sched.c 220.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
238
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
	struct cgroup_subsys_state css;
249

250
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251 252 253 254 255
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
256 257 258 259 260 261
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

262
	struct rt_bandwidth rt_bandwidth;
263
#endif
264

265
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
266
	struct list_head list;
P
Peter Zijlstra 已提交
267 268 269 270

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
271 272
};

273
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
274

275
/* task_group_lock serializes add/remove of task groups and also changes to
276 277
 * a task group's cpu shares.
 */
278
static DEFINE_SPINLOCK(task_group_lock);
279

280 281
#ifdef CONFIG_FAIR_GROUP_SCHED

282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

289 290
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

291
/*
292 293 294 295
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
296 297 298
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
299
#define MIN_SHARES	2
300
#define MAX_SHARES	(1UL << 18)
301

302 303 304
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
305
/* Default task group.
I
Ingo Molnar 已提交
306
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
307
 */
308
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
309

D
Dhaval Giani 已提交
310
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
311

I
Ingo Molnar 已提交
312 313 314 315 316 317
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
318
	u64 min_vruntime;
I
Ingo Molnar 已提交
319 320 321

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
322 323 324 325 326 327

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
328 329
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
330
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
333

334
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
335 336
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
337 338
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
339 340 341 342 343 344
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
345 346
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
347 348 349

#ifdef CONFIG_SMP
	/*
350
	 * the part of load.weight contributed by tasks
351
	 */
352
	unsigned long task_weight;
353

354 355 356 357 358 359 360
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
361

362 363 364 365
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
366 367 368 369 370

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
371
#endif
I
Ingo Molnar 已提交
372 373
#endif
};
L
Linus Torvalds 已提交
374

I
Ingo Molnar 已提交
375 376 377
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
378
	unsigned long rt_nr_running;
379
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 381
	struct {
		int curr; /* highest queued rt task prio */
382
#ifdef CONFIG_SMP
383
		int next; /* next highest */
384
#endif
385
	} highest_prio;
P
Peter Zijlstra 已提交
386
#endif
P
Peter Zijlstra 已提交
387
#ifdef CONFIG_SMP
388
	unsigned long rt_nr_migratory;
389
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
390
	int overloaded;
391
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
392
#endif
P
Peter Zijlstra 已提交
393
	int rt_throttled;
P
Peter Zijlstra 已提交
394
	u64 rt_time;
P
Peter Zijlstra 已提交
395
	u64 rt_runtime;
I
Ingo Molnar 已提交
396
	/* Nests inside the rq lock: */
397
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
398

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
402 403 404 405
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
406 407
};

G
Gregory Haskins 已提交
408 409 410 411
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
412 413
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
414 415 416 417 418 419
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
420 421
	cpumask_var_t span;
	cpumask_var_t online;
422

I
Ingo Molnar 已提交
423
	/*
424 425 426
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
427
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
428
	atomic_t rto_count;
429 430 431
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
432 433
};

434 435 436 437
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
438 439 440 441
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
442 443 444 445 446 447 448
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
449
struct rq {
450
	/* runqueue lock: */
451
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
452 453 454 455 456 457

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
458 459
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460
	unsigned long last_load_update_tick;
461
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
462
	u64 nohz_stamp;
463
	unsigned char nohz_balance_kick;
464
#endif
465 466
	unsigned int skip_clock_update;

467 468
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
469 470 471 472
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
473 474
	struct rt_rq rt;

I
Ingo Molnar 已提交
475
#ifdef CONFIG_FAIR_GROUP_SCHED
476 477
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
478 479
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
480
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

491
	struct task_struct *curr, *idle;
492
	unsigned long next_balance;
L
Linus Torvalds 已提交
493
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
494

495
	u64 clock;
I
Ingo Molnar 已提交
496

L
Linus Torvalds 已提交
497 498 499
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
500
	struct root_domain *rd;
L
Linus Torvalds 已提交
501 502
	struct sched_domain *sd;

503 504
	unsigned long cpu_power;

505
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
506
	/* For active balancing */
507
	int post_schedule;
L
Linus Torvalds 已提交
508 509
	int active_balance;
	int push_cpu;
510
	struct cpu_stop_work active_balance_work;
511 512
	/* cpu of this runqueue: */
	int cpu;
513
	int online;
L
Linus Torvalds 已提交
514

515
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
516

517 518
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
519 520
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
521 522
#endif

523 524 525 526
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
527
#ifdef CONFIG_SCHED_HRTICK
528 529 530 531
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
532 533 534
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
535 536 537
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
538 539
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
540 541

	/* sys_sched_yield() stats */
542
	unsigned int yld_count;
L
Linus Torvalds 已提交
543 544

	/* schedule() stats */
545 546 547
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
548 549

	/* try_to_wake_up() stats */
550 551
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
552 553

	/* BKL stats */
554
	unsigned int bkl_count;
L
Linus Torvalds 已提交
555 556 557
#endif
};

558
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
559

P
Peter Zijlstra 已提交
560 561
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
562
{
P
Peter Zijlstra 已提交
563
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 565 566 567 568 569 570

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
571 572
}

573 574 575 576 577 578 579 580 581
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

582
#define rcu_dereference_check_sched_domain(p) \
583 584 585 586
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
587 588
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
590 591 592 593
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
594
#define for_each_domain(cpu, __sd) \
595
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
596 597 598 599 600

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
601
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
	return container_of(css, struct task_group, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

I
Ingo Molnar 已提交
646
inline void update_rq_clock(struct rq *rq)
647
{
648 649
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
650 651
}

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
661 662
/**
 * runqueue_is_locked
663
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
664 665 666 667 668
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
669
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
670
{
671
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
672 673
}

I
Ingo Molnar 已提交
674 675 676
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
677 678 679 680

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
681
enum {
P
Peter Zijlstra 已提交
682
#include "sched_features.h"
I
Ingo Molnar 已提交
683 684
};

P
Peter Zijlstra 已提交
685 686 687 688 689
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
690
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
691 692 693 694 695 696 697 698 699
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

700
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
701 702 703 704 705 706
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
707
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
708 709 710 711
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
712 713 714
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
715
	}
L
Li Zefan 已提交
716
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
717

L
Li Zefan 已提交
718
	return 0;
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
738
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

758
	*ppos += cnt;
P
Peter Zijlstra 已提交
759 760 761 762

	return cnt;
}

L
Li Zefan 已提交
763 764 765 766 767
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

768
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
769 770 771 772 773
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
788

789 790 791 792 793 794
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
795 796
/*
 * ratelimit for updating the group shares.
797
 * default: 0.25ms
P
Peter Zijlstra 已提交
798
 */
799
unsigned int sysctl_sched_shares_ratelimit = 250000;
800
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
801

802 803 804 805 806 807 808
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

809 810 811 812 813 814 815 816
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
817
/*
P
Peter Zijlstra 已提交
818
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
819 820
 * default: 1s
 */
P
Peter Zijlstra 已提交
821
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
822

823 824
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
825 826 827 828 829
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
830

831 832 833 834 835 836 837
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
838
	if (sysctl_sched_rt_runtime < 0)
839 840 841 842
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
843

L
Linus Torvalds 已提交
844
#ifndef prepare_arch_switch
845 846 847 848 849 850
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

851 852 853 854 855
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

856
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
857
static inline int task_running(struct rq *rq, struct task_struct *p)
858
{
859
	return task_current(rq, p);
860 861
}

862
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 864 865
{
}

866
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867
{
868 869 870 871
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
872 873 874 875 876 877 878
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

879
	raw_spin_unlock_irq(&rq->lock);
880 881 882
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
883
static inline int task_running(struct rq *rq, struct task_struct *p)
884 885 886 887
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
888
	return task_current(rq, p);
889 890 891
#endif
}

892
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 894 895 896 897 898 899 900 901 902
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903
	raw_spin_unlock_irq(&rq->lock);
904
#else
905
	raw_spin_unlock(&rq->lock);
906 907 908
#endif
}

909
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 911 912 913 914 915 916 917 918 919 920 921
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
922
#endif
923 924
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
925

926
/*
P
Peter Zijlstra 已提交
927 928
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
929 930 931
 */
static inline int task_is_waking(struct task_struct *p)
{
932
	return unlikely(p->state == TASK_WAKING);
933 934
}

935 936 937 938
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
939
static inline struct rq *__task_rq_lock(struct task_struct *p)
940 941
	__acquires(rq->lock)
{
942 943
	struct rq *rq;

944
	for (;;) {
945
		rq = task_rq(p);
946
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
947
		if (likely(rq == task_rq(p)))
948
			return rq;
949
		raw_spin_unlock(&rq->lock);
950 951 952
	}
}

L
Linus Torvalds 已提交
953 954
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
955
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
956 957
 * explicitly disabling preemption.
 */
958
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
959 960
	__acquires(rq->lock)
{
961
	struct rq *rq;
L
Linus Torvalds 已提交
962

963 964 965
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
966
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
967
		if (likely(rq == task_rq(p)))
968
			return rq;
969
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
970 971 972
	}
}

A
Alexey Dobriyan 已提交
973
static void __task_rq_unlock(struct rq *rq)
974 975
	__releases(rq->lock)
{
976
	raw_spin_unlock(&rq->lock);
977 978
}

979
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
983 984 985
}

/*
986
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
987
 */
A
Alexey Dobriyan 已提交
988
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
989 990
	__acquires(rq->lock)
{
991
	struct rq *rq;
L
Linus Torvalds 已提交
992 993 994

	local_irq_disable();
	rq = this_rq();
995
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
996 997 998 999

	return rq;
}

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1021
	if (!cpu_active(cpu_of(rq)))
1022
		return 0;
P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1042
	raw_spin_lock(&rq->lock);
1043
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1044
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1046 1047 1048 1049

	return HRTIMER_NORESTART;
}

1050
#ifdef CONFIG_SMP
1051 1052 1053 1054
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1055
{
1056
	struct rq *rq = arg;
1057

1058
	raw_spin_lock(&rq->lock);
1059 1060
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1061
	raw_spin_unlock(&rq->lock);
1062 1063
}

1064 1065 1066 1067 1068 1069
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1070
{
1071 1072
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073

1074
	hrtimer_set_expires(timer, time);
1075 1076 1077 1078

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1079
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 1081
		rq->hrtick_csd_pending = 1;
	}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1096
		hrtick_clear(cpu_rq(cpu));
1097 1098 1099 1100 1101 1102
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1103
static __init void init_hrtick(void)
1104 1105 1106
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1107 1108 1109 1110 1111 1112 1113 1114
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1115
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116
			HRTIMER_MODE_REL_PINNED, 0);
1117
}
1118

A
Andrew Morton 已提交
1119
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1120 1121
{
}
1122
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1123

1124
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1125
{
1126 1127
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1128

1129 1130 1131 1132
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1133

1134 1135
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1136
}
A
Andrew Morton 已提交
1137
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1138 1139 1140 1141 1142 1143 1144 1145
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1146 1147 1148
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1149
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150

I
Ingo Molnar 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1164
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1165 1166 1167
{
	int cpu;

1168
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1169

1170
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1171 1172
		return;

1173
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1190
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1191 1192
		return;
	resched_task(cpu_curr(cpu));
1193
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1194
}
1195 1196

#ifdef CONFIG_NO_HZ
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1250
	set_tsk_need_resched(rq->idle);
1251 1252 1253 1254 1255 1256

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1257

1258
#endif /* CONFIG_NO_HZ */
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1270 1271 1272 1273 1274 1275
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1287
#else /* !CONFIG_SMP */
1288
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1289
{
1290
	assert_raw_spin_locked(&task_rq(p)->lock);
1291
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1292
}
1293 1294 1295 1296

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1297
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1298

1299 1300 1301 1302 1303 1304 1305 1306
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1307 1308 1309
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1310
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1311

1312 1313 1314
/*
 * delta *= weight / lw
 */
1315
static unsigned long
1316 1317 1318 1319 1320
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1321 1322 1323 1324 1325 1326 1327
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1328 1329 1330 1331 1332

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1333
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1334
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1335 1336
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1337
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1338

1339
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1340 1341
}

1342
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1343 1344
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1345
	lw->inv_weight = 0;
1346 1347
}

1348
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1349 1350
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1351
	lw->inv_weight = 0;
1352 1353
}

1354 1355 1356 1357
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1358
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 1360 1361 1362
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1363 1364
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 1375 1376
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1377 1378
 */
static const int prio_to_weight[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1387 1388
};

1389 1390 1391 1392 1393 1394 1395
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1396
static const u32 prio_to_wmult[40] = {
1397 1398 1399 1400 1401 1402 1403 1404
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1405
};
1406

1407 1408 1409 1410 1411 1412 1413 1414
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 1418
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1419 1420
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 1422
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1423 1424
#endif

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1435
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1436
typedef int (*tg_visitor)(struct task_group *, void *);
1437 1438 1439 1440 1441

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1442
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 1444
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1445
	int ret;
1446 1447 1448 1449

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1450 1451 1452
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1453 1454 1455 1456 1457 1458 1459
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1468
out_unlock:
1469
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1470 1471

	return ret;
1472 1473
}

P
Peter Zijlstra 已提交
1474 1475 1476
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1477
}
P
Peter Zijlstra 已提交
1478 1479 1480
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1520 1521
static unsigned long power_of(int cpu)
{
1522
	return cpu_rq(cpu)->cpu_power;
1523 1524
}

P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1530
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1531

1532 1533
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1534 1535
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1541

1542
static __read_mostly unsigned long __percpu *update_shares_data;
1543

1544 1545 1546 1547 1548
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1549 1550 1551
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1552
				    unsigned long *usd_rq_weight)
1553
{
1554
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1555
	int boost = 0;
1556

1557
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1558 1559 1560 1561
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1562

1563
	/*
P
Peter Zijlstra 已提交
1564 1565 1566
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1567
	 */
1568
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1569
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1570

1571 1572 1573 1574
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1575

1576
		raw_spin_lock_irqsave(&rq->lock, flags);
1577
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1578
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1579
		__set_se_shares(tg->se[cpu], shares);
1580
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1581
	}
1582
}
1583 1584

/*
1585 1586 1587
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1588
 */
P
Peter Zijlstra 已提交
1589
static int tg_shares_up(struct task_group *tg, void *data)
1590
{
1591
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1592
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1593
	struct sched_domain *sd = data;
1594
	unsigned long flags;
1595
	int i;
1596

1597 1598 1599 1600
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1601
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1602

1603
	for_each_cpu(i, sched_domain_span(sd)) {
1604
		weight = tg->cfs_rq[i]->load.weight;
1605
		usd_rq_weight[i] = weight;
1606

1607
		rq_weight += weight;
1608 1609 1610 1611 1612 1613 1614 1615
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1616
		sum_weight += weight;
1617
		shares += tg->cfs_rq[i]->shares;
1618 1619
	}

1620 1621 1622
	if (!rq_weight)
		rq_weight = sum_weight;

1623 1624 1625 1626 1627
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1628

1629
	for_each_cpu(i, sched_domain_span(sd))
1630
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1631 1632

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1633 1634

	return 0;
1635 1636 1637
}

/*
1638 1639 1640
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1641
 */
P
Peter Zijlstra 已提交
1642
static int tg_load_down(struct task_group *tg, void *data)
1643
{
1644
	unsigned long load;
P
Peter Zijlstra 已提交
1645
	long cpu = (long)data;
1646

1647 1648 1649 1650 1651 1652 1653
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1654

1655
	tg->cfs_rq[cpu]->h_load = load;
1656

P
Peter Zijlstra 已提交
1657
	return 0;
1658 1659
}

1660
static void update_shares(struct sched_domain *sd)
1661
{
1662 1663 1664 1665 1666 1667
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

1668
	now = local_clock();
1669
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1670 1671 1672

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1673
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1674
	}
1675 1676
}

P
Peter Zijlstra 已提交
1677
static void update_h_load(long cpu)
1678
{
P
Peter Zijlstra 已提交
1679
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1680 1681 1682 1683
}

#else

1684
static inline void update_shares(struct sched_domain *sd)
1685 1686 1687
{
}

1688 1689
#endif

1690 1691
#ifdef CONFIG_PREEMPT

1692 1693
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1694
/*
1695 1696 1697 1698 1699 1700
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1701
 */
1702 1703 1704 1705 1706
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1707
	raw_spin_unlock(&this_rq->lock);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 1723 1724 1725 1726 1727
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1728
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729
		if (busiest < this_rq) {
1730 1731 1732 1733
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1734 1735
			ret = 1;
		} else
1736 1737
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1738 1739 1740 1741
	}
	return ret;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1751
		raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1758 1759 1760
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1761
	raw_spin_unlock(&busiest->lock);
1762 1763
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1807 1808
#endif

V
Vegard Nossum 已提交
1809
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1810 1811
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1812
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1813 1814 1815
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1816
#endif
1817

1818
static void calc_load_account_idle(struct rq *this_rq);
1819
static void update_sysctl(void);
1820
static int get_update_sysctl_factor(void);
1821
static void update_cpu_load(struct rq *this_rq);
1822

P
Peter Zijlstra 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1836

1837
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1838 1839

#define sched_class_highest (&rt_sched_class)
1840 1841
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1842

1843 1844
#include "sched_stats.h"

1845
static void inc_nr_running(struct rq *rq)
1846 1847 1848 1849
{
	rq->nr_running++;
}

1850
static void dec_nr_running(struct rq *rq)
1851 1852 1853 1854
{
	rq->nr_running--;
}

1855 1856 1857
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
1858 1859
		p->se.load.weight = 0;
		p->se.load.inv_weight = WMULT_CONST;
I
Ingo Molnar 已提交
1860 1861
		return;
	}
1862

I
Ingo Molnar 已提交
1863 1864 1865 1866 1867 1868 1869 1870
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1871

I
Ingo Molnar 已提交
1872 1873
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1874 1875
}

1876
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1877
{
1878
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1879
	sched_info_queued(p);
1880
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1881
	p->se.on_rq = 1;
1882 1883
}

1884
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1885
{
1886
	update_rq_clock(rq);
1887
	sched_info_dequeued(p);
1888
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1889
	p->se.on_rq = 0;
1890 1891
}

1892 1893 1894
/*
 * activate_task - move a task to the runqueue.
 */
1895
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1896 1897 1898 1899
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1900
	enqueue_task(rq, p, flags);
1901 1902 1903 1904 1905 1906
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1907
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1908 1909 1910 1911
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1912
	dequeue_task(rq, p, flags);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1923
/*
I
Ingo Molnar 已提交
1924
 * __normal_prio - return the priority that is based on the static prio
1925 1926 1927
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1928
	return p->static_prio;
1929 1930
}

1931 1932 1933 1934 1935 1936 1937
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1938
static inline int normal_prio(struct task_struct *p)
1939 1940 1941
{
	int prio;

1942
	if (task_has_rt_policy(p))
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1956
static int effective_prio(struct task_struct *p)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1969 1970 1971 1972
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1974 1975 1976 1977
{
	return cpu_curr(task_cpu(p)) == p;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1990
#ifdef CONFIG_SMP
1991 1992 1993
/*
 * Is this task likely cache-hot:
 */
1994
static int
1995 1996 1997 1998
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1999 2000 2001
	if (p->sched_class != &fair_sched_class)
		return 0;

2002 2003 2004
	/*
	 * Buddy candidates are cache hot:
	 */
2005
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2006 2007
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2008 2009
		return 1;

2010 2011 2012 2013 2014
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2015 2016 2017 2018 2019
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2020
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2021
{
2022 2023 2024 2025 2026
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2027 2028
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2029 2030
#endif

2031
	trace_sched_migrate_task(p, new_cpu);
2032

2033 2034 2035 2036
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2037 2038

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2039 2040
}

2041
struct migration_arg {
2042
	struct task_struct *task;
L
Linus Torvalds 已提交
2043
	int dest_cpu;
2044
};
L
Linus Torvalds 已提交
2045

2046 2047
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2048 2049 2050 2051
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2052
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2053
{
2054
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2055 2056 2057

	/*
	 * If the task is not on a runqueue (and not running), then
2058
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2059
	 */
2060
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2066 2067 2068 2069 2070 2071 2072
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2079
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2080 2081
{
	unsigned long flags;
I
Ingo Molnar 已提交
2082
	int running, on_rq;
R
Roland McGrath 已提交
2083
	unsigned long ncsw;
2084
	struct rq *rq;
L
Linus Torvalds 已提交
2085

2086 2087 2088 2089 2090 2091 2092 2093
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2106 2107 2108
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2109
			cpu_relax();
R
Roland McGrath 已提交
2110
		}
2111

2112 2113 2114 2115 2116 2117
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2118
		trace_sched_wait_task(p);
2119 2120
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2121
		ncsw = 0;
2122
		if (!match_state || p->state == match_state)
2123
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2124
		task_rq_unlock(rq, &flags);
2125

R
Roland McGrath 已提交
2126 2127 2128 2129 2130 2131
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2142

2143 2144 2145 2146 2147
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2148
		 * So if it was still runnable (but just not actively
2149 2150 2151 2152 2153 2154 2155
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2156

2157 2158 2159 2160 2161 2162 2163
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2164 2165

	return ncsw;
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2181
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2191
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2192
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2193

T
Thomas Gleixner 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2215
#ifdef CONFIG_SMP
2216 2217 2218
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2235
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2236
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2252
/*
2253
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2254
 */
2255
static inline
2256
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2257
{
2258
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2271
		     !cpu_online(cpu)))
2272
		cpu = select_fallback_rq(task_cpu(p), p);
2273 2274

	return cpu;
2275
}
2276 2277 2278 2279 2280 2281

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2282 2283
#endif

T
Tejun Heo 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2323 2324 2325
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2326 2327 2328
}

/**
L
Linus Torvalds 已提交
2329
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2330
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2331
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2332
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2333 2334 2335 2336 2337 2338 2339
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2340 2341
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2342
 */
P
Peter Zijlstra 已提交
2343 2344
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2345
{
2346
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2347
	unsigned long flags;
2348
	unsigned long en_flags = ENQUEUE_WAKEUP;
2349
	struct rq *rq;
L
Linus Torvalds 已提交
2350

P
Peter Zijlstra 已提交
2351
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2352

2353
	smp_wmb();
2354
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2355
	if (!(p->state & state))
L
Linus Torvalds 已提交
2356 2357
		goto out;

I
Ingo Molnar 已提交
2358
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2359 2360 2361
		goto out_running;

	cpu = task_cpu(p);
2362
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2368 2369 2370
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2371 2372
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2373
	 */
2374 2375 2376 2377 2378 2379
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2380
	p->state = TASK_WAKING;
2381

2382
	if (p->sched_class->task_waking) {
2383
		p->sched_class->task_waking(rq, p);
2384 2385
		en_flags |= ENQUEUE_WAKING;
	}
2386

2387 2388
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2389
		set_task_cpu(p, cpu);
2390
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2391

2392 2393
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2394

2395 2396 2397 2398 2399 2400 2401
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2402
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2403

2404 2405 2406 2407 2408 2409 2410
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2411
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2412 2413 2414 2415 2416
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2417
#endif /* CONFIG_SCHEDSTATS */
2418

L
Linus Torvalds 已提交
2419 2420
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2421 2422
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2423 2424
	success = 1;
out_running:
T
Tejun Heo 已提交
2425
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2426 2427
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2428
	put_cpu();
L
Linus Torvalds 已提交
2429 2430 2431 2432

	return success;
}

T
Tejun Heo 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2475
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2476
{
2477
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2478 2479 2480
}
EXPORT_SYMBOL(wake_up_process);

2481
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2489 2490 2491 2492 2493 2494 2495
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2496
	p->se.prev_sum_exec_runtime	= 0;
2497
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2498 2499

#ifdef CONFIG_SCHEDSTATS
2500
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2501
#endif
N
Nick Piggin 已提交
2502

P
Peter Zijlstra 已提交
2503
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2504
	p->se.on_rq = 0;
2505
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2506

2507 2508 2509
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2520
	/*
2521
	 * We mark the process as running here. This guarantees that
2522 2523 2524
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2525
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2526

2527 2528 2529 2530
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2531
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2532
			p->policy = SCHED_NORMAL;
2533 2534
			p->normal_prio = p->static_prio;
		}
2535

2536 2537
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2538
			p->normal_prio = p->static_prio;
2539 2540 2541
			set_load_weight(p);
		}

2542 2543 2544 2545 2546 2547
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2548

2549 2550 2551 2552 2553
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2554 2555
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2556

P
Peter Zijlstra 已提交
2557 2558 2559
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2560 2561 2562 2563 2564 2565 2566 2567
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2568
	set_task_cpu(p, cpu);
2569
	rcu_read_unlock();
2570

2571
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2572
	if (likely(sched_info_on()))
2573
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2574
#endif
2575
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2576 2577
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2578
#ifdef CONFIG_PREEMPT
2579
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2580
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2581
#endif
2582 2583
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2584
	put_cpu();
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2594
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2595 2596
{
	unsigned long flags;
I
Ingo Molnar 已提交
2597
	struct rq *rq;
2598
	int cpu __maybe_unused = get_cpu();
2599 2600

#ifdef CONFIG_SMP
2601 2602 2603
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2604 2605 2606 2607 2608
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2609 2610
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2611
	 */
2612
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2613
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2614

2615
	p->state = TASK_RUNNING;
2616 2617 2618 2619
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2620
	activate_task(rq, p, 0);
2621
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2622
	check_preempt_curr(rq, p, WF_FORK);
2623
#ifdef CONFIG_SMP
2624 2625
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2626
#endif
I
Ingo Molnar 已提交
2627
	task_rq_unlock(rq, &flags);
2628
	put_cpu();
L
Linus Torvalds 已提交
2629 2630
}

2631 2632 2633
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2634
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2635
 * @notifier: notifier struct to register
2636 2637 2638 2639 2640 2641 2642 2643 2644
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2645
 * @notifier: notifier struct to unregister
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2675
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2687
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2688

2689 2690 2691
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2692
 * @prev: the current task that is being switched out
2693 2694 2695 2696 2697 2698 2699 2700 2701
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2702 2703 2704
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2705
{
2706
	fire_sched_out_preempt_notifiers(prev, next);
2707 2708 2709 2710
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2711 2712
/**
 * finish_task_switch - clean up after a task-switch
2713
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2714 2715
 * @prev: the thread we just switched away from.
 *
2716 2717 2718 2719
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2720 2721
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2722
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2723 2724 2725
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2726
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2727 2728 2729
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2730
	long prev_state;
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2736
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2737 2738
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2739
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2740 2741 2742 2743 2744
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2745
	prev_state = prev->state;
2746
	finish_arch_switch(prev);
2747 2748 2749
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2750
	perf_event_task_sched_in(current);
2751 2752 2753
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2754
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2755

2756
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2757 2758
	if (mm)
		mmdrop(mm);
2759
	if (unlikely(prev_state == TASK_DEAD)) {
2760 2761 2762
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2763
		 */
2764
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2765
		put_task_struct(prev);
2766
	}
L
Linus Torvalds 已提交
2767 2768
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2784
		raw_spin_lock_irqsave(&rq->lock, flags);
2785 2786
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2787
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2788 2789 2790 2791 2792 2793

		rq->post_schedule = 0;
	}
}

#else
2794

2795 2796 2797 2798 2799 2800
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2801 2802
}

2803 2804
#endif

L
Linus Torvalds 已提交
2805 2806 2807 2808
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2809
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2810 2811
	__releases(rq->lock)
{
2812 2813
	struct rq *rq = this_rq();

2814
	finish_task_switch(rq, prev);
2815

2816 2817 2818 2819 2820
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2821

2822 2823 2824 2825
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2826
	if (current->set_child_tid)
2827
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2834
static inline void
2835
context_switch(struct rq *rq, struct task_struct *prev,
2836
	       struct task_struct *next)
L
Linus Torvalds 已提交
2837
{
I
Ingo Molnar 已提交
2838
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2839

2840
	prepare_task_switch(rq, prev, next);
2841
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2842 2843
	mm = next->mm;
	oldmm = prev->active_mm;
2844 2845 2846 2847 2848
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2849
	arch_start_context_switch(prev);
2850

2851
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2858
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2859 2860 2861
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2862 2863 2864 2865 2866 2867 2868
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870
#endif
L
Linus Torvalds 已提交
2871 2872 2873 2874

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2875 2876 2877 2878 2879 2880 2881
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2899
}
L
Linus Torvalds 已提交
2900 2901

unsigned long nr_uninterruptible(void)
2902
{
L
Linus Torvalds 已提交
2903
	unsigned long i, sum = 0;
2904

2905
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2906
		sum += cpu_rq(i)->nr_uninterruptible;
2907 2908

	/*
L
Linus Torvalds 已提交
2909 2910
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2911
	 */
L
Linus Torvalds 已提交
2912 2913
	if (unlikely((long)sum < 0))
		sum = 0;
2914

L
Linus Torvalds 已提交
2915
	return sum;
2916 2917
}

L
Linus Torvalds 已提交
2918
unsigned long long nr_context_switches(void)
2919
{
2920 2921
	int i;
	unsigned long long sum = 0;
2922

2923
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2924
		sum += cpu_rq(i)->nr_switches;
2925

L
Linus Torvalds 已提交
2926 2927
	return sum;
}
2928

L
Linus Torvalds 已提交
2929 2930 2931
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2932

2933
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2934
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935

L
Linus Torvalds 已提交
2936 2937
	return sum;
}
2938

2939
unsigned long nr_iowait_cpu(int cpu)
2940
{
2941
	struct rq *this = cpu_rq(cpu);
2942 2943
	return atomic_read(&this->nr_iowait);
}
2944

2945 2946 2947 2948 2949
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2950

2951

2952 2953 2954 2955 2956
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3026 3027
}

3028 3029
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3030
{
3031 3032 3033 3034
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3035 3036

/*
3037 3038
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3039
 */
3040
void calc_global_load(void)
3041
{
3042 3043
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3044

3045 3046
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3047

3048 3049
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3050

3051 3052 3053
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3054

3055 3056
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3057

3058
/*
3059 3060
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3061 3062 3063
 */
static void calc_load_account_active(struct rq *this_rq)
{
3064
	long delta;
3065

3066 3067
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3068

3069 3070 3071
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3072
		atomic_long_add(delta, &calc_load_tasks);
3073 3074

	this_rq->calc_load_update += LOAD_FREQ;
3075 3076
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3144
/*
I
Ingo Molnar 已提交
3145
 * Update rq->cpu_load[] statistics. This function is usually called every
3146 3147
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3148
 */
I
Ingo Molnar 已提交
3149
static void update_cpu_load(struct rq *this_rq)
3150
{
3151
	unsigned long this_load = this_rq->load.weight;
3152 3153
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3154
	int i, scale;
3155

I
Ingo Molnar 已提交
3156
	this_rq->nr_load_updates++;
3157

3158 3159 3160 3161 3162 3163 3164
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3165
	/* Update our load: */
3166 3167
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3168
		unsigned long old_load, new_load;
3169

I
Ingo Molnar 已提交
3170
		/* scale is effectively 1 << i now, and >> i divides by scale */
3171

I
Ingo Molnar 已提交
3172
		old_load = this_rq->cpu_load[i];
3173
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3174
		new_load = this_load;
I
Ingo Molnar 已提交
3175 3176 3177 3178 3179 3180
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3181 3182 3183
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3184
	}
3185 3186 3187 3188 3189
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3190

3191
	calc_load_account_active(this_rq);
3192 3193
}

I
Ingo Molnar 已提交
3194
#ifdef CONFIG_SMP
3195

3196
/*
P
Peter Zijlstra 已提交
3197 3198
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3199
 */
P
Peter Zijlstra 已提交
3200
void sched_exec(void)
3201
{
P
Peter Zijlstra 已提交
3202
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3203
	unsigned long flags;
3204
	struct rq *rq;
3205
	int dest_cpu;
3206

L
Linus Torvalds 已提交
3207
	rq = task_rq_lock(p, &flags);
3208 3209 3210
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3211

3212
	/*
P
Peter Zijlstra 已提交
3213
	 * select_task_rq() can race against ->cpus_allowed
3214
	 */
3215
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3216 3217
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3218

L
Linus Torvalds 已提交
3219
		task_rq_unlock(rq, &flags);
3220
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3221 3222
		return;
	}
3223
unlock:
L
Linus Torvalds 已提交
3224 3225
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3226

L
Linus Torvalds 已提交
3227 3228 3229 3230 3231 3232 3233
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3234
 * Return any ns on the sched_clock that have not yet been accounted in
3235
 * @p in case that task is currently running.
3236 3237
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3238
 */
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3253
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3254 3255
{
	unsigned long flags;
3256
	struct rq *rq;
3257
	u64 ns = 0;
3258

3259
	rq = task_rq_lock(p, &flags);
3260 3261
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3262

3263 3264
	return ns;
}
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3303
	task_rq_unlock(rq, &flags);
3304

L
Linus Torvalds 已提交
3305 3306 3307 3308 3309 3310 3311
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3312
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3313
 */
3314 3315
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3316 3317 3318 3319
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3320
	/* Add user time to process. */
L
Linus Torvalds 已提交
3321
	p->utime = cputime_add(p->utime, cputime);
3322
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3323
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328 3329 3330

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3331 3332

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3333 3334
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3335 3336
}

3337 3338 3339 3340
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3341
 * @cputime_scaled: cputime scaled by cpu frequency
3342
 */
3343 3344
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3345 3346 3347 3348 3349 3350
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3351
	/* Add guest time to process. */
3352
	p->utime = cputime_add(p->utime, cputime);
3353
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3354
	account_group_user_time(p, cputime);
3355 3356
	p->gtime = cputime_add(p->gtime, cputime);

3357
	/* Add guest time to cpustat. */
3358 3359 3360 3361 3362 3363 3364
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3365 3366
}

L
Linus Torvalds 已提交
3367 3368 3369 3370 3371
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3372
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3373 3374
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3375
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3376 3377 3378 3379
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3380
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3381
		account_guest_time(p, cputime, cputime_scaled);
3382 3383
		return;
	}
3384

3385
	/* Add system time to process. */
L
Linus Torvalds 已提交
3386
	p->stime = cputime_add(p->stime, cputime);
3387
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3388
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394 3395 3396

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3397 3398
		cpustat->system = cputime64_add(cpustat->system, tmp);

3399 3400
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3401 3402 3403 3404
	/* Account for system time used */
	acct_update_integrals(p);
}

3405
/*
L
Linus Torvalds 已提交
3406 3407
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3408
 */
3409
void account_steal_time(cputime_t cputime)
3410
{
3411 3412 3413 3414
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3415 3416
}

L
Linus Torvalds 已提交
3417
/*
3418 3419
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3420
 */
3421
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3422 3423
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3424
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3425
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3426

3427 3428 3429 3430
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3431 3432
}

3433 3434 3435 3436 3437 3438 3439 3440 3441
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3442
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3443 3444 3445
	struct rq *rq = this_rq();

	if (user_tick)
3446
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3447
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3448
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3449 3450
				    one_jiffy_scaled);
	else
3451
		account_idle_time(cputime_one_jiffy);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3471 3472
}

3473 3474
#endif

3475 3476 3477 3478
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3479
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3480
{
3481 3482
	*ut = p->utime;
	*st = p->stime;
3483 3484
}

3485
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3486
{
3487 3488 3489 3490 3491 3492
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3493 3494
}
#else
3495 3496

#ifndef nsecs_to_cputime
3497
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3498 3499
#endif

3500
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3501
{
3502
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3503 3504 3505 3506

	/*
	 * Use CFS's precise accounting:
	 */
3507
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3508 3509

	if (total) {
3510 3511 3512
		u64 temp;

		temp = (u64)(rtime * utime);
3513
		do_div(temp, total);
3514 3515 3516
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3517

3518 3519 3520
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3521
	p->prev_utime = max(p->prev_utime, utime);
3522
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3523

3524 3525
	*ut = p->prev_utime;
	*st = p->prev_stime;
3526 3527
}

3528 3529 3530 3531
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3532
{
3533 3534 3535
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3536

3537
	thread_group_cputime(p, &cputime);
3538

3539 3540
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3541

3542 3543
	if (total) {
		u64 temp;
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3557 3558 3559
}
#endif

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3571
	struct task_struct *curr = rq->curr;
3572 3573

	sched_clock_tick();
I
Ingo Molnar 已提交
3574

3575
	raw_spin_lock(&rq->lock);
3576
	update_rq_clock(rq);
3577
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3578
	curr->sched_class->task_tick(rq, curr, 0);
3579
	raw_spin_unlock(&rq->lock);
3580

3581
	perf_event_task_tick(curr);
3582

3583
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3584 3585
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3586
#endif
L
Linus Torvalds 已提交
3587 3588
}

3589
notrace unsigned long get_parent_ip(unsigned long addr)
3590 3591 3592 3593 3594 3595 3596 3597
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3598

3599 3600 3601
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3602
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3603
{
3604
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3605 3606 3607
	/*
	 * Underflow?
	 */
3608 3609
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3610
#endif
L
Linus Torvalds 已提交
3611
	preempt_count() += val;
3612
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3613 3614 3615
	/*
	 * Spinlock count overflowing soon?
	 */
3616 3617
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3618 3619 3620
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3621 3622 3623
}
EXPORT_SYMBOL(add_preempt_count);

3624
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3625
{
3626
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3627 3628 3629
	/*
	 * Underflow?
	 */
3630
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3631
		return;
L
Linus Torvalds 已提交
3632 3633 3634
	/*
	 * Is the spinlock portion underflowing?
	 */
3635 3636 3637
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3638
#endif
3639

3640 3641
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3642 3643 3644 3645 3646 3647 3648
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3649
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3650
 */
I
Ingo Molnar 已提交
3651
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3652
{
3653 3654
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3655 3656
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3657

I
Ingo Molnar 已提交
3658
	debug_show_held_locks(prev);
3659
	print_modules();
I
Ingo Molnar 已提交
3660 3661
	if (irqs_disabled())
		print_irqtrace_events(prev);
3662 3663 3664 3665 3666

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3667
}
L
Linus Torvalds 已提交
3668

I
Ingo Molnar 已提交
3669 3670 3671 3672 3673
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3674
	/*
I
Ingo Molnar 已提交
3675
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3676 3677 3678
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3679
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3680 3681
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3682 3683
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3684
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3685 3686
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3687 3688
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3689 3690
	}
#endif
I
Ingo Molnar 已提交
3691 3692
}

P
Peter Zijlstra 已提交
3693
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3694
{
3695 3696 3697
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3698
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3699 3700
}

I
Ingo Molnar 已提交
3701 3702 3703 3704
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3705
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3706
{
3707
	const struct sched_class *class;
I
Ingo Molnar 已提交
3708
	struct task_struct *p;
L
Linus Torvalds 已提交
3709 3710

	/*
I
Ingo Molnar 已提交
3711 3712
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3713
	 */
I
Ingo Molnar 已提交
3714
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3715
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3716 3717
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3718 3719
	}

I
Ingo Molnar 已提交
3720 3721
	class = sched_class_highest;
	for ( ; ; ) {
3722
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3732

I
Ingo Molnar 已提交
3733 3734 3735
/*
 * schedule() is the main scheduler function.
 */
3736
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3737 3738
{
	struct task_struct *prev, *next;
3739
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3740
	struct rq *rq;
3741
	int cpu;
I
Ingo Molnar 已提交
3742

3743 3744
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3745 3746
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3747
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3748 3749 3750 3751 3752 3753
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3754

3755
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3756
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3757

3758
	raw_spin_lock_irq(&rq->lock);
3759
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3760

3761
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3762
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3763
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3764
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3779
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3780
		}
I
Ingo Molnar 已提交
3781
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3782 3783
	}

3784
	pre_schedule(rq, prev);
3785

I
Ingo Molnar 已提交
3786
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3787 3788
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3789
	put_prev_task(rq, prev);
3790
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3791 3792

	if (likely(prev != next)) {
3793
		sched_info_switch(prev, next);
3794
		perf_event_task_sched_out(prev, next);
3795

L
Linus Torvalds 已提交
3796 3797 3798 3799
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3800
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3801
		/*
3802 3803 3804 3805
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3806 3807 3808
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3809
	} else
3810
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3811

3812
	post_schedule(rq);
L
Linus Torvalds 已提交
3813

3814
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
3815
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3816

L
Linus Torvalds 已提交
3817
	preempt_enable_no_resched();
3818
	if (need_resched())
L
Linus Torvalds 已提交
3819 3820 3821 3822
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3823
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3843
		return 0;
3844 3845 3846 3847 3848 3849 3850 3851 3852
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3853
		return 0;
3854 3855 3856 3857 3858 3859

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3860
		return 0;
3861 3862 3863 3864 3865 3866 3867

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
3868 3869 3870 3871 3872 3873 3874 3875
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
3876
			break;
3877
		}
3878 3879 3880 3881 3882 3883 3884 3885 3886

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3887

3888 3889 3890 3891
	return 1;
}
#endif

L
Linus Torvalds 已提交
3892 3893
#ifdef CONFIG_PREEMPT
/*
3894
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3895
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3896 3897
 * occur there and call schedule directly.
 */
3898
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3899 3900
{
	struct thread_info *ti = current_thread_info();
3901

L
Linus Torvalds 已提交
3902 3903
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3904
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3905
	 */
N
Nick Piggin 已提交
3906
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3907 3908
		return;

3909
	do {
3910
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3911
		schedule();
3912
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3913

3914 3915 3916 3917 3918
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3919
	} while (need_resched());
L
Linus Torvalds 已提交
3920 3921 3922 3923
}
EXPORT_SYMBOL(preempt_schedule);

/*
3924
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3925 3926 3927 3928 3929 3930 3931
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3932

3933
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3934 3935
	BUG_ON(ti->preempt_count || !irqs_disabled());

3936 3937 3938 3939 3940 3941
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3942

3943 3944 3945 3946 3947
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3948
	} while (need_resched());
L
Linus Torvalds 已提交
3949 3950 3951 3952
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3953
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3954
			  void *key)
L
Linus Torvalds 已提交
3955
{
P
Peter Zijlstra 已提交
3956
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3957 3958 3959 3960
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3961 3962
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3963 3964 3965
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3966
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3967 3968
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3969
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3970
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3971
{
3972
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3973

3974
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3975 3976
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3977
		if (curr->func(curr, mode, wake_flags, key) &&
3978
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3988
 * @key: is directly passed to the wakeup function
3989 3990 3991
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3992
 */
3993
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3994
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4007
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4008 4009 4010
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4011
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4012

4013 4014 4015 4016 4017
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4018
/**
4019
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4020 4021 4022
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4023
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4031 4032 4033
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4034
 */
4035 4036
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4037 4038
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4039
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4045
		wake_flags = 0;
L
Linus Torvalds 已提交
4046 4047

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4048
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4049 4050
	spin_unlock_irqrestore(&q->lock, flags);
}
4051 4052 4053 4054 4055 4056 4057 4058 4059
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4060 4061
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4062 4063 4064 4065 4066 4067 4068 4069
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4070 4071 4072
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4073
 */
4074
void complete(struct completion *x)
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4080
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4081 4082 4083 4084
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4085 4086 4087 4088 4089
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4090 4091 4092
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4093
 */
4094
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4100
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4101 4102 4103 4104
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4105 4106
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4107 4108 4109 4110
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4111
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4112
		do {
4113
			if (signal_pending_state(state, current)) {
4114 4115
				timeout = -ERESTARTSYS;
				break;
4116 4117
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4118 4119 4120
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4121
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4122
		__remove_wait_queue(&x->wait, &wait);
4123 4124
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4125 4126
	}
	x->done--;
4127
	return timeout ?: 1;
L
Linus Torvalds 已提交
4128 4129
}

4130 4131
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4132 4133 4134 4135
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4136
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4137
	spin_unlock_irq(&x->wait.lock);
4138 4139
	return timeout;
}
L
Linus Torvalds 已提交
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4151
void __sched wait_for_completion(struct completion *x)
4152 4153
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4154
}
4155
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4156

4157 4158 4159 4160 4161 4162 4163 4164 4165
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4166
unsigned long __sched
4167
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4168
{
4169
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4170
}
4171
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4172

4173 4174 4175 4176 4177 4178 4179
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4180
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4181
{
4182 4183 4184 4185
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4186
}
4187
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4188

4189 4190 4191 4192 4193 4194 4195 4196
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4197
unsigned long __sched
4198 4199
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4200
{
4201
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4202
}
4203
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4204

4205 4206 4207 4208 4209 4210 4211
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4252
	unsigned long flags;
4253 4254
	int ret = 1;

4255
	spin_lock_irqsave(&x->wait.lock, flags);
4256 4257 4258 4259
	if (!x->done)
		ret = 0;
	else
		x->done--;
4260
	spin_unlock_irqrestore(&x->wait.lock, flags);
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4275
	unsigned long flags;
4276 4277
	int ret = 1;

4278
	spin_lock_irqsave(&x->wait.lock, flags);
4279 4280
	if (!x->done)
		ret = 0;
4281
	spin_unlock_irqrestore(&x->wait.lock, flags);
4282 4283 4284 4285
	return ret;
}
EXPORT_SYMBOL(completion_done);

4286 4287
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4288
{
I
Ingo Molnar 已提交
4289 4290 4291 4292
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4293

4294
	__set_current_state(state);
L
Linus Torvalds 已提交
4295

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4310 4311 4312
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4313
long __sched
I
Ingo Molnar 已提交
4314
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4315
{
4316
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4317 4318 4319
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4320
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4321
{
4322
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4323 4324 4325
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4326
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4327
{
4328
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4329 4330 4331
}
EXPORT_SYMBOL(sleep_on_timeout);

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4344
void rt_mutex_setprio(struct task_struct *p, int prio)
4345 4346
{
	unsigned long flags;
4347
	int oldprio, on_rq, running;
4348
	struct rq *rq;
4349
	const struct sched_class *prev_class;
4350 4351 4352 4353 4354

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4355
	oldprio = p->prio;
4356
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4357
	on_rq = p->se.on_rq;
4358
	running = task_current(rq, p);
4359
	if (on_rq)
4360
		dequeue_task(rq, p, 0);
4361 4362
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4363 4364 4365 4366 4367 4368

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4369 4370
	p->prio = prio;

4371 4372
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4373
	if (on_rq) {
4374
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4375 4376

		check_class_changed(rq, p, prev_class, oldprio, running);
4377 4378 4379 4380 4381 4382
	}
	task_rq_unlock(rq, &flags);
}

#endif

4383
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4384
{
I
Ingo Molnar 已提交
4385
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4386
	unsigned long flags;
4387
	struct rq *rq;
L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4400
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4401
	 */
4402
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4403 4404 4405
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4406
	on_rq = p->se.on_rq;
4407
	if (on_rq)
4408
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4409 4410

	p->static_prio = NICE_TO_PRIO(nice);
4411
	set_load_weight(p);
4412 4413 4414
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4415

I
Ingo Molnar 已提交
4416
	if (on_rq) {
4417
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4418
		/*
4419 4420
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4421
		 */
4422
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4430 4431 4432 4433 4434
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4435
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4436
{
4437 4438
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4439

4440
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4441 4442 4443
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4453
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4454
{
4455
	long nice, retval;
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4462 4463
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4464 4465 4466
	if (increment > 40)
		increment = 40;

4467
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4468 4469 4470 4471 4472
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4473 4474 4475
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4494
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4503
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4504 4505 4506
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4507
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4522
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4531
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4532
{
4533
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4534 4535 4536
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4537 4538
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4539
{
I
Ingo Molnar 已提交
4540
	BUG_ON(p->se.on_rq);
4541

L
Linus Torvalds 已提交
4542 4543
	p->policy = policy;
	p->rt_priority = prio;
4544 4545 4546
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4547 4548 4549 4550
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4551
	set_load_weight(p);
L
Linus Torvalds 已提交
4552 4553
}

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4570 4571
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4572
{
4573
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4574
	unsigned long flags;
4575
	const struct sched_class *prev_class;
4576
	struct rq *rq;
4577
	int reset_on_fork;
L
Linus Torvalds 已提交
4578

4579 4580
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4581 4582
recheck:
	/* double check policy once rq lock held */
4583 4584
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4585
		policy = oldpolicy = p->policy;
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4596 4597
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4598 4599
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4600 4601
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4602
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4603
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4604
		return -EINVAL;
4605
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4606 4607
		return -EINVAL;

4608 4609 4610
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4611
	if (user && !capable(CAP_SYS_NICE)) {
4612
		if (rt_policy(policy)) {
4613 4614
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4625 4626 4627 4628 4629 4630
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4631

4632
		/* can't change other user's priorities */
4633
		if (!check_same_owner(p))
4634
			return -EPERM;
4635 4636 4637 4638

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4639
	}
L
Linus Torvalds 已提交
4640

4641 4642 4643 4644 4645 4646
	if (user) {
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4647 4648 4649 4650
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4651
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4652 4653 4654 4655
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4656
	rq = __task_rq_lock(p);
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672

#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4673 4674 4675
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4676
		__task_rq_unlock(rq);
4677
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4678 4679
		goto recheck;
	}
I
Ingo Molnar 已提交
4680
	on_rq = p->se.on_rq;
4681
	running = task_current(rq, p);
4682
	if (on_rq)
4683
		deactivate_task(rq, p, 0);
4684 4685
	if (running)
		p->sched_class->put_prev_task(rq, p);
4686

4687 4688
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4689
	oldprio = p->prio;
4690
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4691
	__setscheduler(rq, p, policy, param->sched_priority);
4692

4693 4694
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4695 4696
	if (on_rq) {
		activate_task(rq, p, 0);
4697 4698

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4699
	}
4700
	__task_rq_unlock(rq);
4701
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4702

4703 4704
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4705 4706
	return 0;
}
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4721 4722
EXPORT_SYMBOL_GPL(sched_setscheduler);

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4740 4741
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4742 4743 4744
{
	struct sched_param lparam;
	struct task_struct *p;
4745
	int retval;
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4751 4752 4753

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4754
	p = find_process_by_pid(pid);
4755 4756 4757
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4758

L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4768 4769
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4770
{
4771 4772 4773 4774
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4775 4776 4777 4778 4779 4780 4781 4782
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4783
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4784 4785 4786 4787 4788 4789 4790 4791
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4792
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4793
{
4794
	struct task_struct *p;
4795
	int retval;
L
Linus Torvalds 已提交
4796 4797

	if (pid < 0)
4798
		return -EINVAL;
L
Linus Torvalds 已提交
4799 4800

	retval = -ESRCH;
4801
	rcu_read_lock();
L
Linus Torvalds 已提交
4802 4803 4804 4805
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4806 4807
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4808
	}
4809
	rcu_read_unlock();
L
Linus Torvalds 已提交
4810 4811 4812 4813
	return retval;
}

/**
4814
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4815 4816 4817
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4818
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4819 4820
{
	struct sched_param lp;
4821
	struct task_struct *p;
4822
	int retval;
L
Linus Torvalds 已提交
4823 4824

	if (!param || pid < 0)
4825
		return -EINVAL;
L
Linus Torvalds 已提交
4826

4827
	rcu_read_lock();
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4838
	rcu_read_unlock();
L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4848
	rcu_read_unlock();
L
Linus Torvalds 已提交
4849 4850 4851
	return retval;
}

4852
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4853
{
4854
	cpumask_var_t cpus_allowed, new_mask;
4855 4856
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4857

4858
	get_online_cpus();
4859
	rcu_read_lock();
L
Linus Torvalds 已提交
4860 4861 4862

	p = find_process_by_pid(pid);
	if (!p) {
4863
		rcu_read_unlock();
4864
		put_online_cpus();
L
Linus Torvalds 已提交
4865 4866 4867
		return -ESRCH;
	}

4868
	/* Prevent p going away */
L
Linus Torvalds 已提交
4869
	get_task_struct(p);
4870
	rcu_read_unlock();
L
Linus Torvalds 已提交
4871

4872 4873 4874 4875 4876 4877 4878 4879
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4880
	retval = -EPERM;
4881
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4882 4883
		goto out_unlock;

4884 4885 4886 4887
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4888 4889
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4890
 again:
4891
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4892

P
Paul Menage 已提交
4893
	if (!retval) {
4894 4895
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4896 4897 4898 4899 4900
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4901
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4902 4903 4904
			goto again;
		}
	}
L
Linus Torvalds 已提交
4905
out_unlock:
4906 4907 4908 4909
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4910
	put_task_struct(p);
4911
	put_online_cpus();
L
Linus Torvalds 已提交
4912 4913 4914 4915
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4916
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4917
{
4918 4919 4920 4921 4922
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4932 4933
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4934
{
4935
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4936 4937
	int retval;

4938 4939
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4940

4941 4942 4943 4944 4945
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4946 4947
}

4948
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4949
{
4950
	struct task_struct *p;
4951 4952
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4953 4954
	int retval;

4955
	get_online_cpus();
4956
	rcu_read_lock();
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4963 4964 4965 4966
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4967
	rq = task_rq_lock(p, &flags);
4968
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4969
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4970 4971

out_unlock:
4972
	rcu_read_unlock();
4973
	put_online_cpus();
L
Linus Torvalds 已提交
4974

4975
	return retval;
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982 4983
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4984 4985
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4986 4987
{
	int ret;
4988
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4989

A
Anton Blanchard 已提交
4990
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4991 4992
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4993 4994
		return -EINVAL;

4995 4996
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4997

4998 4999
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5000
		size_t retlen = min_t(size_t, len, cpumask_size());
5001 5002

		if (copy_to_user(user_mask_ptr, mask, retlen))
5003 5004
			ret = -EFAULT;
		else
5005
			ret = retlen;
5006 5007
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5008

5009
	return ret;
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5015 5016
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5017
 */
5018
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5019
{
5020
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5021

5022
	schedstat_inc(rq, yld_count);
5023
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5030
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5031
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5039 5040 5041 5042 5043
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5044
static void __cond_resched(void)
L
Linus Torvalds 已提交
5045
{
5046 5047 5048
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5049 5050
}

5051
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5052
{
P
Peter Zijlstra 已提交
5053
	if (should_resched()) {
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058
		__cond_resched();
		return 1;
	}
	return 0;
}
5059
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5060 5061

/*
5062
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5063 5064
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5065
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5066 5067 5068
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5069
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5070
{
P
Peter Zijlstra 已提交
5071
	int resched = should_resched();
J
Jan Kara 已提交
5072 5073
	int ret = 0;

5074 5075
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5076
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5077
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5078
		if (resched)
N
Nick Piggin 已提交
5079 5080 5081
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5082
		ret = 1;
L
Linus Torvalds 已提交
5083 5084
		spin_lock(lock);
	}
J
Jan Kara 已提交
5085
	return ret;
L
Linus Torvalds 已提交
5086
}
5087
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5088

5089
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5090 5091 5092
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5093
	if (should_resched()) {
5094
		local_bh_enable();
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5101
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5102 5103 5104 5105

/**
 * yield - yield the current processor to other threads.
 *
5106
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5117
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5118 5119 5120 5121
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5122
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5123

5124
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5125
	atomic_inc(&rq->nr_iowait);
5126
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5127
	schedule();
5128
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5129
	atomic_dec(&rq->nr_iowait);
5130
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5131 5132 5133 5134 5135
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5136
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5137 5138
	long ret;

5139
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5140
	atomic_inc(&rq->nr_iowait);
5141
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5142
	ret = schedule_timeout(timeout);
5143
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5144
	atomic_dec(&rq->nr_iowait);
5145
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5156
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5166
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5167
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5181
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5191
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5192
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5206
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5207
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5208
{
5209
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5210
	unsigned int time_slice;
5211 5212
	unsigned long flags;
	struct rq *rq;
5213
	int retval;
L
Linus Torvalds 已提交
5214 5215 5216
	struct timespec t;

	if (pid < 0)
5217
		return -EINVAL;
L
Linus Torvalds 已提交
5218 5219

	retval = -ESRCH;
5220
	rcu_read_lock();
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227 5228
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5229 5230 5231
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5232

5233
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5234
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5235 5236
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5237

L
Linus Torvalds 已提交
5238
out_unlock:
5239
	rcu_read_unlock();
L
Linus Torvalds 已提交
5240 5241 5242
	return retval;
}

5243
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5244

5245
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5246 5247
{
	unsigned long free = 0;
5248
	unsigned state;
L
Linus Torvalds 已提交
5249 5250

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5251
	printk(KERN_INFO "%-13.13s %c", p->comm,
5252
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5253
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5254
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5255
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5256
	else
P
Peter Zijlstra 已提交
5257
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5258 5259
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5260
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5261
	else
P
Peter Zijlstra 已提交
5262
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5263 5264
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5265
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5266
#endif
P
Peter Zijlstra 已提交
5267
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5268 5269
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5270

5271
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5272 5273
}

I
Ingo Molnar 已提交
5274
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5275
{
5276
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5277

5278
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5279 5280
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5281
#else
P
Peter Zijlstra 已提交
5282 5283
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5284 5285 5286 5287 5288 5289 5290 5291
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5292
		if (!state_filter || (p->state & state_filter))
5293
			sched_show_task(p);
L
Linus Torvalds 已提交
5294 5295
	} while_each_thread(g, p);

5296 5297
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5298 5299 5300
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5301
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5302 5303 5304
	/*
	 * Only show locks if all tasks are dumped:
	 */
5305
	if (!state_filter)
I
Ingo Molnar 已提交
5306
		debug_show_all_locks();
L
Linus Torvalds 已提交
5307 5308
}

I
Ingo Molnar 已提交
5309 5310
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5311
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5312 5313
}

5314 5315 5316 5317 5318 5319 5320 5321
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5322
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5323
{
5324
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5325 5326
	unsigned long flags;

5327
	raw_spin_lock_irqsave(&rq->lock, flags);
5328

I
Ingo Molnar 已提交
5329
	__sched_fork(idle);
5330
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5331 5332
	idle->se.exec_start = sched_clock();

5333
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5334
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5335 5336

	rq->curr = rq->idle = idle;
5337 5338 5339
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5340
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5341 5342

	/* Set the preempt count _outside_ the spinlocks! */
5343 5344 5345
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5346
	task_thread_info(idle)->preempt_count = 0;
5347
#endif
I
Ingo Molnar 已提交
5348 5349 5350 5351
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5352
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357 5358 5359
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5360
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5361
 */
5362
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5363

I
Ingo Molnar 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5373
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5374
{
5375
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5390

5391 5392
	return factor;
}
I
Ingo Molnar 已提交
5393

5394 5395 5396
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5397

5398 5399 5400 5401 5402 5403 5404 5405
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5406

5407 5408 5409
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5410 5411
}

L
Linus Torvalds 已提交
5412 5413 5414 5415
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5416 5417 5418 5419 5420 5421
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5422
 *    it and puts it into the right queue.
5423 5424
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431 5432
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5433
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5434 5435
 * call is not atomic; no spinlocks may be held.
 */
5436
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5437 5438
{
	unsigned long flags;
5439
	struct rq *rq;
5440
	unsigned int dest_cpu;
5441
	int ret = 0;
L
Linus Torvalds 已提交
5442

P
Peter Zijlstra 已提交
5443 5444 5445 5446 5447 5448 5449
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5450
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5451 5452 5453 5454
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5455

5456
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5457 5458 5459 5460
		ret = -EINVAL;
		goto out;
	}

5461
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5462
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5463 5464 5465 5466
		ret = -EINVAL;
		goto out;
	}

5467
	if (p->sched_class->set_cpus_allowed)
5468
		p->sched_class->set_cpus_allowed(p, new_mask);
5469
	else {
5470 5471
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5472 5473
	}

L
Linus Torvalds 已提交
5474
	/* Can the task run on the task's current CPU? If so, we're done */
5475
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5476 5477
		goto out;

5478 5479 5480
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5481 5482
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5483
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5489

L
Linus Torvalds 已提交
5490 5491
	return ret;
}
5492
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5493 5494

/*
I
Ingo Molnar 已提交
5495
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500 5501
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5502 5503
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5504
 */
5505
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5506
{
5507
	struct rq *rq_dest, *rq_src;
5508
	int ret = 0;
L
Linus Torvalds 已提交
5509

5510
	if (unlikely(!cpu_active(dest_cpu)))
5511
		return ret;
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5519
		goto done;
L
Linus Torvalds 已提交
5520
	/* Affinity changed (again). */
5521
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5522
		goto fail;
L
Linus Torvalds 已提交
5523

5524 5525 5526 5527 5528
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5529
		deactivate_task(rq_src, p, 0);
5530
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5531
		activate_task(rq_dest, p, 0);
5532
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5533
	}
L
Linus Torvalds 已提交
5534
done:
5535
	ret = 1;
L
Linus Torvalds 已提交
5536
fail:
L
Linus Torvalds 已提交
5537
	double_rq_unlock(rq_src, rq_dest);
5538
	return ret;
L
Linus Torvalds 已提交
5539 5540 5541
}

/*
5542 5543 5544
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5545
 */
5546
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5547
{
5548
	struct migration_arg *arg = data;
5549

5550 5551 5552 5553
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5554
	local_irq_disable();
5555
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5556
	local_irq_enable();
L
Linus Torvalds 已提交
5557
	return 0;
5558 5559
}

L
Linus Torvalds 已提交
5560
#ifdef CONFIG_HOTPLUG_CPU
5561
/*
5562
 * Figure out where task on dead CPU should go, use force if necessary.
5563
 */
5564
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5565
{
5566 5567 5568
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5569

5570
	local_irq_save(flags);
5571

5572 5573 5574 5575 5576
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5577 5578 5579 5580
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5581
	if (needs_cpu)
5582
		__migrate_task(p, dead_cpu, dest_cpu);
5583
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5593
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5594
{
5595
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5609
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5610

5611
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5612

5613 5614
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5615 5616
			continue;

5617 5618 5619
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5620

5621
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5622 5623
}

I
Ingo Molnar 已提交
5624 5625
/*
 * Schedules idle task to be the next runnable task on current CPU.
5626 5627
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5628 5629 5630
 */
void sched_idle_next(void)
{
5631
	int this_cpu = smp_processor_id();
5632
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5633 5634 5635 5636
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5637
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5638

5639 5640 5641
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5642
	 */
5643
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5644

I
Ingo Molnar 已提交
5645
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5646

5647
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5648

5649
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5650 5651
}

5652 5653
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5667
/* called under rq->lock with disabled interrupts */
5668
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5669
{
5670
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5671 5672

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5673
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5674 5675

	/* Cannot have done final schedule yet: would have vanished. */
5676
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5677

5678
	get_task_struct(p);
L
Linus Torvalds 已提交
5679 5680 5681

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5682
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5683 5684
	 * fine.
	 */
5685
	raw_spin_unlock_irq(&rq->lock);
5686
	move_task_off_dead_cpu(dead_cpu, p);
5687
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5688

5689
	put_task_struct(p);
L
Linus Torvalds 已提交
5690 5691 5692 5693 5694
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5695
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5696
	struct task_struct *next;
5697

I
Ingo Molnar 已提交
5698 5699 5700
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5701
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5702 5703
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5704
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5705
		migrate_dead(dead_cpu, next);
5706

L
Linus Torvalds 已提交
5707 5708
	}
}
5709 5710 5711 5712 5713 5714 5715

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5716
	rq->calc_load_active = 0;
5717
}
L
Linus Torvalds 已提交
5718 5719
#endif /* CONFIG_HOTPLUG_CPU */

5720 5721 5722
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5723 5724
	{
		.procname	= "sched_domain",
5725
		.mode		= 0555,
5726
	},
5727
	{}
5728 5729 5730
};

static struct ctl_table sd_ctl_root[] = {
5731 5732
	{
		.procname	= "kernel",
5733
		.mode		= 0555,
5734 5735
		.child		= sd_ctl_dir,
	},
5736
	{}
5737 5738 5739 5740 5741
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5742
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5743 5744 5745 5746

	return entry;
}

5747 5748
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5749
	struct ctl_table *entry;
5750

5751 5752 5753
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5754
	 * will always be set. In the lowest directory the names are
5755 5756 5757
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5758 5759
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5760 5761 5762
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5763 5764 5765 5766 5767

	kfree(*tablep);
	*tablep = NULL;
}

5768
static void
5769
set_table_entry(struct ctl_table *entry,
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5783
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5784

5785 5786 5787
	if (table == NULL)
		return NULL;

5788
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5789
		sizeof(long), 0644, proc_doulongvec_minmax);
5790
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5791
		sizeof(long), 0644, proc_doulongvec_minmax);
5792
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5793
		sizeof(int), 0644, proc_dointvec_minmax);
5794
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5795
		sizeof(int), 0644, proc_dointvec_minmax);
5796
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5797
		sizeof(int), 0644, proc_dointvec_minmax);
5798
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5799
		sizeof(int), 0644, proc_dointvec_minmax);
5800
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5801
		sizeof(int), 0644, proc_dointvec_minmax);
5802
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5803
		sizeof(int), 0644, proc_dointvec_minmax);
5804
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5805
		sizeof(int), 0644, proc_dointvec_minmax);
5806
	set_table_entry(&table[9], "cache_nice_tries",
5807 5808
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5809
	set_table_entry(&table[10], "flags", &sd->flags,
5810
		sizeof(int), 0644, proc_dointvec_minmax);
5811 5812 5813
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5814 5815 5816 5817

	return table;
}

5818
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5819 5820 5821 5822 5823 5824 5825 5826 5827
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5828 5829
	if (table == NULL)
		return NULL;
5830 5831 5832 5833 5834

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5835
		entry->mode = 0555;
5836 5837 5838 5839 5840 5841 5842 5843
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5844
static void register_sched_domain_sysctl(void)
5845
{
5846
	int i, cpu_num = num_possible_cpus();
5847 5848 5849
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5850 5851 5852
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5853 5854 5855
	if (entry == NULL)
		return;

5856
	for_each_possible_cpu(i) {
5857 5858
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5859
		entry->mode = 0555;
5860
		entry->child = sd_alloc_ctl_cpu_table(i);
5861
		entry++;
5862
	}
5863 5864

	WARN_ON(sd_sysctl_header);
5865 5866
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5867

5868
/* may be called multiple times per register */
5869 5870
static void unregister_sched_domain_sysctl(void)
{
5871 5872
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5873
	sd_sysctl_header = NULL;
5874 5875
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5876
}
5877
#else
5878 5879 5880 5881
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5882 5883 5884 5885
{
}
#endif

5886 5887 5888 5889 5890
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5891
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5911
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5912 5913 5914 5915
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5916 5917 5918 5919
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5920 5921
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5922
{
5923
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5924
	unsigned long flags;
5925
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5926 5927

	switch (action) {
5928

L
Linus Torvalds 已提交
5929
	case CPU_UP_PREPARE:
5930
	case CPU_UP_PREPARE_FROZEN:
5931
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5932
		break;
5933

L
Linus Torvalds 已提交
5934
	case CPU_ONLINE:
5935
	case CPU_ONLINE_FROZEN:
5936
		/* Update our root-domain */
5937
		raw_spin_lock_irqsave(&rq->lock, flags);
5938
		if (rq->rd) {
5939
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5940 5941

			set_rq_online(rq);
5942
		}
5943
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5944
		break;
5945

L
Linus Torvalds 已提交
5946 5947
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5948
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5949 5950
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5951
		raw_spin_lock_irq(&rq->lock);
5952
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5953 5954
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5955
		migrate_dead_tasks(cpu);
5956
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5957 5958
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5959
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5960
		break;
G
Gregory Haskins 已提交
5961

5962 5963
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5964
		/* Update our root-domain */
5965
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5966
		if (rq->rd) {
5967
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5968
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5969
		}
5970
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5971
		break;
L
Linus Torvalds 已提交
5972 5973 5974 5975 5976
#endif
	}
	return NOTIFY_OK;
}

5977 5978 5979
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5980
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5981
 */
5982
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5983
	.notifier_call = migration_call,
5984
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5985 5986
};

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6012
static int __init migration_init(void)
L
Linus Torvalds 已提交
6013 6014
{
	void *cpu = (void *)(long)smp_processor_id();
6015
	int err;
6016

6017
	/* Initialize migration for the boot CPU */
6018 6019
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6020 6021
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6022

6023 6024 6025 6026
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6027
	return 0;
L
Linus Torvalds 已提交
6028
}
6029
early_initcall(migration_init);
L
Linus Torvalds 已提交
6030 6031 6032
#endif

#ifdef CONFIG_SMP
6033

6034
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6035

6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6046
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6047
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6048
{
I
Ingo Molnar 已提交
6049
	struct sched_group *group = sd->groups;
6050
	char str[256];
L
Linus Torvalds 已提交
6051

R
Rusty Russell 已提交
6052
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6053
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6054 6055 6056 6057

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6058
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6059
		if (sd->parent)
P
Peter Zijlstra 已提交
6060 6061
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6062
		return -1;
N
Nick Piggin 已提交
6063 6064
	}

P
Peter Zijlstra 已提交
6065
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6066

6067
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6068 6069
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6070
	}
6071
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6072 6073
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6074
	}
L
Linus Torvalds 已提交
6075

I
Ingo Molnar 已提交
6076
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6077
	do {
I
Ingo Molnar 已提交
6078
		if (!group) {
P
Peter Zijlstra 已提交
6079 6080
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6081 6082 6083
			break;
		}

6084
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6085 6086 6087
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6088 6089
			break;
		}
L
Linus Torvalds 已提交
6090

6091
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6092 6093
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6094 6095
			break;
		}
L
Linus Torvalds 已提交
6096

6097
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6098 6099
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6100 6101
			break;
		}
L
Linus Torvalds 已提交
6102

6103
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6104

R
Rusty Russell 已提交
6105
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6106

P
Peter Zijlstra 已提交
6107
		printk(KERN_CONT " %s", str);
6108
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6109 6110
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6111
		}
L
Linus Torvalds 已提交
6112

I
Ingo Molnar 已提交
6113 6114
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6115
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6116

6117
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6118
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6119

6120 6121
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6122 6123
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6124 6125
	return 0;
}
L
Linus Torvalds 已提交
6126

I
Ingo Molnar 已提交
6127 6128
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6129
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6130
	int level = 0;
L
Linus Torvalds 已提交
6131

6132 6133 6134
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6135 6136 6137 6138
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6139

I
Ingo Molnar 已提交
6140 6141
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6142
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6143 6144 6145 6146
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6147
	for (;;) {
6148
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6149
			break;
L
Linus Torvalds 已提交
6150 6151
		level++;
		sd = sd->parent;
6152
		if (!sd)
I
Ingo Molnar 已提交
6153 6154
			break;
	}
6155
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6156
}
6157
#else /* !CONFIG_SCHED_DEBUG */
6158
# define sched_domain_debug(sd, cpu) do { } while (0)
6159
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6160

6161
static int sd_degenerate(struct sched_domain *sd)
6162
{
6163
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6164 6165 6166 6167 6168 6169
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6170 6171 6172
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6173 6174 6175 6176 6177
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6178
	if (sd->flags & (SD_WAKE_AFFINE))
6179 6180 6181 6182 6183
		return 0;

	return 1;
}

6184 6185
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6186 6187 6188 6189 6190 6191
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6192
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6193 6194 6195 6196 6197 6198 6199
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6200 6201 6202
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6203 6204
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6205 6206 6207 6208 6209 6210 6211
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6212 6213
static void free_rootdomain(struct root_domain *rd)
{
6214 6215
	synchronize_sched();

6216 6217
	cpupri_cleanup(&rd->cpupri);

6218 6219 6220 6221 6222 6223
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6224 6225
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6226
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6227 6228
	unsigned long flags;

6229
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6230 6231

	if (rq->rd) {
I
Ingo Molnar 已提交
6232
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6233

6234
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6235
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6236

6237
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6238

I
Ingo Molnar 已提交
6239 6240 6241 6242 6243 6244 6245
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6246 6247 6248 6249 6250
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6251
	cpumask_set_cpu(rq->cpu, rd->span);
6252
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6253
		set_rq_online(rq);
G
Gregory Haskins 已提交
6254

6255
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6256 6257 6258

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6259 6260
}

6261
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6262 6263 6264
{
	memset(rd, 0, sizeof(*rd));

6265
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6266
		goto out;
6267
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6268
		goto free_span;
6269
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6270
		goto free_online;
6271

6272
	if (cpupri_init(&rd->cpupri) != 0)
6273
		goto free_rto_mask;
6274
	return 0;
6275

6276 6277
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6278 6279 6280 6281
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6282
out:
6283
	return -ENOMEM;
G
Gregory Haskins 已提交
6284 6285 6286 6287
}

static void init_defrootdomain(void)
{
6288
	init_rootdomain(&def_root_domain);
6289

G
Gregory Haskins 已提交
6290 6291 6292
	atomic_set(&def_root_domain.refcount, 1);
}

6293
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6294 6295 6296 6297 6298 6299 6300
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6301
	if (init_rootdomain(rd) != 0) {
6302 6303 6304
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6305 6306 6307 6308

	return rd;
}

L
Linus Torvalds 已提交
6309
/*
I
Ingo Molnar 已提交
6310
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6311 6312
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6313 6314
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6315
{
6316
	struct rq *rq = cpu_rq(cpu);
6317 6318
	struct sched_domain *tmp;

6319 6320 6321
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6322
	/* Remove the sched domains which do not contribute to scheduling. */
6323
	for (tmp = sd; tmp; ) {
6324 6325 6326
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6327

6328
		if (sd_parent_degenerate(tmp, parent)) {
6329
			tmp->parent = parent->parent;
6330 6331
			if (parent->parent)
				parent->parent->child = tmp;
6332 6333
		} else
			tmp = tmp->parent;
6334 6335
	}

6336
	if (sd && sd_degenerate(sd)) {
6337
		sd = sd->parent;
6338 6339 6340
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6341 6342 6343

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6344
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6345
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6346 6347 6348
}

/* cpus with isolated domains */
6349
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6350 6351 6352 6353

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6354
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6355
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6356 6357 6358
	return 1;
}

I
Ingo Molnar 已提交
6359
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6360 6361

/*
6362 6363
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6364 6365
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6366 6367 6368 6369 6370
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6371
static void
6372 6373 6374
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6375
					struct sched_group **sg,
6376 6377
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6378 6379 6380 6381
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6382
	cpumask_clear(covered);
6383

6384
	for_each_cpu(i, span) {
6385
		struct sched_group *sg;
6386
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6387 6388
		int j;

6389
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6390 6391
			continue;

6392
		cpumask_clear(sched_group_cpus(sg));
6393
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6394

6395
		for_each_cpu(j, span) {
6396
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6397 6398
				continue;

6399
			cpumask_set_cpu(j, covered);
6400
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6411
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6412

6413
#ifdef CONFIG_NUMA
6414

6415 6416 6417 6418 6419
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6420
 * Find the next node to include in a given scheduling domain. Simply
6421 6422 6423 6424
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6425
static int find_next_best_node(int node, nodemask_t *used_nodes)
6426 6427 6428 6429 6430
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6431
	for (i = 0; i < nr_node_ids; i++) {
6432
		/* Start at @node */
6433
		n = (node + i) % nr_node_ids;
6434 6435 6436 6437 6438

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6439
		if (node_isset(n, *used_nodes))
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6451
	node_set(best_node, *used_nodes);
6452 6453 6454 6455 6456 6457
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6458
 * @span: resulting cpumask
6459
 *
I
Ingo Molnar 已提交
6460
 * Given a node, construct a good cpumask for its sched_domain to span. It
6461 6462 6463
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6464
static void sched_domain_node_span(int node, struct cpumask *span)
6465
{
6466
	nodemask_t used_nodes;
6467
	int i;
6468

6469
	cpumask_clear(span);
6470
	nodes_clear(used_nodes);
6471

6472
	cpumask_or(span, span, cpumask_of_node(node));
6473
	node_set(node, used_nodes);
6474 6475

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6476
		int next_node = find_next_best_node(node, &used_nodes);
6477

6478
		cpumask_or(span, span, cpumask_of_node(next_node));
6479 6480
	}
}
6481
#endif /* CONFIG_NUMA */
6482

6483
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6484

6485 6486
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6487 6488 6489
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6534
/*
6535
 * SMT sched-domains:
6536
 */
L
Linus Torvalds 已提交
6537
#ifdef CONFIG_SCHED_SMT
6538
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6539
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6540

I
Ingo Molnar 已提交
6541
static int
6542 6543
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6544
{
6545
	if (sg)
6546
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6547 6548
	return cpu;
}
6549
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6550

6551 6552 6553
/*
 * multi-core sched-domains:
 */
6554
#ifdef CONFIG_SCHED_MC
6555 6556
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6557
#endif /* CONFIG_SCHED_MC */
6558 6559

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6560
static int
6561 6562
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6563
{
6564
	int group;
6565

6566
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6567
	group = cpumask_first(mask);
6568
	if (sg)
6569
		*sg = &per_cpu(sched_group_core, group).sg;
6570
	return group;
6571 6572
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6573
static int
6574 6575
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6576
{
6577
	if (sg)
6578
		*sg = &per_cpu(sched_group_core, cpu).sg;
6579 6580 6581 6582
	return cpu;
}
#endif

6583 6584
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6585

I
Ingo Molnar 已提交
6586
static int
6587 6588
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6589
{
6590
	int group;
6591
#ifdef CONFIG_SCHED_MC
6592
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6593
	group = cpumask_first(mask);
6594
#elif defined(CONFIG_SCHED_SMT)
6595
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6596
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6597
#else
6598
	group = cpu;
L
Linus Torvalds 已提交
6599
#endif
6600
	if (sg)
6601
		*sg = &per_cpu(sched_group_phys, group).sg;
6602
	return group;
L
Linus Torvalds 已提交
6603 6604 6605 6606
}

#ifdef CONFIG_NUMA
/*
6607 6608 6609
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6610
 */
6611
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6612
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6613

6614
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6615
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6616

6617 6618 6619
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6620
{
6621 6622
	int group;

6623
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6624
	group = cpumask_first(nodemask);
6625 6626

	if (sg)
6627
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6628
	return group;
L
Linus Torvalds 已提交
6629
}
6630

6631 6632 6633 6634 6635 6636 6637
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6638
	do {
6639
		for_each_cpu(j, sched_group_cpus(sg)) {
6640
			struct sched_domain *sd;
6641

6642
			sd = &per_cpu(phys_domains, j).sd;
6643
			if (j != group_first_cpu(sd->groups)) {
6644 6645 6646 6647 6648 6649
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6650

6651
			sg->cpu_power += sd->groups->cpu_power;
6652 6653 6654
		}
		sg = sg->next;
	} while (sg != group_head);
6655
}
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6677 6678
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6679 6680 6681 6682 6683 6684 6685 6686 6687
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6688
	sg->cpu_power = 0;
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6707 6708
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6709 6710
			return -ENOMEM;
		}
6711
		sg->cpu_power = 0;
6712 6713 6714 6715 6716 6717 6718 6719 6720
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6721
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6722

6723
#ifdef CONFIG_NUMA
6724
/* Free memory allocated for various sched_group structures */
6725 6726
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6727
{
6728
	int cpu, i;
6729

6730
	for_each_cpu(cpu, cpu_map) {
6731 6732 6733 6734 6735 6736
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6737
		for (i = 0; i < nr_node_ids; i++) {
6738 6739
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6740
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6741
			if (cpumask_empty(nodemask))
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6758
#else /* !CONFIG_NUMA */
6759 6760
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6761 6762
{
}
6763
#endif /* CONFIG_NUMA */
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6779 6780
	long power;
	int weight;
6781 6782 6783

	WARN_ON(!sd || !sd->groups);

6784
	if (cpu != group_first_cpu(sd->groups))
6785 6786 6787 6788
		return;

	child = sd->child;

6789
	sd->groups->cpu_power = 0;
6790

6791 6792 6793 6794 6795
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6796 6797 6798
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6799
		 */
P
Peter Zijlstra 已提交
6800 6801
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6802
			power /= weight;
P
Peter Zijlstra 已提交
6803 6804
			power >>= SCHED_LOAD_SHIFT;
		}
6805
		sd->groups->cpu_power += power;
6806 6807 6808 6809
		return;
	}

	/*
6810
	 * Add cpu_power of each child group to this groups cpu_power.
6811 6812 6813
	 */
	group = child->groups;
	do {
6814
		sd->groups->cpu_power += group->cpu_power;
6815 6816 6817 6818
		group = group->next;
	} while (group != child->groups);
}

6819 6820 6821 6822 6823
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6824 6825 6826 6827 6828 6829
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6830
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6831

6832 6833 6834 6835 6836
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6837
	sd->level = SD_LV_##type;				\
6838
	SD_INIT_NAME(sd, type);					\
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6853 6854 6855 6856
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6857 6858 6859 6860 6861 6862
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6881
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6882 6883
	} else {
		/* turn on idle balance on this domain */
6884
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6885 6886 6887
	}
}

6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6908
#ifdef CONFIG_NUMA
6909 6910 6911 6912 6913 6914 6915
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6916
#endif
6917 6918 6919 6920
	case sa_none:
		break;
	}
}
6921

6922 6923 6924
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6925
#ifdef CONFIG_NUMA
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6936
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6937
		return sa_notcovered;
6938
	}
6939
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6940
#endif
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6953
		printk(KERN_WARNING "Cannot alloc root domain\n");
6954
		return sa_tmpmask;
G
Gregory Haskins 已提交
6955
	}
6956 6957
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6958

6959 6960 6961 6962
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6963
#ifdef CONFIG_NUMA
6964
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6965

6966 6967 6968 6969 6970
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6971
		set_domain_attribute(sd, attr);
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6986
#endif
6987 6988
	return sd;
}
L
Linus Torvalds 已提交
6989

6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7005

7006 7007 7008 7009 7010
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7011
#ifdef CONFIG_SCHED_MC
7012 7013 7014 7015 7016 7017 7018
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7019
#endif
7020 7021
	return sd;
}
7022

7023 7024 7025 7026 7027
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7028
#ifdef CONFIG_SCHED_SMT
7029 7030 7031 7032 7033 7034 7035
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7036
#endif
7037 7038
	return sd;
}
L
Linus Torvalds 已提交
7039

7040 7041 7042 7043
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7044
#ifdef CONFIG_SCHED_SMT
7045 7046 7047 7048 7049 7050 7051 7052
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7053
#endif
7054
#ifdef CONFIG_SCHED_MC
7055 7056 7057 7058 7059 7060 7061
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7062
#endif
7063 7064 7065 7066 7067 7068 7069
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7070
#ifdef CONFIG_NUMA
7071 7072 7073 7074 7075
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7076 7077
	default:
		break;
7078
	}
7079
}
7080

7081 7082 7083 7084 7085 7086 7087 7088 7089
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7090
	struct sched_domain *sd;
7091
	int i;
7092
#ifdef CONFIG_NUMA
7093
	d.sd_allnodes = 0;
7094
#endif
7095

7096 7097 7098 7099
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7100

L
Linus Torvalds 已提交
7101
	/*
7102
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7103
	 */
7104
	for_each_cpu(i, cpu_map) {
7105 7106
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7107

7108
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7109
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7110
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7111
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7112
	}
7113

7114
	for_each_cpu(i, cpu_map) {
7115
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7116
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7117
	}
7118

L
Linus Torvalds 已提交
7119
	/* Set up physical groups */
7120 7121
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7122

L
Linus Torvalds 已提交
7123 7124
#ifdef CONFIG_NUMA
	/* Set up node groups */
7125 7126
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7127

7128 7129
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7130
			goto error;
L
Linus Torvalds 已提交
7131 7132 7133
#endif

	/* Calculate CPU power for physical packages and nodes */
7134
#ifdef CONFIG_SCHED_SMT
7135
	for_each_cpu(i, cpu_map) {
7136
		sd = &per_cpu(cpu_domains, i).sd;
7137
		init_sched_groups_power(i, sd);
7138
	}
L
Linus Torvalds 已提交
7139
#endif
7140
#ifdef CONFIG_SCHED_MC
7141
	for_each_cpu(i, cpu_map) {
7142
		sd = &per_cpu(core_domains, i).sd;
7143
		init_sched_groups_power(i, sd);
7144 7145
	}
#endif
7146

7147
	for_each_cpu(i, cpu_map) {
7148
		sd = &per_cpu(phys_domains, i).sd;
7149
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7150 7151
	}

7152
#ifdef CONFIG_NUMA
7153
	for (i = 0; i < nr_node_ids; i++)
7154
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7155

7156
	if (d.sd_allnodes) {
7157
		struct sched_group *sg;
7158

7159
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7160
								d.tmpmask);
7161 7162
		init_numa_sched_groups_power(sg);
	}
7163 7164
#endif

L
Linus Torvalds 已提交
7165
	/* Attach the domains */
7166
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7167
#ifdef CONFIG_SCHED_SMT
7168
		sd = &per_cpu(cpu_domains, i).sd;
7169
#elif defined(CONFIG_SCHED_MC)
7170
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7171
#else
7172
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7173
#endif
7174
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7175
	}
7176

7177 7178 7179
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7180 7181

error:
7182 7183
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7184
}
P
Paul Jackson 已提交
7185

7186
static int build_sched_domains(const struct cpumask *cpu_map)
7187 7188 7189 7190
{
	return __build_sched_domains(cpu_map, NULL);
}

7191
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7192
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7193 7194
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7195 7196 7197

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7198 7199
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7200
 */
7201
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7202

7203 7204 7205 7206 7207 7208
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7209
{
7210
	return 0;
7211 7212
}

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7238
/*
I
Ingo Molnar 已提交
7239
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7240 7241
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7242
 */
7243
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7244
{
7245 7246
	int err;

7247
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7248
	ndoms_cur = 1;
7249
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7250
	if (!doms_cur)
7251 7252
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7253
	dattr_cur = NULL;
7254
	err = build_sched_domains(doms_cur[0]);
7255
	register_sched_domain_sysctl();
7256 7257

	return err;
7258 7259
}

7260 7261
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7262
{
7263
	free_sched_groups(cpu_map, tmpmask);
7264
}
L
Linus Torvalds 已提交
7265

7266 7267 7268 7269
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7270
static void detach_destroy_domains(const struct cpumask *cpu_map)
7271
{
7272 7273
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7274 7275
	int i;

7276
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7277
		cpu_attach_domain(NULL, &def_root_domain, i);
7278
	synchronize_sched();
7279
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7280 7281
}

7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7298 7299
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7300
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7301 7302 7303
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7304
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7305 7306 7307
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7308 7309 7310
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7311 7312 7313 7314 7315 7316
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7317
 *
7318
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7319 7320
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7321
 *
P
Paul Jackson 已提交
7322 7323
 * Call with hotplug lock held
 */
7324
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7325
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7326
{
7327
	int i, j, n;
7328
	int new_topology;
P
Paul Jackson 已提交
7329

7330
	mutex_lock(&sched_domains_mutex);
7331

7332 7333 7334
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7335 7336 7337
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7338
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7339 7340 7341

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7342
		for (j = 0; j < n && !new_topology; j++) {
7343
			if (cpumask_equal(doms_cur[i], doms_new[j])
7344
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7345 7346 7347
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7348
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7349 7350 7351 7352
match1:
		;
	}

7353 7354
	if (doms_new == NULL) {
		ndoms_cur = 0;
7355
		doms_new = &fallback_doms;
7356
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7357
		WARN_ON_ONCE(dattr_new);
7358 7359
	}

P
Paul Jackson 已提交
7360 7361
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7362
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7363
			if (cpumask_equal(doms_new[i], doms_cur[j])
7364
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7365 7366 7367
				goto match2;
		}
		/* no match - add a new doms_new */
7368
		__build_sched_domains(doms_new[i],
7369
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7370 7371 7372 7373 7374
match2:
		;
	}

	/* Remember the new sched domains */
7375 7376
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7377
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7378
	doms_cur = doms_new;
7379
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7380
	ndoms_cur = ndoms_new;
7381 7382

	register_sched_domain_sysctl();
7383

7384
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7385 7386
}

7387
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7388
static void arch_reinit_sched_domains(void)
7389
{
7390
	get_online_cpus();
7391 7392 7393 7394

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7395
	rebuild_sched_domains();
7396
	put_online_cpus();
7397 7398 7399 7400
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7401
	unsigned int level = 0;
7402

7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7414 7415 7416
		return -EINVAL;

	if (smt)
7417
		sched_smt_power_savings = level;
7418
	else
7419
		sched_mc_power_savings = level;
7420

7421
	arch_reinit_sched_domains();
7422

7423
	return count;
7424 7425 7426
}

#ifdef CONFIG_SCHED_MC
7427
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7428
					   struct sysdev_class_attribute *attr,
7429
					   char *page)
7430 7431 7432
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7433
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7434
					    struct sysdev_class_attribute *attr,
7435
					    const char *buf, size_t count)
7436 7437 7438
{
	return sched_power_savings_store(buf, count, 0);
}
7439 7440 7441
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7442 7443 7444
#endif

#ifdef CONFIG_SCHED_SMT
7445
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7446
					    struct sysdev_class_attribute *attr,
7447
					    char *page)
7448 7449 7450
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7451
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7452
					     struct sysdev_class_attribute *attr,
7453
					     const char *buf, size_t count)
7454 7455 7456
{
	return sched_power_savings_store(buf, count, 1);
}
7457 7458
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7459 7460 7461
		   sched_smt_power_savings_store);
#endif

7462
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7478
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7479

L
Linus Torvalds 已提交
7480
/*
7481 7482 7483
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7484
 */
7485 7486
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7487
{
7488
	switch (action & ~CPU_TASKS_FROZEN) {
7489
	case CPU_ONLINE:
7490
	case CPU_DOWN_FAILED:
7491
		cpuset_update_active_cpus();
7492
		return NOTIFY_OK;
7493 7494 7495 7496
	default:
		return NOTIFY_DONE;
	}
}
7497

7498 7499
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7500 7501 7502 7503 7504
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7505 7506 7507 7508 7509 7510 7511
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7512
{
P
Peter Zijlstra 已提交
7513 7514
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7515 7516
	switch (action) {
	case CPU_DOWN_PREPARE:
7517
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7518
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7519 7520 7521
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7522
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7523
	case CPU_ONLINE:
7524
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7525
		enable_runtime(cpu_rq(cpu));
7526 7527
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7528 7529 7530 7531 7532 7533 7534
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7535 7536 7537
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7538
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7539

7540 7541 7542 7543 7544
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7545
	get_online_cpus();
7546
	mutex_lock(&sched_domains_mutex);
7547
	arch_init_sched_domains(cpu_active_mask);
7548 7549 7550
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7551
	mutex_unlock(&sched_domains_mutex);
7552
	put_online_cpus();
7553

7554 7555
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7556 7557 7558 7559

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7560
	init_hrtick();
7561 7562

	/* Move init over to a non-isolated CPU */
7563
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7564
		BUG();
I
Ingo Molnar 已提交
7565
	sched_init_granularity();
7566
	free_cpumask_var(non_isolated_cpus);
7567

7568
	init_sched_rt_class();
L
Linus Torvalds 已提交
7569 7570 7571 7572
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7573
	sched_init_granularity();
L
Linus Torvalds 已提交
7574 7575 7576
}
#endif /* CONFIG_SMP */

7577 7578
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7579 7580 7581 7582 7583 7584 7585
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7586
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7587 7588
{
	cfs_rq->tasks_timeline = RB_ROOT;
7589
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7590 7591 7592
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7593
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7594 7595
}

P
Peter Zijlstra 已提交
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7609
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7610
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7611
#ifdef CONFIG_SMP
7612
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7613 7614
#endif
#endif
P
Peter Zijlstra 已提交
7615 7616 7617
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7618
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7619 7620 7621 7622
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7623
	rt_rq->rt_runtime = 0;
7624
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7625

7626
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7627
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7628 7629
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7630 7631
}

P
Peter Zijlstra 已提交
7632
#ifdef CONFIG_FAIR_GROUP_SCHED
7633 7634 7635
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7636
{
7637
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7638 7639 7640 7641 7642 7643 7644
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7645 7646 7647 7648
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7649 7650 7651 7652 7653
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7654 7655
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7656
	se->load.inv_weight = 0;
7657
	se->parent = parent;
P
Peter Zijlstra 已提交
7658
}
7659
#endif
P
Peter Zijlstra 已提交
7660

7661
#ifdef CONFIG_RT_GROUP_SCHED
7662 7663 7664
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7665
{
7666 7667
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7668 7669 7670
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7671
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7672 7673 7674 7675
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7676 7677 7678
	if (!rt_se)
		return;

7679 7680 7681 7682 7683
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7684
	rt_se->my_q = rt_rq;
7685
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7686 7687 7688 7689
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7690 7691
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7692
	int i, j;
7693 7694 7695 7696 7697 7698 7699
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7700
#endif
7701
#ifdef CONFIG_CPUMASK_OFFSTACK
7702
	alloc_size += num_possible_cpus() * cpumask_size();
7703 7704
#endif
	if (alloc_size) {
7705
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7706 7707 7708 7709 7710 7711 7712

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7713

7714
#endif /* CONFIG_FAIR_GROUP_SCHED */
7715 7716 7717 7718 7719
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7720 7721
		ptr += nr_cpu_ids * sizeof(void **);

7722
#endif /* CONFIG_RT_GROUP_SCHED */
7723 7724 7725 7726 7727 7728
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7729
	}
I
Ingo Molnar 已提交
7730

G
Gregory Haskins 已提交
7731 7732 7733 7734
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7735 7736 7737 7738 7739 7740
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7741
#endif /* CONFIG_RT_GROUP_SCHED */
7742

D
Dhaval Giani 已提交
7743
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7744
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7745 7746
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7747
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7748

7749 7750 7751 7752
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7753
	for_each_possible_cpu(i) {
7754
		struct rq *rq;
L
Linus Torvalds 已提交
7755 7756

		rq = cpu_rq(i);
7757
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7758
		rq->nr_running = 0;
7759 7760
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7761
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7762
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7763
#ifdef CONFIG_FAIR_GROUP_SCHED
7764
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7765
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7781
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7782 7783 7784 7785
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7786
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7787
#endif
D
Dhaval Giani 已提交
7788 7789 7790
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7791
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7792
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7793
#ifdef CONFIG_CGROUP_SCHED
7794
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7795
#endif
I
Ingo Molnar 已提交
7796
#endif
L
Linus Torvalds 已提交
7797

I
Ingo Molnar 已提交
7798 7799
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7800 7801 7802

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7803
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7804
		rq->sd = NULL;
G
Gregory Haskins 已提交
7805
		rq->rd = NULL;
7806
		rq->cpu_power = SCHED_LOAD_SCALE;
7807
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7808
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7809
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7810
		rq->push_cpu = 0;
7811
		rq->cpu = i;
7812
		rq->online = 0;
7813 7814
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7815
		rq_attach_root(rq, &def_root_domain);
7816 7817 7818 7819
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7820
#endif
P
Peter Zijlstra 已提交
7821
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7822 7823 7824
		atomic_set(&rq->nr_iowait, 0);
	}

7825
	set_load_weight(&init_task);
7826

7827 7828 7829 7830
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7831
#ifdef CONFIG_SMP
7832
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7833 7834
#endif

7835
#ifdef CONFIG_RT_MUTEXES
7836
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7837 7838
#endif

L
Linus Torvalds 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7852 7853 7854

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7855 7856 7857 7858
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7859

7860
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7861
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7862
#ifdef CONFIG_SMP
7863
#ifdef CONFIG_NO_HZ
7864 7865 7866 7867 7868
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7869
#endif
R
Rusty Russell 已提交
7870 7871 7872
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7873
#endif /* SMP */
7874

7875
	perf_event_init();
7876

7877
	scheduler_running = 1;
L
Linus Torvalds 已提交
7878 7879 7880
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7881 7882
static inline int preempt_count_equals(int preempt_offset)
{
7883
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7884 7885 7886 7887

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7888
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7889
{
7890
#ifdef in_atomic
L
Linus Torvalds 已提交
7891 7892
	static unsigned long prev_jiffy;	/* ratelimiting */

7893 7894
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7895 7896 7897 7898 7899
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7900 7901 7902 7903 7904 7905 7906
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7907 7908 7909 7910 7911

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7912 7913 7914 7915 7916 7917
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7918 7919 7920
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7921

7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7932 7933
void normalize_rt_tasks(void)
{
7934
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7935
	unsigned long flags;
7936
	struct rq *rq;
L
Linus Torvalds 已提交
7937

7938
	read_lock_irqsave(&tasklist_lock, flags);
7939
	do_each_thread(g, p) {
7940 7941 7942 7943 7944 7945
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7946 7947
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7948 7949 7950
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7951
#endif
I
Ingo Molnar 已提交
7952 7953 7954 7955 7956 7957 7958 7959

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7960
			continue;
I
Ingo Molnar 已提交
7961
		}
L
Linus Torvalds 已提交
7962

7963
		raw_spin_lock(&p->pi_lock);
7964
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7965

7966
		normalize_task(rq, p);
7967

7968
		__task_rq_unlock(rq);
7969
		raw_spin_unlock(&p->pi_lock);
7970 7971
	} while_each_thread(g, p);

7972
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7973 7974 7975
}

#endif /* CONFIG_MAGIC_SYSRQ */
7976

7977
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7978
/*
7979
 * These functions are only useful for the IA64 MCA handling, or kdb.
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7994
struct task_struct *curr_task(int cpu)
7995 7996 7997 7998
{
	return cpu_curr(cpu);
}

7999 8000 8001
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8002 8003 8004 8005 8006 8007
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8008 8009
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8010 8011 8012 8013 8014 8015 8016
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8017
void set_curr_task(int cpu, struct task_struct *p)
8018 8019 8020 8021 8022
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8023

8024 8025
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8040 8041
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8042 8043
{
	struct cfs_rq *cfs_rq;
8044
	struct sched_entity *se;
8045
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8046 8047
	int i;

8048
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8049 8050
	if (!tg->cfs_rq)
		goto err;
8051
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8052 8053
	if (!tg->se)
		goto err;
8054 8055

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8056 8057

	for_each_possible_cpu(i) {
8058
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8059

8060 8061
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8062 8063 8064
		if (!cfs_rq)
			goto err;

8065 8066
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8067
		if (!se)
8068
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8069

8070
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8071 8072 8073 8074
	}

	return 1;

8075 8076
 err_free_rq:
	kfree(cfs_rq);
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8091
#else /* !CONFG_FAIR_GROUP_SCHED */
8092 8093 8094 8095
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8096 8097
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8109
#endif /* CONFIG_FAIR_GROUP_SCHED */
8110 8111

#ifdef CONFIG_RT_GROUP_SCHED
8112 8113 8114 8115
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8116 8117
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8129 8130
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8131 8132
{
	struct rt_rq *rt_rq;
8133
	struct sched_rt_entity *rt_se;
8134 8135 8136
	struct rq *rq;
	int i;

8137
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8138 8139
	if (!tg->rt_rq)
		goto err;
8140
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8141 8142 8143
	if (!tg->rt_se)
		goto err;

8144 8145
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8146 8147 8148 8149

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8150 8151
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8152 8153
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8154

8155 8156
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8157
		if (!rt_se)
8158
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8159

8160
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8161 8162
	}

8163 8164
	return 1;

8165 8166
 err_free_rq:
	kfree(rt_rq);
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8181
#else /* !CONFIG_RT_GROUP_SCHED */
8182 8183 8184 8185
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8186 8187
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8199
#endif /* CONFIG_RT_GROUP_SCHED */
8200

D
Dhaval Giani 已提交
8201
#ifdef CONFIG_CGROUP_SCHED
8202 8203 8204 8205 8206 8207 8208 8209
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8210
struct task_group *sched_create_group(struct task_group *parent)
8211 8212 8213 8214 8215 8216 8217 8218 8219
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8220
	if (!alloc_fair_sched_group(tg, parent))
8221 8222
		goto err;

8223
	if (!alloc_rt_sched_group(tg, parent))
8224 8225
		goto err;

8226
	spin_lock_irqsave(&task_group_lock, flags);
8227
	for_each_possible_cpu(i) {
8228 8229
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8230
	}
P
Peter Zijlstra 已提交
8231
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8232 8233 8234 8235 8236

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8237
	list_add_rcu(&tg->siblings, &parent->children);
8238
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8239

8240
	return tg;
S
Srivatsa Vaddagiri 已提交
8241 8242

err:
P
Peter Zijlstra 已提交
8243
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8244 8245 8246
	return ERR_PTR(-ENOMEM);
}

8247
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8248
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8249 8250
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8251
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8252 8253
}

8254
/* Destroy runqueue etc associated with a task group */
8255
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8256
{
8257
	unsigned long flags;
8258
	int i;
S
Srivatsa Vaddagiri 已提交
8259

8260
	spin_lock_irqsave(&task_group_lock, flags);
8261
	for_each_possible_cpu(i) {
8262 8263
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8264
	}
P
Peter Zijlstra 已提交
8265
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8266
	list_del_rcu(&tg->siblings);
8267
	spin_unlock_irqrestore(&task_group_lock, flags);
8268 8269

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8270
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8271 8272
}

8273
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8274 8275 8276
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8277 8278
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8279 8280 8281 8282 8283 8284 8285
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8286
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8287 8288
	on_rq = tsk->se.on_rq;

8289
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8290
		dequeue_task(rq, tsk, 0);
8291 8292
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8293

P
Peter Zijlstra 已提交
8294
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8295

P
Peter Zijlstra 已提交
8296 8297
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8298
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8299 8300
#endif

8301 8302 8303
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8304
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8305 8306 8307

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8308
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8309

8310
#ifdef CONFIG_FAIR_GROUP_SCHED
8311
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8312 8313 8314 8315 8316
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8317
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8318 8319 8320
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8321
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8322

8323
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8324
		enqueue_entity(cfs_rq, se, 0);
8325
}
8326

8327 8328 8329 8330 8331 8332
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8333
	raw_spin_lock_irqsave(&rq->lock, flags);
8334
	__set_se_shares(se, shares);
8335
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8336 8337
}

8338 8339
static DEFINE_MUTEX(shares_mutex);

8340
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8341 8342
{
	int i;
8343
	unsigned long flags;
8344

8345 8346 8347 8348 8349 8350
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8351 8352
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8353 8354
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8355

8356
	mutex_lock(&shares_mutex);
8357
	if (tg->shares == shares)
8358
		goto done;
S
Srivatsa Vaddagiri 已提交
8359

8360
	spin_lock_irqsave(&task_group_lock, flags);
8361 8362
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8363
	list_del_rcu(&tg->siblings);
8364
	spin_unlock_irqrestore(&task_group_lock, flags);
8365 8366 8367 8368 8369 8370 8371 8372

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8373
	tg->shares = shares;
8374 8375 8376 8377 8378
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8379
		set_se_shares(tg->se[i], shares);
8380
	}
S
Srivatsa Vaddagiri 已提交
8381

8382 8383 8384 8385
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8386
	spin_lock_irqsave(&task_group_lock, flags);
8387 8388
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8389
	list_add_rcu(&tg->siblings, &tg->parent->children);
8390
	spin_unlock_irqrestore(&task_group_lock, flags);
8391
done:
8392
	mutex_unlock(&shares_mutex);
8393
	return 0;
S
Srivatsa Vaddagiri 已提交
8394 8395
}

8396 8397 8398 8399
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8400
#endif
8401

8402
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8403
/*
P
Peter Zijlstra 已提交
8404
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8405
 */
P
Peter Zijlstra 已提交
8406 8407 8408 8409 8410
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8411
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8412

P
Peter Zijlstra 已提交
8413
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8414 8415
}

P
Peter Zijlstra 已提交
8416 8417
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8418
{
P
Peter Zijlstra 已提交
8419
	struct task_struct *g, *p;
8420

P
Peter Zijlstra 已提交
8421 8422 8423 8424
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8425

P
Peter Zijlstra 已提交
8426 8427
	return 0;
}
8428

P
Peter Zijlstra 已提交
8429 8430 8431 8432 8433
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8434

P
Peter Zijlstra 已提交
8435 8436 8437 8438 8439 8440
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8441

P
Peter Zijlstra 已提交
8442 8443
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8444

P
Peter Zijlstra 已提交
8445 8446 8447
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8448 8449
	}

8450 8451 8452 8453 8454
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8455

8456 8457 8458
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8459 8460
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8461

P
Peter Zijlstra 已提交
8462
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8463

8464 8465 8466 8467 8468
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8469

8470 8471 8472
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8473 8474 8475
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8476

P
Peter Zijlstra 已提交
8477 8478 8479 8480
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8481

P
Peter Zijlstra 已提交
8482
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8483
	}
P
Peter Zijlstra 已提交
8484

P
Peter Zijlstra 已提交
8485 8486 8487 8488
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8489 8490
}

P
Peter Zijlstra 已提交
8491
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8492
{
P
Peter Zijlstra 已提交
8493 8494 8495 8496 8497 8498 8499
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8500 8501
}

8502 8503
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8504
{
P
Peter Zijlstra 已提交
8505
	int i, err = 0;
P
Peter Zijlstra 已提交
8506 8507

	mutex_lock(&rt_constraints_mutex);
8508
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8509 8510
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8511
		goto unlock;
P
Peter Zijlstra 已提交
8512

8513
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8514 8515
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8516 8517 8518 8519

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8520
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8521
		rt_rq->rt_runtime = rt_runtime;
8522
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8523
	}
8524
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8525
 unlock:
8526
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8527 8528 8529
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8530 8531
}

8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8544 8545 8546 8547
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8548
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8549 8550
		return -1;

8551
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8552 8553 8554
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8555 8556 8557 8558 8559 8560 8561 8562

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8563 8564 8565
	if (rt_period == 0)
		return -EINVAL;

8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8580
	u64 runtime, period;
8581 8582
	int ret = 0;

8583 8584 8585
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8586 8587 8588 8589 8590 8591 8592 8593
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8594

8595
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8596
	read_lock(&tasklist_lock);
8597
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8598
	read_unlock(&tasklist_lock);
8599 8600 8601 8602
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8613
#else /* !CONFIG_RT_GROUP_SCHED */
8614 8615
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8616 8617 8618
	unsigned long flags;
	int i;

8619 8620 8621
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8622 8623 8624 8625 8626 8627 8628
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8629
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8630 8631 8632
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8633
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8634
		rt_rq->rt_runtime = global_rt_runtime();
8635
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8636
	}
8637
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8638

8639 8640
	return 0;
}
8641
#endif /* CONFIG_RT_GROUP_SCHED */
8642 8643

int sched_rt_handler(struct ctl_table *table, int write,
8644
		void __user *buffer, size_t *lenp,
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8655
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8672

8673
#ifdef CONFIG_CGROUP_SCHED
8674 8675

/* return corresponding task_group object of a cgroup */
8676
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8677
{
8678 8679
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8680 8681 8682
}

static struct cgroup_subsys_state *
8683
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8684
{
8685
	struct task_group *tg, *parent;
8686

8687
	if (!cgrp->parent) {
8688 8689 8690 8691
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8692 8693
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8694 8695 8696 8697 8698 8699
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8700 8701
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8702
{
8703
	struct task_group *tg = cgroup_tg(cgrp);
8704 8705 8706 8707

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8708
static int
8709
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8710
{
8711
#ifdef CONFIG_RT_GROUP_SCHED
8712
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8713 8714
		return -EINVAL;
#else
8715 8716 8717
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8718
#endif
8719 8720
	return 0;
}
8721

8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8741 8742 8743 8744
	return 0;
}

static void
8745
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8746 8747
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8748 8749
{
	sched_move_task(tsk);
8750 8751 8752 8753 8754 8755 8756 8757
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8758 8759
}

8760
#ifdef CONFIG_FAIR_GROUP_SCHED
8761
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8762
				u64 shareval)
8763
{
8764
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8765 8766
}

8767
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8768
{
8769
	struct task_group *tg = cgroup_tg(cgrp);
8770 8771 8772

	return (u64) tg->shares;
}
8773
#endif /* CONFIG_FAIR_GROUP_SCHED */
8774

8775
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8776
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8777
				s64 val)
P
Peter Zijlstra 已提交
8778
{
8779
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8780 8781
}

8782
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8783
{
8784
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8785
}
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8797
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8798

8799
static struct cftype cpu_files[] = {
8800
#ifdef CONFIG_FAIR_GROUP_SCHED
8801 8802
	{
		.name = "shares",
8803 8804
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8805
	},
8806 8807
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8808
	{
P
Peter Zijlstra 已提交
8809
		.name = "rt_runtime_us",
8810 8811
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8812
	},
8813 8814
	{
		.name = "rt_period_us",
8815 8816
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8817
	},
8818
#endif
8819 8820 8821 8822
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8823
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8824 8825 8826
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8827 8828 8829 8830 8831 8832 8833
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8834 8835 8836
	.early_init	= 1,
};

8837
#endif	/* CONFIG_CGROUP_SCHED */
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8848
/* track cpu usage of a group of tasks and its child groups */
8849 8850 8851
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8852
	u64 __percpu *cpuusage;
8853
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8854
	struct cpuacct *parent;
8855 8856 8857 8858 8859
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8860
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8861
{
8862
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8875
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8876 8877
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8878
	int i;
8879 8880

	if (!ca)
8881
		goto out;
8882 8883

	ca->cpuusage = alloc_percpu(u64);
8884 8885 8886 8887 8888 8889
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8890

8891 8892 8893
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8894
	return &ca->css;
8895 8896 8897 8898 8899 8900 8901 8902 8903

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8904 8905 8906
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8907
static void
8908
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8909
{
8910
	struct cpuacct *ca = cgroup_ca(cgrp);
8911
	int i;
8912

8913 8914
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8915 8916 8917 8918
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8919 8920
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8921
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8922 8923 8924 8925 8926 8927
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8928
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8929
	data = *cpuusage;
8930
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8931 8932 8933 8934 8935 8936 8937 8938 8939
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8940
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8941 8942 8943 8944 8945

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8946
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8947
	*cpuusage = val;
8948
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8949 8950 8951 8952 8953
#else
	*cpuusage = val;
#endif
}

8954
/* return total cpu usage (in nanoseconds) of a group */
8955
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8956
{
8957
	struct cpuacct *ca = cgroup_ca(cgrp);
8958 8959 8960
	u64 totalcpuusage = 0;
	int i;

8961 8962
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8963 8964 8965 8966

	return totalcpuusage;
}

8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8979 8980
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8981 8982 8983 8984 8985

out:
	return err;
}

8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9020 9021 9022
static struct cftype files[] = {
	{
		.name = "usage",
9023 9024
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9025
	},
9026 9027 9028 9029
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9030 9031 9032 9033
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9034 9035
};

9036
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9037
{
9038
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9049
	int cpu;
9050

L
Li Zefan 已提交
9051
	if (unlikely(!cpuacct_subsys.active))
9052 9053
		return;

9054
	cpu = task_cpu(tsk);
9055 9056 9057

	rcu_read_lock();

9058 9059
	ca = task_ca(tsk);

9060
	for (; ca; ca = ca->parent) {
9061
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9062 9063
		*cpuusage += cputime;
	}
9064 9065

	rcu_read_unlock();
9066 9067
}

9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9085 9086 9087 9088 9089 9090 9091
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9092
	int batch = CPUACCT_BATCH;
9093 9094 9095 9096 9097 9098 9099 9100

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9101
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9102 9103 9104 9105 9106
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9107 9108 9109 9110 9111 9112 9113 9114
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9115 9116 9117 9118 9119

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
9120
	barrier();
9121 9122 9123 9124 9125
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9126
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9127

9128
static int synchronize_sched_expedited_cpu_stop(void *data)
9129
{
9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9141
	smp_mb(); /* See above comment block. */
9142
	return 0;
9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9157
	int snap, trycount = 0;
9158 9159

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9160
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9161
	get_online_cpus();
9162 9163
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9164
			     NULL) == -EAGAIN) {
9165 9166 9167 9168 9169 9170 9171
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9172
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9173 9174 9175 9176 9177
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9178
	atomic_inc(&synchronize_sched_expedited_count);
9179
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9180 9181 9182 9183 9184
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */