sched.c 212.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
96
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
97
 */
98
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
99

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
106
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
107 108 109
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
110

111 112 113 114 115
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138
static inline int rt_policy(int policy)
{
139
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140 141 142 143 144 145 146 147 148
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 155
	struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
	struct list_head squeue[MAX_RT_PRIO];  /* shared queue */
I
Ingo Molnar 已提交
156 157
};

158
struct rt_bandwidth {
I
Ingo Molnar 已提交
159 160 161 162 163
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
197 198
	spin_lock_init(&rt_b->rt_runtime_lock);

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

236 237 238 239 240 241
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

242
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
243

244 245
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
246 247
struct cfs_rq;

P
Peter Zijlstra 已提交
248 249
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
250
/* task group related information */
251
struct task_group {
252
#ifdef CONFIG_CGROUP_SCHED
253 254
	struct cgroup_subsys_state css;
#endif
255 256

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257 258 259 260 261
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
P
Peter Zijlstra 已提交
273 274 275 276

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
277 278
};

D
Dhaval Giani 已提交
279
#ifdef CONFIG_USER_SCHED
280 281 282 283 284 285 286 287

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

288
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
289 290 291 292
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
293 294 295 296 297 298
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
299 300
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
301
#endif
P
Peter Zijlstra 已提交
302

303
/* task_group_lock serializes add/remove of task groups and also changes to
304 305
 * a task group's cpu shares.
 */
306
static DEFINE_SPINLOCK(task_group_lock);
307

308 309 310 311 312 313 314
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

315 316 317 318 319
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
320
#define MIN_SHARES	2
321
#define MAX_SHARES	(ULONG_MAX - 1)
322

323 324 325
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
326
/* Default task group.
I
Ingo Molnar 已提交
327
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
328
 */
329
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
330 331

/* return group to which a task belongs */
332
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
333
{
334
	struct task_group *tg;
335

336
#ifdef CONFIG_USER_SCHED
337
	tg = p->user->tg;
338
#elif defined(CONFIG_CGROUP_SCHED)
339 340
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
341
#else
I
Ingo Molnar 已提交
342
	tg = &init_task_group;
343
#endif
344
	return tg;
S
Srivatsa Vaddagiri 已提交
345 346 347
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
348
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
349
{
350
#ifdef CONFIG_FAIR_GROUP_SCHED
351 352
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
353
#endif
P
Peter Zijlstra 已提交
354

355
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
356 357
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
358
#endif
S
Srivatsa Vaddagiri 已提交
359 360 361 362
}

#else

P
Peter Zijlstra 已提交
363
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
364

365
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
366

I
Ingo Molnar 已提交
367 368 369 370 371 372
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
373
	u64 min_vruntime;
I
Ingo Molnar 已提交
374 375 376

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
377 378 379 380 381 382

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
383 384
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
385
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
386 387 388

	unsigned long nr_spread_over;

389
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
390 391
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
392 393
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
394 395 396 397 398 399
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
400 401
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
402 403
#endif
};
L
Linus Torvalds 已提交
404

I
Ingo Molnar 已提交
405 406 407
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
408
	unsigned long rt_nr_running;
409
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
410 411
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
412
#ifdef CONFIG_SMP
413
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
414
	int overloaded;
P
Peter Zijlstra 已提交
415
#endif
P
Peter Zijlstra 已提交
416
	int rt_throttled;
P
Peter Zijlstra 已提交
417
	u64 rt_time;
P
Peter Zijlstra 已提交
418
	u64 rt_runtime;
I
Ingo Molnar 已提交
419
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
420
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
421

422
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
423 424
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
425 426 427 428 429
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
430 431
};

G
Gregory Haskins 已提交
432 433 434 435
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
436 437
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
438 439 440 441 442 443 444 445
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
446

I
Ingo Molnar 已提交
447
	/*
448 449 450 451
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
452
	atomic_t rto_count;
G
Gregory Haskins 已提交
453 454
};

455 456 457 458
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
459 460 461 462
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
463 464 465 466 467 468 469
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
470
struct rq {
471 472
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
473 474 475 476 477 478

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
479 480
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
481
	unsigned char idle_at_tick;
482
#ifdef CONFIG_NO_HZ
483
	unsigned long last_tick_seen;
484 485
	unsigned char in_nohz_recently;
#endif
486 487
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
488 489 490 491
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
492 493
	struct rt_rq rt;

I
Ingo Molnar 已提交
494
#ifdef CONFIG_FAIR_GROUP_SCHED
495 496
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
497 498
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
499
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
500 501 502 503 504 505 506 507 508 509
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

510
	struct task_struct *curr, *idle;
511
	unsigned long next_balance;
L
Linus Torvalds 已提交
512
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
513

514
	u64 clock;
I
Ingo Molnar 已提交
515

L
Linus Torvalds 已提交
516 517 518
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
519
	struct root_domain *rd;
L
Linus Torvalds 已提交
520 521 522 523 524
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
525 526
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
527

528
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
529 530 531
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
532 533 534 535 536 537
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
538 539 540 541 542
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
543 544 545 546
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
547 548

	/* schedule() stats */
549 550 551
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
552 553

	/* try_to_wake_up() stats */
554 555
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
556 557

	/* BKL stats */
558
	unsigned int bkl_count;
L
Linus Torvalds 已提交
559
#endif
560
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
561 562
};

563
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
564

I
Ingo Molnar 已提交
565 566 567 568 569
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

570 571 572 573 574 575 576 577 578
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
579 580
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
581
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
582 583 584 585
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
586 587
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
588 589 590 591 592 593

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

594 595 596 597 598
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
599 600 601 602 603 604 605 606 607 608 609 610
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
611 612 613 614

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
615
enum {
P
Peter Zijlstra 已提交
616
#include "sched_features.h"
I
Ingo Molnar 已提交
617 618
};

P
Peter Zijlstra 已提交
619 620 621 622 623
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
624
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
625 626 627 628 629 630 631 632 633
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

634
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
635 636 637 638 639 640
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

641
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
669
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
699
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
742

743 744 745 746 747 748
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
749
/*
P
Peter Zijlstra 已提交
750
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
751 752
 * default: 1s
 */
P
Peter Zijlstra 已提交
753
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
754

755 756
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
757 758 759 760 761
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
762

763 764 765 766 767 768 769 770 771 772 773 774
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
775

776
unsigned long long time_sync_thresh = 100000;
777 778 779 780

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

781
/*
782 783 784 785
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
786
 */
787 788 789
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
790
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
791
{
I
Ingo Molnar 已提交
792 793 794 795 796 797
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
798 799 800 801 802 803 804 805

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
806 807
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
808 809 810 811 812

	return time;
}

static unsigned long long __cpu_clock(int cpu)
813 814 815
{
	unsigned long long now;

816 817 818 819
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
820 821 822
	if (unlikely(!scheduler_running))
		return 0;

823
	now = sched_clock_cpu(cpu);
824 825 826

	return now;
}
827 828 829 830 831 832 833 834

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
835
	unsigned long flags;
836

I
Ingo Molnar 已提交
837
	local_irq_save(flags);
838 839 840 841
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
842
	if (unlikely(delta_time > time_sync_thresh)) {
843
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
844 845 846
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
847 848 849

	return time;
}
P
Paul E. McKenney 已提交
850
EXPORT_SYMBOL_GPL(cpu_clock);
851

L
Linus Torvalds 已提交
852
#ifndef prepare_arch_switch
853 854 855 856 857 858
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

859 860 861 862 863
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

864
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
865
static inline int task_running(struct rq *rq, struct task_struct *p)
866
{
867
	return task_current(rq, p);
868 869
}

870
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 872 873
{
}

874
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
875
{
876 877 878 879
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
880 881 882 883 884 885 886
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

887 888 889 890
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
891
static inline int task_running(struct rq *rq, struct task_struct *p)
892 893 894 895
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
896
	return task_current(rq, p);
897 898 899
#endif
}

900
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

917
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
918 919 920 921 922 923 924 925 926 927 928 929
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
930
#endif
931 932
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
933

934 935 936 937
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
938
static inline struct rq *__task_rq_lock(struct task_struct *p)
939 940
	__acquires(rq->lock)
{
941 942 943 944 945
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
946 947 948 949
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
950 951
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
952
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
953 954
 * explicitly disabling preemption.
 */
955
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959

960 961 962 963 964 965
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
966 967 968 969
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
970
static void __task_rq_unlock(struct rq *rq)
971 972 973 974 975
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

976
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
977 978 979 980 981 982
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
983
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
984
 */
A
Alexey Dobriyan 已提交
985
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
986 987
	__acquires(rq->lock)
{
988
	struct rq *rq;
L
Linus Torvalds 已提交
989 990 991 992 993 994 995 996

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1032
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1044 1045
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1121
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1122 1123 1124 1125 1126 1127
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1221 1222 1223 1224

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1225 1226
#endif

I
Ingo Molnar 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1240
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1241 1242 1243 1244 1245
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1246
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1247 1248
		return;

P
Peter Zijlstra 已提交
1249
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1314
#else
P
Peter Zijlstra 已提交
1315
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1316 1317
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1318
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1319 1320 1321
}
#endif

1322 1323 1324 1325 1326 1327 1328 1329
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1330 1331 1332
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1333
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1334

1335
static unsigned long
1336 1337 1338 1339 1340
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1341 1342
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1343 1344 1345 1346 1347

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1348
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1349
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1350 1351
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1352
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1353

1354
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1355 1356
}

1357 1358 1359 1360 1361 1362
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1363
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1364 1365
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1366
	lw->inv_weight = 0;
1367 1368
}

1369
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1370 1371
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1372
	lw->inv_weight = 0;
1373 1374
}

1375 1376 1377 1378
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1379
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1380 1381 1382 1383
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1395 1396 1397
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1398 1399
 */
static const int prio_to_weight[40] = {
1400 1401 1402 1403 1404 1405 1406 1407
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1408 1409
};

1410 1411 1412 1413 1414 1415 1416
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1417
static const u32 prio_to_wmult[40] = {
1418 1419 1420 1421 1422 1423 1424 1425
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1426
};
1427

I
Ingo Molnar 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1453

1454 1455 1456 1457 1458 1459
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1470 1471 1472 1473 1474
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1475 1476 1477 1478 1479 1480 1481 1482
#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1483 1484
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1485 1486
#include "sched_stats.h"
#include "sched_idletask.c"
1487 1488
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1489 1490 1491 1492 1493 1494
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1506 1507
{
	rq->nr_running++;
1508
	inc_load(rq, p);
1509 1510
}

1511
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1512 1513
{
	rq->nr_running--;
1514
	dec_load(rq, p);
1515 1516
}

1517 1518 1519
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1520 1521 1522 1523
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1524

I
Ingo Molnar 已提交
1525 1526 1527 1528 1529 1530 1531 1532
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1533

I
Ingo Molnar 已提交
1534 1535
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1536 1537
}

1538
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1539
{
I
Ingo Molnar 已提交
1540
	sched_info_queued(p);
1541
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1542
	p->se.on_rq = 1;
1543 1544
}

1545
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1546
{
1547
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1548
	p->se.on_rq = 0;
1549 1550
}

1551
/*
I
Ingo Molnar 已提交
1552
 * __normal_prio - return the priority that is based on the static prio
1553 1554 1555
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1556
	return p->static_prio;
1557 1558
}

1559 1560 1561 1562 1563 1564 1565
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1566
static inline int normal_prio(struct task_struct *p)
1567 1568 1569
{
	int prio;

1570
	if (task_has_rt_policy(p))
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1584
static int effective_prio(struct task_struct *p)
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1597
/*
I
Ingo Molnar 已提交
1598
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1599
 */
I
Ingo Molnar 已提交
1600
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1601
{
1602
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1603
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1604

1605
	enqueue_task(rq, p, wakeup);
1606
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1612
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1613
{
1614
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1615 1616
		rq->nr_uninterruptible++;

1617
	dequeue_task(rq, p, sleep);
1618
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1625
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1626 1627 1628 1629
{
	return cpu_curr(task_cpu(p)) == p;
}

1630 1631 1632
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1633
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1634 1635 1636 1637
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1638
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1639
#ifdef CONFIG_SMP
1640 1641 1642 1643 1644 1645
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1646 1647
	task_thread_info(p)->cpu = cpu;
#endif
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1662
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1663

1664 1665 1666
/*
 * Is this task likely cache-hot:
 */
1667
static int
1668 1669 1670 1671
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1672 1673 1674
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1675
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1676 1677
		return 1;

1678 1679 1680
	if (p->sched_class != &fair_sched_class)
		return 0;

1681 1682 1683 1684 1685
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1686 1687 1688 1689 1690 1691
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1692
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1693
{
I
Ingo Molnar 已提交
1694 1695
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1696 1697
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1698
	u64 clock_offset;
I
Ingo Molnar 已提交
1699 1700

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1701 1702 1703 1704

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1705 1706 1707 1708
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1709 1710 1711 1712 1713
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1714
#endif
1715 1716
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1717 1718

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1719 1720
}

1721
struct migration_req {
L
Linus Torvalds 已提交
1722 1723
	struct list_head list;

1724
	struct task_struct *task;
L
Linus Torvalds 已提交
1725 1726 1727
	int dest_cpu;

	struct completion done;
1728
};
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1734
static int
1735
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1736
{
1737
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1743
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1752

L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1765
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1766 1767
{
	unsigned long flags;
I
Ingo Molnar 已提交
1768
	int running, on_rq;
1769
	struct rq *rq;
L
Linus Torvalds 已提交
1770

1771 1772 1773 1774 1775 1776 1777 1778
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1828

1829 1830 1831 1832 1833 1834 1835
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1851
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1863 1864
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1865 1866 1867 1868
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1869
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1870
{
1871
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1872
	unsigned long total = weighted_cpuload(cpu);
1873

1874
	if (type == 0)
I
Ingo Molnar 已提交
1875
		return total;
1876

I
Ingo Molnar 已提交
1877
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1878 1879 1880
}

/*
1881 1882
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1883
 */
A
Alexey Dobriyan 已提交
1884
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1885
{
1886
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1887
	unsigned long total = weighted_cpuload(cpu);
1888

N
Nick Piggin 已提交
1889
	if (type == 0)
I
Ingo Molnar 已提交
1890
		return total;
1891

I
Ingo Molnar 已提交
1892
	return max(rq->cpu_load[type-1], total);
1893 1894 1895 1896 1897
}

/*
 * Return the average load per task on the cpu's run queue
 */
1898
static unsigned long cpu_avg_load_per_task(int cpu)
1899
{
1900
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1901
	unsigned long total = weighted_cpuload(cpu);
1902 1903
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1904
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1905 1906
}

N
Nick Piggin 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1924 1925
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1926
			continue;
1927

N
Nick Piggin 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1944 1945
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1946 1947 1948 1949 1950 1951 1952 1953

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1954
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1955 1956 1957 1958 1959 1960 1961

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1962
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1963
 */
I
Ingo Molnar 已提交
1964
static int
1965 1966
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
1967 1968 1969 1970 1971
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1972
	/* Traverse only the allowed CPUs */
1973
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1974

1975
	for_each_cpu_mask(i, *tmp) {
1976
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2002

2003
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2004 2005 2006
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2007 2008
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2009 2010
		if (tmp->flags & flag)
			sd = tmp;
2011
	}
N
Nick Piggin 已提交
2012 2013

	while (sd) {
2014
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2015
		struct sched_group *group;
2016 2017 2018 2019 2020 2021
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2022 2023 2024

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2025 2026 2027 2028
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2029

2030
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2031 2032 2033 2034 2035
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2036

2037
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2069
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2070
{
2071
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2072 2073
	unsigned long flags;
	long old_state;
2074
	struct rq *rq;
L
Linus Torvalds 已提交
2075

2076 2077 2078
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2079
	smp_wmb();
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2085
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2086 2087 2088
		goto out_running;

	cpu = task_cpu(p);
2089
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2096 2097 2098
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2105
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2127 2128
out_activate:
#endif /* CONFIG_SMP */
2129 2130 2131 2132 2133 2134 2135 2136 2137
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2138
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2139
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2140 2141 2142
	success = 1;

out_running:
I
Ingo Molnar 已提交
2143 2144
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2145
	p->state = TASK_RUNNING;
2146 2147 2148 2149
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2156
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2157
{
2158
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2159 2160 2161
}
EXPORT_SYMBOL(wake_up_process);

2162
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168 2169
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2170 2171 2172 2173 2174 2175 2176
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2177
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2178 2179
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2180 2181 2182

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2183 2184 2185 2186 2187 2188
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2189
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2190
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2191
#endif
N
Nick Piggin 已提交
2192

P
Peter Zijlstra 已提交
2193
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2194
	p->se.on_rq = 0;
2195
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2196

2197 2198 2199 2200
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2222
	set_task_cpu(p, cpu);
2223 2224 2225 2226 2227

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2228 2229
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2230

2231
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2232
	if (likely(sched_info_on()))
2233
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2234
#endif
2235
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2236 2237
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2238
#ifdef CONFIG_PREEMPT
2239
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2240
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2241
#endif
N
Nick Piggin 已提交
2242
	put_cpu();
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2252
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2253 2254
{
	unsigned long flags;
I
Ingo Molnar 已提交
2255
	struct rq *rq;
L
Linus Torvalds 已提交
2256 2257

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2258
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2259
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2260 2261 2262

	p->prio = effective_prio(p);

2263
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2264
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2265 2266
	} else {
		/*
I
Ingo Molnar 已提交
2267 2268
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2269
		 */
2270
		p->sched_class->task_new(rq, p);
2271
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2272
	}
I
Ingo Molnar 已提交
2273
	check_preempt_curr(rq, p);
2274 2275 2276 2277
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2278
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2279 2280
}

2281 2282 2283
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2284 2285
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2286 2287 2288 2289 2290 2291 2292 2293 2294
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2295
 * @notifier: notifier struct to unregister
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2339 2340 2341
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2342
 * @prev: the current task that is being switched out
2343 2344 2345 2346 2347 2348 2349 2350 2351
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2352 2353 2354
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2355
{
2356
	fire_sched_out_preempt_notifiers(prev, next);
2357 2358 2359 2360
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2361 2362
/**
 * finish_task_switch - clean up after a task-switch
2363
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2364 2365
 * @prev: the thread we just switched away from.
 *
2366 2367 2368 2369
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2370 2371
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2372
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2373 2374 2375
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2376
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2377 2378 2379
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2380
	long prev_state;
L
Linus Torvalds 已提交
2381 2382 2383 2384 2385

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2386
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2387 2388
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2389
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2395
	prev_state = prev->state;
2396 2397
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2398 2399 2400 2401
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2402

2403
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2404 2405
	if (mm)
		mmdrop(mm);
2406
	if (unlikely(prev_state == TASK_DEAD)) {
2407 2408 2409
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2410
		 */
2411
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2412
		put_task_struct(prev);
2413
	}
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2420
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2421 2422
	__releases(rq->lock)
{
2423 2424
	struct rq *rq = this_rq();

2425 2426 2427 2428 2429
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2430
	if (current->set_child_tid)
2431
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2438
static inline void
2439
context_switch(struct rq *rq, struct task_struct *prev,
2440
	       struct task_struct *next)
L
Linus Torvalds 已提交
2441
{
I
Ingo Molnar 已提交
2442
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2443

2444
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2445 2446
	mm = next->mm;
	oldmm = prev->active_mm;
2447 2448 2449 2450 2451 2452 2453
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2454
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2461
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2462 2463 2464
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2465 2466 2467 2468 2469 2470 2471
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2472
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2473
#endif
L
Linus Torvalds 已提交
2474 2475 2476 2477

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2478 2479 2480 2481 2482 2483 2484
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2508
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2523 2524
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2525

2526
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2536
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2557
/*
I
Ingo Molnar 已提交
2558 2559
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2560
 */
I
Ingo Molnar 已提交
2561
static void update_cpu_load(struct rq *this_rq)
2562
{
2563
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2576 2577 2578 2579 2580 2581 2582
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2583 2584
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2585 2586
}

I
Ingo Molnar 已提交
2587 2588
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2595
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2596 2597 2598
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2599
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2600 2601 2602 2603
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2604
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610 2611
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2612 2613
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619 2620 2621
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2622
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2636
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2637 2638 2639 2640
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2641 2642
	int ret = 0;

2643 2644 2645 2646 2647
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2648
	if (unlikely(!spin_trylock(&busiest->lock))) {
2649
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2650 2651 2652
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2653
			ret = 1;
L
Linus Torvalds 已提交
2654 2655 2656
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2657
	return ret;
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2663
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2664 2665
 * the cpu_allowed mask is restored.
 */
2666
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2667
{
2668
	struct migration_req req;
L
Linus Torvalds 已提交
2669
	unsigned long flags;
2670
	struct rq *rq;
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2681

L
Linus Torvalds 已提交
2682 2683 2684 2685 2686
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2687

L
Linus Torvalds 已提交
2688 2689 2690 2691 2692 2693 2694
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2695 2696
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2697 2698 2699 2700
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2701
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2702
	put_cpu();
N
Nick Piggin 已提交
2703 2704
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709 2710
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2711 2712
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2713
{
2714
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2715
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2716
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2717 2718 2719 2720
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2721
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2727
static
2728
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2729
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2730
		     int *all_pinned)
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2738 2739
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2740
		return 0;
2741
	}
2742 2743
	*all_pinned = 0;

2744 2745
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2746
		return 0;
2747
	}
L
Linus Torvalds 已提交
2748

2749 2750 2751 2752 2753 2754
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2755 2756
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2757
#ifdef CONFIG_SCHEDSTATS
2758
		if (task_hot(p, rq->clock, sd)) {
2759
			schedstat_inc(sd, lb_hot_gained[idle]);
2760 2761
			schedstat_inc(p, se.nr_forced_migrations);
		}
2762 2763 2764 2765
#endif
		return 1;
	}

2766 2767
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2768
		return 0;
2769
	}
L
Linus Torvalds 已提交
2770 2771 2772
	return 1;
}

2773 2774 2775 2776 2777
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2778
{
2779
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2780 2781
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2782

2783
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2784 2785
		goto out;

2786 2787
	pinned = 1;

L
Linus Torvalds 已提交
2788
	/*
I
Ingo Molnar 已提交
2789
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2790
	 */
I
Ingo Molnar 已提交
2791 2792
	p = iterator->start(iterator->arg);
next:
2793
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2794
		goto out;
2795
	/*
2796
	 * To help distribute high priority tasks across CPUs we don't
2797 2798 2799
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2800 2801
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2802
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2803 2804 2805
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2806 2807
	}

I
Ingo Molnar 已提交
2808
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2809
	pulled++;
I
Ingo Molnar 已提交
2810
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2811

2812
	/*
2813
	 * We only want to steal up to the prescribed amount of weighted load.
2814
	 */
2815
	if (rem_load_move > 0) {
2816 2817
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2818 2819
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2820 2821 2822
	}
out:
	/*
2823
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2824 2825 2826 2827
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2828 2829 2830

	if (all_pinned)
		*all_pinned = pinned;
2831 2832

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2833 2834
}

I
Ingo Molnar 已提交
2835
/*
P
Peter Williams 已提交
2836 2837 2838
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2839 2840 2841 2842
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2843
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2844 2845 2846
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2847
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2848
	unsigned long total_load_moved = 0;
2849
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2850 2851

	do {
P
Peter Williams 已提交
2852 2853
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2854
				max_load_move - total_load_moved,
2855
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2856
		class = class->next;
P
Peter Williams 已提交
2857
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2858

P
Peter Williams 已提交
2859 2860 2861
	return total_load_moved > 0;
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2898
	const struct sched_class *class;
P
Peter Williams 已提交
2899 2900

	for (class = sched_class_highest; class; class = class->next)
2901
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2902 2903 2904
			return 1;

	return 0;
I
Ingo Molnar 已提交
2905 2906
}

L
Linus Torvalds 已提交
2907 2908
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2909 2910
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2911 2912 2913
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2914
		   unsigned long *imbalance, enum cpu_idle_type idle,
2915
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2916 2917 2918
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2919
	unsigned long max_pull;
2920 2921
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2922
	int load_idx, group_imb = 0;
2923 2924 2925 2926 2927 2928
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2929 2930

	max_load = this_load = total_load = total_pwr = 0;
2931 2932
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2933
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2934
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2935
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2936 2937 2938
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2939 2940

	do {
2941
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2942 2943
		int local_group;
		int i;
2944
		int __group_imb = 0;
2945
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2946
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2947 2948 2949

		local_group = cpu_isset(this_cpu, group->cpumask);

2950 2951 2952
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2953
		/* Tally up the load of all CPUs in the group */
2954
		sum_weighted_load = sum_nr_running = avg_load = 0;
2955 2956
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2957 2958

		for_each_cpu_mask(i, group->cpumask) {
2959 2960 2961 2962 2963 2964
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2965

2966
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2967 2968
				*sd_idle = 0;

L
Linus Torvalds 已提交
2969
			/* Bias balancing toward cpus of our domain */
2970 2971 2972 2973 2974 2975
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2976
				load = target_load(i, load_idx);
2977
			} else {
N
Nick Piggin 已提交
2978
				load = source_load(i, load_idx);
2979 2980 2981 2982 2983
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2984 2985

			avg_load += load;
2986
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2987
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2988 2989
		}

2990 2991 2992
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2993 2994
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2995
		 */
2996 2997
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2998 2999 3000 3001
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3002
		total_load += avg_load;
3003
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3004 3005

		/* Adjust by relative CPU power of the group */
3006 3007
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3008

3009 3010 3011
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3012
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3013

L
Linus Torvalds 已提交
3014 3015 3016
		if (local_group) {
			this_load = avg_load;
			this = group;
3017 3018 3019
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3020
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3021 3022
			max_load = avg_load;
			busiest = group;
3023 3024
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3025
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3026
		}
3027 3028 3029 3030 3031 3032

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3033 3034 3035
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3036 3037 3038 3039 3040 3041 3042 3043 3044

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3045
		/*
3046 3047
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3048 3049
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3050
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3051
			goto group_next;
3052

I
Ingo Molnar 已提交
3053
		/*
3054
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3055 3056 3057 3058 3059
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3060 3061
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3062 3063
			group_min = group;
			min_nr_running = sum_nr_running;
3064 3065
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3066
		}
3067

I
Ingo Molnar 已提交
3068
		/*
3069
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3081
		}
3082 3083
group_next:
#endif
L
Linus Torvalds 已提交
3084 3085 3086
		group = group->next;
	} while (group != sd->groups);

3087
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094 3095
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3096
	busiest_load_per_task /= busiest_nr_running;
3097 3098 3099
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3100 3101 3102 3103 3104 3105 3106 3107
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3108
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3109 3110
	 * appear as very large values with unsigned longs.
	 */
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3123 3124

	/* Don't want to pull so many tasks that a group would go idle */
3125
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3126

L
Linus Torvalds 已提交
3127
	/* How much load to actually move to equalise the imbalance */
3128 3129
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3130 3131
			/ SCHED_LOAD_SCALE;

3132 3133 3134 3135 3136 3137
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3138
	if (*imbalance < busiest_load_per_task) {
3139
		unsigned long tmp, pwr_now, pwr_move;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3151

I
Ingo Molnar 已提交
3152 3153
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3154
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3164 3165 3166 3167
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3168 3169 3170
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3171 3172
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3173
		if (max_load > tmp)
3174
			pwr_move += busiest->__cpu_power *
3175
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3176 3177

		/* Amount of load we'd add */
3178
		if (max_load * busiest->__cpu_power <
3179
				busiest_load_per_task * SCHED_LOAD_SCALE)
3180 3181
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3182
		else
3183 3184 3185 3186
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3187 3188 3189
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3190 3191
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196
	}

	return busiest;

out_balanced:
3197
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3198
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3199
		goto ret;
L
Linus Torvalds 已提交
3200

3201 3202 3203 3204 3205
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3206
ret:
L
Linus Torvalds 已提交
3207 3208 3209 3210 3211 3212 3213
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3214
static struct rq *
I
Ingo Molnar 已提交
3215
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3216
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3217
{
3218
	struct rq *busiest = NULL, *rq;
3219
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3220 3221 3222
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3223
		unsigned long wl;
3224 3225 3226 3227

		if (!cpu_isset(i, *cpus))
			continue;

3228
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3229
		wl = weighted_cpuload(i);
3230

I
Ingo Molnar 已提交
3231
		if (rq->nr_running == 1 && wl > imbalance)
3232
			continue;
L
Linus Torvalds 已提交
3233

I
Ingo Molnar 已提交
3234 3235
		if (wl > max_load) {
			max_load = wl;
3236
			busiest = rq;
L
Linus Torvalds 已提交
3237 3238 3239 3240 3241 3242
		}
	}

	return busiest;
}

3243 3244 3245 3246 3247 3248
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3249 3250 3251 3252
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3253
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3254
			struct sched_domain *sd, enum cpu_idle_type idle,
3255
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3256
{
P
Peter Williams 已提交
3257
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3258 3259
	struct sched_group *group;
	unsigned long imbalance;
3260
	struct rq *busiest;
3261
	unsigned long flags;
N
Nick Piggin 已提交
3262

3263 3264
	cpus_setall(*cpus);

3265 3266 3267
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3268
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3269
	 * portraying it as CPU_NOT_IDLE.
3270
	 */
I
Ingo Molnar 已提交
3271
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3272
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3273
		sd_idle = 1;
L
Linus Torvalds 已提交
3274

3275
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3276

3277 3278
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3279
				   cpus, balance);
3280

3281
	if (*balance == 0)
3282 3283
		goto out_balanced;

L
Linus Torvalds 已提交
3284 3285 3286 3287 3288
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3289
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3295
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3296 3297 3298

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3299
	ld_moved = 0;
L
Linus Torvalds 已提交
3300 3301 3302 3303
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3304
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3305 3306
		 * correctly treated as an imbalance.
		 */
3307
		local_irq_save(flags);
N
Nick Piggin 已提交
3308
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3309
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3310
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3311
		double_rq_unlock(this_rq, busiest);
3312
		local_irq_restore(flags);
3313

3314 3315 3316
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3317
		if (ld_moved && this_cpu != smp_processor_id())
3318 3319
			resched_cpu(this_cpu);

3320
		/* All tasks on this runqueue were pinned by CPU affinity */
3321
		if (unlikely(all_pinned)) {
3322 3323
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3324
				goto redo;
3325
			goto out_balanced;
3326
		}
L
Linus Torvalds 已提交
3327
	}
3328

P
Peter Williams 已提交
3329
	if (!ld_moved) {
L
Linus Torvalds 已提交
3330 3331 3332 3333 3334
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3335
			spin_lock_irqsave(&busiest->lock, flags);
3336 3337 3338 3339 3340

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3341
				spin_unlock_irqrestore(&busiest->lock, flags);
3342 3343 3344 3345
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3346 3347 3348
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3349
				active_balance = 1;
L
Linus Torvalds 已提交
3350
			}
3351
			spin_unlock_irqrestore(&busiest->lock, flags);
3352
			if (active_balance)
L
Linus Torvalds 已提交
3353 3354 3355 3356 3357 3358
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3359
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3360
		}
3361
	} else
L
Linus Torvalds 已提交
3362 3363
		sd->nr_balance_failed = 0;

3364
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3365 3366
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3367 3368 3369 3370 3371 3372 3373 3374 3375
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3376 3377
	}

P
Peter Williams 已提交
3378
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3379
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3380 3381
		return -1;
	return ld_moved;
L
Linus Torvalds 已提交
3382 3383 3384 3385

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3386
	sd->nr_balance_failed = 0;
3387 3388

out_one_pinned:
L
Linus Torvalds 已提交
3389
	/* tune up the balancing interval */
3390 3391
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3392 3393
		sd->balance_interval *= 2;

3394
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3395
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3396 3397
		return -1;
	return 0;
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402 3403
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3404
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3405 3406
 * this_rq is locked.
 */
3407
static int
3408 3409
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3410 3411
{
	struct sched_group *group;
3412
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3413
	unsigned long imbalance;
P
Peter Williams 已提交
3414
	int ld_moved = 0;
N
Nick Piggin 已提交
3415
	int sd_idle = 0;
3416
	int all_pinned = 0;
3417 3418

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3419

3420 3421 3422 3423
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3424
	 * portraying it as CPU_NOT_IDLE.
3425 3426 3427
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3428
		sd_idle = 1;
L
Linus Torvalds 已提交
3429

3430
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3431
redo:
I
Ingo Molnar 已提交
3432
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3433
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3434
	if (!group) {
I
Ingo Molnar 已提交
3435
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3436
		goto out_balanced;
L
Linus Torvalds 已提交
3437 3438
	}

3439
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3440
	if (!busiest) {
I
Ingo Molnar 已提交
3441
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3442
		goto out_balanced;
L
Linus Torvalds 已提交
3443 3444
	}

N
Nick Piggin 已提交
3445 3446
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3447
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3448

P
Peter Williams 已提交
3449
	ld_moved = 0;
3450 3451 3452
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3453 3454
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3455
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3456 3457
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3458
		spin_unlock(&busiest->lock);
3459

3460
		if (unlikely(all_pinned)) {
3461 3462
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3463 3464
				goto redo;
		}
3465 3466
	}

P
Peter Williams 已提交
3467
	if (!ld_moved) {
I
Ingo Molnar 已提交
3468
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3469 3470
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3471 3472
			return -1;
	} else
3473
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3474

P
Peter Williams 已提交
3475
	return ld_moved;
3476 3477

out_balanced:
I
Ingo Molnar 已提交
3478
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3479
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3480
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3481
		return -1;
3482
	sd->nr_balance_failed = 0;
3483

3484
	return 0;
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3491
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3492 3493
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3494 3495
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3496
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3497 3498

	for_each_domain(this_cpu, sd) {
3499 3500 3501 3502 3503 3504
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3505
			/* If we've pulled tasks over stop searching: */
3506 3507
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3508 3509 3510 3511 3512 3513

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3514
	}
I
Ingo Molnar 已提交
3515
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3516 3517 3518 3519 3520
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3521
	}
L
Linus Torvalds 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3532
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3533
{
3534
	int target_cpu = busiest_rq->push_cpu;
3535 3536
	struct sched_domain *sd;
	struct rq *target_rq;
3537

3538
	/* Is there any task to move? */
3539 3540 3541 3542
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3543 3544

	/*
3545
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3546
	 * we need to fix it. Originally reported by
3547
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3548
	 */
3549
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3550

3551 3552
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3553 3554
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3555 3556

	/* Search for an sd spanning us and the target CPU. */
3557
	for_each_domain(target_cpu, sd) {
3558
		if ((sd->flags & SD_LOAD_BALANCE) &&
3559
		    cpu_isset(busiest_cpu, sd->span))
3560
				break;
3561
	}
3562

3563
	if (likely(sd)) {
3564
		schedstat_inc(sd, alb_count);
3565

P
Peter Williams 已提交
3566 3567
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3568 3569 3570 3571
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3572
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3573 3574
}

3575 3576 3577
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3578
	cpumask_t cpu_mask;
3579 3580 3581 3582 3583
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3584
/*
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3595
 *
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3652 3653 3654 3655 3656
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3657
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3658
{
3659 3660
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3661 3662
	unsigned long interval;
	struct sched_domain *sd;
3663
	/* Earliest time when we have to do rebalance again */
3664
	unsigned long next_balance = jiffies + 60*HZ;
3665
	int update_next_balance = 0;
3666
	cpumask_t tmp;
L
Linus Torvalds 已提交
3667

3668
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3669 3670 3671 3672
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3673
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3680 3681 3682
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3683

3684 3685 3686 3687 3688
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3689
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3690
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3691 3692
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3693 3694 3695
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3696
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3697
			}
3698
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3699
		}
3700 3701 3702
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3703
		if (time_after(next_balance, sd->last_balance + interval)) {
3704
			next_balance = sd->last_balance + interval;
3705 3706
			update_next_balance = 1;
		}
3707 3708 3709 3710 3711 3712 3713 3714

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3715
	}
3716 3717 3718 3719 3720 3721 3722 3723

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3724 3725 3726 3727 3728 3729 3730 3731 3732
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3733 3734 3735 3736
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3737

I
Ingo Molnar 已提交
3738
	rebalance_domains(this_cpu, idle);
3739 3740 3741 3742 3743 3744 3745

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3746 3747
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3748 3749 3750 3751
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3752
		cpu_clear(this_cpu, cpus);
3753 3754 3755 3756 3757 3758 3759 3760 3761
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3762
			rebalance_domains(balance_cpu, CPU_IDLE);
3763 3764

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3765 3766
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3779
static inline void trigger_load_balance(struct rq *rq, int cpu)
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3806
			if (ilb < nr_cpu_ids)
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3831
}
I
Ingo Molnar 已提交
3832 3833 3834

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3835 3836 3837
/*
 * on UP we do not need to balance between CPUs:
 */
3838
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3839 3840
{
}
I
Ingo Molnar 已提交
3841

L
Linus Torvalds 已提交
3842 3843 3844 3845 3846 3847 3848
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3849 3850
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3851
 */
3852
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3853 3854
{
	unsigned long flags;
3855 3856
	u64 ns, delta_exec;
	struct rq *rq;
3857

3858 3859
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3860
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3861 3862
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3863 3864 3865 3866
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3867

L
Linus Torvalds 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3891 3892 3893 3894 3895
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3896
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3930
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3931 3932
	cputime64_t tmp;

3933 3934 3935 3936
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
3937

L
Linus Torvalds 已提交
3938 3939 3940 3941 3942 3943 3944 3945
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3946
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3947
		cpustat->system = cputime64_add(cpustat->system, tmp);
3948
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3976
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3984
	} else
L
Linus Torvalds 已提交
3985 3986 3987
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3999
	struct task_struct *curr = rq->curr;
4000 4001

	sched_clock_tick();
I
Ingo Molnar 已提交
4002 4003

	spin_lock(&rq->lock);
4004
	update_rq_clock(rq);
4005
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4006
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4007
	spin_unlock(&rq->lock);
4008

4009
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4010 4011
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4012
#endif
L
Linus Torvalds 已提交
4013 4014 4015 4016
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4017
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4018 4019 4020 4021
{
	/*
	 * Underflow?
	 */
4022 4023
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4024 4025 4026 4027
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4028 4029
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4030 4031 4032
}
EXPORT_SYMBOL(add_preempt_count);

4033
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4034 4035 4036 4037
{
	/*
	 * Underflow?
	 */
4038 4039
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4040 4041 4042
	/*
	 * Is the spinlock portion underflowing?
	 */
4043 4044 4045 4046
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4054
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4055
 */
I
Ingo Molnar 已提交
4056
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4057
{
4058 4059 4060 4061 4062
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4063 4064 4065
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4066 4067 4068 4069 4070

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4071
}
L
Linus Torvalds 已提交
4072

I
Ingo Molnar 已提交
4073 4074 4075 4076 4077
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4078
	/*
I
Ingo Molnar 已提交
4079
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4080 4081 4082
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4083
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4084 4085
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4086 4087
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4088
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4089 4090
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4091 4092
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4093 4094
	}
#endif
I
Ingo Molnar 已提交
4095 4096 4097 4098 4099 4100
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4101
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4102
{
4103
	const struct sched_class *class;
I
Ingo Molnar 已提交
4104
	struct task_struct *p;
L
Linus Torvalds 已提交
4105 4106

	/*
I
Ingo Molnar 已提交
4107 4108
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4109
	 */
I
Ingo Molnar 已提交
4110
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4111
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4112 4113
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4114 4115
	}

I
Ingo Molnar 已提交
4116 4117
	class = sched_class_highest;
	for ( ; ; ) {
4118
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4128

I
Ingo Molnar 已提交
4129 4130 4131 4132 4133 4134
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4135
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4151

P
Peter Zijlstra 已提交
4152 4153
	hrtick_clear(rq);

4154 4155 4156 4157
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4158
	update_rq_clock(rq);
4159 4160
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4161 4162 4163

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4164
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4165
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4166
		} else {
4167
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4168
		}
I
Ingo Molnar 已提交
4169
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4170 4171
	}

4172 4173 4174 4175
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4176

I
Ingo Molnar 已提交
4177
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4178 4179
		idle_balance(cpu, rq);

4180
	prev->sched_class->put_prev_task(rq, prev);
4181
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4182 4183

	if (likely(prev != next)) {
4184 4185
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4186 4187 4188 4189
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4190
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4191 4192 4193 4194 4195 4196
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4197 4198 4199
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4200 4201 4202
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4203
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4204

L
Linus Torvalds 已提交
4205 4206 4207 4208 4209 4210 4211 4212
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4213
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4214
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4220

L
Linus Torvalds 已提交
4221 4222
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4223
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4224
	 */
N
Nick Piggin 已提交
4225
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4226 4227
		return;

4228 4229 4230 4231
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4232

4233 4234 4235 4236 4237 4238
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4239 4240 4241 4242
}
EXPORT_SYMBOL(preempt_schedule);

/*
4243
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249 4250
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4251

4252
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4253 4254
	BUG_ON(ti->preempt_count || !irqs_disabled());

4255 4256 4257 4258 4259 4260
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4261

4262 4263 4264 4265 4266 4267
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4268 4269 4270 4271
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4272 4273
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4274
{
4275
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4276 4277 4278 4279
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4280 4281
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4282 4283 4284
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4285
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4291
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4292

4293
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4294 4295
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4296
		if (curr->func(curr, mode, sync, key) &&
4297
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4307
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4308
 */
4309
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4310
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4323
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4329
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4341
void
I
Ingo Molnar 已提交
4342
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4359
void complete(struct completion *x)
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4365
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4366 4367 4368 4369
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4370
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4376
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4377 4378 4379 4380
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4381 4382
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4390 4391 4392 4393
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4394 4395 4396 4397
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4403
				return timeout;
L
Linus Torvalds 已提交
4404 4405 4406 4407 4408 4409 4410 4411
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4412 4413
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4414 4415 4416 4417
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4418
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4419
	spin_unlock_irq(&x->wait.lock);
4420 4421
	return timeout;
}
L
Linus Torvalds 已提交
4422

4423
void __sched wait_for_completion(struct completion *x)
4424 4425
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4426
}
4427
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4428

4429
unsigned long __sched
4430
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4431
{
4432
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4433
}
4434
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4435

4436
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4437
{
4438 4439 4440 4441
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4442
}
4443
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4444

4445
unsigned long __sched
4446 4447
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4448
{
4449
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4450
}
4451
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4452

M
Matthew Wilcox 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4462 4463
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4464
{
I
Ingo Molnar 已提交
4465 4466 4467 4468
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4469

4470
	__set_current_state(state);
L
Linus Torvalds 已提交
4471

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4486 4487 4488
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4489
long __sched
I
Ingo Molnar 已提交
4490
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4491
{
4492
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4493 4494 4495
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4496
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4497
{
4498
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4499 4500 4501
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4502
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4503
{
4504
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4505 4506 4507
}
EXPORT_SYMBOL(sleep_on_timeout);

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4520
void rt_mutex_setprio(struct task_struct *p, int prio)
4521 4522
{
	unsigned long flags;
4523
	int oldprio, on_rq, running;
4524
	struct rq *rq;
4525
	const struct sched_class *prev_class = p->sched_class;
4526 4527 4528 4529

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4530
	update_rq_clock(rq);
4531

4532
	oldprio = p->prio;
I
Ingo Molnar 已提交
4533
	on_rq = p->se.on_rq;
4534
	running = task_current(rq, p);
4535
	if (on_rq)
4536
		dequeue_task(rq, p, 0);
4537 4538
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4539 4540 4541 4542 4543 4544

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4545 4546
	p->prio = prio;

4547 4548
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4549
	if (on_rq) {
4550
		enqueue_task(rq, p, 0);
4551 4552

		check_class_changed(rq, p, prev_class, oldprio, running);
4553 4554 4555 4556 4557 4558
	}
	task_rq_unlock(rq, &flags);
}

#endif

4559
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4560
{
I
Ingo Molnar 已提交
4561
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4562
	unsigned long flags;
4563
	struct rq *rq;
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4572
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4573 4574 4575 4576
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4577
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4578
	 */
4579
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4580 4581 4582
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4583
	on_rq = p->se.on_rq;
4584
	if (on_rq) {
4585
		dequeue_task(rq, p, 0);
4586 4587
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4588 4589

	p->static_prio = NICE_TO_PRIO(nice);
4590
	set_load_weight(p);
4591 4592 4593
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4594

I
Ingo Molnar 已提交
4595
	if (on_rq) {
4596
		enqueue_task(rq, p, 0);
4597
		inc_load(rq, p);
L
Linus Torvalds 已提交
4598
		/*
4599 4600
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4601
		 */
4602
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607 4608 4609
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4610 4611 4612 4613 4614
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4615
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4616
{
4617 4618
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4619

M
Matt Mackall 已提交
4620 4621 4622 4623
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4635
	long nice, retval;
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640 4641

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4642 4643
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4653 4654 4655
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4674
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680 4681 4682
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4683
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4684 4685 4686
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4687
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4702
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708 4709 4710
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4711
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4712
{
4713
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4714 4715 4716
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4717 4718
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4719
{
I
Ingo Molnar 已提交
4720
	BUG_ON(p->se.on_rq);
4721

L
Linus Torvalds 已提交
4722
	p->policy = policy;
I
Ingo Molnar 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4735
	p->rt_priority = prio;
4736 4737 4738
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4739
	set_load_weight(p);
L
Linus Torvalds 已提交
4740 4741 4742
}

/**
4743
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4744 4745 4746
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4747
 *
4748
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4749
 */
I
Ingo Molnar 已提交
4750 4751
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4752
{
4753
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4754
	unsigned long flags;
4755
	const struct sched_class *prev_class = p->sched_class;
4756
	struct rq *rq;
L
Linus Torvalds 已提交
4757

4758 4759
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4760 4761 4762 4763 4764
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4765 4766
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4767
		return -EINVAL;
L
Linus Torvalds 已提交
4768 4769
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4770 4771
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4772 4773
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4774
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4775
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4776
		return -EINVAL;
4777
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4778 4779
		return -EINVAL;

4780 4781 4782 4783
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4784
		if (rt_policy(policy)) {
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4801 4802 4803 4804 4805 4806
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4807

4808 4809 4810 4811 4812
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4813

4814 4815 4816 4817 4818
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4819
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4820 4821 4822
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4823 4824 4825
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4826 4827 4828 4829 4830
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4831 4832 4833 4834
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4835
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4836 4837 4838
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4839 4840
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4841 4842
		goto recheck;
	}
I
Ingo Molnar 已提交
4843
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4844
	on_rq = p->se.on_rq;
4845
	running = task_current(rq, p);
4846
	if (on_rq)
4847
		deactivate_task(rq, p, 0);
4848 4849
	if (running)
		p->sched_class->put_prev_task(rq, p);
4850

L
Linus Torvalds 已提交
4851
	oldprio = p->prio;
I
Ingo Molnar 已提交
4852
	__setscheduler(rq, p, policy, param->sched_priority);
4853

4854 4855
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4856 4857
	if (on_rq) {
		activate_task(rq, p, 0);
4858 4859

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4860
	}
4861 4862 4863
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4864 4865
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4866 4867 4868 4869
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4870 4871
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4872 4873 4874
{
	struct sched_param lparam;
	struct task_struct *p;
4875
	int retval;
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4881 4882 4883

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4884
	p = find_process_by_pid(pid);
4885 4886 4887
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4888

L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4898 4899
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4900
{
4901 4902 4903 4904
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4924
	struct task_struct *p;
4925
	int retval;
L
Linus Torvalds 已提交
4926 4927

	if (pid < 0)
4928
		return -EINVAL;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4950
	struct task_struct *p;
4951
	int retval;
L
Linus Torvalds 已提交
4952 4953

	if (!param || pid < 0)
4954
		return -EINVAL;
L
Linus Torvalds 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4981
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4982 4983
{
	cpumask_t cpus_allowed;
4984
	cpumask_t new_mask = *in_mask;
4985 4986
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4987

4988
	get_online_cpus();
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4994
		put_online_cpus();
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5000
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5011 5012 5013 5014
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5015
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5016
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5017
 again:
5018
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5019

P
Paul Menage 已提交
5020
	if (!retval) {
5021
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5032 5033
out_unlock:
	put_task_struct(p);
5034
	put_online_cpus();
L
Linus Torvalds 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5065
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5075
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5076 5077 5078
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5079
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5080 5081
EXPORT_SYMBOL(cpu_online_map);

5082
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5083
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5084 5085 5086 5087
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5088
	struct task_struct *p;
L
Linus Torvalds 已提交
5089 5090
	int retval;

5091
	get_online_cpus();
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5099 5100 5101 5102
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5103
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5104 5105 5106

out_unlock:
	read_unlock(&tasklist_lock);
5107
	put_online_cpus();
L
Linus Torvalds 已提交
5108

5109
	return retval;
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5140 5141
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5142 5143 5144
 */
asmlinkage long sys_sched_yield(void)
{
5145
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5146

5147
	schedstat_inc(rq, yld_count);
5148
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5149 5150 5151 5152 5153 5154

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5155
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5164
static void __cond_resched(void)
L
Linus Torvalds 已提交
5165
{
5166 5167 5168
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5169 5170 5171 5172 5173
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178 5179 5180
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5181
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5182
{
5183 5184
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189
		__cond_resched();
		return 1;
	}
	return 0;
}
5190
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5196
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5197 5198 5199
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5200
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5201
{
N
Nick Piggin 已提交
5202
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5203 5204
	int ret = 0;

N
Nick Piggin 已提交
5205
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5206
		spin_unlock(lock);
N
Nick Piggin 已提交
5207 5208 5209 5210
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5211
		ret = 1;
L
Linus Torvalds 已提交
5212 5213
		spin_lock(lock);
	}
J
Jan Kara 已提交
5214
	return ret;
L
Linus Torvalds 已提交
5215 5216 5217 5218 5219 5220 5221
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5222
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5223
		local_bh_enable();
L
Linus Torvalds 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5235
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5246
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5254
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5255

5256
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5257 5258 5259
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5260
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5261 5262 5263 5264 5265
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5266
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5267 5268
	long ret;

5269
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5270 5271 5272
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5273
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5294
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5295
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5319
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5320
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5337
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5338
	unsigned int time_slice;
5339
	int retval;
L
Linus Torvalds 已提交
5340 5341 5342
	struct timespec t;

	if (pid < 0)
5343
		return -EINVAL;
L
Linus Torvalds 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5355 5356 5357 5358 5359 5360
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5361
		time_slice = DEF_TIMESLICE;
5362
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5363 5364 5365 5366 5367
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5368 5369
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5370 5371
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5372
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5373
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5374 5375
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5376

L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5382
static const char stat_nam[] = "RSDTtZX";
5383

5384
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5385 5386
{
	unsigned long free = 0;
5387
	unsigned state;
L
Linus Torvalds 已提交
5388 5389

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5390
	printk(KERN_INFO "%-13.13s %c", p->comm,
5391
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5392
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5393
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5394
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5395
	else
I
Ingo Molnar 已提交
5396
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5397 5398
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5399
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5400
	else
I
Ingo Molnar 已提交
5401
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5402 5403 5404
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5405
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5406 5407
		while (!*n)
			n++;
5408
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5409 5410
	}
#endif
5411
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5412
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5413

5414
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5415 5416
}

I
Ingo Molnar 已提交
5417
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5418
{
5419
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5420

5421 5422 5423
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5424
#else
5425 5426
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5427 5428 5429 5430 5431 5432 5433 5434
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5435
		if (!state_filter || (p->state & state_filter))
5436
			sched_show_task(p);
L
Linus Torvalds 已提交
5437 5438
	} while_each_thread(g, p);

5439 5440
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5441 5442 5443
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5444
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5445 5446 5447 5448 5449
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5450 5451
}

I
Ingo Molnar 已提交
5452 5453
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5454
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5455 5456
}

5457 5458 5459 5460 5461 5462 5463 5464
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5465
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5466
{
5467
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5468 5469
	unsigned long flags;

I
Ingo Molnar 已提交
5470 5471 5472
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5473
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5474
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5475
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5476 5477 5478

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5479 5480 5481
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5482 5483 5484
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5485 5486 5487
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5488
	task_thread_info(idle)->preempt_count = 0;
5489
#endif
I
Ingo Molnar 已提交
5490 5491 5492 5493
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5530 5531 5532 5533
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5534
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5553
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5554 5555
 * call is not atomic; no spinlocks may be held.
 */
5556
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5557
{
5558
	struct migration_req req;
L
Linus Torvalds 已提交
5559
	unsigned long flags;
5560
	struct rq *rq;
5561
	int ret = 0;
L
Linus Torvalds 已提交
5562 5563

	rq = task_rq_lock(p, &flags);
5564
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5565 5566 5567 5568
		ret = -EINVAL;
		goto out;
	}

5569
	if (p->sched_class->set_cpus_allowed)
5570
		p->sched_class->set_cpus_allowed(p, new_mask);
5571
	else {
5572 5573
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5574 5575
	}

L
Linus Torvalds 已提交
5576
	/* Can the task run on the task's current CPU? If so, we're done */
5577
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5578 5579
		goto out;

5580
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585 5586 5587 5588 5589
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5590

L
Linus Torvalds 已提交
5591 5592
	return ret;
}
5593
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5594 5595

/*
I
Ingo Molnar 已提交
5596
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5597 5598 5599 5600 5601 5602
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5603 5604
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5605
 */
5606
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5607
{
5608
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5609
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5610 5611

	if (unlikely(cpu_is_offline(dest_cpu)))
5612
		return ret;
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5625
	on_rq = p->se.on_rq;
5626
	if (on_rq)
5627
		deactivate_task(rq_src, p, 0);
5628

L
Linus Torvalds 已提交
5629
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5630 5631 5632
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5633
	}
5634
	ret = 1;
L
Linus Torvalds 已提交
5635 5636
out:
	double_rq_unlock(rq_src, rq_dest);
5637
	return ret;
L
Linus Torvalds 已提交
5638 5639 5640 5641 5642 5643 5644
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5645
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5646 5647
{
	int cpu = (long)data;
5648
	struct rq *rq;
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5655
		struct migration_req *req;
L
Linus Torvalds 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5678
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5679 5680
		list_del_init(head->next);

N
Nick Piggin 已提交
5681 5682 5683
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5713
/*
5714
 * Figure out where task on dead CPU should go, use force if necessary.
5715 5716
 * NOTE: interrupts should be disabled by the caller
 */
5717
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5718
{
5719
	unsigned long flags;
L
Linus Torvalds 已提交
5720
	cpumask_t mask;
5721 5722
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5723

5724 5725 5726 5727 5728 5729 5730
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5731
		if (dest_cpu >= nr_cpu_ids)
5732 5733 5734
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5735
		if (dest_cpu >= nr_cpu_ids) {
5736 5737 5738
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5739 5740 5741 5742
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5743
			 * cpuset_cpus_allowed() will not block. It must be
5744 5745
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5746
			rq = task_rq_lock(p, &flags);
5747
			p->cpus_allowed = cpus_allowed;
5748 5749
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5750

5751 5752 5753 5754 5755
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5756
			if (p->mm && printk_ratelimit()) {
5757 5758
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5759 5760
					task_pid_nr(p), p->comm, dead_cpu);
			}
5761
		}
5762
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767 5768 5769 5770 5771
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5772
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5773
{
5774
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5788
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5789

5790
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5791

5792 5793
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5794 5795
			continue;

5796 5797 5798
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5799

5800
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5801 5802
}

I
Ingo Molnar 已提交
5803 5804
/*
 * Schedules idle task to be the next runnable task on current CPU.
5805 5806
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5807 5808 5809
 */
void sched_idle_next(void)
{
5810
	int this_cpu = smp_processor_id();
5811
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5812 5813 5814 5815
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5816
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5817

5818 5819 5820
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5821 5822 5823
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5824
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5825

5826 5827
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5828 5829 5830 5831

	spin_unlock_irqrestore(&rq->lock, flags);
}

5832 5833
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5847
/* called under rq->lock with disabled interrupts */
5848
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5849
{
5850
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5851 5852

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5853
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5854 5855

	/* Cannot have done final schedule yet: would have vanished. */
5856
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5857

5858
	get_task_struct(p);
L
Linus Torvalds 已提交
5859 5860 5861

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5862
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5863 5864
	 * fine.
	 */
5865
	spin_unlock_irq(&rq->lock);
5866
	move_task_off_dead_cpu(dead_cpu, p);
5867
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5868

5869
	put_task_struct(p);
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5875
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5876
	struct task_struct *next;
5877

I
Ingo Molnar 已提交
5878 5879 5880
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5881
		update_rq_clock(rq);
5882
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5883 5884 5885
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5886

L
Linus Torvalds 已提交
5887 5888 5889 5890
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5891 5892 5893
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5894 5895
	{
		.procname	= "sched_domain",
5896
		.mode		= 0555,
5897
	},
I
Ingo Molnar 已提交
5898
	{0, },
5899 5900 5901
};

static struct ctl_table sd_ctl_root[] = {
5902
	{
5903
		.ctl_name	= CTL_KERN,
5904
		.procname	= "kernel",
5905
		.mode		= 0555,
5906 5907
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5908
	{0, },
5909 5910 5911 5912 5913
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5914
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5915 5916 5917 5918

	return entry;
}

5919 5920
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5921
	struct ctl_table *entry;
5922

5923 5924 5925
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5926
	 * will always be set. In the lowest directory the names are
5927 5928 5929
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5930 5931
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5932 5933 5934
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5935 5936 5937 5938 5939

	kfree(*tablep);
	*tablep = NULL;
}

5940
static void
5941
set_table_entry(struct ctl_table *entry,
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5955
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5956

5957 5958 5959
	if (table == NULL)
		return NULL;

5960
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5961
		sizeof(long), 0644, proc_doulongvec_minmax);
5962
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5963
		sizeof(long), 0644, proc_doulongvec_minmax);
5964
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5965
		sizeof(int), 0644, proc_dointvec_minmax);
5966
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5967
		sizeof(int), 0644, proc_dointvec_minmax);
5968
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5969
		sizeof(int), 0644, proc_dointvec_minmax);
5970
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5971
		sizeof(int), 0644, proc_dointvec_minmax);
5972
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5973
		sizeof(int), 0644, proc_dointvec_minmax);
5974
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5975
		sizeof(int), 0644, proc_dointvec_minmax);
5976
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5977
		sizeof(int), 0644, proc_dointvec_minmax);
5978
	set_table_entry(&table[9], "cache_nice_tries",
5979 5980
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5981
	set_table_entry(&table[10], "flags", &sd->flags,
5982
		sizeof(int), 0644, proc_dointvec_minmax);
5983
	/* &table[11] is terminator */
5984 5985 5986 5987

	return table;
}

5988
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5989 5990 5991 5992 5993 5994 5995 5996 5997
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5998 5999
	if (table == NULL)
		return NULL;
6000 6001 6002 6003 6004

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6005
		entry->mode = 0555;
6006 6007 6008 6009 6010 6011 6012 6013
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6014
static void register_sched_domain_sysctl(void)
6015 6016 6017 6018 6019
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6020 6021 6022
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6023 6024 6025
	if (entry == NULL)
		return;

6026
	for_each_online_cpu(i) {
6027 6028
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6029
		entry->mode = 0555;
6030
		entry->child = sd_alloc_ctl_cpu_table(i);
6031
		entry++;
6032
	}
6033 6034

	WARN_ON(sd_sysctl_header);
6035 6036
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6037

6038
/* may be called multiple times per register */
6039 6040
static void unregister_sched_domain_sysctl(void)
{
6041 6042
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6043
	sd_sysctl_header = NULL;
6044 6045
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6046
}
6047
#else
6048 6049 6050 6051
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6052 6053 6054 6055
{
}
#endif

L
Linus Torvalds 已提交
6056 6057 6058 6059
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6060 6061
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6062 6063
{
	struct task_struct *p;
6064
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6065
	unsigned long flags;
6066
	struct rq *rq;
L
Linus Torvalds 已提交
6067 6068

	switch (action) {
6069

L
Linus Torvalds 已提交
6070
	case CPU_UP_PREPARE:
6071
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6072
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6073 6074 6075 6076 6077
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6078
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6079 6080 6081
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6082

L
Linus Torvalds 已提交
6083
	case CPU_ONLINE:
6084
	case CPU_ONLINE_FROZEN:
6085
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6086
		wake_up_process(cpu_rq(cpu)->migration_thread);
6087 6088 6089 6090 6091 6092 6093 6094 6095

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6096
		break;
6097

L
Linus Torvalds 已提交
6098 6099
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6100
	case CPU_UP_CANCELED_FROZEN:
6101 6102
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6103
		/* Unbind it from offline cpu so it can run. Fall thru. */
6104 6105
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6106 6107 6108
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6109

L
Linus Torvalds 已提交
6110
	case CPU_DEAD:
6111
	case CPU_DEAD_FROZEN:
6112
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6113 6114 6115 6116 6117
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6118
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6119
		update_rq_clock(rq);
6120
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6121
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6122 6123
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6124
		migrate_dead_tasks(cpu);
6125
		spin_unlock_irq(&rq->lock);
6126
		cpuset_unlock();
L
Linus Torvalds 已提交
6127 6128 6129
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6130 6131 6132 6133 6134
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6135 6136
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6137 6138
			struct migration_req *req;

L
Linus Torvalds 已提交
6139
			req = list_entry(rq->migration_queue.next,
6140
					 struct migration_req, list);
L
Linus Torvalds 已提交
6141 6142 6143 6144 6145
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6146

6147 6148
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6149 6150 6151 6152 6153 6154 6155 6156 6157
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162 6163 6164 6165
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6166
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6167 6168 6169 6170
	.notifier_call = migration_call,
	.priority = 10
};

6171
void __init migration_init(void)
L
Linus Torvalds 已提交
6172 6173
{
	void *cpu = (void *)(long)smp_processor_id();
6174
	int err;
6175 6176

	/* Start one for the boot CPU: */
6177 6178
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6179 6180 6181 6182 6183 6184
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6185

6186
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6187

6188 6189
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6190
{
I
Ingo Molnar 已提交
6191
	struct sched_group *group = sd->groups;
6192
	char str[256];
L
Linus Torvalds 已提交
6193

6194
	cpulist_scnprintf(str, sizeof(str), sd->span);
6195
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6196 6197 6198 6199 6200 6201 6202 6203 6204

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6205 6206
	}

I
Ingo Molnar 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6217

I
Ingo Molnar 已提交
6218
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6219
	do {
I
Ingo Molnar 已提交
6220 6221 6222
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6223 6224 6225
			break;
		}

I
Ingo Molnar 已提交
6226 6227 6228 6229 6230 6231
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6232

I
Ingo Molnar 已提交
6233 6234 6235 6236 6237
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6238

6239
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6240 6241 6242 6243
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6244

6245
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6246

6247
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6248
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6249

I
Ingo Molnar 已提交
6250 6251 6252
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6253

6254
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6255
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6256

6257
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6258 6259 6260 6261
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6262

I
Ingo Molnar 已提交
6263 6264
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6265
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6266
	int level = 0;
L
Linus Torvalds 已提交
6267

I
Ingo Molnar 已提交
6268 6269 6270 6271
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6272

I
Ingo Molnar 已提交
6273 6274
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6275 6276 6277 6278 6279 6280
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6281
	for (;;) {
6282
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6283
			break;
L
Linus Torvalds 已提交
6284 6285
		level++;
		sd = sd->parent;
6286
		if (!sd)
I
Ingo Molnar 已提交
6287 6288
			break;
	}
6289
	kfree(groupmask);
L
Linus Torvalds 已提交
6290 6291
}
#else
6292
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6293 6294
#endif

6295
static int sd_degenerate(struct sched_domain *sd)
6296 6297 6298 6299 6300 6301 6302 6303
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6304 6305 6306
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6320 6321
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6340 6341 6342
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6343 6344 6345 6346 6347 6348 6349
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6360
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6361 6362
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6363
		}
G
Gregory Haskins 已提交
6364

6365 6366 6367
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6368 6369 6370 6371 6372 6373 6374
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6375
	cpu_set(rq->cpu, rd->span);
6376 6377
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6378

I
Ingo Molnar 已提交
6379
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6380 6381
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6382
	}
G
Gregory Haskins 已提交
6383 6384 6385 6386

	spin_unlock_irqrestore(&rq->lock, flags);
}

6387
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6388 6389 6390
{
	memset(rd, 0, sizeof(*rd));

6391 6392
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6393 6394 6395 6396
}

static void init_defrootdomain(void)
{
6397
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6398 6399 6400
	atomic_set(&def_root_domain.refcount, 1);
}

6401
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6402 6403 6404 6405 6406 6407 6408
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6409
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6410 6411 6412 6413

	return rd;
}

L
Linus Torvalds 已提交
6414
/*
I
Ingo Molnar 已提交
6415
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6416 6417
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6418 6419
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6420
{
6421
	struct rq *rq = cpu_rq(cpu);
6422 6423 6424 6425 6426 6427 6428
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6429
		if (sd_parent_degenerate(tmp, parent)) {
6430
			tmp->parent = parent->parent;
6431 6432 6433
			if (parent->parent)
				parent->parent->child = tmp;
		}
6434 6435
	}

6436
	if (sd && sd_degenerate(sd)) {
6437
		sd = sd->parent;
6438 6439 6440
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6441 6442 6443

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6444
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6445
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6446 6447 6448
}

/* cpus with isolated domains */
6449
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6464
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6465 6466

/*
6467 6468 6469 6470
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6471 6472 6473 6474 6475
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6476
static void
6477
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6478
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6479 6480 6481
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6482 6483 6484 6485
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6486 6487 6488
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6489
		struct sched_group *sg;
6490
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6491 6492
		int j;

6493
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6494 6495
			continue;

6496
		cpus_clear(sg->cpumask);
6497
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6498

6499 6500
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6501 6502
				continue;

6503
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6515
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6516

6517
#ifdef CONFIG_NUMA
6518

6519 6520 6521 6522 6523
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6524
 * Find the next node to include in a given scheduling domain. Simply
6525 6526 6527 6528
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6529
static int find_next_best_node(int node, nodemask_t *used_nodes)
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6543
		if (node_isset(n, *used_nodes))
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6555
	node_set(best_node, *used_nodes);
6556 6557 6558 6559 6560 6561
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6562
 * @span: resulting cpumask
6563
 *
I
Ingo Molnar 已提交
6564
 * Given a node, construct a good cpumask for its sched_domain to span. It
6565 6566 6567
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6568
static void sched_domain_node_span(int node, cpumask_t *span)
6569
{
6570 6571
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6572
	int i;
6573

6574
	cpus_clear(*span);
6575
	nodes_clear(used_nodes);
6576

6577
	cpus_or(*span, *span, *nodemask);
6578
	node_set(node, used_nodes);
6579 6580

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6581
		int next_node = find_next_best_node(node, &used_nodes);
6582

6583
		node_to_cpumask_ptr_next(nodemask, next_node);
6584
		cpus_or(*span, *span, *nodemask);
6585 6586 6587 6588
	}
}
#endif

6589
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6590

6591
/*
6592
 * SMT sched-domains:
6593
 */
L
Linus Torvalds 已提交
6594 6595
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6596
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6597

I
Ingo Molnar 已提交
6598
static int
6599 6600
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6601
{
6602 6603
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6604 6605 6606 6607
	return cpu;
}
#endif

6608 6609 6610
/*
 * multi-core sched-domains:
 */
6611 6612
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6613
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6614 6615 6616
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6617
static int
6618 6619
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6620
{
6621
	int group;
6622 6623 6624 6625

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6626 6627 6628
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6629 6630
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6631
static int
6632 6633
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6634
{
6635 6636
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6637 6638 6639 6640
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6641
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6642
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6643

I
Ingo Molnar 已提交
6644
static int
6645 6646
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6647
{
6648
	int group;
6649
#ifdef CONFIG_SCHED_MC
6650 6651 6652
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6653
#elif defined(CONFIG_SCHED_SMT)
6654 6655 6656
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6657
#else
6658
	group = cpu;
L
Linus Torvalds 已提交
6659
#endif
6660 6661 6662
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6663 6664 6665 6666
}

#ifdef CONFIG_NUMA
/*
6667 6668 6669
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6670
 */
6671
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6672
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6673

6674
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6675
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6676

6677
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6678
				 struct sched_group **sg, cpumask_t *nodemask)
6679
{
6680 6681
	int group;

6682 6683 6684
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6685 6686 6687 6688

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6689
}
6690

6691 6692 6693 6694 6695 6696 6697
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6698 6699 6700
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6701

6702 6703 6704 6705 6706 6707 6708 6709
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6710

6711 6712 6713 6714
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6715
}
L
Linus Torvalds 已提交
6716 6717
#endif

6718
#ifdef CONFIG_NUMA
6719
/* Free memory allocated for various sched_group structures */
6720
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6721
{
6722
	int cpu, i;
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6734 6735 6736
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6753
#else
6754
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6755 6756 6757
{
}
#endif
6758

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6785 6786
	sd->groups->__cpu_power = 0;

6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6797
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6798 6799 6800 6801 6802 6803 6804 6805
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6806
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6807 6808 6809 6810
		group = group->next;
	} while (group != child->groups);
}

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6822
	sd->level = SD_LV_##type;				\
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
6901
/*
6902 6903
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6904
 */
6905 6906
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
6907 6908
{
	int i;
G
Gregory Haskins 已提交
6909
	struct root_domain *rd;
6910 6911
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
6912 6913
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6914
	int sd_allnodes = 0;
6915 6916 6917 6918

	/*
	 * Allocate the per-node list of sched groups
	 */
6919
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6920
				    GFP_KERNEL);
6921 6922
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6923
		return -ENOMEM;
6924 6925
	}
#endif
L
Linus Torvalds 已提交
6926

6927
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6928 6929
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
6930 6931 6932
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
6933 6934 6935
		return -ENOMEM;
	}

6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
6955
	/*
6956
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6957
	 */
6958
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6959
		struct sched_domain *sd = NULL, *p;
6960
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
6961

6962 6963
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
6964 6965

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6966
		if (cpus_weight(*cpu_map) >
6967
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6968
			sd = &per_cpu(allnodes_domains, i);
6969
			SD_INIT(sd, ALLNODES);
6970
			set_domain_attribute(sd, attr);
6971
			sd->span = *cpu_map;
6972
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6973
			p = sd;
6974
			sd_allnodes = 1;
6975 6976 6977
		} else
			p = NULL;

L
Linus Torvalds 已提交
6978
		sd = &per_cpu(node_domains, i);
6979
		SD_INIT(sd, NODE);
6980
		set_domain_attribute(sd, attr);
6981
		sched_domain_node_span(cpu_to_node(i), &sd->span);
6982
		sd->parent = p;
6983 6984
		if (p)
			p->child = sd;
6985
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6986 6987 6988 6989
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
6990
		SD_INIT(sd, CPU);
6991
		set_domain_attribute(sd, attr);
6992
		sd->span = *nodemask;
L
Linus Torvalds 已提交
6993
		sd->parent = p;
6994 6995
		if (p)
			p->child = sd;
6996
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
6997

6998 6999 7000
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7001
		SD_INIT(sd, MC);
7002
		set_domain_attribute(sd, attr);
7003 7004 7005
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7006
		p->child = sd;
7007
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7008 7009
#endif

L
Linus Torvalds 已提交
7010 7011 7012
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7013
		SD_INIT(sd, SIBLING);
7014
		set_domain_attribute(sd, attr);
7015
		sd->span = per_cpu(cpu_sibling_map, i);
7016
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7017
		sd->parent = p;
7018
		p->child = sd;
7019
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7020 7021 7022 7023 7024
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7025
	for_each_cpu_mask(i, *cpu_map) {
7026 7027 7028 7029 7030 7031
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7032 7033
			continue;

I
Ingo Molnar 已提交
7034
		init_sched_build_groups(this_sibling_map, cpu_map,
7035 7036
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7037 7038 7039
	}
#endif

7040 7041 7042
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7043 7044 7045 7046 7047 7048
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7049
			continue;
7050

I
Ingo Molnar 已提交
7051
		init_sched_build_groups(this_core_map, cpu_map,
7052 7053
					&cpu_to_core_group,
					send_covered, tmpmask);
7054 7055 7056
	}
#endif

L
Linus Torvalds 已提交
7057 7058
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7059 7060
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7061

7062 7063 7064
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7065 7066
			continue;

7067 7068 7069
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7070 7071 7072 7073
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7074 7075 7076 7077 7078 7079 7080
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7081 7082 7083 7084

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7085 7086 7087
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7088 7089
		int j;

7090 7091 7092 7093 7094
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7095
			sched_group_nodes[i] = NULL;
7096
			continue;
7097
		}
7098

7099
		sched_domain_node_span(i, domainspan);
7100
		cpus_and(*domainspan, *domainspan, *cpu_map);
7101

7102
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7103 7104 7105 7106 7107
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7108
		sched_group_nodes[i] = sg;
7109
		for_each_cpu_mask(j, *nodemask) {
7110
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7111

7112 7113 7114
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7115
		sg->__cpu_power = 0;
7116
		sg->cpumask = *nodemask;
7117
		sg->next = sg;
7118
		cpus_or(*covered, *covered, *nodemask);
7119 7120 7121
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7122
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7123
			int n = (i + j) % MAX_NUMNODES;
7124
			node_to_cpumask_ptr(pnodemask, n);
7125

7126 7127 7128 7129
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7130 7131
				break;

7132 7133
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7134 7135
				continue;

7136 7137
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7138 7139 7140
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7141
				goto error;
7142
			}
7143
			sg->__cpu_power = 0;
7144
			sg->cpumask = *tmpmask;
7145
			sg->next = prev->next;
7146
			cpus_or(*covered, *covered, *tmpmask);
7147 7148 7149 7150
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7151 7152 7153
#endif

	/* Calculate CPU power for physical packages and nodes */
7154
#ifdef CONFIG_SCHED_SMT
7155
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7156 7157
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7158
		init_sched_groups_power(i, sd);
7159
	}
L
Linus Torvalds 已提交
7160
#endif
7161
#ifdef CONFIG_SCHED_MC
7162
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7163 7164
		struct sched_domain *sd = &per_cpu(core_domains, i);

7165
		init_sched_groups_power(i, sd);
7166 7167
	}
#endif
7168

7169
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7170 7171
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7172
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7173 7174
	}

7175
#ifdef CONFIG_NUMA
7176 7177
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7178

7179 7180
	if (sd_allnodes) {
		struct sched_group *sg;
7181

7182 7183
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7184 7185
		init_numa_sched_groups_power(sg);
	}
7186 7187
#endif

L
Linus Torvalds 已提交
7188
	/* Attach the domains */
7189
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7190 7191 7192
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7193 7194
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7195 7196 7197
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7198
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7199
	}
7200

7201
	SCHED_CPUMASK_FREE((void *)allmasks);
7202 7203
	return 0;

7204
#ifdef CONFIG_NUMA
7205
error:
7206 7207
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7208
	return -ENOMEM;
7209
#endif
L
Linus Torvalds 已提交
7210
}
P
Paul Jackson 已提交
7211

7212 7213 7214 7215 7216
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7217 7218
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7219 7220
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7221 7222 7223 7224 7225 7226 7227 7228

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7229 7230 7231 7232
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7233
/*
I
Ingo Molnar 已提交
7234
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7235 7236
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7237
 */
7238
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7239
{
7240 7241
	int err;

7242
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7243 7244 7245 7246 7247
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7248
	dattr_cur = NULL;
7249
	err = build_sched_domains(doms_cur);
7250
	register_sched_domain_sysctl();
7251 7252

	return err;
7253 7254
}

7255 7256
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7257
{
7258
	free_sched_groups(cpu_map, tmpmask);
7259
}
L
Linus Torvalds 已提交
7260

7261 7262 7263 7264
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7265
static void detach_destroy_domains(const cpumask_t *cpu_map)
7266
{
7267
	cpumask_t tmpmask;
7268 7269
	int i;

7270 7271
	unregister_sched_domain_sysctl();

7272
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7273
		cpu_attach_domain(NULL, &def_root_domain, i);
7274
	synchronize_sched();
7275
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7276 7277
}

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7294 7295
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7296
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7297 7298 7299 7300
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7301 7302 7303
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7304 7305 7306
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7307 7308
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7309 7310 7311 7312 7313 7314
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7315 7316
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7317 7318 7319
{
	int i, j;

7320
	mutex_lock(&sched_domains_mutex);
7321

7322 7323 7324
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7325 7326 7327 7328
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7329
		dattr_new = NULL;
P
Paul Jackson 已提交
7330 7331 7332 7333 7334
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7335 7336
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7348 7349
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7350 7351 7352
				goto match2;
		}
		/* no match - add a new doms_new */
7353 7354
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7355 7356 7357 7358 7359 7360 7361
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7362
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7363
	doms_cur = doms_new;
7364
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7365
	ndoms_cur = ndoms_new;
7366 7367

	register_sched_domain_sysctl();
7368

7369
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7370 7371
}

7372
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7373
int arch_reinit_sched_domains(void)
7374 7375 7376
{
	int err;

7377
	get_online_cpus();
7378
	mutex_lock(&sched_domains_mutex);
7379 7380
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7381
	mutex_unlock(&sched_domains_mutex);
7382
	put_online_cpus();
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7409 7410
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7411 7412 7413
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7414 7415
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7416 7417 7418 7419 7420 7421 7422
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7423 7424
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7425 7426 7427
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7448 7449
#endif

L
Linus Torvalds 已提交
7450
/*
I
Ingo Molnar 已提交
7451
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7452
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7453
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7454 7455 7456 7457 7458 7459 7460
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7461
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7462
	case CPU_DOWN_PREPARE:
7463
	case CPU_DOWN_PREPARE_FROZEN:
7464
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7465 7466 7467
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7468
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7469
	case CPU_DOWN_FAILED:
7470
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7471
	case CPU_ONLINE:
7472
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7473
	case CPU_DEAD:
7474
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7475 7476 7477 7478 7479 7480 7481 7482 7483
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7484
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7485 7486 7487 7488 7489 7490

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7491 7492
	cpumask_t non_isolated_cpus;

7493 7494 7495 7496 7497
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7498
	get_online_cpus();
7499
	mutex_lock(&sched_domains_mutex);
7500
	arch_init_sched_domains(&cpu_online_map);
7501
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7502 7503
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7504
	mutex_unlock(&sched_domains_mutex);
7505
	put_online_cpus();
L
Linus Torvalds 已提交
7506 7507
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7508
	init_hrtick();
7509 7510

	/* Move init over to a non-isolated CPU */
7511
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7512
		BUG();
I
Ingo Molnar 已提交
7513
	sched_init_granularity();
L
Linus Torvalds 已提交
7514 7515 7516 7517
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7518
	sched_init_granularity();
L
Linus Torvalds 已提交
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7529
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7530 7531
{
	cfs_rq->tasks_timeline = RB_ROOT;
7532
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7533 7534 7535
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7536
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7537 7538
}

P
Peter Zijlstra 已提交
7539 7540 7541 7542 7543 7544 7545
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7546 7547
		INIT_LIST_HEAD(array->xqueue + i);
		INIT_LIST_HEAD(array->squeue + i);
P
Peter Zijlstra 已提交
7548 7549 7550 7551 7552
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7553
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7554 7555
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7556 7557 7558 7559 7560 7561 7562
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7563 7564
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7565

7566
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7567
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7568 7569
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7570 7571
}

P
Peter Zijlstra 已提交
7572
#ifdef CONFIG_FAIR_GROUP_SCHED
7573 7574 7575
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7576
{
7577
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7578 7579 7580 7581 7582 7583 7584
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7585 7586 7587 7588
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7589 7590 7591 7592 7593
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7594 7595
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7596
	se->load.inv_weight = 0;
7597
	se->parent = parent;
P
Peter Zijlstra 已提交
7598
}
7599
#endif
P
Peter Zijlstra 已提交
7600

7601
#ifdef CONFIG_RT_GROUP_SCHED
7602 7603 7604
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7605
{
7606 7607
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7608 7609 7610 7611
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7612
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7613 7614 7615 7616
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7617 7618 7619
	if (!rt_se)
		return;

7620 7621 7622 7623 7624
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7625 7626
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7627
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7628 7629 7630 7631
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7632 7633
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7634
	int i, j;
7635 7636 7637 7638 7639 7640 7641
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7642 7643 7644
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7645 7646 7647 7648 7649 7650
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7651
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7652 7653 7654 7655 7656 7657 7658

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7659 7660 7661 7662 7663 7664 7665 7666

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7667 7668 7669 7670 7671 7672
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7673 7674 7675 7676 7677 7678 7679 7680 7681
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7682 7683
#endif
	}
I
Ingo Molnar 已提交
7684

G
Gregory Haskins 已提交
7685 7686 7687 7688
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7689 7690 7691 7692 7693 7694
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7695 7696 7697 7698
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
7699 7700
#endif

7701
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7702
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7703 7704 7705 7706 7707 7708 7709
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
7710 7711
#endif

7712
	for_each_possible_cpu(i) {
7713
		struct rq *rq;
L
Linus Torvalds 已提交
7714 7715 7716

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7717
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7718
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7719
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7720
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7721
#ifdef CONFIG_FAIR_GROUP_SCHED
7722
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7723
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7744
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7745
#elif defined CONFIG_USER_SCHED
7746 7747
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7759
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7760
				&per_cpu(init_cfs_rq, i),
7761 7762
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7763

7764
#endif
D
Dhaval Giani 已提交
7765 7766 7767
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7768
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7769
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7770
#ifdef CONFIG_CGROUP_SCHED
7771
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7772
#elif defined CONFIG_USER_SCHED
7773
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7774
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7775
				&per_cpu(init_rt_rq, i),
7776 7777
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7778
#endif
I
Ingo Molnar 已提交
7779
#endif
L
Linus Torvalds 已提交
7780

I
Ingo Molnar 已提交
7781 7782
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7783
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7784
		rq->sd = NULL;
G
Gregory Haskins 已提交
7785
		rq->rd = NULL;
L
Linus Torvalds 已提交
7786
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7787
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7788
		rq->push_cpu = 0;
7789
		rq->cpu = i;
L
Linus Torvalds 已提交
7790 7791
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7792
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7793
#endif
P
Peter Zijlstra 已提交
7794
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7795 7796 7797
		atomic_set(&rq->nr_iowait, 0);
	}

7798
	set_load_weight(&init_task);
7799

7800 7801 7802 7803
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7804 7805 7806 7807
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7808 7809 7810 7811
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7825 7826 7827 7828
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7829 7830

	scheduler_running = 1;
L
Linus Torvalds 已提交
7831 7832 7833 7834 7835
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7836
#ifdef in_atomic
L
Linus Torvalds 已提交
7837 7838 7839 7840 7841 7842 7843
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7844
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7845 7846 7847
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7848
		debug_show_held_locks(current);
7849 7850
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7851 7852 7853 7854 7855 7856 7857 7858
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7859 7860 7861
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7862

7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7874 7875
void normalize_rt_tasks(void)
{
7876
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7877
	unsigned long flags;
7878
	struct rq *rq;
L
Linus Torvalds 已提交
7879

7880
	read_lock_irqsave(&tasklist_lock, flags);
7881
	do_each_thread(g, p) {
7882 7883 7884 7885 7886 7887
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7888 7889
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7890 7891 7892
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7893
#endif
I
Ingo Molnar 已提交
7894 7895 7896 7897 7898 7899 7900 7901

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7902
			continue;
I
Ingo Molnar 已提交
7903
		}
L
Linus Torvalds 已提交
7904

7905
		spin_lock(&p->pi_lock);
7906
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7907

7908
		normalize_task(rq, p);
7909

7910
		__task_rq_unlock(rq);
7911
		spin_unlock(&p->pi_lock);
7912 7913
	} while_each_thread(g, p);

7914
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7915 7916 7917
}

#endif /* CONFIG_MAGIC_SYSRQ */
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7936
struct task_struct *curr_task(int cpu)
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7947 7948
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7949 7950 7951 7952 7953 7954 7955
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7956
void set_curr_task(int cpu, struct task_struct *p)
7957 7958 7959 7960 7961
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7962

7963 7964
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7979 7980
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7981 7982
{
	struct cfs_rq *cfs_rq;
7983
	struct sched_entity *se, *parent_se;
7984
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7985 7986
	int i;

7987
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7988 7989
	if (!tg->cfs_rq)
		goto err;
7990
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7991 7992
	if (!tg->se)
		goto err;
7993 7994

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7995 7996

	for_each_possible_cpu(i) {
7997
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7998

P
Peter Zijlstra 已提交
7999 8000
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8001 8002 8003
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8004 8005
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8006 8007 8008
		if (!se)
			goto err;

8009 8010
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8034 8035
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8047 8048 8049
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8050 8051 8052 8053
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8054 8055
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8067 8068
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8069 8070
{
	struct rt_rq *rt_rq;
8071
	struct sched_rt_entity *rt_se, *parent_se;
8072 8073 8074
	struct rq *rq;
	int i;

8075
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8076 8077
	if (!tg->rt_rq)
		goto err;
8078
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8079 8080 8081
	if (!tg->rt_se)
		goto err;

8082 8083
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8084 8085 8086 8087

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8088 8089 8090 8091
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8092

P
Peter Zijlstra 已提交
8093 8094 8095 8096
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8097

8098 8099
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8100 8101
	}

8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8123 8124
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8138
#ifdef CONFIG_GROUP_SCHED
8139 8140 8141 8142 8143 8144 8145 8146
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8147
struct task_group *sched_create_group(struct task_group *parent)
8148 8149 8150 8151 8152 8153 8154 8155 8156
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8157
	if (!alloc_fair_sched_group(tg, parent))
8158 8159
		goto err;

8160
	if (!alloc_rt_sched_group(tg, parent))
8161 8162
		goto err;

8163
	spin_lock_irqsave(&task_group_lock, flags);
8164
	for_each_possible_cpu(i) {
8165 8166
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8167
	}
P
Peter Zijlstra 已提交
8168
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8169 8170 8171 8172 8173 8174

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8175
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8176

8177
	return tg;
S
Srivatsa Vaddagiri 已提交
8178 8179

err:
P
Peter Zijlstra 已提交
8180
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8181 8182 8183
	return ERR_PTR(-ENOMEM);
}

8184
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8185
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8186 8187
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8188
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8189 8190
}

8191
/* Destroy runqueue etc associated with a task group */
8192
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8193
{
8194
	unsigned long flags;
8195
	int i;
S
Srivatsa Vaddagiri 已提交
8196

8197
	spin_lock_irqsave(&task_group_lock, flags);
8198
	for_each_possible_cpu(i) {
8199 8200
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8201
	}
P
Peter Zijlstra 已提交
8202
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8203
	list_del_rcu(&tg->siblings);
8204
	spin_unlock_irqrestore(&task_group_lock, flags);
8205 8206

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8207
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8208 8209
}

8210
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8211 8212 8213
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8214 8215
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8216 8217 8218 8219 8220 8221 8222 8223 8224
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8225
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8226 8227
	on_rq = tsk->se.on_rq;

8228
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8229
		dequeue_task(rq, tsk, 0);
8230 8231
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8232

P
Peter Zijlstra 已提交
8233
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8234

P
Peter Zijlstra 已提交
8235 8236 8237 8238 8239
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8240 8241 8242
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8243
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8244 8245 8246

	task_rq_unlock(rq, &flags);
}
8247
#endif
S
Srivatsa Vaddagiri 已提交
8248

8249
#ifdef CONFIG_FAIR_GROUP_SCHED
8250
static void set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8251 8252
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
8253
	struct rq *rq = cfs_rq->rq;
S
Srivatsa Vaddagiri 已提交
8254 8255
	int on_rq;

8256 8257
	spin_lock_irq(&rq->lock);

S
Srivatsa Vaddagiri 已提交
8258
	on_rq = se->on_rq;
8259
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8260 8261 8262
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8263
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8264

8265
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8266
		enqueue_entity(cfs_rq, se, 0);
8267

8268
	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8269 8270
}

8271 8272
static DEFINE_MUTEX(shares_mutex);

8273
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8274 8275
{
	int i;
8276
	unsigned long flags;
8277

8278 8279 8280 8281 8282 8283
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8284 8285
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8286 8287
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8288

8289
	mutex_lock(&shares_mutex);
8290
	if (tg->shares == shares)
8291
		goto done;
S
Srivatsa Vaddagiri 已提交
8292

8293
	spin_lock_irqsave(&task_group_lock, flags);
8294 8295
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8296
	list_del_rcu(&tg->siblings);
8297
	spin_unlock_irqrestore(&task_group_lock, flags);
8298 8299 8300 8301 8302 8303 8304 8305

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8306
	tg->shares = shares;
8307
	for_each_possible_cpu(i)
8308
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
8309

8310 8311 8312 8313
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8314
	spin_lock_irqsave(&task_group_lock, flags);
8315 8316
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8317
	list_add_rcu(&tg->siblings, &tg->parent->children);
8318
	spin_unlock_irqrestore(&task_group_lock, flags);
8319
done:
8320
	mutex_unlock(&shares_mutex);
8321
	return 0;
S
Srivatsa Vaddagiri 已提交
8322 8323
}

8324 8325 8326 8327
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8328
#endif
8329

8330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8331
/*
P
Peter Zijlstra 已提交
8332
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8333
 */
P
Peter Zijlstra 已提交
8334 8335 8336 8337 8338 8339 8340
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8341
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8342 8343
}

8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8376
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8377 8378 8379
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8380
	unsigned long global_ratio =
8381
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8382 8383

	rcu_read_lock();
P
Peter Zijlstra 已提交
8384 8385 8386
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8387

8388 8389
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8390 8391
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8392

P
Peter Zijlstra 已提交
8393
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8394
}
8395
#endif
P
Peter Zijlstra 已提交
8396

8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8408 8409
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8410
{
P
Peter Zijlstra 已提交
8411
	int i, err = 0;
P
Peter Zijlstra 已提交
8412 8413

	mutex_lock(&rt_constraints_mutex);
8414
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8415
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8416 8417 8418
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8419 8420 8421 8422
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8423 8424

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8425 8426
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8427 8428 8429 8430 8431 8432 8433 8434 8435

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8436
 unlock:
8437
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8438 8439 8440
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8441 8442
}

8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8455 8456 8457 8458
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8459
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8460 8461
		return -1;

8462
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8463 8464 8465
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8513 8514
	return 0;
}
8515
#endif
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8546

8547
#ifdef CONFIG_CGROUP_SCHED
8548 8549

/* return corresponding task_group object of a cgroup */
8550
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8551
{
8552 8553
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8554 8555 8556
}

static struct cgroup_subsys_state *
8557
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8558
{
8559
	struct task_group *tg, *parent;
8560

8561
	if (!cgrp->parent) {
8562
		/* This is early initialization for the top cgroup */
8563
		init_task_group.css.cgroup = cgrp;
8564 8565 8566
		return &init_task_group.css;
	}

8567 8568
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8569 8570 8571 8572
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8573
	tg->css.cgroup = cgrp;
8574 8575 8576 8577

	return &tg->css;
}

I
Ingo Molnar 已提交
8578 8579
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8580
{
8581
	struct task_group *tg = cgroup_tg(cgrp);
8582 8583 8584 8585

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8586 8587 8588
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8589
{
8590 8591
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8592
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8593 8594
		return -EINVAL;
#else
8595 8596 8597
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8598
#endif
8599 8600 8601 8602 8603

	return 0;
}

static void
8604
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8605 8606 8607 8608 8609
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8610
#ifdef CONFIG_FAIR_GROUP_SCHED
8611
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8612
				u64 shareval)
8613
{
8614
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8615 8616
}

8617
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8618
{
8619
	struct task_group *tg = cgroup_tg(cgrp);
8620 8621 8622

	return (u64) tg->shares;
}
8623
#endif
8624

8625
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8626
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8627
				s64 val)
P
Peter Zijlstra 已提交
8628
{
8629
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8630 8631
}

8632
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8633
{
8634
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8635
}
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8647
#endif
P
Peter Zijlstra 已提交
8648

8649
static struct cftype cpu_files[] = {
8650
#ifdef CONFIG_FAIR_GROUP_SCHED
8651 8652
	{
		.name = "shares",
8653 8654
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8655
	},
8656 8657
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8658
	{
P
Peter Zijlstra 已提交
8659
		.name = "rt_runtime_us",
8660 8661
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8662
	},
8663 8664
	{
		.name = "rt_period_us",
8665 8666
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8667
	},
8668
#endif
8669 8670 8671 8672
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8673
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8674 8675 8676
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8677 8678 8679 8680 8681 8682 8683
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8684 8685 8686
	.early_init	= 1,
};

8687
#endif	/* CONFIG_CGROUP_SCHED */
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8708
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8709
{
8710
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8723
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8740
static void
8741
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8742
{
8743
	struct cpuacct *ca = cgroup_ca(cgrp);
8744 8745 8746 8747 8748 8749

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8750
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8751
{
8752
	struct cpuacct *ca = cgroup_ca(cgrp);
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8794 8795 8796
static struct cftype files[] = {
	{
		.name = "usage",
8797 8798
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8799 8800 8801
	},
};

8802
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8803
{
8804
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */