sched.c 216.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326
#ifdef CONFIG_FAIR_GROUP_SCHED
327 328
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
329
#endif
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
332 333
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
334
#endif
S
Srivatsa Vaddagiri 已提交
335 336 337 338
}

#else

P
Peter Zijlstra 已提交
339
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
340 341 342 343
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
344

D
Dhaval Giani 已提交
345
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
346

I
Ingo Molnar 已提交
347 348 349 350 351 352
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
353
	u64 min_vruntime;
I
Ingo Molnar 已提交
354 355 356

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
357 358 359 360 361 362

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
363 364
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
365
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
368

369
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
370 371
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
372 373
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
374 375 376 377 378 379
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
380 381
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
382 383 384

#ifdef CONFIG_SMP
	/*
385
	 * the part of load.weight contributed by tasks
386
	 */
387
	unsigned long task_weight;
388

389 390 391 392 393 394 395
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
396

397 398 399 400
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
401 402 403 404 405

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
406
#endif
I
Ingo Molnar 已提交
407 408
#endif
};
L
Linus Torvalds 已提交
409

I
Ingo Molnar 已提交
410 411 412
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
413
	unsigned long rt_nr_running;
414
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 416
	struct {
		int curr; /* highest queued rt task prio */
417
#ifdef CONFIG_SMP
418
		int next; /* next highest */
419
#endif
420
	} highest_prio;
P
Peter Zijlstra 已提交
421
#endif
P
Peter Zijlstra 已提交
422
#ifdef CONFIG_SMP
423
	unsigned long rt_nr_migratory;
424
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
425
	int overloaded;
426
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
427
#endif
P
Peter Zijlstra 已提交
428
	int rt_throttled;
P
Peter Zijlstra 已提交
429
	u64 rt_time;
P
Peter Zijlstra 已提交
430
	u64 rt_runtime;
I
Ingo Molnar 已提交
431
	/* Nests inside the rq lock: */
432
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
433

434
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
437 438 439 440
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
441 442
};

G
Gregory Haskins 已提交
443 444 445 446
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
447 448
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
449 450 451 452 453 454
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
455 456
	cpumask_var_t span;
	cpumask_var_t online;
457

I
Ingo Molnar 已提交
458
	/*
459 460 461
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
462
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
463
	atomic_t rto_count;
464 465 466
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
467 468
};

469 470 471 472
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
473 474 475 476
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
477 478 479 480 481 482 483
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
484
struct rq {
485
	/* runqueue lock: */
486
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
487 488 489 490 491 492

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
493 494
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
496
	u64 nohz_stamp;
497 498
	unsigned char in_nohz_recently;
#endif
499 500
	unsigned int skip_clock_update;

501 502
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
503 504 505 506
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
507 508
	struct rt_rq rt;

I
Ingo Molnar 已提交
509
#ifdef CONFIG_FAIR_GROUP_SCHED
510 511
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
512 513
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
514
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

525
	struct task_struct *curr, *idle;
526
	unsigned long next_balance;
L
Linus Torvalds 已提交
527
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
528

529
	u64 clock;
I
Ingo Molnar 已提交
530

L
Linus Torvalds 已提交
531 532 533
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
534
	struct root_domain *rd;
L
Linus Torvalds 已提交
535 536
	struct sched_domain *sd;

537
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
538
	/* For active balancing */
539
	int post_schedule;
L
Linus Torvalds 已提交
540 541
	int active_balance;
	int push_cpu;
542 543
	/* cpu of this runqueue: */
	int cpu;
544
	int online;
L
Linus Torvalds 已提交
545

546
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
547

548
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
549
	struct list_head migration_queue;
550 551 552

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
553 554
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
555 556
#endif

557 558 559 560
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
561
#ifdef CONFIG_SCHED_HRTICK
562 563 564 565
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
566 567 568
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
569 570 571
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
572 573
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
574 575

	/* sys_sched_yield() stats */
576
	unsigned int yld_count;
L
Linus Torvalds 已提交
577 578

	/* schedule() stats */
579 580 581
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
582 583

	/* try_to_wake_up() stats */
584 585
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
586 587

	/* BKL stats */
588
	unsigned int bkl_count;
L
Linus Torvalds 已提交
589 590 591
#endif
};

592
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
593

P
Peter Zijlstra 已提交
594 595
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
596
{
P
Peter Zijlstra 已提交
597
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
598 599 600 601 602 603 604

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
605 606
}

607 608 609 610 611 612 613 614 615
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

616
#define rcu_dereference_check_sched_domain(p) \
617 618 619 620
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628
#define for_each_domain(cpu, __sd) \
629
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
635
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
636

I
Ingo Molnar 已提交
637
inline void update_rq_clock(struct rq *rq)
638
{
639 640
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
641 642
}

I
Ingo Molnar 已提交
643 644 645 646 647 648 649 650 651
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
652 653
/**
 * runqueue_is_locked
654
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
655 656 657 658 659
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
660
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
661
{
662
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
663 664
}

I
Ingo Molnar 已提交
665 666 667
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
668 669 670 671

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
672
enum {
P
Peter Zijlstra 已提交
673
#include "sched_features.h"
I
Ingo Molnar 已提交
674 675
};

P
Peter Zijlstra 已提交
676 677 678 679 680
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
681
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
682 683 684 685 686 687 688 689 690
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

691
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
692 693 694 695 696 697
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
698
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
699 700 701 702
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
703 704 705
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
706
	}
L
Li Zefan 已提交
707
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
708

L
Li Zefan 已提交
709
	return 0;
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
729
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

749
	*ppos += cnt;
P
Peter Zijlstra 已提交
750 751 752 753

	return cnt;
}

L
Li Zefan 已提交
754 755 756 757 758
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

759
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
760 761 762 763 764
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
779

780 781 782 783 784 785
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
786 787
/*
 * ratelimit for updating the group shares.
788
 * default: 0.25ms
P
Peter Zijlstra 已提交
789
 */
790
unsigned int sysctl_sched_shares_ratelimit = 250000;
791
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
792

793 794 795 796 797 798 799
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

800 801 802 803 804 805 806 807
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
808
/*
P
Peter Zijlstra 已提交
809
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
810 811
 * default: 1s
 */
P
Peter Zijlstra 已提交
812
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
813

814 815
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
816 817 818 819 820
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
821

822 823 824 825 826 827 828
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
829
	if (sysctl_sched_rt_runtime < 0)
830 831 832 833
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
834

L
Linus Torvalds 已提交
835
#ifndef prepare_arch_switch
836 837 838 839 840 841
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

842 843 844 845 846
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

847
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
848
static inline int task_running(struct rq *rq, struct task_struct *p)
849
{
850
	return task_current(rq, p);
851 852
}

853
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
854 855 856
{
}

857
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858
{
859 860 861 862
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
863 864 865 866 867 868 869
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

870
	raw_spin_unlock_irq(&rq->lock);
871 872 873
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875 876 877 878
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
879
	return task_current(rq, p);
880 881 882
#endif
}

883
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 885 886 887 888 889 890 891 892 893
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
894
	raw_spin_unlock_irq(&rq->lock);
895
#else
896
	raw_spin_unlock(&rq->lock);
897 898 899
#endif
}

900
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 902 903 904 905 906 907 908 909 910 911 912
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
913
#endif
914 915
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
916

917
/*
P
Peter Zijlstra 已提交
918 919
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
920 921 922
 */
static inline int task_is_waking(struct task_struct *p)
{
923
	return unlikely(p->state == TASK_WAKING);
924 925
}

926 927 928 929
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
930
static inline struct rq *__task_rq_lock(struct task_struct *p)
931 932
	__acquires(rq->lock)
{
933 934
	struct rq *rq;

935
	for (;;) {
936
		rq = task_rq(p);
937
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
938
		if (likely(rq == task_rq(p)))
939
			return rq;
940
		raw_spin_unlock(&rq->lock);
941 942 943
	}
}

L
Linus Torvalds 已提交
944 945
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
946
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
947 948
 * explicitly disabling preemption.
 */
949
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
950 951
	__acquires(rq->lock)
{
952
	struct rq *rq;
L
Linus Torvalds 已提交
953

954 955 956
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
957
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
958
		if (likely(rq == task_rq(p)))
959
			return rq;
960
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
961 962 963
	}
}

964 965 966 967 968
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
969
	raw_spin_unlock_wait(&rq->lock);
970 971
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974
	__releases(rq->lock)
{
975
	raw_spin_unlock(&rq->lock);
976 977
}

978
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
979 980
	__releases(rq->lock)
{
981
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
982 983 984
}

/*
985
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
986
 */
A
Alexey Dobriyan 已提交
987
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991 992 993

	local_irq_disable();
	rq = this_rq();
994
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
995 996 997 998

	return rq;
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1020
	if (!cpu_active(cpu_of(rq)))
1021
		return 0;
P
Peter Zijlstra 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1041
	raw_spin_lock(&rq->lock);
1042
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1043
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1045 1046 1047 1048

	return HRTIMER_NORESTART;
}

1049
#ifdef CONFIG_SMP
1050 1051 1052 1053
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1054
{
1055
	struct rq *rq = arg;
1056

1057
	raw_spin_lock(&rq->lock);
1058 1059
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1060
	raw_spin_unlock(&rq->lock);
1061 1062
}

1063 1064 1065 1066 1067 1068
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1069
{
1070 1071
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072

1073
	hrtimer_set_expires(timer, time);
1074 1075 1076 1077

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1078
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 1080
		rq->hrtick_csd_pending = 1;
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1095
		hrtick_clear(cpu_rq(cpu));
1096 1097 1098 1099 1100 1101
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1102
static __init void init_hrtick(void)
1103 1104 1105
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1106 1107 1108 1109 1110 1111 1112 1113
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1114
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115
			HRTIMER_MODE_REL_PINNED, 0);
1116
}
1117

A
Andrew Morton 已提交
1118
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1119 1120
{
}
1121
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1122

1123
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1124
{
1125 1126
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1127

1128 1129 1130 1131
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1132

1133 1134
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1135
}
A
Andrew Morton 已提交
1136
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143 1144
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1145 1146 1147
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1148
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149

I
Ingo Molnar 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1163
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1164 1165 1166
{
	int cpu;

1167
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1168

1169
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1170 1171
		return;

1172
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1189
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1190 1191
		return;
	resched_task(cpu_curr(cpu));
1192
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1193
}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1228
	set_tsk_need_resched(rq->idle);
1229 1230 1231 1232 1233 1234

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1246
#endif /* CONFIG_NO_HZ */
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1269
#else /* !CONFIG_SMP */
1270
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1271
{
1272
	assert_raw_spin_locked(&task_rq(p)->lock);
1273
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1274
}
1275 1276 1277 1278

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1279
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1289 1290 1291
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1292
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1293

1294 1295 1296
/*
 * delta *= weight / lw
 */
1297
static unsigned long
1298 1299 1300 1301 1302
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1303 1304 1305 1306 1307 1308 1309
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1310 1311 1312 1313 1314

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1315
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1316
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1317 1318
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1319
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1320

1321
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 1323
}

1324
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1325 1326
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1327
	lw->inv_weight = 0;
1328 1329
}

1330
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1331 1332
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336 1337 1338 1339
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1340
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 1342 1343 1344
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1345 1346
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 1357 1358
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1359 1360
 */
static const int prio_to_weight[40] = {
1361 1362 1363 1364 1365 1366 1367 1368
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1369 1370
};

1371 1372 1373 1374 1375 1376 1377
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1378
static const u32 prio_to_wmult[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1387
};
1388

1389 1390 1391 1392 1393 1394 1395 1396
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1397 1398
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1399 1400
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1401 1402
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1403 1404
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1405 1406
#endif

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1417
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1418
typedef int (*tg_visitor)(struct task_group *, void *);
1419 1420 1421 1422 1423

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1424
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1425 1426
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1427
	int ret;
1428 1429 1430 1431

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1432 1433 1434
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1435 1436 1437 1438 1439 1440 1441
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1442 1443 1444
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1445 1446 1447 1448 1449

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1450
out_unlock:
1451
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1452 1453

	return ret;
1454 1455
}

P
Peter Zijlstra 已提交
1456 1457 1458
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1459
}
P
Peter Zijlstra 已提交
1460 1461 1462
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1502 1503
static struct sched_group *group_of(int cpu)
{
1504
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1522 1523 1524 1525 1526
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1527
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1528

1529 1530
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1531 1532
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1533 1534 1535 1536 1537

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1538

1539
static __read_mostly unsigned long __percpu *update_shares_data;
1540

1541 1542 1543 1544 1545
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1546 1547 1548
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1549
				    unsigned long *usd_rq_weight)
1550
{
1551
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1552
	int boost = 0;
1553

1554
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1555 1556 1557 1558
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1559

1560
	/*
P
Peter Zijlstra 已提交
1561 1562 1563
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1564
	 */
1565
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1566
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1567

1568 1569 1570 1571
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1572

1573
		raw_spin_lock_irqsave(&rq->lock, flags);
1574
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1575
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1576
		__set_se_shares(tg->se[cpu], shares);
1577
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1578
	}
1579
}
1580 1581

/*
1582 1583 1584
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1585
 */
P
Peter Zijlstra 已提交
1586
static int tg_shares_up(struct task_group *tg, void *data)
1587
{
1588
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1589
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1590
	struct sched_domain *sd = data;
1591
	unsigned long flags;
1592
	int i;
1593

1594 1595 1596 1597
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1598
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1599

1600
	for_each_cpu(i, sched_domain_span(sd)) {
1601
		weight = tg->cfs_rq[i]->load.weight;
1602
		usd_rq_weight[i] = weight;
1603

1604
		rq_weight += weight;
1605 1606 1607 1608 1609 1610 1611 1612
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1613
		sum_weight += weight;
1614
		shares += tg->cfs_rq[i]->shares;
1615 1616
	}

1617 1618 1619
	if (!rq_weight)
		rq_weight = sum_weight;

1620 1621 1622 1623 1624
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1625

1626
	for_each_cpu(i, sched_domain_span(sd))
1627
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1628 1629

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1630 1631

	return 0;
1632 1633 1634
}

/*
1635 1636 1637
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1638
 */
P
Peter Zijlstra 已提交
1639
static int tg_load_down(struct task_group *tg, void *data)
1640
{
1641
	unsigned long load;
P
Peter Zijlstra 已提交
1642
	long cpu = (long)data;
1643

1644 1645 1646 1647 1648 1649 1650
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1651

1652
	tg->cfs_rq[cpu]->h_load = load;
1653

P
Peter Zijlstra 已提交
1654
	return 0;
1655 1656
}

1657
static void update_shares(struct sched_domain *sd)
1658
{
1659 1660 1661 1662 1663 1664 1665 1666
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1667 1668 1669

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1670
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1671
	}
1672 1673
}

P
Peter Zijlstra 已提交
1674
static void update_h_load(long cpu)
1675
{
1676 1677 1678
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1679
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1680 1681 1682 1683
}

#else

1684
static inline void update_shares(struct sched_domain *sd)
1685 1686 1687
{
}

1688 1689
#endif

1690 1691
#ifdef CONFIG_PREEMPT

1692 1693
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1694
/*
1695 1696 1697 1698 1699 1700
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1701
 */
1702 1703 1704 1705 1706
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1707
	raw_spin_unlock(&this_rq->lock);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 1723 1724 1725 1726 1727
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1728
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729
		if (busiest < this_rq) {
1730 1731 1732 1733
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1734 1735
			ret = 1;
		} else
1736 1737
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1738 1739 1740 1741
	}
	return ret;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1751
		raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1758 1759 1760
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1761
	raw_spin_unlock(&busiest->lock);
1762 1763
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1807 1808
#endif

V
Vegard Nossum 已提交
1809
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1810 1811
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1812
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1813 1814 1815
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1816
#endif
1817

1818
static void calc_load_account_active(struct rq *this_rq);
1819
static void update_sysctl(void);
1820
static int get_update_sysctl_factor(void);
1821

P
Peter Zijlstra 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1835

1836
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1837 1838

#define sched_class_highest (&rt_sched_class)
1839 1840
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1841

1842 1843
#include "sched_stats.h"

1844
static void inc_nr_running(struct rq *rq)
1845 1846 1847 1848
{
	rq->nr_running++;
}

1849
static void dec_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running--;
}

1854 1855 1856
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1857 1858 1859 1860
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1861

I
Ingo Molnar 已提交
1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1870

I
Ingo Molnar 已提交
1871 1872
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1873 1874
}

1875 1876 1877 1878 1879 1880
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1881
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1882
{
1883
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1884
	sched_info_queued(p);
1885
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1886
	p->se.on_rq = 1;
1887 1888
}

1889
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1890
{
1891
	update_rq_clock(rq);
1892
	sched_info_dequeued(p);
1893
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 0;
1895 1896
}

1897 1898 1899
/*
 * activate_task - move a task to the runqueue.
 */
1900
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1901 1902 1903 1904
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1905
	enqueue_task(rq, p, flags);
1906 1907 1908 1909 1910 1911
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1912
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1913 1914 1915 1916
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1917
	dequeue_task(rq, p, flags);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1928
/*
I
Ingo Molnar 已提交
1929
 * __normal_prio - return the priority that is based on the static prio
1930 1931 1932
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1933
	return p->static_prio;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1943
static inline int normal_prio(struct task_struct *p)
1944 1945 1946
{
	int prio;

1947
	if (task_has_rt_policy(p))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1961
static int effective_prio(struct task_struct *p)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1974 1975 1976 1977
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1978
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1979 1980 1981 1982
{
	return cpu_curr(task_cpu(p)) == p;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1995
#ifdef CONFIG_SMP
1996 1997 1998
/*
 * Is this task likely cache-hot:
 */
1999
static int
2000 2001 2002 2003
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2004 2005 2006
	if (p->sched_class != &fair_sched_class)
		return 0;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
2010
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2011 2012
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017 2018 2019
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2020 2021 2022 2023 2024
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2025
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2026
{
2027 2028 2029 2030 2031
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2032 2033
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 2035
#endif

2036
	trace_sched_migrate_task(p, new_cpu);
2037

2038 2039 2040 2041
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2042 2043

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2044 2045
}

2046
struct migration_req {
L
Linus Torvalds 已提交
2047 2048
	struct list_head list;

2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050 2051 2052
	int dest_cpu;

	struct completion done;
2053
};
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static int
2060
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2061
{
2062
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2063 2064 2065

	/*
	 * If the task is not on a runqueue (and not running), then
2066
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2067
	 */
2068
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2075

L
Linus Torvalds 已提交
2076 2077 2078
	return 1;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2122 2123 2124
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2125 2126 2127 2128 2129 2130 2131
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2138
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2139 2140
{
	unsigned long flags;
I
Ingo Molnar 已提交
2141
	int running, on_rq;
R
Roland McGrath 已提交
2142
	unsigned long ncsw;
2143
	struct rq *rq;
L
Linus Torvalds 已提交
2144

2145 2146 2147 2148 2149 2150 2151 2152
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2165 2166 2167
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2168
			cpu_relax();
R
Roland McGrath 已提交
2169
		}
2170

2171 2172 2173 2174 2175 2176
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2177
		trace_sched_wait_task(rq, p);
2178 2179
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2180
		ncsw = 0;
2181
		if (!match_state || p->state == match_state)
2182
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183
		task_rq_unlock(rq, &flags);
2184

R
Roland McGrath 已提交
2185 2186 2187 2188 2189 2190
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2201

2202 2203 2204 2205 2206
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2207
		 * So if it was still runnable (but just not actively
2208 2209 2210 2211 2212 2213 2214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2215

2216 2217 2218 2219 2220 2221 2222
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2223 2224

	return ncsw;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2240
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2250
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2251
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2252

T
Thomas Gleixner 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2274
#ifdef CONFIG_SMP
2275 2276 2277
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2294
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2295
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2311
/*
2312
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2313
 */
2314
static inline
2315
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2316
{
2317
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2330
		     !cpu_online(cpu)))
2331
		cpu = select_fallback_rq(task_cpu(p), p);
2332 2333

	return cpu;
2334 2335 2336
}
#endif

L
Linus Torvalds 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2351 2352
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2353
{
2354
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2355
	unsigned long flags;
2356
	unsigned long en_flags = ENQUEUE_WAKEUP;
2357
	struct rq *rq;
L
Linus Torvalds 已提交
2358

P
Peter Zijlstra 已提交
2359
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2360

2361
	smp_wmb();
2362
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2363
	if (!(p->state & state))
L
Linus Torvalds 已提交
2364 2365
		goto out;

I
Ingo Molnar 已提交
2366
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2367 2368 2369
		goto out_running;

	cpu = task_cpu(p);
2370
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2376 2377 2378
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2379 2380
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2381
	 */
2382 2383 2384 2385 2386 2387
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2388
	p->state = TASK_WAKING;
2389

2390
	if (p->sched_class->task_waking) {
2391
		p->sched_class->task_waking(rq, p);
2392 2393
		en_flags |= ENQUEUE_WAKING;
	}
2394

2395 2396
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2397
		set_task_cpu(p, cpu);
2398
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2399

2400 2401
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2402

2403 2404 2405 2406 2407 2408 2409
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2410
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2411

2412 2413 2414 2415 2416 2417 2418
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2419
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2420 2421 2422 2423 2424
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2425
#endif /* CONFIG_SCHEDSTATS */
2426

L
Linus Torvalds 已提交
2427 2428
out_activate:
#endif /* CONFIG_SMP */
2429
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2430
	if (wake_flags & WF_SYNC)
2431
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2432
	if (orig_cpu != cpu)
2433
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2434
	if (cpu == this_cpu)
2435
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2436
	else
2437
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2438
	activate_task(rq, p, en_flags);
L
Linus Torvalds 已提交
2439 2440 2441
	success = 1;

out_running:
2442
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2443
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2444

L
Linus Torvalds 已提交
2445
	p->state = TASK_RUNNING;
2446
#ifdef CONFIG_SMP
2447 2448
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2460
#endif
L
Linus Torvalds 已提交
2461 2462
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2463
	put_cpu();
L
Linus Torvalds 已提交
2464 2465 2466 2467

	return success;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2479
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2480
{
2481
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2482 2483 2484
}
EXPORT_SYMBOL(wake_up_process);

2485
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491 2492
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2493 2494 2495 2496 2497 2498 2499
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2500
	p->se.prev_sum_exec_runtime	= 0;
2501
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2502 2503

#ifdef CONFIG_SCHEDSTATS
2504
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2505
#endif
N
Nick Piggin 已提交
2506

P
Peter Zijlstra 已提交
2507
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2508
	p->se.on_rq = 0;
2509
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2510

2511 2512 2513
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2524
	/*
2525
	 * We mark the process as running here. This guarantees that
2526 2527 2528
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2529
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2530

2531 2532 2533 2534
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2535
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2536
			p->policy = SCHED_NORMAL;
2537 2538
			p->normal_prio = p->static_prio;
		}
2539

2540 2541
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2542
			p->normal_prio = p->static_prio;
2543 2544 2545
			set_load_weight(p);
		}

2546 2547 2548 2549 2550 2551
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2552

2553 2554 2555 2556 2557
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2558 2559
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2560

P
Peter Zijlstra 已提交
2561 2562 2563
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2564 2565
	set_task_cpu(p, cpu);

2566
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2567
	if (likely(sched_info_on()))
2568
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2569
#endif
2570
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2571 2572
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2573
#ifdef CONFIG_PREEMPT
2574
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2575
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2576
#endif
2577 2578
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2579
	put_cpu();
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2589
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2590 2591
{
	unsigned long flags;
I
Ingo Molnar 已提交
2592
	struct rq *rq;
2593
	int cpu __maybe_unused = get_cpu();
2594 2595

#ifdef CONFIG_SMP
2596 2597 2598
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2599 2600 2601 2602 2603
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2604 2605
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2606
	 */
2607
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2608
	set_task_cpu(p, cpu);
2609

2610
	p->state = TASK_RUNNING;
2611 2612 2613 2614
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2615
	activate_task(rq, p, 0);
2616
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2617
	check_preempt_curr(rq, p, WF_FORK);
2618
#ifdef CONFIG_SMP
2619 2620
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2621
#endif
I
Ingo Molnar 已提交
2622
	task_rq_unlock(rq, &flags);
2623
	put_cpu();
L
Linus Torvalds 已提交
2624 2625
}

2626 2627 2628
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2629
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2630
 * @notifier: notifier struct to register
2631 2632 2633 2634 2635 2636 2637 2638 2639
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2640
 * @notifier: notifier struct to unregister
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2670
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2682
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2683

2684 2685 2686
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2687
 * @prev: the current task that is being switched out
2688 2689 2690 2691 2692 2693 2694 2695 2696
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2697 2698 2699
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2700
{
2701
	fire_sched_out_preempt_notifiers(prev, next);
2702 2703 2704 2705
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2706 2707
/**
 * finish_task_switch - clean up after a task-switch
2708
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2709 2710
 * @prev: the thread we just switched away from.
 *
2711 2712 2713 2714
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2715 2716
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2717
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2718 2719 2720
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2721
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2722 2723 2724
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2725
	long prev_state;
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2731
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2732 2733
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2734
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2740
	prev_state = prev->state;
2741
	finish_arch_switch(prev);
2742 2743 2744
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2745
	perf_event_task_sched_in(current);
2746 2747 2748
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2749
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2750

2751
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2752 2753
	if (mm)
		mmdrop(mm);
2754
	if (unlikely(prev_state == TASK_DEAD)) {
2755 2756 2757
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2758
		 */
2759
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2760
		put_task_struct(prev);
2761
	}
L
Linus Torvalds 已提交
2762 2763
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2779
		raw_spin_lock_irqsave(&rq->lock, flags);
2780 2781
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2782
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2783 2784 2785 2786 2787 2788

		rq->post_schedule = 0;
	}
}

#else
2789

2790 2791 2792 2793 2794 2795
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2796 2797
}

2798 2799
#endif

L
Linus Torvalds 已提交
2800 2801 2802 2803
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2804
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2805 2806
	__releases(rq->lock)
{
2807 2808
	struct rq *rq = this_rq();

2809
	finish_task_switch(rq, prev);
2810

2811 2812 2813 2814 2815
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2816

2817 2818 2819 2820
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2821
	if (current->set_child_tid)
2822
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2829
static inline void
2830
context_switch(struct rq *rq, struct task_struct *prev,
2831
	       struct task_struct *next)
L
Linus Torvalds 已提交
2832
{
I
Ingo Molnar 已提交
2833
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2834

2835
	prepare_task_switch(rq, prev, next);
2836
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2837 2838
	mm = next->mm;
	oldmm = prev->active_mm;
2839 2840 2841 2842 2843
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2844
	arch_start_context_switch(prev);
2845

2846
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2853
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2854 2855 2856
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2857 2858 2859 2860 2861 2862 2863
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2864
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2865
#endif
L
Linus Torvalds 已提交
2866 2867 2868 2869

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2870 2871 2872 2873 2874 2875 2876
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2894
}
L
Linus Torvalds 已提交
2895 2896

unsigned long nr_uninterruptible(void)
2897
{
L
Linus Torvalds 已提交
2898
	unsigned long i, sum = 0;
2899

2900
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2901
		sum += cpu_rq(i)->nr_uninterruptible;
2902 2903

	/*
L
Linus Torvalds 已提交
2904 2905
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2906
	 */
L
Linus Torvalds 已提交
2907 2908
	if (unlikely((long)sum < 0))
		sum = 0;
2909

L
Linus Torvalds 已提交
2910
	return sum;
2911 2912
}

L
Linus Torvalds 已提交
2913
unsigned long long nr_context_switches(void)
2914
{
2915 2916
	int i;
	unsigned long long sum = 0;
2917

2918
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2919
		sum += cpu_rq(i)->nr_switches;
2920

L
Linus Torvalds 已提交
2921 2922
	return sum;
}
2923

L
Linus Torvalds 已提交
2924 2925 2926
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2927

2928
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2929
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2930

L
Linus Torvalds 已提交
2931 2932
	return sum;
}
2933

2934 2935 2936 2937 2938
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2939

2940 2941 2942 2943 2944
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2945

2946

2947 2948 2949 2950 2951
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2966 2967
}

2968 2969
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2970
{
2971 2972 2973 2974
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2975 2976

/*
2977 2978
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2979
 */
2980
void calc_global_load(void)
2981
{
2982 2983
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2984

2985 2986
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2987

2988 2989
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2990

2991 2992 2993
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2994

2995 2996
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2997

2998 2999 3000 3001 3002 3003
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3004

3005 3006
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3007

3008 3009 3010 3011
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3012
	}
3013 3014 3015
}

/*
I
Ingo Molnar 已提交
3016 3017
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3018
 */
I
Ingo Molnar 已提交
3019
static void update_cpu_load(struct rq *this_rq)
3020
{
3021
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3022
	int i, scale;
3023

I
Ingo Molnar 已提交
3024
	this_rq->nr_load_updates++;
3025

I
Ingo Molnar 已提交
3026 3027 3028
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3029

I
Ingo Molnar 已提交
3030
		/* scale is effectively 1 << i now, and >> i divides by scale */
3031

I
Ingo Molnar 已提交
3032 3033
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3034 3035 3036 3037 3038 3039 3040
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3041 3042
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3043

3044 3045 3046
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3047 3048 3049
	}
}

I
Ingo Molnar 已提交
3050
#ifdef CONFIG_SMP
3051

3052
/*
P
Peter Zijlstra 已提交
3053 3054
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3055
 */
P
Peter Zijlstra 已提交
3056
void sched_exec(void)
3057
{
P
Peter Zijlstra 已提交
3058
	struct task_struct *p = current;
3059
	struct migration_req req;
L
Linus Torvalds 已提交
3060
	unsigned long flags;
3061
	struct rq *rq;
3062
	int dest_cpu;
3063

L
Linus Torvalds 已提交
3064
	rq = task_rq_lock(p, &flags);
3065 3066 3067 3068
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;

3069
	/*
P
Peter Zijlstra 已提交
3070
	 * select_task_rq() can race against ->cpus_allowed
3071
	 */
3072 3073 3074
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3075 3076
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3077

L
Linus Torvalds 已提交
3078 3079 3080 3081 3082
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3083

L
Linus Torvalds 已提交
3084 3085
		return;
	}
3086
unlock:
L
Linus Torvalds 已提交
3087 3088
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3089

L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095 3096
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3097
 * Return any ns on the sched_clock that have not yet been accounted in
3098
 * @p in case that task is currently running.
3099 3100
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3101
 */
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3116
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3117 3118
{
	unsigned long flags;
3119
	struct rq *rq;
3120
	u64 ns = 0;
3121

3122
	rq = task_rq_lock(p, &flags);
3123 3124
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3125

3126 3127
	return ns;
}
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3166
	task_rq_unlock(rq, &flags);
3167

L
Linus Torvalds 已提交
3168 3169 3170 3171 3172 3173 3174
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3175
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3176
 */
3177 3178
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3179 3180 3181 3182
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3183
	/* Add user time to process. */
L
Linus Torvalds 已提交
3184
	p->utime = cputime_add(p->utime, cputime);
3185
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3186
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3187 3188 3189 3190 3191 3192 3193

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3194 3195

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3196 3197
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3198 3199
}

3200 3201 3202 3203
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3204
 * @cputime_scaled: cputime scaled by cpu frequency
3205
 */
3206 3207
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3208 3209 3210 3211 3212 3213
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3214
	/* Add guest time to process. */
3215
	p->utime = cputime_add(p->utime, cputime);
3216
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3217
	account_group_user_time(p, cputime);
3218 3219
	p->gtime = cputime_add(p->gtime, cputime);

3220
	/* Add guest time to cpustat. */
3221 3222 3223 3224 3225 3226 3227
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3228 3229
}

L
Linus Torvalds 已提交
3230 3231 3232 3233 3234
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3235
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3236 3237
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3238
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3239 3240 3241 3242
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3243
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3244
		account_guest_time(p, cputime, cputime_scaled);
3245 3246
		return;
	}
3247

3248
	/* Add system time to process. */
L
Linus Torvalds 已提交
3249
	p->stime = cputime_add(p->stime, cputime);
3250
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3251
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258 3259

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3260 3261
		cpustat->system = cputime64_add(cpustat->system, tmp);

3262 3263
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3264 3265 3266 3267
	/* Account for system time used */
	acct_update_integrals(p);
}

3268
/*
L
Linus Torvalds 已提交
3269 3270
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3271
 */
3272
void account_steal_time(cputime_t cputime)
3273
{
3274 3275 3276 3277
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3278 3279
}

L
Linus Torvalds 已提交
3280
/*
3281 3282
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3283
 */
3284
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3285 3286
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3287
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3288
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3289

3290 3291 3292 3293
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3294 3295
}

3296 3297 3298 3299 3300 3301 3302 3303 3304
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3305
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3306 3307 3308
	struct rq *rq = this_rq();

	if (user_tick)
3309
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3310
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3311
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3312 3313
				    one_jiffy_scaled);
	else
3314
		account_idle_time(cputime_one_jiffy);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3334 3335
}

3336 3337
#endif

3338 3339 3340 3341
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3342
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3343
{
3344 3345
	*ut = p->utime;
	*st = p->stime;
3346 3347
}

3348
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3349
{
3350 3351 3352 3353 3354 3355
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3356 3357
}
#else
3358 3359

#ifndef nsecs_to_cputime
3360
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3361 3362
#endif

3363
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3364
{
3365
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3366 3367 3368 3369

	/*
	 * Use CFS's precise accounting:
	 */
3370
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3371 3372

	if (total) {
3373 3374 3375
		u64 temp;

		temp = (u64)(rtime * utime);
3376
		do_div(temp, total);
3377 3378 3379
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3380

3381 3382 3383
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3384
	p->prev_utime = max(p->prev_utime, utime);
3385
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3386

3387 3388
	*ut = p->prev_utime;
	*st = p->prev_stime;
3389 3390
}

3391 3392 3393 3394
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3395
{
3396 3397 3398
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3399

3400
	thread_group_cputime(p, &cputime);
3401

3402 3403
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3404

3405 3406
	if (total) {
		u64 temp;
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3420 3421 3422
}
#endif

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3434
	struct task_struct *curr = rq->curr;
3435 3436

	sched_clock_tick();
I
Ingo Molnar 已提交
3437

3438
	raw_spin_lock(&rq->lock);
3439
	update_rq_clock(rq);
3440
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3441
	curr->sched_class->task_tick(rq, curr, 0);
3442
	raw_spin_unlock(&rq->lock);
3443

3444
	perf_event_task_tick(curr);
3445

3446
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3447 3448
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3449
#endif
L
Linus Torvalds 已提交
3450 3451
}

3452
notrace unsigned long get_parent_ip(unsigned long addr)
3453 3454 3455 3456 3457 3458 3459 3460
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3461

3462 3463 3464
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3465
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3466
{
3467
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3468 3469 3470
	/*
	 * Underflow?
	 */
3471 3472
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3473
#endif
L
Linus Torvalds 已提交
3474
	preempt_count() += val;
3475
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3476 3477 3478
	/*
	 * Spinlock count overflowing soon?
	 */
3479 3480
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3481 3482 3483
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3484 3485 3486
}
EXPORT_SYMBOL(add_preempt_count);

3487
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3488
{
3489
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3490 3491 3492
	/*
	 * Underflow?
	 */
3493
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3494
		return;
L
Linus Torvalds 已提交
3495 3496 3497
	/*
	 * Is the spinlock portion underflowing?
	 */
3498 3499 3500
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3501
#endif
3502

3503 3504
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510 3511
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3512
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3513
 */
I
Ingo Molnar 已提交
3514
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3515
{
3516 3517
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3518 3519
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3520

I
Ingo Molnar 已提交
3521
	debug_show_held_locks(prev);
3522
	print_modules();
I
Ingo Molnar 已提交
3523 3524
	if (irqs_disabled())
		print_irqtrace_events(prev);
3525 3526 3527 3528 3529

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3530
}
L
Linus Torvalds 已提交
3531

I
Ingo Molnar 已提交
3532 3533 3534 3535 3536
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3537
	/*
I
Ingo Molnar 已提交
3538
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3539 3540 3541
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3542
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3543 3544
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3545 3546
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3547
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3548 3549
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3550 3551
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3552 3553
	}
#endif
I
Ingo Molnar 已提交
3554 3555
}

P
Peter Zijlstra 已提交
3556
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3557
{
3558 3559 3560
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3561
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3562 3563
}

I
Ingo Molnar 已提交
3564 3565 3566 3567
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3568
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3569
{
3570
	const struct sched_class *class;
I
Ingo Molnar 已提交
3571
	struct task_struct *p;
L
Linus Torvalds 已提交
3572 3573

	/*
I
Ingo Molnar 已提交
3574 3575
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3576
	 */
I
Ingo Molnar 已提交
3577
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3578
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3579 3580
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3581 3582
	}

I
Ingo Molnar 已提交
3583 3584
	class = sched_class_highest;
	for ( ; ; ) {
3585
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3595

I
Ingo Molnar 已提交
3596 3597 3598
/*
 * schedule() is the main scheduler function.
 */
3599
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3600 3601
{
	struct task_struct *prev, *next;
3602
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3603
	struct rq *rq;
3604
	int cpu;
I
Ingo Molnar 已提交
3605

3606 3607
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3608 3609
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3610
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3611 3612 3613 3614 3615 3616 3617
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3618

3619
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3620
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3621

3622
	raw_spin_lock_irq(&rq->lock);
3623
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3624 3625

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3626
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3627
			prev->state = TASK_RUNNING;
3628
		else
3629
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
I
Ingo Molnar 已提交
3630
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3631 3632
	}

3633
	pre_schedule(rq, prev);
3634

I
Ingo Molnar 已提交
3635
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3636 3637
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3638
	put_prev_task(rq, prev);
3639
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3640 3641

	if (likely(prev != next)) {
3642
		sched_info_switch(prev, next);
3643
		perf_event_task_sched_out(prev, next);
3644

L
Linus Torvalds 已提交
3645 3646 3647 3648
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3649
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3650 3651 3652 3653 3654 3655
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3656
	} else
3657
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3658

3659
	post_schedule(rq);
L
Linus Torvalds 已提交
3660

3661 3662 3663
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3664
		goto need_resched_nonpreemptible;
3665
	}
P
Peter Zijlstra 已提交
3666

L
Linus Torvalds 已提交
3667
	preempt_enable_no_resched();
3668
	if (need_resched())
L
Linus Torvalds 已提交
3669 3670 3671 3672
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3673
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3734 3735
#ifdef CONFIG_PREEMPT
/*
3736
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3737
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3738 3739 3740 3741 3742
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3743

L
Linus Torvalds 已提交
3744 3745
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3746
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3747
	 */
N
Nick Piggin 已提交
3748
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3749 3750
		return;

3751 3752 3753 3754
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3755

3756 3757 3758 3759 3760
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3761
	} while (need_resched());
L
Linus Torvalds 已提交
3762 3763 3764 3765
}
EXPORT_SYMBOL(preempt_schedule);

/*
3766
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3774

3775
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3776 3777
	BUG_ON(ti->preempt_count || !irqs_disabled());

3778 3779 3780 3781 3782 3783
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3784

3785 3786 3787 3788 3789
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3790
	} while (need_resched());
L
Linus Torvalds 已提交
3791 3792 3793 3794
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3795
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3796
			  void *key)
L
Linus Torvalds 已提交
3797
{
P
Peter Zijlstra 已提交
3798
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3799 3800 3801 3802
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3803 3804
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3805 3806 3807
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3808
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3809 3810
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3811
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3812
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3813
{
3814
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3815

3816
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3817 3818
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3819
		if (curr->func(curr, mode, wake_flags, key) &&
3820
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3830
 * @key: is directly passed to the wakeup function
3831 3832 3833
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3834
 */
3835
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3836
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3849
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3850 3851 3852 3853
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3854 3855 3856 3857 3858
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3859
/**
3860
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3861 3862 3863
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3864
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3872 3873 3874
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3875
 */
3876 3877
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3878 3879
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3880
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3881 3882 3883 3884 3885

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3886
		wake_flags = 0;
L
Linus Torvalds 已提交
3887 3888

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3889
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3890 3891
	spin_unlock_irqrestore(&q->lock, flags);
}
3892 3893 3894 3895 3896 3897 3898 3899 3900
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3901 3902
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3903 3904 3905 3906 3907 3908 3909 3910
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3911 3912 3913
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3914
 */
3915
void complete(struct completion *x)
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3921
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3922 3923 3924 3925
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3926 3927 3928 3929 3930
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3931 3932 3933
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3934
 */
3935
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3941
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3942 3943 3944 3945
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3946 3947
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3955
			if (signal_pending_state(state, current)) {
3956 3957
				timeout = -ERESTARTSYS;
				break;
3958 3959
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3960 3961 3962
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3963
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3964
		__remove_wait_queue(&x->wait, &wait);
3965 3966
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3967 3968
	}
	x->done--;
3969
	return timeout ?: 1;
L
Linus Torvalds 已提交
3970 3971
}

3972 3973
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3974 3975 3976 3977
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3978
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3979
	spin_unlock_irq(&x->wait.lock);
3980 3981
	return timeout;
}
L
Linus Torvalds 已提交
3982

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3993
void __sched wait_for_completion(struct completion *x)
3994 3995
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3996
}
3997
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3998

3999 4000 4001 4002 4003 4004 4005 4006 4007
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4008
unsigned long __sched
4009
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4010
{
4011
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4012
}
4013
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4014

4015 4016 4017 4018 4019 4020 4021
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4022
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4023
{
4024 4025 4026 4027
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4028
}
4029
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4030

4031 4032 4033 4034 4035 4036 4037 4038
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4039
unsigned long __sched
4040 4041
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4042
{
4043
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4044
}
4045
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4046

4047 4048 4049 4050 4051 4052 4053
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4077
	unsigned long flags;
4078 4079
	int ret = 1;

4080
	spin_lock_irqsave(&x->wait.lock, flags);
4081 4082 4083 4084
	if (!x->done)
		ret = 0;
	else
		x->done--;
4085
	spin_unlock_irqrestore(&x->wait.lock, flags);
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4100
	unsigned long flags;
4101 4102
	int ret = 1;

4103
	spin_lock_irqsave(&x->wait.lock, flags);
4104 4105
	if (!x->done)
		ret = 0;
4106
	spin_unlock_irqrestore(&x->wait.lock, flags);
4107 4108 4109 4110
	return ret;
}
EXPORT_SYMBOL(completion_done);

4111 4112
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4113
{
I
Ingo Molnar 已提交
4114 4115 4116 4117
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4118

4119
	__set_current_state(state);
L
Linus Torvalds 已提交
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4135 4136 4137
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4138
long __sched
I
Ingo Molnar 已提交
4139
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4140
{
4141
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4142 4143 4144
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4145
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4146
{
4147
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4148 4149 4150
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4151
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4152
{
4153
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4154 4155 4156
}
EXPORT_SYMBOL(sleep_on_timeout);

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4169
void rt_mutex_setprio(struct task_struct *p, int prio)
4170 4171
{
	unsigned long flags;
4172
	int oldprio, on_rq, running;
4173
	struct rq *rq;
4174
	const struct sched_class *prev_class;
4175 4176 4177 4178 4179

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4180
	oldprio = p->prio;
4181
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4182
	on_rq = p->se.on_rq;
4183
	running = task_current(rq, p);
4184
	if (on_rq)
4185
		dequeue_task(rq, p, 0);
4186 4187
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4188 4189 4190 4191 4192 4193

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4194 4195
	p->prio = prio;

4196 4197
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4198
	if (on_rq) {
4199
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4200 4201

		check_class_changed(rq, p, prev_class, oldprio, running);
4202 4203 4204 4205 4206 4207
	}
	task_rq_unlock(rq, &flags);
}

#endif

4208
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4209
{
I
Ingo Molnar 已提交
4210
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4211
	unsigned long flags;
4212
	struct rq *rq;
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4225
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4226
	 */
4227
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4228 4229 4230
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4231
	on_rq = p->se.on_rq;
4232
	if (on_rq)
4233
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4234 4235

	p->static_prio = NICE_TO_PRIO(nice);
4236
	set_load_weight(p);
4237 4238 4239
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4240

I
Ingo Molnar 已提交
4241
	if (on_rq) {
4242
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4243
		/*
4244 4245
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4246
		 */
4247
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253 4254
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4255 4256 4257 4258 4259
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4260
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4261
{
4262 4263
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4264

4265
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4266 4267 4268
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4278
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4279
{
4280
	long nice, retval;
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4287 4288
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4289 4290 4291
	if (increment > 40)
		increment = 40;

4292
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4298 4299 4300
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4319
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4328
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4329 4330 4331
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4332
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4347
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4356
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4357
{
4358
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4359 4360 4361
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4362 4363
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4364
{
I
Ingo Molnar 已提交
4365
	BUG_ON(p->se.on_rq);
4366

L
Linus Torvalds 已提交
4367 4368
	p->policy = policy;
	p->rt_priority = prio;
4369 4370 4371
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4372 4373 4374 4375
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4376
	set_load_weight(p);
L
Linus Torvalds 已提交
4377 4378
}

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4395 4396
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4397
{
4398
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4399
	unsigned long flags;
4400
	const struct sched_class *prev_class;
4401
	struct rq *rq;
4402
	int reset_on_fork;
L
Linus Torvalds 已提交
4403

4404 4405
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4406 4407
recheck:
	/* double check policy once rq lock held */
4408 4409
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4410
		policy = oldpolicy = p->policy;
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4421 4422
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4423 4424
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4425 4426
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4427
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4428
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4429
		return -EINVAL;
4430
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4431 4432
		return -EINVAL;

4433 4434 4435
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4436
	if (user && !capable(CAP_SYS_NICE)) {
4437
		if (rt_policy(policy)) {
4438 4439 4440 4441
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4442
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4454 4455 4456 4457 4458 4459
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4460

4461
		/* can't change other user's priorities */
4462
		if (!check_same_owner(p))
4463
			return -EPERM;
4464 4465 4466 4467

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4468
	}
L
Linus Torvalds 已提交
4469

4470
	if (user) {
4471
#ifdef CONFIG_RT_GROUP_SCHED
4472 4473 4474 4475
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4476 4477
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4478
			return -EPERM;
4479 4480
#endif

4481 4482 4483 4484 4485
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4486 4487 4488 4489
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4490
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4491 4492 4493 4494
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4495
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4496 4497 4498
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4499
		__task_rq_unlock(rq);
4500
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4501 4502
		goto recheck;
	}
I
Ingo Molnar 已提交
4503
	on_rq = p->se.on_rq;
4504
	running = task_current(rq, p);
4505
	if (on_rq)
4506
		deactivate_task(rq, p, 0);
4507 4508
	if (running)
		p->sched_class->put_prev_task(rq, p);
4509

4510 4511
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4512
	oldprio = p->prio;
4513
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4514
	__setscheduler(rq, p, policy, param->sched_priority);
4515

4516 4517
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4518 4519
	if (on_rq) {
		activate_task(rq, p, 0);
4520 4521

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4522
	}
4523
	__task_rq_unlock(rq);
4524
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4525

4526 4527
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4528 4529
	return 0;
}
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4544 4545
EXPORT_SYMBOL_GPL(sched_setscheduler);

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4563 4564
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4565 4566 4567
{
	struct sched_param lparam;
	struct task_struct *p;
4568
	int retval;
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4574 4575 4576

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4577
	p = find_process_by_pid(pid);
4578 4579 4580
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4581

L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4591 4592
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4593
{
4594 4595 4596 4597
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4606
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613 4614
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4615
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4616
{
4617
	struct task_struct *p;
4618
	int retval;
L
Linus Torvalds 已提交
4619 4620

	if (pid < 0)
4621
		return -EINVAL;
L
Linus Torvalds 已提交
4622 4623

	retval = -ESRCH;
4624
	rcu_read_lock();
L
Linus Torvalds 已提交
4625 4626 4627 4628
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4629 4630
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4631
	}
4632
	rcu_read_unlock();
L
Linus Torvalds 已提交
4633 4634 4635 4636
	return retval;
}

/**
4637
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4638 4639 4640
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4641
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4642 4643
{
	struct sched_param lp;
4644
	struct task_struct *p;
4645
	int retval;
L
Linus Torvalds 已提交
4646 4647

	if (!param || pid < 0)
4648
		return -EINVAL;
L
Linus Torvalds 已提交
4649

4650
	rcu_read_lock();
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4661
	rcu_read_unlock();
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4671
	rcu_read_unlock();
L
Linus Torvalds 已提交
4672 4673 4674
	return retval;
}

4675
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4676
{
4677
	cpumask_var_t cpus_allowed, new_mask;
4678 4679
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4680

4681
	get_online_cpus();
4682
	rcu_read_lock();
L
Linus Torvalds 已提交
4683 4684 4685

	p = find_process_by_pid(pid);
	if (!p) {
4686
		rcu_read_unlock();
4687
		put_online_cpus();
L
Linus Torvalds 已提交
4688 4689 4690
		return -ESRCH;
	}

4691
	/* Prevent p going away */
L
Linus Torvalds 已提交
4692
	get_task_struct(p);
4693
	rcu_read_unlock();
L
Linus Torvalds 已提交
4694

4695 4696 4697 4698 4699 4700 4701 4702
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4703
	retval = -EPERM;
4704
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4705 4706
		goto out_unlock;

4707 4708 4709 4710
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4711 4712
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4713
 again:
4714
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4715

P
Paul Menage 已提交
4716
	if (!retval) {
4717 4718
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4719 4720 4721 4722 4723
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4724
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4725 4726 4727
			goto again;
		}
	}
L
Linus Torvalds 已提交
4728
out_unlock:
4729 4730 4731 4732
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4733
	put_task_struct(p);
4734
	put_online_cpus();
L
Linus Torvalds 已提交
4735 4736 4737 4738
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4739
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4740
{
4741 4742 4743 4744 4745
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4755 4756
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4757
{
4758
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4759 4760
	int retval;

4761 4762
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4763

4764 4765 4766 4767 4768
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4769 4770
}

4771
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4772
{
4773
	struct task_struct *p;
4774 4775
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4776 4777
	int retval;

4778
	get_online_cpus();
4779
	rcu_read_lock();
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4786 4787 4788 4789
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4790
	rq = task_rq_lock(p, &flags);
4791
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4792
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4793 4794

out_unlock:
4795
	rcu_read_unlock();
4796
	put_online_cpus();
L
Linus Torvalds 已提交
4797

4798
	return retval;
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804 4805 4806
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4807 4808
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4809 4810
{
	int ret;
4811
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4812

A
Anton Blanchard 已提交
4813
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4814 4815
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4816 4817
		return -EINVAL;

4818 4819
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4820

4821 4822
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4823
		size_t retlen = min_t(size_t, len, cpumask_size());
4824 4825

		if (copy_to_user(user_mask_ptr, mask, retlen))
4826 4827
			ret = -EFAULT;
		else
4828
			ret = retlen;
4829 4830
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4831

4832
	return ret;
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4838 4839
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4840
 */
4841
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4842
{
4843
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4844

4845
	schedstat_inc(rq, yld_count);
4846
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4853
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4854
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4855 4856 4857 4858 4859 4860 4861
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4862 4863 4864 4865 4866
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4867
static void __cond_resched(void)
L
Linus Torvalds 已提交
4868
{
4869 4870 4871
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4872 4873
}

4874
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4875
{
P
Peter Zijlstra 已提交
4876
	if (should_resched()) {
L
Linus Torvalds 已提交
4877 4878 4879 4880 4881
		__cond_resched();
		return 1;
	}
	return 0;
}
4882
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4883 4884

/*
4885
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4886 4887
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4888
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4889 4890 4891
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4892
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4893
{
P
Peter Zijlstra 已提交
4894
	int resched = should_resched();
J
Jan Kara 已提交
4895 4896
	int ret = 0;

4897 4898
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4899
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4900
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4901
		if (resched)
N
Nick Piggin 已提交
4902 4903 4904
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4905
		ret = 1;
L
Linus Torvalds 已提交
4906 4907
		spin_lock(lock);
	}
J
Jan Kara 已提交
4908
	return ret;
L
Linus Torvalds 已提交
4909
}
4910
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4911

4912
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4913 4914 4915
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4916
	if (should_resched()) {
4917
		local_bh_enable();
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4924
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4925 4926 4927 4928

/**
 * yield - yield the current processor to other threads.
 *
4929
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4940
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4941 4942 4943 4944
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4945
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4946

4947
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4948
	atomic_inc(&rq->nr_iowait);
4949
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4950
	schedule();
4951
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4952
	atomic_dec(&rq->nr_iowait);
4953
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4954 4955 4956 4957 4958
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4959
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4960 4961
	long ret;

4962
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4963
	atomic_inc(&rq->nr_iowait);
4964
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4965
	ret = schedule_timeout(timeout);
4966
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4967
	atomic_dec(&rq->nr_iowait);
4968
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4979
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4989
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4990
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5004
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5014
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5015
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5029
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5030
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5031
{
5032
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5033
	unsigned int time_slice;
5034 5035
	unsigned long flags;
	struct rq *rq;
5036
	int retval;
L
Linus Torvalds 已提交
5037 5038 5039
	struct timespec t;

	if (pid < 0)
5040
		return -EINVAL;
L
Linus Torvalds 已提交
5041 5042

	retval = -ESRCH;
5043
	rcu_read_lock();
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5052 5053 5054
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5055

5056
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5057
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5058 5059
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5060

L
Linus Torvalds 已提交
5061
out_unlock:
5062
	rcu_read_unlock();
L
Linus Torvalds 已提交
5063 5064 5065
	return retval;
}

5066
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5067

5068
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5069 5070
{
	unsigned long free = 0;
5071
	unsigned state;
L
Linus Torvalds 已提交
5072 5073

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5074
	printk(KERN_INFO "%-13.13s %c", p->comm,
5075
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5076
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5077
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5078
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5079
	else
P
Peter Zijlstra 已提交
5080
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5081 5082
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5083
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5084
	else
P
Peter Zijlstra 已提交
5085
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5086 5087
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5088
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5089
#endif
P
Peter Zijlstra 已提交
5090
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5091 5092
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5093

5094
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5095 5096
}

I
Ingo Molnar 已提交
5097
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5098
{
5099
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5100

5101
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5102 5103
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5104
#else
P
Peter Zijlstra 已提交
5105 5106
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113 5114
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5115
		if (!state_filter || (p->state & state_filter))
5116
			sched_show_task(p);
L
Linus Torvalds 已提交
5117 5118
	} while_each_thread(g, p);

5119 5120
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5121 5122 5123
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5124
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5125 5126 5127
	/*
	 * Only show locks if all tasks are dumped:
	 */
5128
	if (!state_filter)
I
Ingo Molnar 已提交
5129
		debug_show_all_locks();
L
Linus Torvalds 已提交
5130 5131
}

I
Ingo Molnar 已提交
5132 5133
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5134
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5135 5136
}

5137 5138 5139 5140 5141 5142 5143 5144
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5145
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5146
{
5147
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5148 5149
	unsigned long flags;

5150
	raw_spin_lock_irqsave(&rq->lock, flags);
5151

I
Ingo Molnar 已提交
5152
	__sched_fork(idle);
5153
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5154 5155
	idle->se.exec_start = sched_clock();

5156
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5157
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5158 5159

	rq->curr = rq->idle = idle;
5160 5161 5162
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5163
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5164 5165

	/* Set the preempt count _outside_ the spinlocks! */
5166 5167 5168
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5169
	task_thread_info(idle)->preempt_count = 0;
5170
#endif
I
Ingo Molnar 已提交
5171 5172 5173 5174
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5175
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181 5182
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5183
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5184
 */
5185
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5186

I
Ingo Molnar 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5196
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5197
{
5198
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5213

5214 5215
	return factor;
}
I
Ingo Molnar 已提交
5216

5217 5218 5219
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5220

5221 5222 5223 5224 5225 5226 5227 5228
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5229

5230 5231 5232
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5233 5234
}

L
Linus Torvalds 已提交
5235 5236 5237 5238
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5239
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5258
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5259 5260
 * call is not atomic; no spinlocks may be held.
 */
5261
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5262
{
5263
	struct migration_req req;
L
Linus Torvalds 已提交
5264
	unsigned long flags;
5265
	struct rq *rq;
5266
	int ret = 0;
L
Linus Torvalds 已提交
5267

P
Peter Zijlstra 已提交
5268 5269 5270 5271 5272 5273 5274
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5275
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5276 5277 5278 5279
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5280

5281
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5282 5283 5284 5285
		ret = -EINVAL;
		goto out;
	}

5286
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5287
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5288 5289 5290 5291
		ret = -EINVAL;
		goto out;
	}

5292
	if (p->sched_class->set_cpus_allowed)
5293
		p->sched_class->set_cpus_allowed(p, new_mask);
5294
	else {
5295 5296
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5297 5298
	}

L
Linus Torvalds 已提交
5299
	/* Can the task run on the task's current CPU? If so, we're done */
5300
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5301 5302
		goto out;

5303
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5304
		/* Need help from migration thread: drop lock and wait. */
5305 5306 5307
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5308
		task_rq_unlock(rq, &flags);
5309
		wake_up_process(mt);
5310
		put_task_struct(mt);
L
Linus Torvalds 已提交
5311 5312 5313 5314 5315 5316
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5317

L
Linus Torvalds 已提交
5318 5319
	return ret;
}
5320
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5321 5322

/*
I
Ingo Molnar 已提交
5323
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5330 5331
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5332
 */
5333
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5334
{
5335
	struct rq *rq_dest, *rq_src;
5336
	int ret = 0;
L
Linus Torvalds 已提交
5337

5338
	if (unlikely(!cpu_active(dest_cpu)))
5339
		return ret;
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345 5346

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5347
		goto done;
L
Linus Torvalds 已提交
5348
	/* Affinity changed (again). */
5349
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5350
		goto fail;
L
Linus Torvalds 已提交
5351

5352 5353 5354 5355 5356
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5357
		deactivate_task(rq_src, p, 0);
5358
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5359
		activate_task(rq_dest, p, 0);
5360
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5361
	}
L
Linus Torvalds 已提交
5362
done:
5363
	ret = 1;
L
Linus Torvalds 已提交
5364
fail:
L
Linus Torvalds 已提交
5365
	double_rq_unlock(rq_src, rq_dest);
5366
	return ret;
L
Linus Torvalds 已提交
5367 5368
}

5369 5370 5371 5372 5373
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5374 5375 5376 5377 5378
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5379
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5380
{
5381
	int badcpu;
L
Linus Torvalds 已提交
5382
	int cpu = (long)data;
5383
	struct rq *rq;
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5390
		struct migration_req *req;
L
Linus Torvalds 已提交
5391 5392
		struct list_head *head;

5393
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5394 5395

		if (cpu_is_offline(cpu)) {
5396
			raw_spin_unlock_irq(&rq->lock);
5397
			break;
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5408
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5409 5410 5411 5412
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5413
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5414 5415
		list_del_init(head->next);

5416
		if (req->task != NULL) {
5417
			raw_spin_unlock(&rq->lock);
5418 5419 5420
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5421
			raw_spin_unlock(&rq->lock);
5422 5423
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5424
			raw_spin_unlock(&rq->lock);
5425 5426
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5427
		local_irq_enable();
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5437
/*
5438
 * Figure out where task on dead CPU should go, use force if necessary.
5439
 */
5440
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5441
{
5442 5443 5444
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5445

5446 5447 5448 5449 5450 5451 5452
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5453 5454 5455 5456
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5457
	if (needs_cpu)
5458
		__migrate_task(p, dead_cpu, dest_cpu);
5459
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5469
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5470
{
5471
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5485
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5486

5487
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5488

5489 5490
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5491 5492
			continue;

5493 5494 5495
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5496

5497
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5498 5499
}

I
Ingo Molnar 已提交
5500 5501
/*
 * Schedules idle task to be the next runnable task on current CPU.
5502 5503
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5504 5505 5506
 */
void sched_idle_next(void)
{
5507
	int this_cpu = smp_processor_id();
5508
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5509 5510 5511 5512
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5513
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5514

5515 5516 5517
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5518
	 */
5519
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5520

I
Ingo Molnar 已提交
5521
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5522

5523
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5524

5525
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5526 5527
}

5528 5529
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5543
/* called under rq->lock with disabled interrupts */
5544
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5545
{
5546
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5547 5548

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5549
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5550 5551

	/* Cannot have done final schedule yet: would have vanished. */
5552
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5553

5554
	get_task_struct(p);
L
Linus Torvalds 已提交
5555 5556 5557

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5558
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5559 5560
	 * fine.
	 */
5561
	raw_spin_unlock_irq(&rq->lock);
5562
	move_task_off_dead_cpu(dead_cpu, p);
5563
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5564

5565
	put_task_struct(p);
L
Linus Torvalds 已提交
5566 5567 5568 5569 5570
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5571
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5572
	struct task_struct *next;
5573

I
Ingo Molnar 已提交
5574 5575 5576
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5577
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5578 5579
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5580
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5581
		migrate_dead(dead_cpu, next);
5582

L
Linus Torvalds 已提交
5583 5584
	}
}
5585 5586 5587 5588 5589 5590 5591

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5592
	rq->calc_load_active = 0;
5593
}
L
Linus Torvalds 已提交
5594 5595
#endif /* CONFIG_HOTPLUG_CPU */

5596 5597 5598
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5599 5600
	{
		.procname	= "sched_domain",
5601
		.mode		= 0555,
5602
	},
5603
	{}
5604 5605 5606
};

static struct ctl_table sd_ctl_root[] = {
5607 5608
	{
		.procname	= "kernel",
5609
		.mode		= 0555,
5610 5611
		.child		= sd_ctl_dir,
	},
5612
	{}
5613 5614 5615 5616 5617
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5618
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5619 5620 5621 5622

	return entry;
}

5623 5624
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5625
	struct ctl_table *entry;
5626

5627 5628 5629
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5630
	 * will always be set. In the lowest directory the names are
5631 5632 5633
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5634 5635
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5636 5637 5638
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5639 5640 5641 5642 5643

	kfree(*tablep);
	*tablep = NULL;
}

5644
static void
5645
set_table_entry(struct ctl_table *entry,
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5659
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5660

5661 5662 5663
	if (table == NULL)
		return NULL;

5664
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5665
		sizeof(long), 0644, proc_doulongvec_minmax);
5666
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5667
		sizeof(long), 0644, proc_doulongvec_minmax);
5668
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5669
		sizeof(int), 0644, proc_dointvec_minmax);
5670
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5671
		sizeof(int), 0644, proc_dointvec_minmax);
5672
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5673
		sizeof(int), 0644, proc_dointvec_minmax);
5674
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5675
		sizeof(int), 0644, proc_dointvec_minmax);
5676
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5677
		sizeof(int), 0644, proc_dointvec_minmax);
5678
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5679
		sizeof(int), 0644, proc_dointvec_minmax);
5680
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5681
		sizeof(int), 0644, proc_dointvec_minmax);
5682
	set_table_entry(&table[9], "cache_nice_tries",
5683 5684
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5685
	set_table_entry(&table[10], "flags", &sd->flags,
5686
		sizeof(int), 0644, proc_dointvec_minmax);
5687 5688 5689
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5690 5691 5692 5693

	return table;
}

5694
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5695 5696 5697 5698 5699 5700 5701 5702 5703
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5704 5705
	if (table == NULL)
		return NULL;
5706 5707 5708 5709 5710

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5711
		entry->mode = 0555;
5712 5713 5714 5715 5716 5717 5718 5719
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5720
static void register_sched_domain_sysctl(void)
5721
{
5722
	int i, cpu_num = num_possible_cpus();
5723 5724 5725
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5726 5727 5728
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5729 5730 5731
	if (entry == NULL)
		return;

5732
	for_each_possible_cpu(i) {
5733 5734
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5735
		entry->mode = 0555;
5736
		entry->child = sd_alloc_ctl_cpu_table(i);
5737
		entry++;
5738
	}
5739 5740

	WARN_ON(sd_sysctl_header);
5741 5742
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5743

5744
/* may be called multiple times per register */
5745 5746
static void unregister_sched_domain_sysctl(void)
{
5747 5748
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5749
	sd_sysctl_header = NULL;
5750 5751
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5752
}
5753
#else
5754 5755 5756 5757
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5758 5759 5760 5761
{
}
#endif

5762 5763 5764 5765 5766
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5767
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5787
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5788 5789 5790 5791
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5792 5793 5794 5795
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5796 5797
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5798 5799
{
	struct task_struct *p;
5800
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5801
	unsigned long flags;
5802
	struct rq *rq;
L
Linus Torvalds 已提交
5803 5804

	switch (action) {
5805

L
Linus Torvalds 已提交
5806
	case CPU_UP_PREPARE:
5807
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5808
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5814
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5815
		task_rq_unlock(rq, &flags);
5816
		get_task_struct(p);
L
Linus Torvalds 已提交
5817
		cpu_rq(cpu)->migration_thread = p;
5818
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5819
		break;
5820

L
Linus Torvalds 已提交
5821
	case CPU_ONLINE:
5822
	case CPU_ONLINE_FROZEN:
5823
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5824
		wake_up_process(cpu_rq(cpu)->migration_thread);
5825 5826 5827

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5828
		raw_spin_lock_irqsave(&rq->lock, flags);
5829
		if (rq->rd) {
5830
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5831 5832

			set_rq_online(rq);
5833
		}
5834
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5835
		break;
5836

L
Linus Torvalds 已提交
5837 5838
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5839
	case CPU_UP_CANCELED_FROZEN:
5840 5841
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5842
		/* Unbind it from offline cpu so it can run. Fall thru. */
5843
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5844
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5845
		kthread_stop(cpu_rq(cpu)->migration_thread);
5846
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5847 5848
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5849

L
Linus Torvalds 已提交
5850
	case CPU_DEAD:
5851
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5852 5853 5854
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5855
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5856 5857
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5858
		raw_spin_lock_irq(&rq->lock);
5859
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5860 5861
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5862
		migrate_dead_tasks(cpu);
5863
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5864 5865
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5866
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5867 5868 5869 5870 5871
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5872
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5873
		while (!list_empty(&rq->migration_queue)) {
5874 5875
			struct migration_req *req;

L
Linus Torvalds 已提交
5876
			req = list_entry(rq->migration_queue.next,
5877
					 struct migration_req, list);
L
Linus Torvalds 已提交
5878
			list_del_init(&req->list);
5879
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5880
			complete(&req->done);
5881
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5882
		}
5883
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5884
		break;
G
Gregory Haskins 已提交
5885

5886 5887
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5888 5889
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5890
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5891
		if (rq->rd) {
5892
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5893
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5894
		}
5895
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5896
		break;
L
Linus Torvalds 已提交
5897 5898 5899 5900 5901
#endif
	}
	return NOTIFY_OK;
}

5902 5903 5904
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5905
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5906
 */
5907
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5908 5909 5910 5911
	.notifier_call = migration_call,
	.priority = 10
};

5912
static int __init migration_init(void)
L
Linus Torvalds 已提交
5913 5914
{
	void *cpu = (void *)(long)smp_processor_id();
5915
	int err;
5916 5917

	/* Start one for the boot CPU: */
5918 5919
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5920 5921
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5922

5923
	return 0;
L
Linus Torvalds 已提交
5924
}
5925
early_initcall(migration_init);
L
Linus Torvalds 已提交
5926 5927 5928
#endif

#ifdef CONFIG_SMP
5929

5930
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5931

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5942
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5943
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5944
{
I
Ingo Molnar 已提交
5945
	struct sched_group *group = sd->groups;
5946
	char str[256];
L
Linus Torvalds 已提交
5947

R
Rusty Russell 已提交
5948
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5949
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5950 5951 5952 5953

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5954
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5955
		if (sd->parent)
P
Peter Zijlstra 已提交
5956 5957
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5958
		return -1;
N
Nick Piggin 已提交
5959 5960
	}

P
Peter Zijlstra 已提交
5961
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5962

5963
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5964 5965
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5966
	}
5967
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5968 5969
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5970
	}
L
Linus Torvalds 已提交
5971

I
Ingo Molnar 已提交
5972
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5973
	do {
I
Ingo Molnar 已提交
5974
		if (!group) {
P
Peter Zijlstra 已提交
5975 5976
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5977 5978 5979
			break;
		}

5980
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5981 5982 5983
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5984 5985
			break;
		}
L
Linus Torvalds 已提交
5986

5987
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5988 5989
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5990 5991
			break;
		}
L
Linus Torvalds 已提交
5992

5993
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5994 5995
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5996 5997
			break;
		}
L
Linus Torvalds 已提交
5998

5999
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6000

R
Rusty Russell 已提交
6001
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6002

P
Peter Zijlstra 已提交
6003
		printk(KERN_CONT " %s", str);
6004
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6005 6006
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6007
		}
L
Linus Torvalds 已提交
6008

I
Ingo Molnar 已提交
6009 6010
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6011
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6012

6013
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6014
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6015

6016 6017
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6018 6019
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6020 6021
	return 0;
}
L
Linus Torvalds 已提交
6022

I
Ingo Molnar 已提交
6023 6024
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6025
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6026
	int level = 0;
L
Linus Torvalds 已提交
6027

6028 6029 6030
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6031 6032 6033 6034
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6035

I
Ingo Molnar 已提交
6036 6037
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6038
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6039 6040 6041 6042
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6043
	for (;;) {
6044
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6045
			break;
L
Linus Torvalds 已提交
6046 6047
		level++;
		sd = sd->parent;
6048
		if (!sd)
I
Ingo Molnar 已提交
6049 6050
			break;
	}
6051
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6052
}
6053
#else /* !CONFIG_SCHED_DEBUG */
6054
# define sched_domain_debug(sd, cpu) do { } while (0)
6055
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6056

6057
static int sd_degenerate(struct sched_domain *sd)
6058
{
6059
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6060 6061 6062 6063 6064 6065
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6066 6067 6068
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6069 6070 6071 6072 6073
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6074
	if (sd->flags & (SD_WAKE_AFFINE))
6075 6076 6077 6078 6079
		return 0;

	return 1;
}

6080 6081
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6082 6083 6084 6085 6086 6087
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6088
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6089 6090 6091 6092 6093 6094 6095
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6096 6097 6098
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6099 6100
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6101 6102 6103 6104 6105 6106 6107
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6108 6109
static void free_rootdomain(struct root_domain *rd)
{
6110 6111
	synchronize_sched();

6112 6113
	cpupri_cleanup(&rd->cpupri);

6114 6115 6116 6117 6118 6119
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6120 6121
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6122
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6123 6124
	unsigned long flags;

6125
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6126 6127

	if (rq->rd) {
I
Ingo Molnar 已提交
6128
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6129

6130
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6131
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6132

6133
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6134

I
Ingo Molnar 已提交
6135 6136 6137 6138 6139 6140 6141
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6142 6143 6144 6145 6146
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6147
	cpumask_set_cpu(rq->cpu, rd->span);
6148
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6149
		set_rq_online(rq);
G
Gregory Haskins 已提交
6150

6151
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6152 6153 6154

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6155 6156
}

L
Li Zefan 已提交
6157
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6158
{
6159 6160
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6161 6162
	memset(rd, 0, sizeof(*rd));

6163 6164
	if (bootmem)
		gfp = GFP_NOWAIT;
6165

6166
	if (!alloc_cpumask_var(&rd->span, gfp))
6167
		goto out;
6168
	if (!alloc_cpumask_var(&rd->online, gfp))
6169
		goto free_span;
6170
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6171
		goto free_online;
6172

P
Pekka Enberg 已提交
6173
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6174
		goto free_rto_mask;
6175
	return 0;
6176

6177 6178
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6179 6180 6181 6182
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6183
out:
6184
	return -ENOMEM;
G
Gregory Haskins 已提交
6185 6186 6187 6188
}

static void init_defrootdomain(void)
{
6189 6190
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6191 6192 6193
	atomic_set(&def_root_domain.refcount, 1);
}

6194
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6195 6196 6197 6198 6199 6200 6201
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6202 6203 6204 6205
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6206 6207 6208 6209

	return rd;
}

L
Linus Torvalds 已提交
6210
/*
I
Ingo Molnar 已提交
6211
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6212 6213
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6214 6215
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6216
{
6217
	struct rq *rq = cpu_rq(cpu);
6218 6219 6220
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6221
	for (tmp = sd; tmp; ) {
6222 6223 6224
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6225

6226
		if (sd_parent_degenerate(tmp, parent)) {
6227
			tmp->parent = parent->parent;
6228 6229
			if (parent->parent)
				parent->parent->child = tmp;
6230 6231
		} else
			tmp = tmp->parent;
6232 6233
	}

6234
	if (sd && sd_degenerate(sd)) {
6235
		sd = sd->parent;
6236 6237 6238
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6239 6240 6241

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6242
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6243
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6244 6245 6246
}

/* cpus with isolated domains */
6247
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6248 6249 6250 6251

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6252
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6253
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6254 6255 6256
	return 1;
}

I
Ingo Molnar 已提交
6257
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6258 6259

/*
6260 6261
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6262 6263
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6264 6265 6266 6267 6268
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6269
static void
6270 6271 6272
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6273
					struct sched_group **sg,
6274 6275
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6276 6277 6278 6279
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6280
	cpumask_clear(covered);
6281

6282
	for_each_cpu(i, span) {
6283
		struct sched_group *sg;
6284
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6285 6286
		int j;

6287
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6288 6289
			continue;

6290
		cpumask_clear(sched_group_cpus(sg));
6291
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6292

6293
		for_each_cpu(j, span) {
6294
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6295 6296
				continue;

6297
			cpumask_set_cpu(j, covered);
6298
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6309
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6310

6311
#ifdef CONFIG_NUMA
6312

6313 6314 6315 6316 6317
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6318
 * Find the next node to include in a given scheduling domain. Simply
6319 6320 6321 6322
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6323
static int find_next_best_node(int node, nodemask_t *used_nodes)
6324 6325 6326 6327 6328
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6329
	for (i = 0; i < nr_node_ids; i++) {
6330
		/* Start at @node */
6331
		n = (node + i) % nr_node_ids;
6332 6333 6334 6335 6336

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6337
		if (node_isset(n, *used_nodes))
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6349
	node_set(best_node, *used_nodes);
6350 6351 6352 6353 6354 6355
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6356
 * @span: resulting cpumask
6357
 *
I
Ingo Molnar 已提交
6358
 * Given a node, construct a good cpumask for its sched_domain to span. It
6359 6360 6361
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6362
static void sched_domain_node_span(int node, struct cpumask *span)
6363
{
6364
	nodemask_t used_nodes;
6365
	int i;
6366

6367
	cpumask_clear(span);
6368
	nodes_clear(used_nodes);
6369

6370
	cpumask_or(span, span, cpumask_of_node(node));
6371
	node_set(node, used_nodes);
6372 6373

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6374
		int next_node = find_next_best_node(node, &used_nodes);
6375

6376
		cpumask_or(span, span, cpumask_of_node(next_node));
6377 6378
	}
}
6379
#endif /* CONFIG_NUMA */
6380

6381
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6382

6383 6384
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6385 6386 6387
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6432
/*
6433
 * SMT sched-domains:
6434
 */
L
Linus Torvalds 已提交
6435
#ifdef CONFIG_SCHED_SMT
6436
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6437
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6438

I
Ingo Molnar 已提交
6439
static int
6440 6441
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6442
{
6443
	if (sg)
6444
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6445 6446
	return cpu;
}
6447
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6448

6449 6450 6451
/*
 * multi-core sched-domains:
 */
6452
#ifdef CONFIG_SCHED_MC
6453 6454
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6455
#endif /* CONFIG_SCHED_MC */
6456 6457

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6458
static int
6459 6460
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6461
{
6462
	int group;
6463

6464
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6465
	group = cpumask_first(mask);
6466
	if (sg)
6467
		*sg = &per_cpu(sched_group_core, group).sg;
6468
	return group;
6469 6470
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6471
static int
6472 6473
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6474
{
6475
	if (sg)
6476
		*sg = &per_cpu(sched_group_core, cpu).sg;
6477 6478 6479 6480
	return cpu;
}
#endif

6481 6482
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6483

I
Ingo Molnar 已提交
6484
static int
6485 6486
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6487
{
6488
	int group;
6489
#ifdef CONFIG_SCHED_MC
6490
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6491
	group = cpumask_first(mask);
6492
#elif defined(CONFIG_SCHED_SMT)
6493
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6494
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6495
#else
6496
	group = cpu;
L
Linus Torvalds 已提交
6497
#endif
6498
	if (sg)
6499
		*sg = &per_cpu(sched_group_phys, group).sg;
6500
	return group;
L
Linus Torvalds 已提交
6501 6502 6503 6504
}

#ifdef CONFIG_NUMA
/*
6505 6506 6507
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6508
 */
6509
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6510
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6511

6512
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6513
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6514

6515 6516 6517
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6518
{
6519 6520
	int group;

6521
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6522
	group = cpumask_first(nodemask);
6523 6524

	if (sg)
6525
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6526
	return group;
L
Linus Torvalds 已提交
6527
}
6528

6529 6530 6531 6532 6533 6534 6535
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6536
	do {
6537
		for_each_cpu(j, sched_group_cpus(sg)) {
6538
			struct sched_domain *sd;
6539

6540
			sd = &per_cpu(phys_domains, j).sd;
6541
			if (j != group_first_cpu(sd->groups)) {
6542 6543 6544 6545 6546 6547
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6548

6549
			sg->cpu_power += sd->groups->cpu_power;
6550 6551 6552
		}
		sg = sg->next;
	} while (sg != group_head);
6553
}
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6575 6576
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6577 6578 6579 6580 6581 6582 6583 6584 6585
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6586
	sg->cpu_power = 0;
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6605 6606
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6607 6608
			return -ENOMEM;
		}
6609
		sg->cpu_power = 0;
6610 6611 6612 6613 6614 6615 6616 6617 6618
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6619
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6620

6621
#ifdef CONFIG_NUMA
6622
/* Free memory allocated for various sched_group structures */
6623 6624
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6625
{
6626
	int cpu, i;
6627

6628
	for_each_cpu(cpu, cpu_map) {
6629 6630 6631 6632 6633 6634
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6635
		for (i = 0; i < nr_node_ids; i++) {
6636 6637
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6638
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6639
			if (cpumask_empty(nodemask))
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6656
#else /* !CONFIG_NUMA */
6657 6658
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6659 6660
{
}
6661
#endif /* CONFIG_NUMA */
6662

6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6677 6678
	long power;
	int weight;
6679 6680 6681

	WARN_ON(!sd || !sd->groups);

6682
	if (cpu != group_first_cpu(sd->groups))
6683 6684 6685 6686
		return;

	child = sd->child;

6687
	sd->groups->cpu_power = 0;
6688

6689 6690 6691 6692 6693
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6694 6695 6696
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6697
		 */
P
Peter Zijlstra 已提交
6698 6699
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6700
			power /= weight;
P
Peter Zijlstra 已提交
6701 6702
			power >>= SCHED_LOAD_SHIFT;
		}
6703
		sd->groups->cpu_power += power;
6704 6705 6706 6707
		return;
	}

	/*
6708
	 * Add cpu_power of each child group to this groups cpu_power.
6709 6710 6711
	 */
	group = child->groups;
	do {
6712
		sd->groups->cpu_power += group->cpu_power;
6713 6714 6715 6716
		group = group->next;
	} while (group != child->groups);
}

6717 6718 6719 6720 6721
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6722 6723 6724 6725 6726 6727
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6728
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6729

6730 6731 6732 6733 6734
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6735
	sd->level = SD_LV_##type;				\
6736
	SD_INIT_NAME(sd, type);					\
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6751 6752 6753 6754
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6755 6756 6757 6758 6759 6760
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6779
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6780 6781
	} else {
		/* turn on idle balance on this domain */
6782
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6783 6784 6785
	}
}

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6806
#ifdef CONFIG_NUMA
6807 6808 6809 6810 6811 6812 6813
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6814
#endif
6815 6816 6817 6818
	case sa_none:
		break;
	}
}
6819

6820 6821 6822
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6823
#ifdef CONFIG_NUMA
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6834
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6835
		return sa_notcovered;
6836
	}
6837
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6838
#endif
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6851
		printk(KERN_WARNING "Cannot alloc root domain\n");
6852
		return sa_tmpmask;
G
Gregory Haskins 已提交
6853
	}
6854 6855
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6856

6857 6858 6859 6860
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6861
#ifdef CONFIG_NUMA
6862
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6863

6864 6865 6866 6867 6868
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6869
		set_domain_attribute(sd, attr);
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6884
#endif
6885 6886
	return sd;
}
L
Linus Torvalds 已提交
6887

6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6903

6904 6905 6906 6907 6908
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6909
#ifdef CONFIG_SCHED_MC
6910 6911 6912 6913 6914 6915 6916
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6917
#endif
6918 6919
	return sd;
}
6920

6921 6922 6923 6924 6925
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6926
#ifdef CONFIG_SCHED_SMT
6927 6928 6929 6930 6931 6932 6933
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6934
#endif
6935 6936
	return sd;
}
L
Linus Torvalds 已提交
6937

6938 6939 6940 6941
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6942
#ifdef CONFIG_SCHED_SMT
6943 6944 6945 6946 6947 6948 6949 6950
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6951
#endif
6952
#ifdef CONFIG_SCHED_MC
6953 6954 6955 6956 6957 6958 6959
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6960
#endif
6961 6962 6963 6964 6965 6966 6967
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6968
#ifdef CONFIG_NUMA
6969 6970 6971 6972 6973
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6974 6975
	default:
		break;
6976
	}
6977
}
6978

6979 6980 6981 6982 6983 6984 6985 6986 6987
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6988
	struct sched_domain *sd;
6989
	int i;
6990
#ifdef CONFIG_NUMA
6991
	d.sd_allnodes = 0;
6992
#endif
6993

6994 6995 6996 6997
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6998

L
Linus Torvalds 已提交
6999
	/*
7000
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7001
	 */
7002
	for_each_cpu(i, cpu_map) {
7003 7004
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7005

7006
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7007
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7008
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7009
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7010
	}
7011

7012
	for_each_cpu(i, cpu_map) {
7013
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7014
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7015
	}
7016

L
Linus Torvalds 已提交
7017
	/* Set up physical groups */
7018 7019
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7020

L
Linus Torvalds 已提交
7021 7022
#ifdef CONFIG_NUMA
	/* Set up node groups */
7023 7024
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7025

7026 7027
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7028
			goto error;
L
Linus Torvalds 已提交
7029 7030 7031
#endif

	/* Calculate CPU power for physical packages and nodes */
7032
#ifdef CONFIG_SCHED_SMT
7033
	for_each_cpu(i, cpu_map) {
7034
		sd = &per_cpu(cpu_domains, i).sd;
7035
		init_sched_groups_power(i, sd);
7036
	}
L
Linus Torvalds 已提交
7037
#endif
7038
#ifdef CONFIG_SCHED_MC
7039
	for_each_cpu(i, cpu_map) {
7040
		sd = &per_cpu(core_domains, i).sd;
7041
		init_sched_groups_power(i, sd);
7042 7043
	}
#endif
7044

7045
	for_each_cpu(i, cpu_map) {
7046
		sd = &per_cpu(phys_domains, i).sd;
7047
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7048 7049
	}

7050
#ifdef CONFIG_NUMA
7051
	for (i = 0; i < nr_node_ids; i++)
7052
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7053

7054
	if (d.sd_allnodes) {
7055
		struct sched_group *sg;
7056

7057
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7058
								d.tmpmask);
7059 7060
		init_numa_sched_groups_power(sg);
	}
7061 7062
#endif

L
Linus Torvalds 已提交
7063
	/* Attach the domains */
7064
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7065
#ifdef CONFIG_SCHED_SMT
7066
		sd = &per_cpu(cpu_domains, i).sd;
7067
#elif defined(CONFIG_SCHED_MC)
7068
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7069
#else
7070
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7071
#endif
7072
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7073
	}
7074

7075 7076 7077
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7078 7079

error:
7080 7081
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7082
}
P
Paul Jackson 已提交
7083

7084
static int build_sched_domains(const struct cpumask *cpu_map)
7085 7086 7087 7088
{
	return __build_sched_domains(cpu_map, NULL);
}

7089
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7090
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7091 7092
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7093 7094 7095

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7096 7097
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7098
 */
7099
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7100

7101 7102 7103 7104 7105 7106
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7107
{
7108
	return 0;
7109 7110
}

7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7136
/*
I
Ingo Molnar 已提交
7137
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7138 7139
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7140
 */
7141
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7142
{
7143 7144
	int err;

7145
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7146
	ndoms_cur = 1;
7147
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7148
	if (!doms_cur)
7149 7150
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7151
	dattr_cur = NULL;
7152
	err = build_sched_domains(doms_cur[0]);
7153
	register_sched_domain_sysctl();
7154 7155

	return err;
7156 7157
}

7158 7159
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7160
{
7161
	free_sched_groups(cpu_map, tmpmask);
7162
}
L
Linus Torvalds 已提交
7163

7164 7165 7166 7167
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7168
static void detach_destroy_domains(const struct cpumask *cpu_map)
7169
{
7170 7171
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7172 7173
	int i;

7174
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7175
		cpu_attach_domain(NULL, &def_root_domain, i);
7176
	synchronize_sched();
7177
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7178 7179
}

7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7196 7197
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7198
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7199 7200 7201
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7202
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7203 7204 7205
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7206 7207 7208
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7209 7210 7211 7212 7213 7214
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7215
 *
7216
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7217 7218
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7219
 *
P
Paul Jackson 已提交
7220 7221
 * Call with hotplug lock held
 */
7222
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7223
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7224
{
7225
	int i, j, n;
7226
	int new_topology;
P
Paul Jackson 已提交
7227

7228
	mutex_lock(&sched_domains_mutex);
7229

7230 7231 7232
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7233 7234 7235
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7236
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7237 7238 7239

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7240
		for (j = 0; j < n && !new_topology; j++) {
7241
			if (cpumask_equal(doms_cur[i], doms_new[j])
7242
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7243 7244 7245
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7246
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7247 7248 7249 7250
match1:
		;
	}

7251 7252
	if (doms_new == NULL) {
		ndoms_cur = 0;
7253
		doms_new = &fallback_doms;
7254
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7255
		WARN_ON_ONCE(dattr_new);
7256 7257
	}

P
Paul Jackson 已提交
7258 7259
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7260
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7261
			if (cpumask_equal(doms_new[i], doms_cur[j])
7262
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7263 7264 7265
				goto match2;
		}
		/* no match - add a new doms_new */
7266
		__build_sched_domains(doms_new[i],
7267
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7268 7269 7270 7271 7272
match2:
		;
	}

	/* Remember the new sched domains */
7273 7274
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7275
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7276
	doms_cur = doms_new;
7277
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7278
	ndoms_cur = ndoms_new;
7279 7280

	register_sched_domain_sysctl();
7281

7282
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7283 7284
}

7285
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7286
static void arch_reinit_sched_domains(void)
7287
{
7288
	get_online_cpus();
7289 7290 7291 7292

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7293
	rebuild_sched_domains();
7294
	put_online_cpus();
7295 7296 7297 7298
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7299
	unsigned int level = 0;
7300

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7312 7313 7314
		return -EINVAL;

	if (smt)
7315
		sched_smt_power_savings = level;
7316
	else
7317
		sched_mc_power_savings = level;
7318

7319
	arch_reinit_sched_domains();
7320

7321
	return count;
7322 7323 7324
}

#ifdef CONFIG_SCHED_MC
7325
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7326
					   struct sysdev_class_attribute *attr,
7327
					   char *page)
7328 7329 7330
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7331
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7332
					    struct sysdev_class_attribute *attr,
7333
					    const char *buf, size_t count)
7334 7335 7336
{
	return sched_power_savings_store(buf, count, 0);
}
7337 7338 7339
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7340 7341 7342
#endif

#ifdef CONFIG_SCHED_SMT
7343
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7344
					    struct sysdev_class_attribute *attr,
7345
					    char *page)
7346 7347 7348
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7349
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7350
					     struct sysdev_class_attribute *attr,
7351
					     const char *buf, size_t count)
7352 7353 7354
{
	return sched_power_savings_store(buf, count, 1);
}
7355 7356
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7357 7358 7359
		   sched_smt_power_savings_store);
#endif

7360
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7376
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7377

7378
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7379
/*
7380 7381
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7382 7383 7384
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7385 7386 7387 7388
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7389 7390 7391 7392
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7393
		partition_sched_domains(1, NULL, NULL);
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7404
{
P
Peter Zijlstra 已提交
7405 7406
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7407 7408
	switch (action) {
	case CPU_DOWN_PREPARE:
7409
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7410
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7411 7412 7413
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7414
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7415
	case CPU_ONLINE:
7416
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7417
		enable_runtime(cpu_rq(cpu));
7418 7419
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7420 7421 7422 7423 7424 7425 7426
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7427 7428 7429
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7430
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7431

7432 7433 7434 7435 7436
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7437
	get_online_cpus();
7438
	mutex_lock(&sched_domains_mutex);
7439
	arch_init_sched_domains(cpu_active_mask);
7440 7441 7442
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7443
	mutex_unlock(&sched_domains_mutex);
7444
	put_online_cpus();
7445 7446

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7447 7448
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7449 7450 7451 7452 7453
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7454
	init_hrtick();
7455 7456

	/* Move init over to a non-isolated CPU */
7457
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7458
		BUG();
I
Ingo Molnar 已提交
7459
	sched_init_granularity();
7460
	free_cpumask_var(non_isolated_cpus);
7461

7462
	init_sched_rt_class();
L
Linus Torvalds 已提交
7463 7464 7465 7466
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7467
	sched_init_granularity();
L
Linus Torvalds 已提交
7468 7469 7470
}
#endif /* CONFIG_SMP */

7471 7472
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7473 7474 7475 7476 7477 7478 7479
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7480
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7481 7482
{
	cfs_rq->tasks_timeline = RB_ROOT;
7483
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7484 7485 7486
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7487
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7488 7489
}

P
Peter Zijlstra 已提交
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7503
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7504
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7505
#ifdef CONFIG_SMP
7506
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7507 7508
#endif
#endif
P
Peter Zijlstra 已提交
7509 7510 7511
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7512
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7513 7514 7515 7516
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7517
	rt_rq->rt_runtime = 0;
7518
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7519

7520
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7521
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7522 7523
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7524 7525
}

P
Peter Zijlstra 已提交
7526
#ifdef CONFIG_FAIR_GROUP_SCHED
7527 7528 7529
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7530
{
7531
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7532 7533 7534 7535 7536 7537 7538
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7539 7540 7541 7542
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7543 7544 7545 7546 7547
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7548 7549
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7550
	se->load.inv_weight = 0;
7551
	se->parent = parent;
P
Peter Zijlstra 已提交
7552
}
7553
#endif
P
Peter Zijlstra 已提交
7554

7555
#ifdef CONFIG_RT_GROUP_SCHED
7556 7557 7558
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7559
{
7560 7561
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7562 7563 7564
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7565
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7566 7567 7568 7569
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7570 7571 7572
	if (!rt_se)
		return;

7573 7574 7575 7576 7577
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7578
	rt_se->my_q = rt_rq;
7579
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7580 7581 7582 7583
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7584 7585
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7586
	int i, j;
7587 7588 7589 7590 7591 7592 7593
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7594
#endif
7595
#ifdef CONFIG_CPUMASK_OFFSTACK
7596
	alloc_size += num_possible_cpus() * cpumask_size();
7597 7598
#endif
	if (alloc_size) {
7599
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7600 7601 7602 7603 7604 7605 7606

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7607

7608
#endif /* CONFIG_FAIR_GROUP_SCHED */
7609 7610 7611 7612 7613
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7614 7615
		ptr += nr_cpu_ids * sizeof(void **);

7616
#endif /* CONFIG_RT_GROUP_SCHED */
7617 7618 7619 7620 7621 7622
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7623
	}
I
Ingo Molnar 已提交
7624

G
Gregory Haskins 已提交
7625 7626 7627 7628
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7629 7630 7631 7632 7633 7634
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7635
#endif /* CONFIG_RT_GROUP_SCHED */
7636

D
Dhaval Giani 已提交
7637
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7638
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7639 7640
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7641
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7642

7643 7644 7645 7646
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7647
	for_each_possible_cpu(i) {
7648
		struct rq *rq;
L
Linus Torvalds 已提交
7649 7650

		rq = cpu_rq(i);
7651
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7652
		rq->nr_running = 0;
7653 7654
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7655
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7656
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7657
#ifdef CONFIG_FAIR_GROUP_SCHED
7658
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7659
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7675
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7676 7677 7678 7679
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7680
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7681
#endif
D
Dhaval Giani 已提交
7682 7683 7684
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7685
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7686
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7687
#ifdef CONFIG_CGROUP_SCHED
7688
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7689
#endif
I
Ingo Molnar 已提交
7690
#endif
L
Linus Torvalds 已提交
7691

I
Ingo Molnar 已提交
7692 7693
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7694
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7695
		rq->sd = NULL;
G
Gregory Haskins 已提交
7696
		rq->rd = NULL;
7697
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7698
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7699
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7700
		rq->push_cpu = 0;
7701
		rq->cpu = i;
7702
		rq->online = 0;
L
Linus Torvalds 已提交
7703
		rq->migration_thread = NULL;
7704 7705
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7706
		INIT_LIST_HEAD(&rq->migration_queue);
7707
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7708
#endif
P
Peter Zijlstra 已提交
7709
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7710 7711 7712
		atomic_set(&rq->nr_iowait, 0);
	}

7713
	set_load_weight(&init_task);
7714

7715 7716 7717 7718
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7719
#ifdef CONFIG_SMP
7720
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7721 7722
#endif

7723
#ifdef CONFIG_RT_MUTEXES
7724
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7725 7726
#endif

L
Linus Torvalds 已提交
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7740 7741 7742

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7743 7744 7745 7746
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7747

7748
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7749
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7750
#ifdef CONFIG_SMP
7751
#ifdef CONFIG_NO_HZ
7752
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7753
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7754
#endif
R
Rusty Russell 已提交
7755 7756 7757
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7758
#endif /* SMP */
7759

7760
	perf_event_init();
7761

7762
	scheduler_running = 1;
L
Linus Torvalds 已提交
7763 7764 7765
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7766 7767
static inline int preempt_count_equals(int preempt_offset)
{
7768
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7769 7770 7771 7772

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7773
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7774
{
7775
#ifdef in_atomic
L
Linus Torvalds 已提交
7776 7777
	static unsigned long prev_jiffy;	/* ratelimiting */

7778 7779
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7780 7781 7782 7783 7784
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7785 7786 7787 7788 7789 7790 7791
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7792 7793 7794 7795 7796

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7797 7798 7799 7800 7801 7802
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7803 7804 7805
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7806

7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7817 7818
void normalize_rt_tasks(void)
{
7819
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7820
	unsigned long flags;
7821
	struct rq *rq;
L
Linus Torvalds 已提交
7822

7823
	read_lock_irqsave(&tasklist_lock, flags);
7824
	do_each_thread(g, p) {
7825 7826 7827 7828 7829 7830
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7831 7832
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7833 7834 7835
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7836
#endif
I
Ingo Molnar 已提交
7837 7838 7839 7840 7841 7842 7843 7844

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7845
			continue;
I
Ingo Molnar 已提交
7846
		}
L
Linus Torvalds 已提交
7847

7848
		raw_spin_lock(&p->pi_lock);
7849
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7850

7851
		normalize_task(rq, p);
7852

7853
		__task_rq_unlock(rq);
7854
		raw_spin_unlock(&p->pi_lock);
7855 7856
	} while_each_thread(g, p);

7857
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7858 7859 7860
}

#endif /* CONFIG_MAGIC_SYSRQ */
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7879
struct task_struct *curr_task(int cpu)
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7890 7891
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7892 7893 7894 7895 7896 7897 7898
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7899
void set_curr_task(int cpu, struct task_struct *p)
7900 7901 7902 7903 7904
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7905

7906 7907
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7922 7923
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7924 7925
{
	struct cfs_rq *cfs_rq;
7926
	struct sched_entity *se;
7927
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7928 7929
	int i;

7930
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7931 7932
	if (!tg->cfs_rq)
		goto err;
7933
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7934 7935
	if (!tg->se)
		goto err;
7936 7937

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7938 7939

	for_each_possible_cpu(i) {
7940
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7941

7942 7943
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7944 7945 7946
		if (!cfs_rq)
			goto err;

7947 7948
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7949
		if (!se)
7950
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7951

7952
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7953 7954 7955 7956
	}

	return 1;

7957 7958
 err_free_rq:
	kfree(cfs_rq);
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7973
#else /* !CONFG_FAIR_GROUP_SCHED */
7974 7975 7976 7977
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7978 7979
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7991
#endif /* CONFIG_FAIR_GROUP_SCHED */
7992 7993

#ifdef CONFIG_RT_GROUP_SCHED
7994 7995 7996 7997
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7998 7999
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8011 8012
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8013 8014
{
	struct rt_rq *rt_rq;
8015
	struct sched_rt_entity *rt_se;
8016 8017 8018
	struct rq *rq;
	int i;

8019
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8020 8021
	if (!tg->rt_rq)
		goto err;
8022
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8023 8024 8025
	if (!tg->rt_se)
		goto err;

8026 8027
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8028 8029 8030 8031

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8032 8033
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8034 8035
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8036

8037 8038
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8039
		if (!rt_se)
8040
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8041

8042
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8043 8044
	}

8045 8046
	return 1;

8047 8048
 err_free_rq:
	kfree(rt_rq);
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8063
#else /* !CONFIG_RT_GROUP_SCHED */
8064 8065 8066 8067
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8068 8069
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8081
#endif /* CONFIG_RT_GROUP_SCHED */
8082

D
Dhaval Giani 已提交
8083
#ifdef CONFIG_CGROUP_SCHED
8084 8085 8086 8087 8088 8089 8090 8091
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8092
struct task_group *sched_create_group(struct task_group *parent)
8093 8094 8095 8096 8097 8098 8099 8100 8101
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8102
	if (!alloc_fair_sched_group(tg, parent))
8103 8104
		goto err;

8105
	if (!alloc_rt_sched_group(tg, parent))
8106 8107
		goto err;

8108
	spin_lock_irqsave(&task_group_lock, flags);
8109
	for_each_possible_cpu(i) {
8110 8111
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8112
	}
P
Peter Zijlstra 已提交
8113
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8114 8115 8116 8117 8118

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8119
	list_add_rcu(&tg->siblings, &parent->children);
8120
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8121

8122
	return tg;
S
Srivatsa Vaddagiri 已提交
8123 8124

err:
P
Peter Zijlstra 已提交
8125
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8126 8127 8128
	return ERR_PTR(-ENOMEM);
}

8129
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8130
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8131 8132
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8133
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8134 8135
}

8136
/* Destroy runqueue etc associated with a task group */
8137
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8138
{
8139
	unsigned long flags;
8140
	int i;
S
Srivatsa Vaddagiri 已提交
8141

8142
	spin_lock_irqsave(&task_group_lock, flags);
8143
	for_each_possible_cpu(i) {
8144 8145
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8146
	}
P
Peter Zijlstra 已提交
8147
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8148
	list_del_rcu(&tg->siblings);
8149
	spin_unlock_irqrestore(&task_group_lock, flags);
8150 8151

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8152
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8153 8154
}

8155
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8156 8157 8158
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8159 8160
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8161 8162 8163 8164 8165 8166 8167
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8168
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8169 8170
	on_rq = tsk->se.on_rq;

8171
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8172
		dequeue_task(rq, tsk, 0);
8173 8174
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8175

P
Peter Zijlstra 已提交
8176
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8177

P
Peter Zijlstra 已提交
8178 8179
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8180
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8181 8182
#endif

8183 8184 8185
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8186
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8187 8188 8189

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8190
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8191

8192
#ifdef CONFIG_FAIR_GROUP_SCHED
8193
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8194 8195 8196 8197 8198
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8199
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8200 8201 8202
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8203
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8204

8205
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8206
		enqueue_entity(cfs_rq, se, 0);
8207
}
8208

8209 8210 8211 8212 8213 8214
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8215
	raw_spin_lock_irqsave(&rq->lock, flags);
8216
	__set_se_shares(se, shares);
8217
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8218 8219
}

8220 8221
static DEFINE_MUTEX(shares_mutex);

8222
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8223 8224
{
	int i;
8225
	unsigned long flags;
8226

8227 8228 8229 8230 8231 8232
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8233 8234
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8235 8236
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8237

8238
	mutex_lock(&shares_mutex);
8239
	if (tg->shares == shares)
8240
		goto done;
S
Srivatsa Vaddagiri 已提交
8241

8242
	spin_lock_irqsave(&task_group_lock, flags);
8243 8244
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8245
	list_del_rcu(&tg->siblings);
8246
	spin_unlock_irqrestore(&task_group_lock, flags);
8247 8248 8249 8250 8251 8252 8253 8254

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8255
	tg->shares = shares;
8256 8257 8258 8259 8260
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8261
		set_se_shares(tg->se[i], shares);
8262
	}
S
Srivatsa Vaddagiri 已提交
8263

8264 8265 8266 8267
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8268
	spin_lock_irqsave(&task_group_lock, flags);
8269 8270
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8271
	list_add_rcu(&tg->siblings, &tg->parent->children);
8272
	spin_unlock_irqrestore(&task_group_lock, flags);
8273
done:
8274
	mutex_unlock(&shares_mutex);
8275
	return 0;
S
Srivatsa Vaddagiri 已提交
8276 8277
}

8278 8279 8280 8281
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8282
#endif
8283

8284
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8285
/*
P
Peter Zijlstra 已提交
8286
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8287
 */
P
Peter Zijlstra 已提交
8288 8289 8290 8291 8292
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8293
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8294

P
Peter Zijlstra 已提交
8295
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8296 8297
}

P
Peter Zijlstra 已提交
8298 8299
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8300
{
P
Peter Zijlstra 已提交
8301
	struct task_struct *g, *p;
8302

P
Peter Zijlstra 已提交
8303 8304 8305 8306
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8307

P
Peter Zijlstra 已提交
8308 8309
	return 0;
}
8310

P
Peter Zijlstra 已提交
8311 8312 8313 8314 8315
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8316

P
Peter Zijlstra 已提交
8317 8318 8319 8320 8321 8322
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8323

P
Peter Zijlstra 已提交
8324 8325
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8326

P
Peter Zijlstra 已提交
8327 8328 8329
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8330 8331
	}

8332 8333 8334 8335 8336
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8337

8338 8339 8340
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8341 8342
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8343

P
Peter Zijlstra 已提交
8344
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8345

8346 8347 8348 8349 8350
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8351

8352 8353 8354
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8355 8356 8357
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8358

P
Peter Zijlstra 已提交
8359 8360 8361 8362
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8363

P
Peter Zijlstra 已提交
8364
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8365
	}
P
Peter Zijlstra 已提交
8366

P
Peter Zijlstra 已提交
8367 8368 8369 8370
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8371 8372
}

P
Peter Zijlstra 已提交
8373
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8374
{
P
Peter Zijlstra 已提交
8375 8376 8377 8378 8379 8380 8381
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8382 8383
}

8384 8385
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8386
{
P
Peter Zijlstra 已提交
8387
	int i, err = 0;
P
Peter Zijlstra 已提交
8388 8389

	mutex_lock(&rt_constraints_mutex);
8390
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8391 8392
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8393
		goto unlock;
P
Peter Zijlstra 已提交
8394

8395
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8396 8397
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8398 8399 8400 8401

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8402
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8403
		rt_rq->rt_runtime = rt_runtime;
8404
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8405
	}
8406
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8407
 unlock:
8408
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8409 8410 8411
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8412 8413
}

8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8426 8427 8428 8429
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8430
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8431 8432
		return -1;

8433
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8434 8435 8436
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8437 8438 8439 8440 8441 8442 8443 8444

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8445 8446 8447
	if (rt_period == 0)
		return -EINVAL;

8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8462
	u64 runtime, period;
8463 8464
	int ret = 0;

8465 8466 8467
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8468 8469 8470 8471 8472 8473 8474 8475
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8476

8477
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8478
	read_lock(&tasklist_lock);
8479
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8480
	read_unlock(&tasklist_lock);
8481 8482 8483 8484
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8495
#else /* !CONFIG_RT_GROUP_SCHED */
8496 8497
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8498 8499 8500
	unsigned long flags;
	int i;

8501 8502 8503
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8504 8505 8506 8507 8508 8509 8510
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8511
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8512 8513 8514
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8515
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8516
		rt_rq->rt_runtime = global_rt_runtime();
8517
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8518
	}
8519
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8520

8521 8522
	return 0;
}
8523
#endif /* CONFIG_RT_GROUP_SCHED */
8524 8525

int sched_rt_handler(struct ctl_table *table, int write,
8526
		void __user *buffer, size_t *lenp,
8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8537
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8554

8555
#ifdef CONFIG_CGROUP_SCHED
8556 8557

/* return corresponding task_group object of a cgroup */
8558
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8559
{
8560 8561
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8562 8563 8564
}

static struct cgroup_subsys_state *
8565
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8566
{
8567
	struct task_group *tg, *parent;
8568

8569
	if (!cgrp->parent) {
8570 8571 8572 8573
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8574 8575
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8576 8577 8578 8579 8580 8581
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8582 8583
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8584
{
8585
	struct task_group *tg = cgroup_tg(cgrp);
8586 8587 8588 8589

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8590
static int
8591
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8592
{
8593
#ifdef CONFIG_RT_GROUP_SCHED
8594
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8595 8596
		return -EINVAL;
#else
8597 8598 8599
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8600
#endif
8601 8602
	return 0;
}
8603

8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8623 8624 8625 8626
	return 0;
}

static void
8627
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8628 8629
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8630 8631
{
	sched_move_task(tsk);
8632 8633 8634 8635 8636 8637 8638 8639
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8640 8641
}

8642
#ifdef CONFIG_FAIR_GROUP_SCHED
8643
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8644
				u64 shareval)
8645
{
8646
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8647 8648
}

8649
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8650
{
8651
	struct task_group *tg = cgroup_tg(cgrp);
8652 8653 8654

	return (u64) tg->shares;
}
8655
#endif /* CONFIG_FAIR_GROUP_SCHED */
8656

8657
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8658
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8659
				s64 val)
P
Peter Zijlstra 已提交
8660
{
8661
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8662 8663
}

8664
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8665
{
8666
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8667
}
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8679
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8680

8681
static struct cftype cpu_files[] = {
8682
#ifdef CONFIG_FAIR_GROUP_SCHED
8683 8684
	{
		.name = "shares",
8685 8686
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8687
	},
8688 8689
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8690
	{
P
Peter Zijlstra 已提交
8691
		.name = "rt_runtime_us",
8692 8693
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8694
	},
8695 8696
	{
		.name = "rt_period_us",
8697 8698
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8699
	},
8700
#endif
8701 8702 8703 8704
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8705
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8706 8707 8708
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8709 8710 8711 8712 8713 8714 8715
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8716 8717 8718
	.early_init	= 1,
};

8719
#endif	/* CONFIG_CGROUP_SCHED */
8720 8721 8722 8723 8724 8725 8726 8727 8728 8729

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8730
/* track cpu usage of a group of tasks and its child groups */
8731 8732 8733
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8734
	u64 __percpu *cpuusage;
8735
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8736
	struct cpuacct *parent;
8737 8738 8739 8740 8741
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8742
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8743
{
8744
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8757
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8758 8759
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8760
	int i;
8761 8762

	if (!ca)
8763
		goto out;
8764 8765

	ca->cpuusage = alloc_percpu(u64);
8766 8767 8768 8769 8770 8771
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8772

8773 8774 8775
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8776
	return &ca->css;
8777 8778 8779 8780 8781 8782 8783 8784 8785

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8786 8787 8788
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8789
static void
8790
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8791
{
8792
	struct cpuacct *ca = cgroup_ca(cgrp);
8793
	int i;
8794

8795 8796
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8797 8798 8799 8800
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8801 8802
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8803
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8804 8805 8806 8807 8808 8809
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8810
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8811
	data = *cpuusage;
8812
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8813 8814 8815 8816 8817 8818 8819 8820 8821
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8822
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8823 8824 8825 8826 8827

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8828
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8829
	*cpuusage = val;
8830
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8831 8832 8833 8834 8835
#else
	*cpuusage = val;
#endif
}

8836
/* return total cpu usage (in nanoseconds) of a group */
8837
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8838
{
8839
	struct cpuacct *ca = cgroup_ca(cgrp);
8840 8841 8842
	u64 totalcpuusage = 0;
	int i;

8843 8844
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8845 8846 8847 8848

	return totalcpuusage;
}

8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8861 8862
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8863 8864 8865 8866 8867

out:
	return err;
}

8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8902 8903 8904
static struct cftype files[] = {
	{
		.name = "usage",
8905 8906
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8907
	},
8908 8909 8910 8911
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8912 8913 8914 8915
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8916 8917
};

8918
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8919
{
8920
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8921 8922 8923 8924 8925 8926 8927 8928 8929 8930
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8931
	int cpu;
8932

L
Li Zefan 已提交
8933
	if (unlikely(!cpuacct_subsys.active))
8934 8935
		return;

8936
	cpu = task_cpu(tsk);
8937 8938 8939

	rcu_read_lock();

8940 8941
	ca = task_ca(tsk);

8942
	for (; ca; ca = ca->parent) {
8943
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8944 8945
		*cpuusage += cputime;
	}
8946 8947

	rcu_read_unlock();
8948 8949
}

8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8967 8968 8969 8970 8971 8972 8973
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8974
	int batch = CPUACCT_BATCH;
8975 8976 8977 8978 8979 8980 8981 8982

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8983
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8984 8985 8986 8987 8988
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8989 8990 8991 8992 8993 8994 8995 8996
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9082
		raw_spin_lock_irqsave(&rq->lock, flags);
9083
		list_add(&req->list, &rq->migration_queue);
9084
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9085 9086 9087 9088 9089 9090 9091
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9092
		raw_spin_lock_irqsave(&rq->lock, flags);
9093 9094 9095
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9096
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9097 9098
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9099
	synchronize_sched_expedited_count++;
9100 9101 9102 9103 9104 9105 9106 9107
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */