 * Return any ns on the sched_clock that have not yet been accounted in
4819
 * @p in case that task is currently running.
4820 4821
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4822
 */
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4837
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4838 4839
{
	unsigned long flags;
4840
	struct rq *rq;
4841
	u64 ns = 0;
4842

4843
	rq = task_rq_lock(p, &flags);
4844 4845
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4846

4847 4848
	return ns;
}
4849

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4867

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4887
	task_rq_unlock(rq, &flags);
4888

L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4896
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4897
 */
4898 4899
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4900 4901 4902 4903
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4904
	/* Add user time to process. */
L
Linus Torvalds 已提交
4905
	p->utime = cputime_add(p->utime, cputime);
4906
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4907
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4915 4916

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4917 4918
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4919 4920
}

4921 4922 4923 4924
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4925
 * @cputime_scaled: cputime scaled by cpu frequency
4926
 */
4927 4928
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4929 4930 4931 4932 4933 4934
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4935
	/* Add guest time to process. */
4936
	p->utime = cputime_add(p->utime, cputime);
4937
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4938
	account_group_user_time(p, cputime);
4939 4940
	p->gtime = cputime_add(p->gtime, cputime);

4941
	/* Add guest time to cpustat. */
4942 4943 4944 4945
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4946 4947 4948 4949 4950
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4951
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4952 4953
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4954
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4955 4956 4957 4958
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4959
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4960
		account_guest_time(p, cputime, cputime_scaled);
4961 4962
		return;
	}
4963

4964
	/* Add system time to process. */
L
Linus Torvalds 已提交
4965
	p->stime = cputime_add(p->stime, cputime);
4966
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4967
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4976 4977
		cpustat->system = cputime64_add(cpustat->system, tmp);

4978 4979
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4980 4981 4982 4983
	/* Account for system time used */
	acct_update_integrals(p);
}

4984
/*
L
Linus Torvalds 已提交
4985 4986
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4987
 */
4988
void account_steal_time(cputime_t cputime)
4989
{
4990 4991 4992 4993
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4994 4995
}

L
Linus Torvalds 已提交
4996
/*
4997 4998
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4999
 */
5000
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5001 5002
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5003
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5004
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5005

5006 5007 5008 5009
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5010 5011
}

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5027
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5051 5052
}

5053 5054
#endif

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5125
	struct task_struct *curr = rq->curr;
5126 5127

	sched_clock_tick();
I
Ingo Molnar 已提交
5128 5129

	spin_lock(&rq->lock);
5130
	update_rq_clock(rq);
5131
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5132
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5133
	spin_unlock(&rq->lock);
5134

5135 5136
	perf_counter_task_tick(curr, cpu);

5137
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5138 5139
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5140
#endif
L
Linus Torvalds 已提交
5141 5142
}

5143
notrace unsigned long get_parent_ip(unsigned long addr)
5144 5145 5146 5147 5148 5149 5150 5151
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5152

5153 5154 5155
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5156
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5157
{
5158
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5159 5160 5161
	/*
	 * Underflow?
	 */
5162 5163
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5164
#endif
L
Linus Torvalds 已提交
5165
	preempt_count() += val;
5166
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5167 5168 5169
	/*
	 * Spinlock count overflowing soon?
	 */
5170 5171
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5172 5173 5174
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5175 5176 5177
}
EXPORT_SYMBOL(add_preempt_count);

5178
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5179
{
5180
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5181 5182 5183
	/*
	 * Underflow?
	 */
5184
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5185
		return;
L
Linus Torvalds 已提交
5186 5187 5188
	/*
	 * Is the spinlock portion underflowing?
	 */
5189 5190 5191
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5192
#endif
5193

5194 5195
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200 5201 5202
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5203
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5204
 */
I
Ingo Molnar 已提交
5205
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5206
{
5207 5208 5209 5210 5211
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5212
	debug_show_held_locks(prev);
5213
	print_modules();
I
Ingo Molnar 已提交
5214 5215
	if (irqs_disabled())
		print_irqtrace_events(prev);
5216 5217 5218 5219 5220

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5221
}
L
Linus Torvalds 已提交
5222

I
Ingo Molnar 已提交
5223 5224 5225 5226 5227
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5228
	/*
I
Ingo Molnar 已提交
5229
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5230 5231 5232
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5233
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5234 5235
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5236 5237
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5238
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5239 5240
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5241 5242
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5243 5244
	}
#endif
I
Ingo Molnar 已提交
5245 5246
}

M
Mike Galbraith 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5269 5270 5271 5272
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5273
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5274
{
5275
	const struct sched_class *class;
I
Ingo Molnar 已提交
5276
	struct task_struct *p;
L
Linus Torvalds 已提交
5277 5278

	/*
I
Ingo Molnar 已提交
5279 5280
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5281
	 */
I
Ingo Molnar 已提交
5282
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5283
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5284 5285
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5286 5287
	}

I
Ingo Molnar 已提交
5288 5289
	class = sched_class_highest;
	for ( ; ; ) {
5290
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5300

I
Ingo Molnar 已提交
5301 5302 5303
/*
 * schedule() is the main scheduler function.
 */
5304
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5305 5306
{
	struct task_struct *prev, *next;
5307
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5308
	struct rq *rq;
5309
	int cpu;
I
Ingo Molnar 已提交
5310

5311 5312
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5323

5324
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5325
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5326

5327
	spin_lock_irq(&rq->lock);
5328
	update_rq_clock(rq);
5329
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5330 5331

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5332
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5333
			prev->state = TASK_RUNNING;
5334
		else
5335
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5336
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5337 5338
	}

5339 5340 5341 5342
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5343

I
Ingo Molnar 已提交
5344
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5345 5346
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5347
	put_prev_task(rq, prev);
5348
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5349 5350

	if (likely(prev != next)) {
5351
		sched_info_switch(prev, next);
5352
		perf_counter_task_sched_out(prev, next, cpu);
5353

L
Linus Torvalds 已提交
5354 5355 5356 5357
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5358
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5359 5360 5361 5362 5363 5364
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5365 5366 5367
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5368
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5369
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5370

L
Linus Torvalds 已提交
5371
	preempt_enable_no_resched();
5372
	if (need_resched())
L
Linus Torvalds 已提交
5373 5374 5375 5376
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5438 5439
#ifdef CONFIG_PREEMPT
/*
5440
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5441
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5447

L
Linus Torvalds 已提交
5448 5449
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5450
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5451
	 */
N
Nick Piggin 已提交
5452
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5453 5454
		return;

5455 5456 5457 5458
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5459

5460 5461 5462 5463 5464
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5465
	} while (need_resched());
L
Linus Torvalds 已提交
5466 5467 5468 5469
}
EXPORT_SYMBOL(preempt_schedule);

/*
5470
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5471 5472 5473 5474 5475 5476 5477
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5478

5479
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5480 5481
	BUG_ON(ti->preempt_count || !irqs_disabled());

5482 5483 5484 5485 5486 5487
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5488

5489 5490 5491 5492 5493
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5494
	} while (need_resched());
L
Linus Torvalds 已提交
5495 5496 5497 5498
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5499 5500
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5501
{
5502
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5503 5504 5505 5506
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5507 5508
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5509 5510 5511
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5512
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5513 5514
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5515
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5516
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5517
{
5518
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5519

5520
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5521 5522
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5523
		if (curr->func(curr, mode, sync, key) &&
5524
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5534
 * @key: is directly passed to the wakeup function
5535 5536 5537
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5538
 */
5539
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5540
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5553
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5554 5555 5556 5557
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5558 5559 5560 5561 5562
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5563
/**
5564
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5565 5566 5567
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5568
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573 5574 5575
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5576 5577 5578
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5579
 */
5580 5581
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5593
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5594 5595
	spin_unlock_irqrestore(&q->lock, flags);
}
5596 5597 5598 5599 5600 5601 5602 5603 5604
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5605 5606
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5607 5608 5609 5610 5611 5612 5613 5614
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5615 5616 5617
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5618
 */
5619
void complete(struct completion *x)
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5625
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5626 5627 5628 5629
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5630 5631 5632 5633 5634
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5635 5636 5637
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5638
 */
5639
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5645
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5646 5647 5648 5649
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5650 5651
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657 5658
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5659
			if (signal_pending_state(state, current)) {
5660 5661
				timeout = -ERESTARTSYS;
				break;
5662 5663
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5664 5665 5666
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5667
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5668
		__remove_wait_queue(&x->wait, &wait);
5669 5670
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5671 5672
	}
	x->done--;
5673
	return timeout ?: 1;
L
Linus Torvalds 已提交
5674 5675
}

5676 5677
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5678 5679 5680 5681
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5682
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5683
	spin_unlock_irq(&x->wait.lock);
5684 5685
	return timeout;
}
L
Linus Torvalds 已提交
5686

5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5697
void __sched wait_for_completion(struct completion *x)
5698 5699
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5700
}
5701
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5702

5703 5704 5705 5706 5707 5708 5709 5710 5711
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5712
unsigned long __sched
5713
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5714
{
5715
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5716
}
5717
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5718

5719 5720 5721 5722 5723 5724 5725
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5726
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5727
{
5728 5729 5730 5731
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5732
}
5733
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5734

5735 5736 5737 5738 5739 5740 5741 5742
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5743
unsigned long __sched
5744 5745
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5746
{
5747
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5748
}
5749
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5750

5751 5752 5753 5754 5755 5756 5757
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5813 5814
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5815
{
I
Ingo Molnar 已提交
5816 5817 5818 5819
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5820

5821
	__set_current_state(state);
L
Linus Torvalds 已提交
5822

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5837 5838 5839
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5840
long __sched
I
Ingo Molnar 已提交
5841
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5842
{
5843
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5844 5845 5846
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5847
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5848
{
5849
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5850 5851 5852
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5853
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5854
{
5855
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5856 5857 5858
}
EXPORT_SYMBOL(sleep_on_timeout);

5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5871
void rt_mutex_setprio(struct task_struct *p, int prio)
5872 5873
{
	unsigned long flags;
5874
	int oldprio, on_rq, running;
5875
	struct rq *rq;
5876
	const struct sched_class *prev_class = p->sched_class;
5877 5878 5879 5880

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5881
	update_rq_clock(rq);
5882

5883
	oldprio = p->prio;
I
Ingo Molnar 已提交
5884
	on_rq = p->se.on_rq;
5885
	running = task_current(rq, p);
5886
	if (on_rq)
5887
		dequeue_task(rq, p, 0);
5888 5889
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5890 5891 5892 5893 5894 5895

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5896 5897
	p->prio = prio;

5898 5899
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5900
	if (on_rq) {
5901
		enqueue_task(rq, p, 0);
5902 5903

		check_class_changed(rq, p, prev_class, oldprio, running);
5904 5905 5906 5907 5908 5909
	}
	task_rq_unlock(rq, &flags);
}

#endif

5910
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5911
{
I
Ingo Molnar 已提交
5912
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5913
	unsigned long flags;
5914
	struct rq *rq;
L
Linus Torvalds 已提交
5915 5916 5917 5918 5919 5920 5921 5922

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5923
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5924 5925 5926 5927
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5928
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5929
	 */
5930
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5931 5932 5933
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5934
	on_rq = p->se.on_rq;
5935
	if (on_rq)
5936
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5937 5938

	p->static_prio = NICE_TO_PRIO(nice);
5939
	set_load_weight(p);
5940 5941 5942
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5943

I
Ingo Molnar 已提交
5944
	if (on_rq) {
5945
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5946
		/*
5947 5948
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5949
		 */
5950
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5951 5952 5953 5954 5955 5956 5957
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5958 5959 5960 5961 5962
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5963
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5964
{
5965 5966
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5967

M
Matt Mackall 已提交
5968 5969 5970 5971
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5981
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5982
{
5983
	long nice, retval;
L
Linus Torvalds 已提交
5984 5985 5986 5987 5988 5989

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5990 5991
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5992 5993 5994
	if (increment > 40)
		increment = 40;

5995
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5996 5997 5998 5999 6000
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6001 6002 6003
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6022
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6023 6024 6025 6026 6027 6028 6029 6030
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6031
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6032 6033 6034
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6035
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6050
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6051 6052 6053 6054 6055 6056 6057 6058
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6059
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6060
{
6061
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6062 6063 6064
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6065 6066
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6067
{
I
Ingo Molnar 已提交
6068
	BUG_ON(p->se.on_rq);
6069

L
Linus Torvalds 已提交
6070
	p->policy = policy;
I
Ingo Molnar 已提交
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6083
	p->rt_priority = prio;
6084 6085 6086
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6087
	set_load_weight(p);
L
Linus Torvalds 已提交
6088 6089
}

6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6106 6107
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6108
{
6109
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6110
	unsigned long flags;
6111
	const struct sched_class *prev_class = p->sched_class;
6112
	struct rq *rq;
6113
	int reset_on_fork;
L
Linus Torvalds 已提交
6114

6115 6116
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6117 6118
recheck:
	/* double check policy once rq lock held */
6119 6120
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6121
		policy = oldpolicy = p->policy;
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6132 6133
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6134 6135
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6136 6137
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6138
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6139
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6140
		return -EINVAL;
6141
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6142 6143
		return -EINVAL;

6144 6145 6146
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6147
	if (user && !capable(CAP_SYS_NICE)) {
6148
		if (rt_policy(policy)) {
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6165 6166 6167 6168 6169 6170
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6171

6172
		/* can't change other user's priorities */
6173
		if (!check_same_owner(p))
6174
			return -EPERM;
6175 6176 6177 6178

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6179
	}
L
Linus Torvalds 已提交
6180

6181
	if (user) {
6182
#ifdef CONFIG_RT_GROUP_SCHED
6183 6184 6185 6186
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6187 6188
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6189
			return -EPERM;
6190 6191
#endif

6192 6193 6194 6195 6196
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6197 6198 6199 6200 6201
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6202 6203 6204 6205
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6206
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6207 6208 6209
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6210 6211
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6212 6213
		goto recheck;
	}
I
Ingo Molnar 已提交
6214
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6215
	on_rq = p->se.on_rq;
6216
	running = task_current(rq, p);
6217
	if (on_rq)
6218
		deactivate_task(rq, p, 0);
6219 6220
	if (running)
		p->sched_class->put_prev_task(rq, p);
6221

6222 6223
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6224
	oldprio = p->prio;
I
Ingo Molnar 已提交
6225
	__setscheduler(rq, p, policy, param->sched_priority);
6226

6227 6228
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6229 6230
	if (on_rq) {
		activate_task(rq, p, 0);
6231 6232

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6233
	}
6234 6235 6236
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6237 6238
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6239 6240
	return 0;
}
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6255 6256
EXPORT_SYMBOL_GPL(sched_setscheduler);

6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6274 6275
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6276 6277 6278
{
	struct sched_param lparam;
	struct task_struct *p;
6279
	int retval;
L
Linus Torvalds 已提交
6280 6281 6282 6283 6284

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6285 6286 6287

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6288
	p = find_process_by_pid(pid);
6289 6290 6291
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6292

L
Linus Torvalds 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6302 6303
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6304
{
6305 6306 6307 6308
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6309 6310 6311 6312 6313 6314 6315 6316
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6317
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6318 6319 6320 6321 6322 6323 6324 6325
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6326
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6327
{
6328
	struct task_struct *p;
6329
	int retval;
L
Linus Torvalds 已提交
6330 6331

	if (pid < 0)
6332
		return -EINVAL;
L
Linus Torvalds 已提交
6333 6334 6335 6336 6337 6338 6339

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6340 6341
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6342 6343 6344 6345 6346 6347
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6348
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6349 6350 6351
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6352
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6353 6354
{
	struct sched_param lp;
6355
	struct task_struct *p;
6356
	int retval;
L
Linus Torvalds 已提交
6357 6358

	if (!param || pid < 0)
6359
		return -EINVAL;
L
Linus Torvalds 已提交
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6386
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6387
{
6388
	cpumask_var_t cpus_allowed, new_mask;
6389 6390
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6391

6392
	get_online_cpus();
L
Linus Torvalds 已提交
6393 6394 6395 6396 6397
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6398
		put_online_cpus();
L
Linus Torvalds 已提交
6399 6400 6401 6402 6403
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6404
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6410 6411 6412 6413 6414 6415 6416 6417
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6418
	retval = -EPERM;
6419
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6420 6421
		goto out_unlock;

6422 6423 6424 6425
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6426 6427
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6428
 again:
6429
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6430

P
Paul Menage 已提交
6431
	if (!retval) {
6432 6433
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6434 6435 6436 6437 6438
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6439
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6440 6441 6442
			goto again;
		}
	}
L
Linus Torvalds 已提交
6443
out_unlock:
6444 6445 6446 6447
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6448
	put_task_struct(p);
6449
	put_online_cpus();
L
Linus Torvalds 已提交
6450 6451 6452 6453
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6454
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6455
{
6456 6457 6458 6459 6460
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6470 6471
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6472
{
6473
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6474 6475
	int retval;

6476 6477
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6478

6479 6480 6481 6482 6483
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6484 6485
}

6486
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6487
{
6488
	struct task_struct *p;
L
Linus Torvalds 已提交
6489 6490
	int retval;

6491
	get_online_cpus();
L
Linus Torvalds 已提交
6492 6493 6494 6495 6496 6497 6498
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6499 6500 6501 6502
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6503
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6504 6505 6506

out_unlock:
	read_unlock(&tasklist_lock);
6507
	put_online_cpus();
L
Linus Torvalds 已提交
6508

6509
	return retval;
L
Linus Torvalds 已提交
6510 6511 6512 6513 6514 6515 6516 6517
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6518 6519
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6520 6521
{
	int ret;
6522
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6523

6524
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6525 6526
		return -EINVAL;

6527 6528
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6529

6530 6531 6532 6533 6534 6535 6536 6537
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6538

6539
	return ret;
L
Linus Torvalds 已提交
6540 6541 6542 6543 6544
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6545 6546
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6547
 */
6548
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6549
{
6550
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6551

6552
	schedstat_inc(rq, yld_count);
6553
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6554 6555 6556 6557 6558 6559

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6560
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6561 6562 6563 6564 6565 6566 6567 6568
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6569
static void __cond_resched(void)
L
Linus Torvalds 已提交
6570
{
6571 6572 6573
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6574 6575 6576 6577 6578
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6579 6580 6581 6582 6583 6584 6585
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6586
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6587
{
6588 6589
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6590 6591 6592 6593 6594
		__cond_resched();
		return 1;
	}
	return 0;
}
6595
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6596 6597 6598 6599 6600

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6601
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6602 6603 6604
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6605
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6606
{
N
Nick Piggin 已提交
6607
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6608 6609
	int ret = 0;

N
Nick Piggin 已提交
6610
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6611
		spin_unlock(lock);
N
Nick Piggin 已提交
6612 6613 6614 6615
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6616
		ret = 1;
L
Linus Torvalds 已提交
6617 6618
		spin_lock(lock);
	}
J
Jan Kara 已提交
6619
	return ret;
L
Linus Torvalds 已提交
6620 6621 6622 6623 6624 6625 6626
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6627
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6628
		local_bh_enable();
L
Linus Torvalds 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6640
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6651
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656 6657 6658
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6659
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6660

6661
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6662 6663 6664
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6665
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6666 6667 6668 6669 6670
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6671
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6672 6673
	long ret;

6674
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6675 6676 6677
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6678
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6689
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6699
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6700
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6714
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719 6720 6721 6722 6723
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6724
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6725
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6739
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6740
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6741
{
6742
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6743
	unsigned int time_slice;
6744
	int retval;
L
Linus Torvalds 已提交
6745 6746 6747
	struct timespec t;

	if (pid < 0)
6748
		return -EINVAL;
L
Linus Torvalds 已提交
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6760 6761 6762 6763 6764 6765
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6766
		time_slice = DEF_TIMESLICE;
6767
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6768 6769 6770 6771 6772
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6773 6774
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6775 6776
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6777
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6778
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6779 6780
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6781

L
Linus Torvalds 已提交
6782 6783 6784 6785 6786
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6787
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6788

6789
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6790 6791
{
	unsigned long free = 0;
6792
	unsigned state;
L
Linus Torvalds 已提交
6793 6794

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6795
	printk(KERN_INFO "%-13.13s %c", p->comm,
6796
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6797
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6798
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6799
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6800
	else
I
Ingo Molnar 已提交
6801
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6802 6803
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6804
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6805
	else
I
Ingo Molnar 已提交
6806
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6807 6808
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6809
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6810
#endif
6811 6812 6813
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6814

6815
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6816 6817
}

I
Ingo Molnar 已提交
6818
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6819
{
6820
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6821

6822 6823 6824
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6825
#else
6826 6827
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6828 6829 6830 6831 6832 6833 6834 6835
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6836
		if (!state_filter || (p->state & state_filter))
6837
			sched_show_task(p);
L
Linus Torvalds 已提交
6838 6839
	} while_each_thread(g, p);

6840 6841
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6842 6843 6844
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6845
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6846 6847 6848 6849 6850
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6851 6852
}

I
Ingo Molnar 已提交
6853 6854
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6855
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6856 6857
}

6858 6859 6860 6861 6862 6863 6864 6865
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6866
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6867
{
6868
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6869 6870
	unsigned long flags;

6871 6872
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6873 6874 6875
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6876
	idle->prio = idle->normal_prio = MAX_PRIO;
6877
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6878
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6879 6880

	rq->curr = rq->idle = idle;
6881 6882 6883
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6884 6885 6886
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6887 6888 6889
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6890
	task_thread_info(idle)->preempt_count = 0;
6891
#endif
I
Ingo Molnar 已提交
6892 6893 6894 6895
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6896
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6897 6898 6899 6900 6901 6902 6903
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6904
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6905
 */
6906
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6907

I
Ingo Molnar 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6931 6932

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6933 6934
}

L
Linus Torvalds 已提交
6935 6936 6937 6938
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6939
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6958
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6959 6960
 * call is not atomic; no spinlocks may be held.
 */
6961
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6962
{
6963
	struct migration_req req;
L
Linus Torvalds 已提交
6964
	unsigned long flags;
6965
	struct rq *rq;
6966
	int ret = 0;
L
Linus Torvalds 已提交
6967 6968

	rq = task_rq_lock(p, &flags);
6969
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6970 6971 6972 6973
		ret = -EINVAL;
		goto out;
	}

6974
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6975
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6976 6977 6978 6979
		ret = -EINVAL;
		goto out;
	}

6980
	if (p->sched_class->set_cpus_allowed)
6981
		p->sched_class->set_cpus_allowed(p, new_mask);
6982
	else {
6983 6984
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6985 6986
	}

L
Linus Torvalds 已提交
6987
	/* Can the task run on the task's current CPU? If so, we're done */
6988
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6989 6990
		goto out;

R
Rusty Russell 已提交
6991
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7001

L
Linus Torvalds 已提交
7002 7003
	return ret;
}
7004
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7005 7006

/*
I
Ingo Molnar 已提交
7007
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7008 7009 7010 7011 7012 7013
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7014 7015
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7016
 */
7017
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7018
{
7019
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7020
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7021

7022
	if (unlikely(!cpu_active(dest_cpu)))
7023
		return ret;
L
Linus Torvalds 已提交
7024 7025 7026 7027 7028 7029 7030

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7031
		goto done;
L
Linus Torvalds 已提交
7032
	/* Affinity changed (again). */
7033
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7034
		goto fail;
L
Linus Torvalds 已提交
7035

I
Ingo Molnar 已提交
7036
	on_rq = p->se.on_rq;
7037
	if (on_rq)
7038
		deactivate_task(rq_src, p, 0);
7039

L
Linus Torvalds 已提交
7040
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7041 7042
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7043
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7044
	}
L
Linus Torvalds 已提交
7045
done:
7046
	ret = 1;
L
Linus Torvalds 已提交
7047
fail:
L
Linus Torvalds 已提交
7048
	double_rq_unlock(rq_src, rq_dest);
7049
	return ret;
L
Linus Torvalds 已提交
7050 7051 7052 7053 7054 7055 7056
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7057
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7058 7059
{
	int cpu = (long)data;
7060
	struct rq *rq;
L
Linus Torvalds 已提交
7061 7062 7063 7064 7065 7066

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7067
		struct migration_req *req;
L
Linus Torvalds 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7090
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7091 7092
		list_del_init(head->next);

N
Nick Piggin 已提交
7093 7094 7095
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7125
/*
7126
 * Figure out where task on dead CPU should go, use force if necessary.
7127
 */
7128
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7129
{
7130
	int dest_cpu;
7131
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7148

7149 7150 7151 7152 7153 7154 7155 7156 7157
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7158
		}
7159 7160 7161 7162 7163 7164
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7165 7166 7167 7168 7169 7170 7171 7172 7173
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7174
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7175
{
R
Rusty Russell 已提交
7176
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7190
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7191

7192
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7193

7194 7195
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7196 7197
			continue;

7198 7199 7200
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7201

7202
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7203 7204
}

I
Ingo Molnar 已提交
7205 7206
/*
 * Schedules idle task to be the next runnable task on current CPU.
7207 7208
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7209 7210 7211
 */
void sched_idle_next(void)
{
7212
	int this_cpu = smp_processor_id();
7213
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7214 7215 7216 7217
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7218
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7219

7220 7221 7222
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7223 7224 7225
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7226
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7227

7228 7229
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7230 7231 7232 7233

	spin_unlock_irqrestore(&rq->lock, flags);
}

7234 7235
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7249
/* called under rq->lock with disabled interrupts */
7250
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7251
{
7252
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7253 7254

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7255
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7256 7257

	/* Cannot have done final schedule yet: would have vanished. */
7258
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7259

7260
	get_task_struct(p);
L
Linus Torvalds 已提交
7261 7262 7263

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7264
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7265 7266
	 * fine.
	 */
7267
	spin_unlock_irq(&rq->lock);
7268
	move_task_off_dead_cpu(dead_cpu, p);
7269
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7270

7271
	put_task_struct(p);
L
Linus Torvalds 已提交
7272 7273 7274 7275 7276
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7277
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7278
	struct task_struct *next;
7279

I
Ingo Molnar 已提交
7280 7281 7282
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7283
		update_rq_clock(rq);
7284
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7285 7286
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7287
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7288
		migrate_dead(dead_cpu, next);
7289

L
Linus Torvalds 已提交
7290 7291
	}
}
7292 7293 7294 7295 7296 7297 7298 7299

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7300 7301
#endif /* CONFIG_HOTPLUG_CPU */

7302 7303 7304
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7305 7306
	{
		.procname	= "sched_domain",
7307
		.mode		= 0555,
7308
	},
I
Ingo Molnar 已提交
7309
	{0, },
7310 7311 7312
};

static struct ctl_table sd_ctl_root[] = {
7313
	{
7314
		.ctl_name	= CTL_KERN,
7315
		.procname	= "kernel",
7316
		.mode		= 0555,
7317 7318
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7319
	{0, },
7320 7321 7322 7323 7324
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7325
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7326 7327 7328 7329

	return entry;
}

7330 7331
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7332
	struct ctl_table *entry;
7333

7334 7335 7336
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7337
	 * will always be set. In the lowest directory the names are
7338 7339 7340
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7341 7342
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7343 7344 7345
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7346 7347 7348 7349 7350

	kfree(*tablep);
	*tablep = NULL;
}

7351
static void
7352
set_table_entry(struct ctl_table *entry,
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7366
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7367

7368 7369 7370
	if (table == NULL)
		return NULL;

7371
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7372
		sizeof(long), 0644, proc_doulongvec_minmax);
7373
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7374
		sizeof(long), 0644, proc_doulongvec_minmax);
7375
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7376
		sizeof(int), 0644, proc_dointvec_minmax);
7377
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7378
		sizeof(int), 0644, proc_dointvec_minmax);
7379
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7380
		sizeof(int), 0644, proc_dointvec_minmax);
7381
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7382
		sizeof(int), 0644, proc_dointvec_minmax);
7383
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7384
		sizeof(int), 0644, proc_dointvec_minmax);
7385
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7386
		sizeof(int), 0644, proc_dointvec_minmax);
7387
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7388
		sizeof(int), 0644, proc_dointvec_minmax);
7389
	set_table_entry(&table[9], "cache_nice_tries",
7390 7391
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7392
	set_table_entry(&table[10], "flags", &sd->flags,
7393
		sizeof(int), 0644, proc_dointvec_minmax);
7394 7395 7396
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7397 7398 7399 7400

	return table;
}

7401
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7402 7403 7404 7405 7406 7407 7408 7409 7410
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7411 7412
	if (table == NULL)
		return NULL;
7413 7414 7415 7416 7417

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7418
		entry->mode = 0555;
7419 7420 7421 7422 7423 7424 7425 7426
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7427
static void register_sched_domain_sysctl(void)
7428 7429 7430 7431 7432
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7433 7434 7435
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7436 7437 7438
	if (entry == NULL)
		return;

7439
	for_each_online_cpu(i) {
7440 7441
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7442
		entry->mode = 0555;
7443
		entry->child = sd_alloc_ctl_cpu_table(i);
7444
		entry++;
7445
	}
7446 7447

	WARN_ON(sd_sysctl_header);
7448 7449
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7450

7451
/* may be called multiple times per register */
7452 7453
static void unregister_sched_domain_sysctl(void)
{
7454 7455
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7456
	sd_sysctl_header = NULL;
7457 7458
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7459
}
7460
#else
7461 7462 7463 7464
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7465 7466 7467 7468
{
}
#endif

7469 7470 7471 7472 7473
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7474
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7494
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7495 7496 7497 7498
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7499 7500 7501 7502
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7503 7504
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7505 7506
{
	struct task_struct *p;
7507
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7508
	unsigned long flags;
7509
	struct rq *rq;
L
Linus Torvalds 已提交
7510 7511

	switch (action) {
7512

L
Linus Torvalds 已提交
7513
	case CPU_UP_PREPARE:
7514
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7515
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7516 7517 7518 7519 7520
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7521
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7522 7523 7524
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7525

L
Linus Torvalds 已提交
7526
	case CPU_ONLINE:
7527
	case CPU_ONLINE_FROZEN:
7528
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7529
		wake_up_process(cpu_rq(cpu)->migration_thread);
7530 7531 7532 7533

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7534 7535
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7536
		if (rq->rd) {
7537
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7538 7539

			set_rq_online(rq);
7540 7541
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7542
		break;
7543

L
Linus Torvalds 已提交
7544 7545
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7546
	case CPU_UP_CANCELED_FROZEN:
7547 7548
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7549
		/* Unbind it from offline cpu so it can run. Fall thru. */
7550
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7551
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7552 7553 7554
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7555

L
Linus Torvalds 已提交
7556
	case CPU_DEAD:
7557
	case CPU_DEAD_FROZEN:
7558
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7559 7560 7561 7562 7563
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7564
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7565
		update_rq_clock(rq);
7566
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7567
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7568 7569
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7570
		migrate_dead_tasks(cpu);
7571
		spin_unlock_irq(&rq->lock);
7572
		cpuset_unlock();
L
Linus Torvalds 已提交
7573 7574
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7575
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7576 7577 7578 7579 7580
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7581 7582
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7583 7584
			struct migration_req *req;

L
Linus Torvalds 已提交
7585
			req = list_entry(rq->migration_queue.next,
7586
					 struct migration_req, list);
L
Linus Torvalds 已提交
7587
			list_del_init(&req->list);
B
Brian King 已提交
7588
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7589
			complete(&req->done);
B
Brian King 已提交
7590
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7591 7592 7593
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7594

7595 7596
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7597 7598 7599 7600
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7601
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7602
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7603 7604 7605
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7606 7607 7608 7609 7610
#endif
	}
	return NOTIFY_OK;
}

7611 7612 7613 7614
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7615
 */
7616
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7617 7618 7619 7620
	.notifier_call = migration_call,
	.priority = 10
};

7621
static int __init migration_init(void)
L
Linus Torvalds 已提交
7622 7623
{
	void *cpu = (void *)(long)smp_processor_id();
7624
	int err;
7625 7626

	/* Start one for the boot CPU: */
7627 7628
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7629 7630
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7631 7632

	return err;
L
Linus Torvalds 已提交
7633
}
7634
early_initcall(migration_init);
L
Linus Torvalds 已提交
7635 7636 7637
#endif

#ifdef CONFIG_SMP
7638

7639
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7640

7641
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7642
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7643
{
I
Ingo Molnar 已提交
7644
	struct sched_group *group = sd->groups;
7645
	char str[256];
L
Linus Torvalds 已提交
7646

R
Rusty Russell 已提交
7647
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7648
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7649 7650 7651 7652 7653 7654 7655 7656 7657

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7658 7659
	}

7660
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7661

7662
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7663 7664 7665
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7666
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7667 7668 7669
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7670

I
Ingo Molnar 已提交
7671
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7672
	do {
I
Ingo Molnar 已提交
7673 7674 7675
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7676 7677 7678
			break;
		}

I
Ingo Molnar 已提交
7679 7680 7681 7682 7683 7684
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7685

7686
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7687 7688 7689 7690
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7691

7692
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7693 7694 7695 7696
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7697

7698
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7699

R
Rusty Russell 已提交
7700
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7701 7702 7703 7704 7705 7706

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7707

I
Ingo Molnar 已提交
7708 7709 7710
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7711

7712
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7713
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7714

7715 7716
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7717 7718 7719 7720
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7721

I
Ingo Molnar 已提交
7722 7723
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7724
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7725
	int level = 0;
L
Linus Torvalds 已提交
7726

I
Ingo Molnar 已提交
7727 7728 7729 7730
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7731

I
Ingo Molnar 已提交
7732 7733
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7734
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7735 7736 7737 7738
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7739
	for (;;) {
7740
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7741
			break;
L
Linus Torvalds 已提交
7742 7743
		level++;
		sd = sd->parent;
7744
		if (!sd)
I
Ingo Molnar 已提交
7745 7746
			break;
	}
7747
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7748
}
7749
#else /* !CONFIG_SCHED_DEBUG */
7750
# define sched_domain_debug(sd, cpu) do { } while (0)
7751
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7752

7753
static int sd_degenerate(struct sched_domain *sd)
7754
{
7755
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7756 7757 7758 7759 7760 7761
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7762 7763 7764
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7778 7779
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7780 7781 7782 7783 7784 7785
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7786
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7798 7799 7800
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7801 7802
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7803 7804 7805 7806 7807 7808 7809
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7810 7811
static void free_rootdomain(struct root_domain *rd)
{
7812 7813
	cpupri_cleanup(&rd->cpupri);

7814 7815 7816 7817 7818 7819
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7820 7821
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7822
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7823 7824 7825 7826 7827
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7828
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7829

7830
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7831
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7832

7833
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7834

I
Ingo Molnar 已提交
7835 7836 7837 7838 7839 7840 7841
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7842 7843 7844 7845 7846
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7847 7848
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7849
		set_rq_online(rq);
G
Gregory Haskins 已提交
7850 7851

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7852 7853 7854

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7855 7856
}

L
Li Zefan 已提交
7857
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7858
{
7859 7860
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7861 7862
	memset(rd, 0, sizeof(*rd));

7863 7864
	if (bootmem)
		gfp = GFP_NOWAIT;
7865

7866
	if (!alloc_cpumask_var(&rd->span, gfp))
7867
		goto out;
7868
	if (!alloc_cpumask_var(&rd->online, gfp))
7869
		goto free_span;
7870
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7871
		goto free_online;
7872

P
Pekka Enberg 已提交
7873
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7874
		goto free_rto_mask;
7875
	return 0;
7876

7877 7878
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7879 7880 7881 7882
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7883
out:
7884
	return -ENOMEM;
G
Gregory Haskins 已提交
7885 7886 7887 7888
}

static void init_defrootdomain(void)
{
7889 7890
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7891 7892 7893
	atomic_set(&def_root_domain.refcount, 1);
}

7894
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7895 7896 7897 7898 7899 7900 7901
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7902 7903 7904 7905
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7906 7907 7908 7909

	return rd;
}

L
Linus Torvalds 已提交
7910
/*
I
Ingo Molnar 已提交
7911
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7912 7913
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7914 7915
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7916
{
7917
	struct rq *rq = cpu_rq(cpu);
7918 7919 7920
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7921
	for (tmp = sd; tmp; ) {
7922 7923 7924
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7925

7926
		if (sd_parent_degenerate(tmp, parent)) {
7927
			tmp->parent = parent->parent;
7928 7929
			if (parent->parent)
				parent->parent->child = tmp;
7930 7931
		} else
			tmp = tmp->parent;
7932 7933
	}

7934
	if (sd && sd_degenerate(sd)) {
7935
		sd = sd->parent;
7936 7937 7938
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7939 7940 7941

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7942
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7943
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7944 7945 7946
}

/* cpus with isolated domains */
7947
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7948 7949 7950 7951

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7952
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7953 7954 7955
	return 1;
}

I
Ingo Molnar 已提交
7956
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7957 7958

/*
7959 7960
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7961 7962
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7963 7964 7965 7966 7967
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7968
static void
7969 7970 7971
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7972
					struct sched_group **sg,
7973 7974
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7975 7976 7977 7978
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7979
	cpumask_clear(covered);
7980

7981
	for_each_cpu(i, span) {
7982
		struct sched_group *sg;
7983
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7984 7985
		int j;

7986
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7987 7988
			continue;

7989
		cpumask_clear(sched_group_cpus(sg));
7990
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7991

7992
		for_each_cpu(j, span) {
7993
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7994 7995
				continue;

7996
			cpumask_set_cpu(j, covered);
7997
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8008
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8009

8010
#ifdef CONFIG_NUMA
8011

8012 8013 8014 8015 8016
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8017
 * Find the next node to include in a given scheduling domain. Simply
8018 8019 8020 8021
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8022
static int find_next_best_node(int node, nodemask_t *used_nodes)
8023 8024 8025 8026 8027
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8028
	for (i = 0; i < nr_node_ids; i++) {
8029
		/* Start at @node */
8030
		n = (node + i) % nr_node_ids;
8031 8032 8033 8034 8035

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8036
		if (node_isset(n, *used_nodes))
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8048
	node_set(best_node, *used_nodes);
8049 8050 8051 8052 8053 8054
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8055
 * @span: resulting cpumask
8056
 *
I
Ingo Molnar 已提交
8057
 * Given a node, construct a good cpumask for its sched_domain to span. It
8058 8059 8060
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8061
static void sched_domain_node_span(int node, struct cpumask *span)
8062
{
8063
	nodemask_t used_nodes;
8064
	int i;
8065

8066
	cpumask_clear(span);
8067
	nodes_clear(used_nodes);
8068

8069
	cpumask_or(span, span, cpumask_of_node(node));
8070
	node_set(node, used_nodes);
8071 8072

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8073
		int next_node = find_next_best_node(node, &used_nodes);
8074

8075
		cpumask_or(span, span, cpumask_of_node(next_node));
8076 8077
	}
}
8078
#endif /* CONFIG_NUMA */
8079

8080
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8081

8082 8083
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8084 8085 8086
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8098
/*
8099
 * SMT sched-domains:
8100
 */
L
Linus Torvalds 已提交
8101
#ifdef CONFIG_SCHED_SMT
8102 8103
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8104

I
Ingo Molnar 已提交
8105
static int
8106 8107
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8108
{
8109
	if (sg)
8110
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8111 8112
	return cpu;
}
8113
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8114

8115 8116 8117
/*
 * multi-core sched-domains:
 */
8118
#ifdef CONFIG_SCHED_MC
8119 8120
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8121
#endif /* CONFIG_SCHED_MC */
8122 8123

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8124
static int
8125 8126
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8127
{
8128
	int group;
8129

8130
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8131
	group = cpumask_first(mask);
8132
	if (sg)
8133
		*sg = &per_cpu(sched_group_core, group).sg;
8134
	return group;
8135 8136
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8137
static int
8138 8139
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8140
{
8141
	if (sg)
8142
		*sg = &per_cpu(sched_group_core, cpu).sg;
8143 8144 8145 8146
	return cpu;
}
#endif

8147 8148
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8149

I
Ingo Molnar 已提交
8150
static int
8151 8152
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8153
{
8154
	int group;
8155
#ifdef CONFIG_SCHED_MC
8156
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8157
	group = cpumask_first(mask);
8158
#elif defined(CONFIG_SCHED_SMT)
8159
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8160
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8161
#else
8162
	group = cpu;
L
Linus Torvalds 已提交
8163
#endif
8164
	if (sg)
8165
		*sg = &per_cpu(sched_group_phys, group).sg;
8166
	return group;
L
Linus Torvalds 已提交
8167 8168 8169 8170
}

#ifdef CONFIG_NUMA
/*
8171 8172 8173
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8174
 */
8175
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8176
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8177

8178
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8179
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8180

8181 8182 8183
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8184
{
8185 8186
	int group;

8187
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8188
	group = cpumask_first(nodemask);
8189 8190

	if (sg)
8191
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8192
	return group;
L
Linus Torvalds 已提交
8193
}
8194

8195 8196 8197 8198 8199 8200 8201
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8202
	do {
8203
		for_each_cpu(j, sched_group_cpus(sg)) {
8204
			struct sched_domain *sd;
8205

8206
			sd = &per_cpu(phys_domains, j).sd;
8207
			if (j != group_first_cpu(sd->groups)) {
8208 8209 8210 8211 8212 8213
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8214

8215 8216 8217 8218
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8219
}
8220
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8221

8222
#ifdef CONFIG_NUMA
8223
/* Free memory allocated for various sched_group structures */
8224 8225
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8226
{
8227
	int cpu, i;
8228

8229
	for_each_cpu(cpu, cpu_map) {
8230 8231 8232 8233 8234 8235
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8236
		for (i = 0; i < nr_node_ids; i++) {
8237 8238
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8239
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8240
			if (cpumask_empty(nodemask))
8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8257
#else /* !CONFIG_NUMA */
8258 8259
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8260 8261
{
}
8262
#endif /* CONFIG_NUMA */
8263

8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8285
	if (cpu != group_first_cpu(sd->groups))
8286 8287 8288 8289
		return;

	child = sd->child;

8290 8291
	sd->groups->__cpu_power = 0;

8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8302
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8303 8304 8305 8306 8307 8308 8309 8310
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8311
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8312 8313 8314 8315
		group = group->next;
	} while (group != child->groups);
}

8316 8317 8318 8319 8320
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8321 8322 8323 8324 8325 8326
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8327
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8328

8329 8330 8331 8332 8333
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8334
	sd->level = SD_LV_##type;				\
8335
	SD_INIT_NAME(sd, type);					\
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8350 8351 8352 8353
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8354 8355 8356 8357 8358 8359
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8385
/*
8386 8387
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8388
 */
8389
static int __build_sched_domains(const struct cpumask *cpu_map,
8390
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8391
{
8392
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8393
	struct root_domain *rd;
8394 8395
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8396
#ifdef CONFIG_NUMA
8397
	cpumask_var_t domainspan, covered, notcovered;
8398
	struct sched_group **sched_group_nodes = NULL;
8399
	int sd_allnodes = 0;
8400

8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8421 8422 8423
	/*
	 * Allocate the per-node list of sched groups
	 */
8424
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8425
				    GFP_KERNEL);
8426 8427
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8428
		goto free_tmpmask;
8429 8430
	}
#endif
L
Linus Torvalds 已提交
8431

8432
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8433 8434
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8435
		goto free_sched_groups;
G
Gregory Haskins 已提交
8436 8437
	}

8438
#ifdef CONFIG_NUMA
8439
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8440 8441
#endif

L
Linus Torvalds 已提交
8442
	/*
8443
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8444
	 */
8445
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8446 8447
		struct sched_domain *sd = NULL, *p;

8448
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8449 8450

#ifdef CONFIG_NUMA
8451 8452
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8453
			sd = &per_cpu(allnodes_domains, i).sd;
8454
			SD_INIT(sd, ALLNODES);
8455
			set_domain_attribute(sd, attr);
8456
			cpumask_copy(sched_domain_span(sd), cpu_map);
8457
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8458
			p = sd;
8459
			sd_allnodes = 1;
8460 8461 8462
		} else
			p = NULL;

8463
		sd = &per_cpu(node_domains, i).sd;
8464
		SD_INIT(sd, NODE);
8465
		set_domain_attribute(sd, attr);
8466
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8467
		sd->parent = p;
8468 8469
		if (p)
			p->child = sd;
8470 8471
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8472 8473 8474
#endif

		p = sd;
8475
		sd = &per_cpu(phys_domains, i).sd;
8476
		SD_INIT(sd, CPU);
8477
		set_domain_attribute(sd, attr);
8478
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8479
		sd->parent = p;
8480 8481
		if (p)
			p->child = sd;
8482
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8483

8484 8485
#ifdef CONFIG_SCHED_MC
		p = sd;
8486
		sd = &per_cpu(core_domains, i).sd;
8487
		SD_INIT(sd, MC);
8488
		set_domain_attribute(sd, attr);
8489 8490
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8491
		sd->parent = p;
8492
		p->child = sd;
8493
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8494 8495
#endif

L
Linus Torvalds 已提交
8496 8497
#ifdef CONFIG_SCHED_SMT
		p = sd;
8498
		sd = &per_cpu(cpu_domains, i).sd;
8499
		SD_INIT(sd, SIBLING);
8500
		set_domain_attribute(sd, attr);
8501
		cpumask_and(sched_domain_span(sd),
8502
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8503
		sd->parent = p;
8504
		p->child = sd;
8505
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8506 8507 8508 8509 8510
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8511
	for_each_cpu(i, cpu_map) {
8512
		cpumask_and(this_sibling_map,
8513
			    topology_thread_cpumask(i), cpu_map);
8514
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8515 8516
			continue;

I
Ingo Molnar 已提交
8517
		init_sched_build_groups(this_sibling_map, cpu_map,
8518 8519
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8520 8521 8522
	}
#endif

8523 8524
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8525
	for_each_cpu(i, cpu_map) {
8526
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8527
		if (i != cpumask_first(this_core_map))
8528
			continue;
8529

I
Ingo Molnar 已提交
8530
		init_sched_build_groups(this_core_map, cpu_map,
8531 8532
					&cpu_to_core_group,
					send_covered, tmpmask);
8533 8534 8535
	}
#endif

L
Linus Torvalds 已提交
8536
	/* Set up physical groups */
8537
	for (i = 0; i < nr_node_ids; i++) {
8538
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8539
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8540 8541
			continue;

8542 8543 8544
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8545 8546 8547 8548
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8549 8550 8551 8552 8553
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8554

8555
	for (i = 0; i < nr_node_ids; i++) {
8556 8557 8558 8559
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8560
		cpumask_clear(covered);
8561
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8562
		if (cpumask_empty(nodemask)) {
8563
			sched_group_nodes[i] = NULL;
8564
			continue;
8565
		}
8566

8567
		sched_domain_node_span(i, domainspan);
8568
		cpumask_and(domainspan, domainspan, cpu_map);
8569

8570 8571
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8572 8573 8574 8575 8576
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8577
		sched_group_nodes[i] = sg;
8578
		for_each_cpu(j, nodemask) {
8579
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8580

8581
			sd = &per_cpu(node_domains, j).sd;
8582 8583
			sd->groups = sg;
		}
8584
		sg->__cpu_power = 0;
8585
		cpumask_copy(sched_group_cpus(sg), nodemask);
8586
		sg->next = sg;
8587
		cpumask_or(covered, covered, nodemask);
8588 8589
		prev = sg;

8590 8591
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8592

8593 8594 8595 8596
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8597 8598
				break;

8599
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8600
			if (cpumask_empty(tmpmask))
8601 8602
				continue;

8603 8604
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8605
					  GFP_KERNEL, i);
8606 8607 8608
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8609
				goto error;
8610
			}
8611
			sg->__cpu_power = 0;
8612
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8613
			sg->next = prev->next;
8614
			cpumask_or(covered, covered, tmpmask);
8615 8616 8617 8618
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8619 8620 8621
#endif

	/* Calculate CPU power for physical packages and nodes */
8622
#ifdef CONFIG_SCHED_SMT
8623
	for_each_cpu(i, cpu_map) {
8624
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8625

8626
		init_sched_groups_power(i, sd);
8627
	}
L
Linus Torvalds 已提交
8628
#endif
8629
#ifdef CONFIG_SCHED_MC
8630
	for_each_cpu(i, cpu_map) {
8631
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8632

8633
		init_sched_groups_power(i, sd);
8634 8635
	}
#endif
8636

8637
	for_each_cpu(i, cpu_map) {
8638
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8639

8640
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8641 8642
	}

8643
#ifdef CONFIG_NUMA
8644
	for (i = 0; i < nr_node_ids; i++)
8645
		init_numa_sched_groups_power(sched_group_nodes[i]);
8646

8647 8648
	if (sd_allnodes) {
		struct sched_group *sg;
8649

8650
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8651
								tmpmask);
8652 8653
		init_numa_sched_groups_power(sg);
	}
8654 8655
#endif

L
Linus Torvalds 已提交
8656
	/* Attach the domains */
8657
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8658 8659
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8660
		sd = &per_cpu(cpu_domains, i).sd;
8661
#elif defined(CONFIG_SCHED_MC)
8662
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8663
#else
8664
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8665
#endif
G
Gregory Haskins 已提交
8666
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8667
	}
8668

8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8697

8698
#ifdef CONFIG_NUMA
8699
error:
8700
	free_sched_groups(cpu_map, tmpmask);
8701
	free_rootdomain(rd);
8702
	goto free_tmpmask;
8703
#endif
L
Linus Torvalds 已提交
8704
}
P
Paul Jackson 已提交
8705

8706
static int build_sched_domains(const struct cpumask *cpu_map)
8707 8708 8709 8710
{
	return __build_sched_domains(cpu_map, NULL);
}

8711
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8712
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8713 8714
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8715 8716 8717

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8718 8719
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8720
 */
8721
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8722

8723 8724 8725 8726 8727 8728
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8729
{
8730
	return 0;
8731 8732
}

8733
/*
I
Ingo Molnar 已提交
8734
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8735 8736
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8737
 */
8738
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8739
{
8740 8741
	int err;

8742
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8743
	ndoms_cur = 1;
8744
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8745
	if (!doms_cur)
8746
		doms_cur = fallback_doms;
8747
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8748
	dattr_cur = NULL;
8749
	err = build_sched_domains(doms_cur);
8750
	register_sched_domain_sysctl();
8751 8752

	return err;
8753 8754
}

8755 8756
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8757
{
8758
	free_sched_groups(cpu_map, tmpmask);
8759
}
L
Linus Torvalds 已提交
8760

8761 8762 8763 8764
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8765
static void detach_destroy_domains(const struct cpumask *cpu_map)
8766
{
8767 8768
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8769 8770
	int i;

8771
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8772
		cpu_attach_domain(NULL, &def_root_domain, i);
8773
	synchronize_sched();
8774
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8775 8776
}

8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8793 8794
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8795
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8796 8797 8798
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8799
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8800 8801 8802
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8803 8804 8805
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8806 8807
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8808 8809 8810 8811
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8812
 *
8813
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8814 8815
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8816
 *
P
Paul Jackson 已提交
8817 8818
 * Call with hotplug lock held
 */
8819 8820
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8821
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8822
{
8823
	int i, j, n;
8824
	int new_topology;
P
Paul Jackson 已提交
8825

8826
	mutex_lock(&sched_domains_mutex);
8827

8828 8829 8830
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8831 8832 8833
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8834
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8835 8836 8837

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8838
		for (j = 0; j < n && !new_topology; j++) {
8839
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8840
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8841 8842 8843 8844 8845 8846 8847 8848
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8849 8850
	if (doms_new == NULL) {
		ndoms_cur = 0;
8851
		doms_new = fallback_doms;
8852
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8853
		WARN_ON_ONCE(dattr_new);
8854 8855
	}

P
Paul Jackson 已提交
8856 8857
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8858
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8859
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8860
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8861 8862 8863
				goto match2;
		}
		/* no match - add a new doms_new */
8864 8865
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8866 8867 8868 8869 8870
match2:
		;
	}

	/* Remember the new sched domains */
8871
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8872
		kfree(doms_cur);
8873
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8874
	doms_cur = doms_new;
8875
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8876
	ndoms_cur = ndoms_new;
8877 8878

	register_sched_domain_sysctl();
8879

8880
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8881 8882
}

8883
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8884
static void arch_reinit_sched_domains(void)
8885
{
8886
	get_online_cpus();
8887 8888 8889 8890

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8891
	rebuild_sched_domains();
8892
	put_online_cpus();
8893 8894 8895 8896
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8897
	unsigned int level = 0;
8898

8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8910 8911 8912
		return -EINVAL;

	if (smt)
8913
		sched_smt_power_savings = level;
8914
	else
8915
		sched_mc_power_savings = level;
8916

8917
	arch_reinit_sched_domains();
8918

8919
	return count;
8920 8921 8922
}

#ifdef CONFIG_SCHED_MC
8923 8924
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8925 8926 8927
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8928
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8929
					    const char *buf, size_t count)
8930 8931 8932
{
	return sched_power_savings_store(buf, count, 0);
}
8933 8934 8935
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8936 8937 8938
#endif

#ifdef CONFIG_SCHED_SMT
8939 8940
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8941 8942 8943
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8944
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8945
					     const char *buf, size_t count)
8946 8947 8948
{
	return sched_power_savings_store(buf, count, 1);
}
8949 8950
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8951 8952 8953
		   sched_smt_power_savings_store);
#endif

8954
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8970
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8971

8972
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8973
/*
8974 8975
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8976 8977 8978
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8979 8980 8981 8982 8983 8984
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8985
		partition_sched_domains(1, NULL, NULL);
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8996
{
P
Peter Zijlstra 已提交
8997 8998
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8999 9000
	switch (action) {
	case CPU_DOWN_PREPARE:
9001
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9002
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9003 9004 9005
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9006
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9007
	case CPU_ONLINE:
9008
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9009
		enable_runtime(cpu_rq(cpu));
9010 9011
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9012 9013 9014 9015 9016 9017 9018
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9019 9020 9021
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9022

9023 9024 9025 9026 9027
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9028
	get_online_cpus();
9029
	mutex_lock(&sched_domains_mutex);
9030 9031 9032 9033
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9034
	mutex_unlock(&sched_domains_mutex);
9035
	put_online_cpus();
9036 9037

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9038 9039
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9040 9041 9042 9043 9044
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9045
	init_hrtick();
9046 9047

	/* Move init over to a non-isolated CPU */
9048
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9049
		BUG();
I
Ingo Molnar 已提交
9050
	sched_init_granularity();
9051
	free_cpumask_var(non_isolated_cpus);
9052 9053

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9054
	init_sched_rt_class();
L
Linus Torvalds 已提交
9055 9056 9057 9058
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9059
	sched_init_granularity();
L
Linus Torvalds 已提交
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9070
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9071 9072
{
	cfs_rq->tasks_timeline = RB_ROOT;
9073
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9074 9075 9076
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9077
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9078 9079
}

P
Peter Zijlstra 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9093
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9094
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9095
#ifdef CONFIG_SMP
9096
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9097 9098
#endif
#endif
P
Peter Zijlstra 已提交
9099 9100 9101
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9102
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9103 9104 9105 9106
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9107 9108
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9109

9110
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9111
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9112 9113
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9114 9115
}

P
Peter Zijlstra 已提交
9116
#ifdef CONFIG_FAIR_GROUP_SCHED
9117 9118 9119
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9120
{
9121
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9122 9123 9124 9125 9126 9127 9128
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9129 9130 9131 9132
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9133 9134 9135 9136 9137
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9138 9139
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9140
	se->load.inv_weight = 0;
9141
	se->parent = parent;
P
Peter Zijlstra 已提交
9142
}
9143
#endif
P
Peter Zijlstra 已提交
9144

9145
#ifdef CONFIG_RT_GROUP_SCHED
9146 9147 9148
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9149
{
9150 9151
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9152 9153 9154 9155
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9156
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9157 9158 9159 9160
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9161 9162 9163
	if (!rt_se)
		return;

9164 9165 9166 9167 9168
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9169
	rt_se->my_q = rt_rq;
9170
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9171 9172 9173 9174
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9175 9176
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9177
	int i, j;
9178 9179 9180 9181 9182 9183 9184
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9185 9186 9187
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9188 9189
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9190
	alloc_size += num_possible_cpus() * cpumask_size();
9191 9192 9193 9194 9195 9196
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9197
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9198 9199 9200 9201 9202 9203 9204

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9205 9206 9207 9208 9209 9210 9211

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9212 9213
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9214 9215 9216 9217 9218
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9219 9220 9221 9222 9223 9224 9225 9226
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9227 9228
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9229 9230 9231 9232 9233 9234
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9235
	}
I
Ingo Molnar 已提交
9236

G
Gregory Haskins 已提交
9237 9238 9239 9240
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9241 9242 9243 9244 9245 9246
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9247 9248 9249
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9250 9251
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9252

9253
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9254
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9255 9256 9257 9258 9259 9260
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9261 9262
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9263

9264
	for_each_possible_cpu(i) {
9265
		struct rq *rq;
L
Linus Torvalds 已提交
9266 9267 9268

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9269
		rq->nr_running = 0;
9270 9271
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9272
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9273
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9274
#ifdef CONFIG_FAIR_GROUP_SCHED
9275
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9276
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9292
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9293 9294 9295 9296
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9297
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9298
#elif defined CONFIG_USER_SCHED
9299 9300
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9312
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9313
				&per_cpu(init_cfs_rq, i),
9314 9315
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9316

9317
#endif
D
Dhaval Giani 已提交
9318 9319 9320
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9321
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9322
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9323
#ifdef CONFIG_CGROUP_SCHED
9324
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9325
#elif defined CONFIG_USER_SCHED
9326
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9327
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9328
				&per_cpu(init_rt_rq, i),
9329 9330
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9331
#endif
I
Ingo Molnar 已提交
9332
#endif
L
Linus Torvalds 已提交
9333

I
Ingo Molnar 已提交
9334 9335
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9336
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9337
		rq->sd = NULL;
G
Gregory Haskins 已提交
9338
		rq->rd = NULL;
L
Linus Torvalds 已提交
9339
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9340
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9341
		rq->push_cpu = 0;
9342
		rq->cpu = i;
9343
		rq->online = 0;
L
Linus Torvalds 已提交
9344 9345
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9346
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9347
#endif
P
Peter Zijlstra 已提交
9348
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9349 9350 9351
		atomic_set(&rq->nr_iowait, 0);
	}

9352
	set_load_weight(&init_task);
9353

9354 9355 9356 9357
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9358
#ifdef CONFIG_SMP
9359
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9360 9361
#endif

9362 9363 9364 9365
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9379 9380 9381

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9382 9383 9384 9385
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9386

9387
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9388
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9389
#ifdef CONFIG_SMP
9390
#ifdef CONFIG_NO_HZ
9391 9392
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9393
#endif
9394
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9395
#endif /* SMP */
9396

9397 9398
	perf_counter_init();

9399
	scheduler_running = 1;
L
Linus Torvalds 已提交
9400 9401 9402 9403 9404
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9405
#ifdef in_atomic
L
Linus Torvalds 已提交
9406 9407
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9427 9428 9429 9430 9431 9432
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9433 9434 9435
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9436

9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9448 9449
void normalize_rt_tasks(void)
{
9450
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9451
	unsigned long flags;
9452
	struct rq *rq;
L
Linus Torvalds 已提交
9453

9454
	read_lock_irqsave(&tasklist_lock, flags);
9455
	do_each_thread(g, p) {
9456 9457 9458 9459 9460 9461
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9462 9463
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9464 9465 9466
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9467
#endif
I
Ingo Molnar 已提交
9468 9469 9470 9471 9472 9473 9474 9475

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9476
			continue;
I
Ingo Molnar 已提交
9477
		}
L
Linus Torvalds 已提交
9478

9479
		spin_lock(&p->pi_lock);
9480
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9481

9482
		normalize_task(rq, p);
9483

9484
		__task_rq_unlock(rq);
9485
		spin_unlock(&p->pi_lock);
9486 9487
	} while_each_thread(g, p);

9488
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9489 9490 9491
}

#endif /* CONFIG_MAGIC_SYSRQ */
9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9510
struct task_struct *curr_task(int cpu)
9511 9512 9513 9514 9515 9516 9517 9518 9519 9520
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9521 9522
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9523 9524 9525 9526 9527 9528 9529
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9530
void set_curr_task(int cpu, struct task_struct *p)
9531 9532 9533 9534 9535
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9536

9537 9538
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9553 9554
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9555 9556
{
	struct cfs_rq *cfs_rq;
9557
	struct sched_entity *se;
9558
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9559 9560
	int i;

9561
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9562 9563
	if (!tg->cfs_rq)
		goto err;
9564
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9565 9566
	if (!tg->se)
		goto err;
9567 9568

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9569 9570

	for_each_possible_cpu(i) {
9571
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9572

9573 9574
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9575 9576 9577
		if (!cfs_rq)
			goto err;

9578 9579
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9580 9581 9582
		if (!se)
			goto err;

9583
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9602
#else /* !CONFG_FAIR_GROUP_SCHED */
9603 9604 9605 9606
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9607 9608
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9620
#endif /* CONFIG_FAIR_GROUP_SCHED */
9621 9622

#ifdef CONFIG_RT_GROUP_SCHED
9623 9624 9625 9626
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9627 9628
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9640 9641
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9642 9643
{
	struct rt_rq *rt_rq;
9644
	struct sched_rt_entity *rt_se;
9645 9646 9647
	struct rq *rq;
	int i;

9648
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9649 9650
	if (!tg->rt_rq)
		goto err;
9651
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9652 9653 9654
	if (!tg->rt_se)
		goto err;

9655 9656
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9657 9658 9659 9660

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9661 9662
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9663 9664
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9665

9666 9667
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9668 9669
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9670

9671
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9672 9673
	}

9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9690
#else /* !CONFIG_RT_GROUP_SCHED */
9691 9692 9693 9694
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9695 9696
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9708
#endif /* CONFIG_RT_GROUP_SCHED */
9709

9710
#ifdef CONFIG_GROUP_SCHED
9711 9712 9713 9714 9715 9716 9717 9718
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9719
struct task_group *sched_create_group(struct task_group *parent)
9720 9721 9722 9723 9724 9725 9726 9727 9728
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9729
	if (!alloc_fair_sched_group(tg, parent))
9730 9731
		goto err;

9732
	if (!alloc_rt_sched_group(tg, parent))
9733 9734
		goto err;

9735
	spin_lock_irqsave(&task_group_lock, flags);
9736
	for_each_possible_cpu(i) {
9737 9738
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9739
	}
P
Peter Zijlstra 已提交
9740
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9741 9742 9743 9744 9745

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9746
	list_add_rcu(&tg->siblings, &parent->children);
9747
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9748

9749
	return tg;
S
Srivatsa Vaddagiri 已提交
9750 9751

err:
P
Peter Zijlstra 已提交
9752
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9753 9754 9755
	return ERR_PTR(-ENOMEM);
}

9756
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9757
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9758 9759
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9760
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9761 9762
}

9763
/* Destroy runqueue etc associated with a task group */
9764
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9765
{
9766
	unsigned long flags;
9767
	int i;
S
Srivatsa Vaddagiri 已提交
9768

9769
	spin_lock_irqsave(&task_group_lock, flags);
9770
	for_each_possible_cpu(i) {
9771 9772
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9773
	}
P
Peter Zijlstra 已提交
9774
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9775
	list_del_rcu(&tg->siblings);
9776
	spin_unlock_irqrestore(&task_group_lock, flags);
9777 9778

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9779
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9780 9781
}

9782
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9783 9784 9785
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9786 9787
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9788 9789 9790 9791 9792 9793 9794 9795 9796
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9797
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9798 9799
	on_rq = tsk->se.on_rq;

9800
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9801
		dequeue_task(rq, tsk, 0);
9802 9803
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9804

P
Peter Zijlstra 已提交
9805
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9806

P
Peter Zijlstra 已提交
9807 9808 9809 9810 9811
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9812 9813 9814
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9815
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9816 9817 9818

	task_rq_unlock(rq, &flags);
}
9819
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9820

9821
#ifdef CONFIG_FAIR_GROUP_SCHED
9822
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9823 9824 9825 9826 9827
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9828
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9829 9830 9831
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9832
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9833

9834
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9835
		enqueue_entity(cfs_rq, se, 0);
9836
}
9837

9838 9839 9840 9841 9842 9843 9844 9845 9846
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9847 9848
}

9849 9850
static DEFINE_MUTEX(shares_mutex);

9851
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9852 9853
{
	int i;
9854
	unsigned long flags;
9855

9856 9857 9858 9859 9860 9861
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9862 9863
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9864 9865
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9866

9867
	mutex_lock(&shares_mutex);
9868
	if (tg->shares == shares)
9869
		goto done;
S
Srivatsa Vaddagiri 已提交
9870

9871
	spin_lock_irqsave(&task_group_lock, flags);
9872 9873
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9874
	list_del_rcu(&tg->siblings);
9875
	spin_unlock_irqrestore(&task_group_lock, flags);
9876 9877 9878 9879 9880 9881 9882 9883

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9884
	tg->shares = shares;
9885 9886 9887 9888 9889
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9890
		set_se_shares(tg->se[i], shares);
9891
	}
S
Srivatsa Vaddagiri 已提交
9892

9893 9894 9895 9896
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9897
	spin_lock_irqsave(&task_group_lock, flags);
9898 9899
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9900
	list_add_rcu(&tg->siblings, &tg->parent->children);
9901
	spin_unlock_irqrestore(&task_group_lock, flags);
9902
done:
9903
	mutex_unlock(&shares_mutex);
9904
	return 0;
S
Srivatsa Vaddagiri 已提交
9905 9906
}

9907 9908 9909 9910
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9911
#endif
9912

9913
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9914
/*
P
Peter Zijlstra 已提交
9915
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9916
 */
P
Peter Zijlstra 已提交
9917 9918 9919 9920 9921
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9922
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9923

P
Peter Zijlstra 已提交
9924
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9925 9926
}

P
Peter Zijlstra 已提交
9927 9928
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9929
{
P
Peter Zijlstra 已提交
9930
	struct task_struct *g, *p;
9931

P
Peter Zijlstra 已提交
9932 9933 9934 9935
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9936

P
Peter Zijlstra 已提交
9937 9938
	return 0;
}
9939

P
Peter Zijlstra 已提交
9940 9941 9942 9943 9944
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9945

P
Peter Zijlstra 已提交
9946 9947 9948 9949 9950 9951
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9952

P
Peter Zijlstra 已提交
9953 9954
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9955

P
Peter Zijlstra 已提交
9956 9957 9958
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9959 9960
	}

9961 9962 9963 9964 9965 9966 9967
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9968 9969 9970 9971 9972
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9973

9974 9975 9976
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9977 9978
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9979

P
Peter Zijlstra 已提交
9980
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9981

9982 9983 9984 9985 9986
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9987

9988 9989 9990
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9991 9992 9993
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9994

P
Peter Zijlstra 已提交
9995 9996 9997 9998
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9999

P
Peter Zijlstra 已提交
10000
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10001
	}
P
Peter Zijlstra 已提交
10002

P
Peter Zijlstra 已提交
10003 10004 10005 10006
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10007 10008
}

P
Peter Zijlstra 已提交
10009
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10010
{
P
Peter Zijlstra 已提交
10011 10012 10013 10014 10015 10016 10017
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10018 10019
}

10020 10021
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10022
{
P
Peter Zijlstra 已提交
10023
	int i, err = 0;
P
Peter Zijlstra 已提交
10024 10025

	mutex_lock(&rt_constraints_mutex);
10026
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10027 10028
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10029
		goto unlock;
P
Peter Zijlstra 已提交
10030 10031

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10032 10033
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10034 10035 10036 10037 10038 10039 10040 10041 10042

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10043
 unlock:
10044
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10045 10046 10047
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10048 10049
}

10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10062 10063 10064 10065
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10066
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10067 10068
		return -1;

10069
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10070 10071 10072
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10073 10074 10075 10076 10077 10078 10079 10080

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10081 10082 10083
	if (rt_period == 0)
		return -EINVAL;

10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10098
	u64 runtime, period;
10099 10100
	int ret = 0;

10101 10102 10103
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10104 10105 10106 10107 10108 10109 10110 10111
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10112

10113
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10114
	read_lock(&tasklist_lock);
10115
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10116
	read_unlock(&tasklist_lock);
10117 10118 10119 10120
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10121 10122 10123 10124 10125 10126 10127 10128 10129 10130

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10131
#else /* !CONFIG_RT_GROUP_SCHED */
10132 10133
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10134 10135 10136
	unsigned long flags;
	int i;

10137 10138 10139
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10140 10141 10142 10143 10144 10145 10146
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10147 10148 10149 10150 10151 10152 10153 10154 10155 10156
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10157 10158
	return 0;
}
10159
#endif /* CONFIG_RT_GROUP_SCHED */
10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10190

10191
#ifdef CONFIG_CGROUP_SCHED
10192 10193

/* return corresponding task_group object of a cgroup */
10194
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10195
{
10196 10197
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10198 10199 10200
}

static struct cgroup_subsys_state *
10201
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10202
{
10203
	struct task_group *tg, *parent;
10204

10205
	if (!cgrp->parent) {
10206 10207 10208 10209
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10210 10211
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10212 10213 10214 10215 10216 10217
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10218 10219
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10220
{
10221
	struct task_group *tg = cgroup_tg(cgrp);
10222 10223 10224 10225

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10226 10227 10228
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10229
{
10230
#ifdef CONFIG_RT_GROUP_SCHED
10231
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10232 10233
		return -EINVAL;
#else
10234 10235 10236
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10237
#endif
10238 10239 10240 10241 10242

	return 0;
}

static void
10243
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10244 10245 10246 10247 10248
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10249
#ifdef CONFIG_FAIR_GROUP_SCHED
10250
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10251
				u64 shareval)
10252
{
10253
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10254 10255
}

10256
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10257
{
10258
	struct task_group *tg = cgroup_tg(cgrp);
10259 10260 10261

	return (u64) tg->shares;
}
10262
#endif /* CONFIG_FAIR_GROUP_SCHED */
10263

10264
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10265
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10266
				s64 val)
P
Peter Zijlstra 已提交
10267
{
10268
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10269 10270
}

10271
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10272
{
10273
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10274
}
10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10286
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10287

10288
static struct cftype cpu_files[] = {
10289
#ifdef CONFIG_FAIR_GROUP_SCHED
10290 10291
	{
		.name = "shares",
10292 10293
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10294
	},
10295 10296
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10297
	{
P
Peter Zijlstra 已提交
10298
		.name = "rt_runtime_us",
10299 10300
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10301
	},
10302 10303
	{
		.name = "rt_period_us",
10304 10305
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10306
	},
10307
#endif
10308 10309 10310 10311
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10312
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10313 10314 10315
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10316 10317 10318 10319 10320 10321 10322
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10323 10324 10325
	.early_init	= 1,
};

10326
#endif	/* CONFIG_CGROUP_SCHED */
10327 10328 10329 10330 10331 10332 10333 10334 10335 10336

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10337
/* track cpu usage of a group of tasks and its child groups */
10338 10339 10340 10341
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10342
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10343
	struct cpuacct *parent;
10344 10345 10346 10347 10348
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10349
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10350
{
10351
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10364
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10365 10366
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10367
	int i;
10368 10369

	if (!ca)
10370
		goto out;
10371 10372

	ca->cpuusage = alloc_percpu(u64);
10373 10374 10375 10376 10377 10378
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10379

10380 10381 10382
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10383
	return &ca->css;
10384 10385 10386 10387 10388 10389 10390 10391 10392

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10393 10394 10395
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10396
static void
10397
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10398
{
10399
	struct cpuacct *ca = cgroup_ca(cgrp);
10400
	int i;
10401

10402 10403
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10404 10405 10406 10407
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10408 10409
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10410
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10429
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10443
/* return total cpu usage (in nanoseconds) of a group */
10444
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10445
{
10446
	struct cpuacct *ca = cgroup_ca(cgrp);
10447 10448 10449
	u64 totalcpuusage = 0;
	int i;

10450 10451
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10452 10453 10454 10455

	return totalcpuusage;
}

10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10468 10469
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10470 10471 10472 10473 10474

out:
	return err;
}

10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10509 10510 10511
static struct cftype files[] = {
	{
		.name = "usage",
10512 10513
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10514
	},
10515 10516 10517 10518
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10519 10520 10521 10522
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10523 10524
};

10525
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10526
{
10527
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10528 10529 10530 10531 10532 10533 10534 10535 10536 10537
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10538
	int cpu;
10539

L
Li Zefan 已提交
10540
	if (unlikely(!cpuacct_subsys.active))
10541 10542
		return;

10543
	cpu = task_cpu(tsk);
10544 10545 10546

	rcu_read_lock();

10547 10548
	ca = task_ca(tsk);

10549
	for (; ca; ca = ca->parent) {
10550
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10551 10552
		*cpuusage += cputime;
	}
10553 10554

	rcu_read_unlock();
10555 10556
}

10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10578 10579 10580 10581 10582 10583 10584 10585
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */