sched.c 266.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 381 382 383
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
384

385
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
386

I
Ingo Molnar 已提交
387 388 389 390 391 392
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
393
	u64 min_vruntime;
I
Ingo Molnar 已提交
394 395 396

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
397 398 399 400 401 402

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
403 404
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
405
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
406

P
Peter Zijlstra 已提交
407
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
408

409
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
410 411
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
412 413
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
414 415 416 417 418 419
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
420 421
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
422 423 424

#ifdef CONFIG_SMP
	/*
425
	 * the part of load.weight contributed by tasks
426
	 */
427
	unsigned long task_weight;
428

429 430 431 432 433 434 435
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
436

437 438 439 440
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
441 442 443 444 445

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
446
#endif
I
Ingo Molnar 已提交
447 448
#endif
};
L
Linus Torvalds 已提交
449

I
Ingo Molnar 已提交
450 451 452
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
453
	unsigned long rt_nr_running;
454
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 456
	struct {
		int curr; /* highest queued rt task prio */
457
#ifdef CONFIG_SMP
458
		int next; /* next highest */
459
#endif
460
	} highest_prio;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
464
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
465
	int overloaded;
466
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
467
#endif
P
Peter Zijlstra 已提交
468
	int rt_throttled;
P
Peter Zijlstra 已提交
469
	u64 rt_time;
P
Peter Zijlstra 已提交
470
	u64 rt_runtime;
I
Ingo Molnar 已提交
471
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
472
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
473

474
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475 476
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
477 478 479 480 481
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
482 483
};

G
Gregory Haskins 已提交
484 485 486 487
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
488 489
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
496 497
	cpumask_var_t span;
	cpumask_var_t online;
498

I
Ingo Molnar 已提交
499
	/*
500 501 502
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
503
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
504
	atomic_t rto_count;
505 506 507
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
508 509
};

510 511 512 513
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
514 515 516 517
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
518 519 520 521 522 523 524
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
525
struct rq {
526 527
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
534 535
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536
#ifdef CONFIG_NO_HZ
537
	unsigned long last_tick_seen;
538 539
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543
	unsigned long nr_load_updates;
	u64 nr_switches;
544
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
545 546

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
547 548
	struct rt_rq rt;

I
Ingo Molnar 已提交
549
#ifdef CONFIG_FAIR_GROUP_SCHED
550 551
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
552 553
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
554
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

565
	struct task_struct *curr, *idle;
566
	unsigned long next_balance;
L
Linus Torvalds 已提交
567
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
568

569
	u64 clock;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576
	struct sched_domain *sd;

577
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
578
	/* For active balancing */
579
	int post_schedule;
L
Linus Torvalds 已提交
580 581
	int active_balance;
	int push_cpu;
582 583
	/* cpu of this runqueue: */
	int cpu;
584
	int online;
L
Linus Torvalds 已提交
585

586
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
587

588
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
589
	struct list_head migration_queue;
590 591 592

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
593 594
#endif

595 596 597 598
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
599
#ifdef CONFIG_SCHED_HRTICK
600 601 602 603
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
604 605 606
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
607 608 609
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
610 611
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
612 613

	/* sys_sched_yield() stats */
614
	unsigned int yld_count;
L
Linus Torvalds 已提交
615 616

	/* schedule() stats */
617 618 619
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
620 621

	/* try_to_wake_up() stats */
622 623
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
624 625

	/* BKL stats */
626
	unsigned int bkl_count;
L
Linus Torvalds 已提交
627 628 629
#endif
};

630
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
631

P
Peter Zijlstra 已提交
632 633
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
634
{
P
Peter Zijlstra 已提交
635
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
636 637
}

638 639 640 641 642 643 644 645 646
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
661
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
662

I
Ingo Molnar 已提交
663
inline void update_rq_clock(struct rq *rq)
664 665 666 667
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
668 669 670 671 672 673 674 675 676
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
677 678 679 680 681 682 683
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
684
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
685
{
686
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
687 688
}

I
Ingo Molnar 已提交
689 690 691
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
692 693 694 695

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
696
enum {
P
Peter Zijlstra 已提交
697
#include "sched_features.h"
I
Ingo Molnar 已提交
698 699
};

P
Peter Zijlstra 已提交
700 701 702 703 704
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
705
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
706 707 708 709 710 711 712 713 714
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

715
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
716 717 718 719 720 721
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
722
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
723 724 725 726
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
727 728 729
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
730
	}
L
Li Zefan 已提交
731
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
732

L
Li Zefan 已提交
733
	return 0;
P
Peter Zijlstra 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
753
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
778 779 780 781 782
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

783
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
784 785 786 787 788
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
803

804 805 806 807 808 809
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
810 811
/*
 * ratelimit for updating the group shares.
812
 * default: 0.25ms
P
Peter Zijlstra 已提交
813
 */
814
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
815

816 817 818 819 820 821 822
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

823 824 825 826 827 828 829 830
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
831
/*
P
Peter Zijlstra 已提交
832
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
833 834
 * default: 1s
 */
P
Peter Zijlstra 已提交
835
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
836

837 838
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
839 840 841 842 843
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
844

845 846 847 848 849 850 851
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
852
	if (sysctl_sched_rt_runtime < 0)
853 854 855 856
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
857

L
Linus Torvalds 已提交
858
#ifndef prepare_arch_switch
859 860 861 862 863 864
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

865 866 867 868 869
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

870
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
871
static inline int task_running(struct rq *rq, struct task_struct *p)
872
{
873
	return task_current(rq, p);
874 875
}

876
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 878 879
{
}

880
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881
{
882 883 884 885
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
886 887 888 889 890 891 892
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

893 894 895 896
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
897
static inline int task_running(struct rq *rq, struct task_struct *p)
898 899 900 901
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
902
	return task_current(rq, p);
903 904 905
#endif
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

923
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 925 926 927 928 929 930 931 932 933 934 935
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
936
#endif
937 938
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
939

940 941 942 943
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
944
static inline struct rq *__task_rq_lock(struct task_struct *p)
945 946
	__acquires(rq->lock)
{
947 948 949 950 951
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
952 953 954 955
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
956 957
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
958
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
959 960
 * explicitly disabling preemption.
 */
961
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
962 963
	__acquires(rq->lock)
{
964
	struct rq *rq;
L
Linus Torvalds 已提交
965

966 967 968 969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
972 973 974 975
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

976 977 978 979 980 981 982 983
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
984
static void __task_rq_unlock(struct rq *rq)
985 986 987 988 989
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

990
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
991 992 993 994 995 996
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
997
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
998
 */
A
Alexey Dobriyan 已提交
999
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1000 1001
	__acquires(rq->lock)
{
1002
	struct rq *rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1032
	if (!cpu_active(cpu_of(rq)))
1033
		return 0;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1054
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1061
#ifdef CONFIG_SMP
1062 1063 1064 1065
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1066
{
1067
	struct rq *rq = arg;
1068

1069 1070 1071 1072
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1073 1074
}

1075 1076 1077 1078 1079 1080
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1081
{
1082 1083
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084

1085
	hrtimer_set_expires(timer, time);
1086 1087 1088 1089

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1090
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 1092
		rq->hrtick_csd_pending = 1;
	}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1107
		hrtick_clear(cpu_rq(cpu));
1108 1109 1110 1111 1112 1113
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1114
static __init void init_hrtick(void)
1115 1116 1117
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1118 1119 1120 1121 1122 1123 1124 1125
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1126
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127
			HRTIMER_MODE_REL_PINNED, 0);
1128
}
1129

A
Andrew Morton 已提交
1130
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1131 1132
{
}
1133
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1134

1135
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1136
{
1137 1138
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1139

1140 1141 1142 1143
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1144

1145 1146
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1147
}
A
Andrew Morton 已提交
1148
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149 1150 1151 1152 1153 1154 1155 1156
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1157 1158 1159
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1160
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1161

I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1175
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1181
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1182 1183
		return;

1184
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1240
	set_tsk_need_resched(rq->idle);
1241 1242 1243 1244 1245 1246

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1247
#endif /* CONFIG_NO_HZ */
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1270
#else /* !CONFIG_SMP */
1271
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1272 1273
{
	assert_spin_locked(&task_rq(p)->lock);
1274
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1275
}
1276 1277 1278 1279

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1280
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1281

1282 1283 1284 1285 1286 1287 1288 1289
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1290 1291 1292
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1293
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1294

1295 1296 1297
/*
 * delta *= weight / lw
 */
1298
static unsigned long
1299 1300 1301 1302 1303
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1304 1305 1306 1307 1308 1309 1310
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1311 1312 1313 1314 1315

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1316
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1317
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1318 1319
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1320
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321

1322
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1323 1324
}

1325
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 1327
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1328
	lw->inv_weight = 0;
1329 1330
}

1331
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 1333
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337 1338 1339 1340
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1341
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 1343 1344 1345
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1346 1347
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 1358 1359
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1360 1361
 */
static const int prio_to_weight[40] = {
1362 1363 1364 1365 1366 1367 1368 1369
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1370 1371
};

1372 1373 1374 1375 1376 1377 1378
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1379
static const u32 prio_to_wmult[40] = {
1380 1381 1382 1383 1384 1385 1386 1387
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1388
};
1389

I
Ingo Molnar 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1415

1416 1417 1418 1419 1420 1421 1422 1423
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1424 1425
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1426 1427
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1428 1429
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1430 1431
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1432 1433
#endif

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1444
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1445
typedef int (*tg_visitor)(struct task_group *, void *);
1446 1447 1448 1449 1450

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1451
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1452 1453
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1454
	int ret;
1455 1456 1457 1458

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1459 1460 1461
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1462 1463 1464 1465 1466 1467 1468
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1469 1470 1471
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1472 1473 1474 1475 1476

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1477
out_unlock:
1478
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1479 1480

	return ret;
1481 1482
}

P
Peter Zijlstra 已提交
1483 1484 1485
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1486
}
P
Peter Zijlstra 已提交
1487 1488 1489
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1549 1550 1551 1552 1553
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1554
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1555

1556 1557
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1558 1559
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1560 1561 1562 1563 1564

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1565

1566 1567 1568 1569 1570 1571
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1572 1573 1574 1575 1576
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1577 1578 1579 1580
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1581
{
1582
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1583
	int boost = 0;
1584

1585
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1586 1587 1588 1589
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1590

1591
	/*
P
Peter Zijlstra 已提交
1592 1593 1594
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1595
	 */
1596
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1597
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598

1599 1600 1601 1602
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1603

1604
		spin_lock_irqsave(&rq->lock, flags);
1605
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1606
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 1608 1609
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1610
}
1611 1612

/*
1613 1614 1615
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1616
 */
P
Peter Zijlstra 已提交
1617
static int tg_shares_up(struct task_group *tg, void *data)
1618
{
1619 1620
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1621
	struct sched_domain *sd = data;
1622
	unsigned long flags;
1623
	int i;
1624

1625 1626 1627 1628 1629 1630
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1631
	for_each_cpu(i, sched_domain_span(sd)) {
1632 1633 1634
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1635 1636 1637 1638 1639 1640 1641 1642 1643
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649 1650 1651
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1652

1653
	for_each_cpu(i, sched_domain_span(sd))
1654 1655 1656
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1657 1658

	return 0;
1659 1660 1661
}

/*
1662 1663 1664
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1665
 */
P
Peter Zijlstra 已提交
1666
static int tg_load_down(struct task_group *tg, void *data)
1667
{
1668
	unsigned long load;
P
Peter Zijlstra 已提交
1669
	long cpu = (long)data;
1670

1671 1672 1673 1674 1675 1676 1677
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1678

1679
	tg->cfs_rq[cpu]->h_load = load;
1680

P
Peter Zijlstra 已提交
1681
	return 0;
1682 1683
}

1684
static void update_shares(struct sched_domain *sd)
1685
{
1686 1687 1688 1689 1690 1691 1692 1693
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1694 1695 1696

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1697
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1698
	}
1699 1700
}

1701 1702
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1703 1704 1705
	if (root_task_group_empty())
		return;

1706 1707 1708 1709 1710
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1711
static void update_h_load(long cpu)
1712
{
1713 1714 1715
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1716
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717 1718 1719 1720
}

#else

1721
static inline void update_shares(struct sched_domain *sd)
1722 1723 1724
{
}

1725 1726 1727 1728
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1729 1730
#endif

1731 1732
#ifdef CONFIG_PREEMPT

1733 1734
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1735
/*
1736 1737 1738 1739 1740 1741
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1742
 */
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1797 1798 1799 1800 1801 1802
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1803 1804
#endif

V
Vegard Nossum 已提交
1805
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1806 1807
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1808
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1809 1810 1811
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1812
#endif
1813

1814 1815
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1816 1817
#include "sched_stats.h"
#include "sched_idletask.c"
1818 1819
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1820 1821 1822 1823 1824
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1825 1826
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1827

1828
static void inc_nr_running(struct rq *rq)
1829 1830 1831 1832
{
	rq->nr_running++;
}

1833
static void dec_nr_running(struct rq *rq)
1834 1835 1836 1837
{
	rq->nr_running--;
}

1838 1839 1840
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1841 1842 1843 1844
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1845

I
Ingo Molnar 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1854

I
Ingo Molnar 已提交
1855 1856
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857 1858
}

1859 1860 1861 1862 1863 1864
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1865
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866
{
P
Peter Zijlstra 已提交
1867 1868 1869
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1870
	sched_info_queued(p);
1871
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1872
	p->se.on_rq = 1;
1873 1874
}

1875
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876
{
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1886 1887
	}

1888
	sched_info_dequeued(p);
1889
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1890
	p->se.on_rq = 0;
1891 1892
}

1893
/*
I
Ingo Molnar 已提交
1894
 * __normal_prio - return the priority that is based on the static prio
1895 1896 1897
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1898
	return p->static_prio;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1908
static inline int normal_prio(struct task_struct *p)
1909 1910 1911
{
	int prio;

1912
	if (task_has_rt_policy(p))
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1926
static int effective_prio(struct task_struct *p)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1939
/*
I
Ingo Molnar 已提交
1940
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1941
 */
I
Ingo Molnar 已提交
1942
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1943
{
1944
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1945
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1946

1947
	enqueue_task(rq, p, wakeup);
1948
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1954
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1955
{
1956
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1957 1958
		rq->nr_uninterruptible++;

1959
	dequeue_task(rq, p, sleep);
1960
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1967
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1968 1969 1970 1971
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1972 1973
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1974
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1975
#ifdef CONFIG_SMP
1976 1977 1978 1979 1980 1981
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1982 1983
	task_thread_info(p)->cpu = cpu;
#endif
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1998
#ifdef CONFIG_SMP
1999 2000 2001
/*
 * Is this task likely cache-hot:
 */
2002
static int
2003 2004 2005 2006
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2010 2011 2012
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017
	if (p->sched_class != &fair_sched_class)
		return 0;

2018 2019 2020 2021 2022
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2023 2024 2025 2026 2027 2028
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2029
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2030
{
I
Ingo Molnar 已提交
2031 2032
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 2034
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035
	u64 clock_offset;
I
Ingo Molnar 已提交
2036 2037

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2038

2039
	trace_sched_migrate_task(p, new_cpu);
2040

I
Ingo Molnar 已提交
2041 2042 2043
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2044 2045 2046 2047
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2048
#endif
2049
	if (old_cpu != new_cpu) {
2050
		p->se.nr_migrations++;
2051
		new_rq->nr_migrations_in++;
2052
#ifdef CONFIG_SCHEDSTATS
2053 2054
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2055
#endif
2056
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057
				     1, 1, NULL, 0);
2058
	}
2059 2060
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2061 2062

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2063 2064
}

2065
struct migration_req {
L
Linus Torvalds 已提交
2066 2067
	struct list_head list;

2068
	struct task_struct *task;
L
Linus Torvalds 已提交
2069 2070 2071
	int dest_cpu;

	struct completion done;
2072
};
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2078
static int
2079
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2080
{
2081
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2087
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2096

L
Linus Torvalds 已提交
2097 2098 2099
	return 1;
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2143 2144 2145
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2146 2147 2148 2149 2150 2151 2152
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2159
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2160 2161
{
	unsigned long flags;
I
Ingo Molnar 已提交
2162
	int running, on_rq;
R
Roland McGrath 已提交
2163
	unsigned long ncsw;
2164
	struct rq *rq;
L
Linus Torvalds 已提交
2165

2166 2167 2168 2169 2170 2171 2172 2173
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2186 2187 2188
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2189
			cpu_relax();
R
Roland McGrath 已提交
2190
		}
2191

2192 2193 2194 2195 2196 2197
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2198
		trace_sched_wait_task(rq, p);
2199 2200
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2201
		ncsw = 0;
2202
		if (!match_state || p->state == match_state)
2203
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204
		task_rq_unlock(rq, &flags);
2205

R
Roland McGrath 已提交
2206 2207 2208 2209 2210 2211
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2222

2223 2224 2225 2226 2227
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2228
		 * So if it was still runnable (but just not actively
2229 2230 2231 2232 2233 2234 2235
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2236

2237 2238 2239 2240 2241 2242 2243
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2244 2245

	return ncsw;
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2261
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2271
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2272
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2273

T
Thomas Gleixner 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2309 2310
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2311
{
2312
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2313
	unsigned long flags;
2314
	struct rq *rq;
L
Linus Torvalds 已提交
2315

2316
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2317
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2318

P
Peter Zijlstra 已提交
2319
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2320

2321
	smp_wmb();
L
Linus Torvalds 已提交
2322
	rq = task_rq_lock(p, &flags);
2323
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2324
	if (!(p->state & state))
L
Linus Torvalds 已提交
2325 2326
		goto out;

I
Ingo Molnar 已提交
2327
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2328 2329 2330
		goto out_running;

	cpu = task_cpu(p);
2331
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2337 2338 2339
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2340 2341
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2342
	 */
2343 2344
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2345 2346 2347
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2348
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2349
	if (cpu != orig_cpu)
2350
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2351

P
Peter Zijlstra 已提交
2352 2353 2354
	rq = task_rq_lock(p, &flags);
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359 2360 2361 2362
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2363
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2364 2365 2366 2367 2368
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2369
#endif /* CONFIG_SCHEDSTATS */
2370

L
Linus Torvalds 已提交
2371 2372
out_activate:
#endif /* CONFIG_SMP */
2373
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2374
	if (wake_flags & WF_SYNC)
2375 2376 2377 2378 2379 2380 2381
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2382
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2383 2384
	success = 1;

P
Peter Zijlstra 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2401
out_running:
2402
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2403
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2404

L
Linus Torvalds 已提交
2405
	p->state = TASK_RUNNING;
2406 2407 2408 2409
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2410 2411
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2412
	put_cpu();
L
Linus Torvalds 已提交
2413 2414 2415 2416

	return success;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2428
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2429
{
2430
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2431 2432 2433
}
EXPORT_SYMBOL(wake_up_process);

2434
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2442 2443 2444 2445 2446 2447 2448
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2449
	p->se.prev_sum_exec_runtime	= 0;
2450
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2451 2452
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2453 2454
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2455
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2456 2457

#ifdef CONFIG_SCHEDSTATS
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2489
#endif
N
Nick Piggin 已提交
2490

P
Peter Zijlstra 已提交
2491
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2492
	p->se.on_rq = 0;
2493
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2494

2495 2496 2497 2498
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2517 2518 2519 2520
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2521
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2522
			p->policy = SCHED_NORMAL;
2523 2524
			p->normal_prio = p->static_prio;
		}
2525

2526 2527
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2528
			p->normal_prio = p->static_prio;
2529 2530 2531
			set_load_weight(p);
		}

2532 2533 2534 2535 2536 2537
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2538

2539 2540 2541 2542 2543
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2544 2545
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2546

2547 2548 2549 2550 2551
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2552
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2553
	if (likely(sched_info_on()))
2554
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2555
#endif
2556
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2557 2558
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2559
#ifdef CONFIG_PREEMPT
2560
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2561
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2562
#endif
2563 2564
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2565
	put_cpu();
L
Linus Torvalds 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2575
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2576 2577
{
	unsigned long flags;
I
Ingo Molnar 已提交
2578
	struct rq *rq;
L
Linus Torvalds 已提交
2579 2580

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2581
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2582
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2583

2584
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2585
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2586 2587
	} else {
		/*
I
Ingo Molnar 已提交
2588 2589
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2590
		 */
2591
		p->sched_class->task_new(rq, p);
2592
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2593
	}
2594
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2595
	check_preempt_curr(rq, p, WF_FORK);
2596 2597 2598 2599
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2600
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2601 2602
}

2603 2604 2605
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2606
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2607
 * @notifier: notifier struct to register
2608 2609 2610 2611 2612 2613 2614 2615 2616
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2617
 * @notifier: notifier struct to unregister
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2647
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2659
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2660

2661 2662 2663
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2664
 * @prev: the current task that is being switched out
2665 2666 2667 2668 2669 2670 2671 2672 2673
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2674 2675 2676
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2677
{
2678
	fire_sched_out_preempt_notifiers(prev, next);
2679 2680 2681 2682
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2683 2684
/**
 * finish_task_switch - clean up after a task-switch
2685
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2686 2687
 * @prev: the thread we just switched away from.
 *
2688 2689 2690 2691
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2692 2693
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2694
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2695 2696 2697
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2698
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2699 2700 2701
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2702
	long prev_state;
L
Linus Torvalds 已提交
2703 2704 2705 2706 2707

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2708
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2709 2710
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2711
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2717
	prev_state = prev->state;
2718
	finish_arch_switch(prev);
2719
	perf_event_task_sched_in(current, cpu_of(rq));
2720
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2721

2722
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2723 2724
	if (mm)
		mmdrop(mm);
2725
	if (unlikely(prev_state == TASK_DEAD)) {
2726 2727 2728
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2729
		 */
2730
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2731
		put_task_struct(prev);
2732
	}
L
Linus Torvalds 已提交
2733 2734
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2760

2761 2762 2763 2764 2765 2766
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2767 2768
}

2769 2770
#endif

L
Linus Torvalds 已提交
2771 2772 2773 2774
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2775
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2776 2777
	__releases(rq->lock)
{
2778 2779
	struct rq *rq = this_rq();

2780
	finish_task_switch(rq, prev);
2781

2782 2783 2784 2785 2786
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2787

2788 2789 2790 2791
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2792
	if (current->set_child_tid)
2793
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2800
static inline void
2801
context_switch(struct rq *rq, struct task_struct *prev,
2802
	       struct task_struct *next)
L
Linus Torvalds 已提交
2803
{
I
Ingo Molnar 已提交
2804
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2805

2806
	prepare_task_switch(rq, prev, next);
2807
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2808 2809
	mm = next->mm;
	oldmm = prev->active_mm;
2810 2811 2812 2813 2814
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2815
	arch_start_context_switch(prev);
2816

I
Ingo Molnar 已提交
2817
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2824
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2825 2826 2827
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2828 2829 2830 2831 2832 2833 2834
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2835
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2836
#endif
L
Linus Torvalds 已提交
2837 2838 2839 2840

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2841 2842 2843 2844 2845 2846 2847
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2871
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2886 2887
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2888

2889
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2899
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2918 2919 2920 2921 2922 2923
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2939 2940
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2941
{
2942 2943 2944 2945
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2958

2959 2960
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2984 2985
}

2986 2987 2988 2989 2990 2991 2992 2993 2994
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2995
/*
I
Ingo Molnar 已提交
2996 2997
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2998
 */
I
Ingo Molnar 已提交
2999
static void update_cpu_load(struct rq *this_rq)
3000
{
3001
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3014 3015 3016 3017 3018 3019 3020
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3021 3022
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3023 3024 3025 3026 3027

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3028 3029
}

I
Ingo Molnar 已提交
3030 3031
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3038
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3039 3040 3041
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3042
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3043 3044 3045 3046
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3047
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3048
			spin_lock(&rq1->lock);
3049
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3050 3051
		} else {
			spin_lock(&rq2->lock);
3052
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3053 3054
		}
	}
3055 3056
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062 3063 3064
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3065
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3079
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3080 3081
 * the cpu_allowed mask is restored.
 */
3082
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3083
{
3084
	struct migration_req req;
L
Linus Torvalds 已提交
3085
	unsigned long flags;
3086
	struct rq *rq;
L
Linus Torvalds 已提交
3087 3088

	rq = task_rq_lock(p, &flags);
3089
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3090
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3097

L
Linus Torvalds 已提交
3098 3099 3100 3101 3102
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3103

L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3111 3112
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3113 3114 3115 3116
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3117
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3118
	put_cpu();
N
Nick Piggin 已提交
3119 3120
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3127 3128
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3129
{
3130
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3131
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3132
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3133 3134 3135 3136
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3137
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3138 3139 3140 3141 3142
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3143
static
3144
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3145
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3146
		     int *all_pinned)
L
Linus Torvalds 已提交
3147
{
3148
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153 3154
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3155
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3156
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3157
		return 0;
3158
	}
3159 3160
	*all_pinned = 0;

3161 3162
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3163
		return 0;
3164
	}
L
Linus Torvalds 已提交
3165

3166 3167 3168 3169 3170 3171
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3172 3173 3174
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3175
#ifdef CONFIG_SCHEDSTATS
3176
		if (tsk_cache_hot) {
3177
			schedstat_inc(sd, lb_hot_gained[idle]);
3178 3179
			schedstat_inc(p, se.nr_forced_migrations);
		}
3180 3181 3182 3183
#endif
		return 1;
	}

3184
	if (tsk_cache_hot) {
3185
		schedstat_inc(p, se.nr_failed_migrations_hot);
3186
		return 0;
3187
	}
L
Linus Torvalds 已提交
3188 3189 3190
	return 1;
}

3191 3192 3193 3194 3195
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3196
{
3197
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3198 3199
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3200

3201
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3202 3203
		goto out;

3204 3205
	pinned = 1;

L
Linus Torvalds 已提交
3206
	/*
I
Ingo Molnar 已提交
3207
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3208
	 */
I
Ingo Molnar 已提交
3209 3210
	p = iterator->start(iterator->arg);
next:
3211
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3212
		goto out;
3213 3214

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3215 3216 3217
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3218 3219
	}

I
Ingo Molnar 已提交
3220
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3221
	pulled++;
I
Ingo Molnar 已提交
3222
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3234
	/*
3235
	 * We only want to steal up to the prescribed amount of weighted load.
3236
	 */
3237
	if (rem_load_move > 0) {
3238 3239
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3240 3241
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3242 3243 3244
	}
out:
	/*
3245
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3246 3247 3248 3249
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3250 3251 3252

	if (all_pinned)
		*all_pinned = pinned;
3253 3254

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3255 3256
}

I
Ingo Molnar 已提交
3257
/*
P
Peter Williams 已提交
3258 3259 3260
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3261 3262 3263 3264
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3265
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3266 3267 3268
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3269
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3270
	unsigned long total_load_moved = 0;
3271
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3272 3273

	do {
P
Peter Williams 已提交
3274 3275
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3276
				max_load_move - total_load_moved,
3277
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3278
		class = class->next;
3279

3280 3281 3282 3283 3284 3285
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3286 3287
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3288
#endif
P
Peter Williams 已提交
3289
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3290

P
Peter Williams 已提交
3291 3292 3293
	return total_load_moved > 0;
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3330
	const struct sched_class *class;
P
Peter Williams 已提交
3331

3332
	for_each_class(class) {
3333
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3334
			return 1;
3335
	}
P
Peter Williams 已提交
3336 3337

	return 0;
I
Ingo Molnar 已提交
3338
}
3339
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3340
/*
3341 3342
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3343
 */
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3362
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3363 3364 3365 3366 3367 3368
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3369
#endif
3370
};
L
Linus Torvalds 已提交
3371

3372
/*
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3405
		load_idx = sd->busy_idx;
3406 3407 3408
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3409
		load_idx = sd->newidle_idx;
3410 3411
		break;
	default:
N
Nick Piggin 已提交
3412
		load_idx = sd->idle_idx;
3413 3414
		break;
	}
L
Linus Torvalds 已提交
3415

3416 3417
	return load_idx;
}
L
Linus Torvalds 已提交
3418 3419


3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3458

3459 3460
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3461

3462 3463 3464 3465 3466 3467 3468
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3469

3470 3471 3472 3473 3474 3475 3476 3477
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3492

3493 3494 3495 3496 3497
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3498
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3499
		return;
L
Linus Torvalds 已提交
3500

3501 3502 3503 3504 3505 3506 3507
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3508

3509
/**
3510
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3511 3512 3513 3514 3515
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3516 3517 3518 3519 3520
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3521 3522 3523 3524 3525 3526 3527 3528
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3529

3530 3531 3532
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3533

3534 3535
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3536

3537
	return 1;
L
Linus Torvalds 已提交
3538

3539 3540 3541 3542 3543 3544 3545
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3546

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3572 3573 3574 3575 3576 3577 3578 3579 3580
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3581 3582 3583 3584 3585
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3604 3605 3606 3607 3608 3609
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3610 3611 3612 3613 3614
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3615
	power >>= SCHED_LOAD_SHIFT;
3616 3617

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3618 3619 3620 3621 3622
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3623 3624 3625
		power >>= SCHED_LOAD_SHIFT;
	}

3626 3627 3628 3629 3630
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3631

3632
	sdg->cpu_power = power;
3633 3634 3635
}

static void update_group_power(struct sched_domain *sd, int cpu)
3636 3637 3638
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3639
	unsigned long power;
3640 3641

	if (!child) {
3642
		update_cpu_power(sd, cpu);
3643 3644 3645
		return;
	}

3646
	power = 0;
3647 3648 3649

	group = child->groups;
	do {
3650
		power += group->cpu_power;
3651 3652
		group = group->next;
	} while (group != child->groups);
3653 3654

	sdg->cpu_power = power;
3655
}
3656

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3669 3670
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3681
	if (local_group) {
3682
		balance_cpu = group_first_cpu(group);
3683
		if (balance_cpu == this_cpu)
3684
			update_group_power(sd, this_cpu);
3685
	}
3686 3687 3688 3689 3690

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3691

3692 3693
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3694

3695 3696
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3697

3698
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3699
		if (local_group) {
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3712
		}
3713

3714 3715 3716
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3717

3718 3719
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3720

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3732

3733
	/* Adjust by relative CPU power of the group */
3734
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3735

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3746 3747
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3748 3749 3750 3751

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3752
	sgs->group_capacity =
3753
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3754
}
I
Ingo Molnar 已提交
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3765
 */
3766 3767 3768 3769
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3770
{
P
Peter Zijlstra 已提交
3771
	struct sched_domain *child = sd->child;
3772
	struct sched_group *group = sd->groups;
3773
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3774 3775 3776 3777
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3778

3779
	init_sd_power_savings_stats(sd, sds, idle);
3780
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3781 3782 3783 3784

	do {
		int local_group;

3785 3786
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3787
		memset(&sgs, 0, sizeof(sgs));
3788
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3789
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3790

3791 3792
		if (local_group && balance && !(*balance))
			return;
3793

3794
		sds->total_load += sgs.group_load;
3795
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3796

P
Peter Zijlstra 已提交
3797 3798 3799 3800 3801 3802
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3803
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3804 3805

		if (local_group) {
3806 3807 3808 3809 3810
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3811 3812
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3813 3814 3815 3816 3817
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3818
		}
3819

3820
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3821 3822
		group = group->next;
	} while (group != sd->groups);
3823
}
L
Linus Torvalds 已提交
3824

3825 3826
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3827 3828
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3847

3848 3849 3850 3851 3852
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3853

L
Linus Torvalds 已提交
3854
	/*
3855 3856 3857
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3858
	 */
3859

3860
	pwr_now += sds->busiest->cpu_power *
3861
			min(sds->busiest_load_per_task, sds->max_load);
3862
	pwr_now += sds->this->cpu_power *
3863 3864 3865 3866
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3867 3868
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3869
	if (sds->max_load > tmp)
3870
		pwr_move += sds->busiest->cpu_power *
3871 3872 3873
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3874
	if (sds->max_load * sds->busiest->cpu_power <
3875
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3876 3877
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3878
	else
3879 3880 3881
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3882 3883 3884 3885 3886 3887 3888
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3901 3902 3903 3904 3905
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3906
	if (sds->max_load < sds->avg_load) {
3907
		*imbalance = 0;
3908
		return fix_small_imbalance(sds, this_cpu, imbalance);
3909
	}
3910 3911

	/* Don't want to pull so many tasks that a group would go idle */
3912 3913
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3914

L
Linus Torvalds 已提交
3915
	/* How much load to actually move to equalise the imbalance */
3916 3917
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3918 3919
			/ SCHED_LOAD_SCALE;

3920 3921 3922 3923 3924 3925
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3926 3927
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3928

3929
}
3930
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3956 3957 3958 3959 3960 3961 3962
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3963

3964
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3965

3966 3967 3968 3969 3970 3971 3972
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3983 3984
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3985

3986 3987
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3988

3989
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3990 3991
		goto out_balanced;

3992
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3993

3994 3995 3996 3997
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3998 3999
		goto out_balanced;

4000 4001 4002 4003
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4004

L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011 4012
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4013
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4014 4015
	 * appear as very large values with unsigned longs.
	 */
4016
	if (sds.max_load <= sds.busiest_load_per_task)
4017 4018
		goto out_balanced;

4019 4020
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4021
	return sds.busiest;
L
Linus Torvalds 已提交
4022 4023

out_balanced:
4024 4025 4026 4027 4028 4029
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4030
ret:
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4038
static struct rq *
I
Ingo Molnar 已提交
4039
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4040
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4041
{
4042
	struct rq *busiest = NULL, *rq;
4043
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4044 4045
	int i;

4046
	for_each_cpu(i, sched_group_cpus(group)) {
4047 4048
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4049
		unsigned long wl;
4050

4051
		if (!cpumask_test_cpu(i, cpus))
4052 4053
			continue;

4054
		rq = cpu_rq(i);
4055 4056
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4057

4058
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4059
			continue;
L
Linus Torvalds 已提交
4060

I
Ingo Molnar 已提交
4061 4062
		if (wl > max_load) {
			max_load = wl;
4063
			busiest = rq;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068 4069
		}
	}

	return busiest;
}

4070 4071 4072 4073 4074 4075
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4076 4077 4078
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4079 4080 4081 4082
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4083
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4084
			struct sched_domain *sd, enum cpu_idle_type idle,
4085
			int *balance)
L
Linus Torvalds 已提交
4086
{
P
Peter Williams 已提交
4087
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4088 4089
	struct sched_group *group;
	unsigned long imbalance;
4090
	struct rq *busiest;
4091
	unsigned long flags;
4092
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4093

4094
	cpumask_setall(cpus);
4095

4096 4097 4098
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4099
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4100
	 * portraying it as CPU_NOT_IDLE.
4101
	 */
I
Ingo Molnar 已提交
4102
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4103
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4104
		sd_idle = 1;
L
Linus Torvalds 已提交
4105

4106
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4107

4108
redo:
4109
	update_shares(sd);
4110
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4111
				   cpus, balance);
4112

4113
	if (*balance == 0)
4114 4115
		goto out_balanced;

L
Linus Torvalds 已提交
4116 4117 4118 4119 4120
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4121
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4122 4123 4124 4125 4126
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4127
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4128 4129 4130

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4131
	ld_moved = 0;
L
Linus Torvalds 已提交
4132 4133 4134 4135
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4136
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4137 4138
		 * correctly treated as an imbalance.
		 */
4139
		local_irq_save(flags);
N
Nick Piggin 已提交
4140
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4141
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4142
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4143
		double_rq_unlock(this_rq, busiest);
4144
		local_irq_restore(flags);
4145

4146 4147 4148
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4149
		if (ld_moved && this_cpu != smp_processor_id())
4150 4151
			resched_cpu(this_cpu);

4152
		/* All tasks on this runqueue were pinned by CPU affinity */
4153
		if (unlikely(all_pinned)) {
4154 4155
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4156
				goto redo;
4157
			goto out_balanced;
4158
		}
L
Linus Torvalds 已提交
4159
	}
4160

P
Peter Williams 已提交
4161
	if (!ld_moved) {
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4167
			spin_lock_irqsave(&busiest->lock, flags);
4168 4169 4170 4171

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4172 4173
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4174
				spin_unlock_irqrestore(&busiest->lock, flags);
4175 4176 4177 4178
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4179 4180 4181
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4182
				active_balance = 1;
L
Linus Torvalds 已提交
4183
			}
4184
			spin_unlock_irqrestore(&busiest->lock, flags);
4185
			if (active_balance)
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4192
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4193
		}
4194
	} else
L
Linus Torvalds 已提交
4195 4196
		sd->nr_balance_failed = 0;

4197
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4198 4199
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4200 4201 4202 4203 4204 4205 4206 4207 4208
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4209 4210
	}

P
Peter Williams 已提交
4211
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4212
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4213 4214 4215
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4216 4217 4218 4219

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4220
	sd->nr_balance_failed = 0;
4221 4222

out_one_pinned:
L
Linus Torvalds 已提交
4223
	/* tune up the balancing interval */
4224 4225
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4226 4227
		sd->balance_interval *= 2;

4228
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 4231 4232 4233
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4234 4235
	if (ld_moved)
		update_shares(sd);
4236
	return ld_moved;
L
Linus Torvalds 已提交
4237 4238 4239 4240 4241 4242
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4243
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4244 4245
 * this_rq is locked.
 */
4246
static int
4247
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4248 4249
{
	struct sched_group *group;
4250
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4251
	unsigned long imbalance;
P
Peter Williams 已提交
4252
	int ld_moved = 0;
N
Nick Piggin 已提交
4253
	int sd_idle = 0;
4254
	int all_pinned = 0;
4255
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4256

4257
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4258

4259 4260 4261 4262
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4263
	 * portraying it as CPU_NOT_IDLE.
4264 4265 4266
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4267
		sd_idle = 1;
L
Linus Torvalds 已提交
4268

4269
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4270
redo:
4271
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4272
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4273
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4274
	if (!group) {
I
Ingo Molnar 已提交
4275
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4276
		goto out_balanced;
L
Linus Torvalds 已提交
4277 4278
	}

4279
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4280
	if (!busiest) {
I
Ingo Molnar 已提交
4281
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4282
		goto out_balanced;
L
Linus Torvalds 已提交
4283 4284
	}

N
Nick Piggin 已提交
4285 4286
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4287
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4288

P
Peter Williams 已提交
4289
	ld_moved = 0;
4290 4291 4292
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4293 4294
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4295
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4296 4297
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4298
		double_unlock_balance(this_rq, busiest);
4299

4300
		if (unlikely(all_pinned)) {
4301 4302
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4303 4304
				goto redo;
		}
4305 4306
	}

P
Peter Williams 已提交
4307
	if (!ld_moved) {
4308
		int active_balance = 0;
4309

I
Ingo Molnar 已提交
4310
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4311 4312
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4313
			return -1;
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4350
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4363 4364 4365 4366
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4367 4368
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4369
		spin_lock(&this_rq->lock);
4370

N
Nick Piggin 已提交
4371
	} else
4372
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4373

4374
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4375
	return ld_moved;
4376 4377

out_balanced:
I
Ingo Molnar 已提交
4378
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4379
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4381
		return -1;
4382
	sd->nr_balance_failed = 0;
4383

4384
	return 0;
L
Linus Torvalds 已提交
4385 4386 4387 4388 4389 4390
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4391
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4392 4393
{
	struct sched_domain *sd;
4394
	int pulled_task = 0;
I
Ingo Molnar 已提交
4395
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4396 4397

	for_each_domain(this_cpu, sd) {
4398 4399 4400 4401 4402 4403
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4404
			/* If we've pulled tasks over stop searching: */
4405
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4406
							   sd);
4407 4408 4409 4410 4411 4412

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4413
	}
I
Ingo Molnar 已提交
4414
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4415 4416 4417 4418 4419
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4420
	}
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4431
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4432
{
4433
	int target_cpu = busiest_rq->push_cpu;
4434 4435
	struct sched_domain *sd;
	struct rq *target_rq;
4436

4437
	/* Is there any task to move? */
4438 4439 4440 4441
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4442 4443

	/*
4444
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4445
	 * we need to fix it. Originally reported by
4446
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4447
	 */
4448
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4449

4450 4451
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4452 4453
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4454 4455

	/* Search for an sd spanning us and the target CPU. */
4456
	for_each_domain(target_cpu, sd) {
4457
		if ((sd->flags & SD_LOAD_BALANCE) &&
4458
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4459
				break;
4460
	}
4461

4462
	if (likely(sd)) {
4463
		schedstat_inc(sd, alb_count);
4464

P
Peter Williams 已提交
4465 4466
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4467 4468 4469 4470
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4471
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4472 4473
}

4474 4475 4476
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4477
	cpumask_var_t cpu_mask;
4478
	cpumask_var_t ilb_grp_nohz_mask;
4479 4480 4481 4482
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4483 4484 4485 4486 4487
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4599
	return cpumask_first(nohz.cpu_mask);
4600 4601 4602
}
#endif

4603
/*
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4614
 *
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4630 4631 4632 4633 4634 4635 4636 4637
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4638 4639
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4640

4641 4642 4643
			return 0;
		}

4644 4645
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4646
		/* time for ilb owner also to sleep */
4647
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4648 4649 4650 4651 4652 4653 4654 4655 4656
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4673
			return 1;
4674
		}
4675
	} else {
4676
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4677 4678
			return 0;

4679
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4692 4693 4694 4695 4696
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4697
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4698
{
4699 4700
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4701 4702
	unsigned long interval;
	struct sched_domain *sd;
4703
	/* Earliest time when we have to do rebalance again */
4704
	unsigned long next_balance = jiffies + 60*HZ;
4705
	int update_next_balance = 0;
4706
	int need_serialize;
L
Linus Torvalds 已提交
4707

4708
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4709 4710 4711 4712
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4713
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4720 4721 4722
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4723
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4724

4725
		if (need_serialize) {
4726 4727 4728 4729
			if (!spin_trylock(&balancing))
				goto out;
		}

4730
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4731
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4732 4733
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4734 4735 4736
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4737
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4738
			}
4739
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4740
		}
4741
		if (need_serialize)
4742 4743
			spin_unlock(&balancing);
out:
4744
		if (time_after(next_balance, sd->last_balance + interval)) {
4745
			next_balance = sd->last_balance + interval;
4746 4747
			update_next_balance = 1;
		}
4748 4749 4750 4751 4752 4753 4754 4755

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4756
	}
4757 4758 4759 4760 4761 4762 4763 4764

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4765 4766 4767 4768 4769 4770 4771 4772 4773
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4774 4775 4776 4777
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4778

I
Ingo Molnar 已提交
4779
	rebalance_domains(this_cpu, idle);
4780 4781 4782 4783 4784 4785 4786

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4787 4788
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4789 4790 4791
		struct rq *rq;
		int balance_cpu;

4792 4793 4794 4795
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4796 4797 4798 4799 4800 4801 4802 4803
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4804
			rebalance_domains(balance_cpu, CPU_IDLE);
4805 4806

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4807 4808
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4809 4810 4811 4812 4813
		}
	}
#endif
}

4814 4815 4816 4817 4818
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4819 4820 4821 4822 4823 4824 4825
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4826
static inline void trigger_load_balance(struct rq *rq, int cpu)
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4838
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4839 4840 4841 4842
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4843
			int ilb = find_new_ilb(cpu);
4844

4845
			if (ilb < nr_cpu_ids)
4846 4847 4848 4849 4850 4851 4852 4853 4854
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4855
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4856 4857 4858 4859 4860 4861 4862 4863 4864
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4865
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4866 4867
		return;
#endif
4868 4869 4870
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4871
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4872
}
I
Ingo Molnar 已提交
4873 4874 4875

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4876 4877 4878
/*
 * on UP we do not need to balance between CPUs:
 */
4879
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4880 4881
{
}
I
Ingo Molnar 已提交
4882

L
Linus Torvalds 已提交
4883 4884 4885 4886 4887 4888 4889
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4890
 * Return any ns on the sched_clock that have not yet been accounted in
4891
 * @p in case that task is currently running.
4892 4893
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4894
 */
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4909
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4910 4911
{
	unsigned long flags;
4912
	struct rq *rq;
4913
	u64 ns = 0;
4914

4915
	rq = task_rq_lock(p, &flags);
4916 4917
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4918

4919 4920
	return ns;
}
4921

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4959
	task_rq_unlock(rq, &flags);
4960

L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4968
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4969
 */
4970 4971
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4972 4973 4974 4975
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4976
	/* Add user time to process. */
L
Linus Torvalds 已提交
4977
	p->utime = cputime_add(p->utime, cputime);
4978
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4979
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4980 4981 4982 4983 4984 4985 4986

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4987 4988

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4989 4990
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4991 4992
}

4993 4994 4995 4996
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4997
 * @cputime_scaled: cputime scaled by cpu frequency
4998
 */
4999 5000
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5001 5002 5003 5004 5005 5006
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5007
	/* Add guest time to process. */
5008
	p->utime = cputime_add(p->utime, cputime);
5009
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5010
	account_group_user_time(p, cputime);
5011 5012
	p->gtime = cputime_add(p->gtime, cputime);

5013
	/* Add guest time to cpustat. */
5014 5015 5016 5017
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5018 5019 5020 5021 5022
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5023
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5024 5025
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5026
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5027 5028 5029 5030
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5031
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5032
		account_guest_time(p, cputime, cputime_scaled);
5033 5034
		return;
	}
5035

5036
	/* Add system time to process. */
L
Linus Torvalds 已提交
5037
	p->stime = cputime_add(p->stime, cputime);
5038
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5039
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5048 5049
		cpustat->system = cputime64_add(cpustat->system, tmp);

5050 5051
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5052 5053 5054 5055
	/* Account for system time used */
	acct_update_integrals(p);
}

5056
/*
L
Linus Torvalds 已提交
5057 5058
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5059
 */
5060
void account_steal_time(cputime_t cputime)
5061
{
5062 5063 5064 5065
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5066 5067
}

L
Linus Torvalds 已提交
5068
/*
5069 5070
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5071
 */
5072
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5073 5074
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5075
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5076
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5077

5078 5079 5080 5081
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5082 5083
}

5084 5085 5086 5087 5088 5089 5090 5091 5092
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5093
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5094 5095 5096
	struct rq *rq = this_rq();

	if (user_tick)
5097
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5098
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5099
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5100 5101
				    one_jiffy_scaled);
	else
5102
		account_idle_time(cputime_one_jiffy);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5122 5123
}

5124 5125
#endif

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5196
	struct task_struct *curr = rq->curr;
5197 5198

	sched_clock_tick();
I
Ingo Molnar 已提交
5199 5200

	spin_lock(&rq->lock);
5201
	update_rq_clock(rq);
5202
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5203
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5204
	spin_unlock(&rq->lock);
5205

5206
	perf_event_task_tick(curr, cpu);
5207

5208
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5209 5210
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5211
#endif
L
Linus Torvalds 已提交
5212 5213
}

5214
notrace unsigned long get_parent_ip(unsigned long addr)
5215 5216 5217 5218 5219 5220 5221 5222
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5223

5224 5225 5226
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5227
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5228
{
5229
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5230 5231 5232
	/*
	 * Underflow?
	 */
5233 5234
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5235
#endif
L
Linus Torvalds 已提交
5236
	preempt_count() += val;
5237
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5238 5239 5240
	/*
	 * Spinlock count overflowing soon?
	 */
5241 5242
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5243 5244 5245
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5246 5247 5248
}
EXPORT_SYMBOL(add_preempt_count);

5249
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5250
{
5251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5252 5253 5254
	/*
	 * Underflow?
	 */
5255
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5256
		return;
L
Linus Torvalds 已提交
5257 5258 5259
	/*
	 * Is the spinlock portion underflowing?
	 */
5260 5261 5262
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5263
#endif
5264

5265 5266
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5274
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5275
 */
I
Ingo Molnar 已提交
5276
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5277
{
5278 5279 5280 5281 5282
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5283
	debug_show_held_locks(prev);
5284
	print_modules();
I
Ingo Molnar 已提交
5285 5286
	if (irqs_disabled())
		print_irqtrace_events(prev);
5287 5288 5289 5290 5291

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5292
}
L
Linus Torvalds 已提交
5293

I
Ingo Molnar 已提交
5294 5295 5296 5297 5298
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5299
	/*
I
Ingo Molnar 已提交
5300
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5301 5302 5303
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5304
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5305 5306
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5307 5308
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5309
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5310 5311
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5312 5313
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5314 5315
	}
#endif
I
Ingo Molnar 已提交
5316 5317
}

5318
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5319
{
5320
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5321

5322
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5323

5324
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5325 5326 5327 5328 5329 5330 5331 5332 5333
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5334 5335 5336 5337
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5338
	}
5339
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5340 5341
}

I
Ingo Molnar 已提交
5342 5343 5344 5345
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5346
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5347
{
5348
	const struct sched_class *class;
I
Ingo Molnar 已提交
5349
	struct task_struct *p;
L
Linus Torvalds 已提交
5350 5351

	/*
I
Ingo Molnar 已提交
5352 5353
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5354
	 */
I
Ingo Molnar 已提交
5355
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5356
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5357 5358
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5359 5360
	}

I
Ingo Molnar 已提交
5361 5362
	class = sched_class_highest;
	for ( ; ; ) {
5363
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5373

I
Ingo Molnar 已提交
5374 5375 5376
/*
 * schedule() is the main scheduler function.
 */
5377
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5378 5379
{
	struct task_struct *prev, *next;
5380
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5381
	struct rq *rq;
5382
	int cpu;
I
Ingo Molnar 已提交
5383

5384 5385
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5386 5387
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5388
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5389 5390 5391 5392 5393 5394 5395
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5396

5397
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5398
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5399

5400
	spin_lock_irq(&rq->lock);
5401
	update_rq_clock(rq);
5402
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5403 5404

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5405
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5406
			prev->state = TASK_RUNNING;
5407
		else
5408
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5409
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5410 5411
	}

5412
	pre_schedule(rq, prev);
5413

I
Ingo Molnar 已提交
5414
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5415 5416
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5417
	put_prev_task(rq, prev);
5418
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5419 5420

	if (likely(prev != next)) {
5421
		sched_info_switch(prev, next);
5422
		perf_event_task_sched_out(prev, next, cpu);
5423

L
Linus Torvalds 已提交
5424 5425 5426 5427
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5428
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5429 5430 5431 5432 5433 5434
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5435 5436 5437
	} else
		spin_unlock_irq(&rq->lock);

5438
	post_schedule(rq);
L
Linus Torvalds 已提交
5439

P
Peter Zijlstra 已提交
5440
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5441
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5442

L
Linus Torvalds 已提交
5443
	preempt_enable_no_resched();
5444
	if (need_resched())
L
Linus Torvalds 已提交
5445 5446 5447 5448
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5510 5511
#ifdef CONFIG_PREEMPT
/*
5512
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5513
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5519

L
Linus Torvalds 已提交
5520 5521
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5522
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5523
	 */
N
Nick Piggin 已提交
5524
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5525 5526
		return;

5527 5528 5529 5530
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5531

5532 5533 5534 5535 5536
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5537
	} while (need_resched());
L
Linus Torvalds 已提交
5538 5539 5540 5541
}
EXPORT_SYMBOL(preempt_schedule);

/*
5542
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548 5549
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5550

5551
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5552 5553
	BUG_ON(ti->preempt_count || !irqs_disabled());

5554 5555 5556 5557 5558 5559
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5560

5561 5562 5563 5564 5565
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5566
	} while (need_resched());
L
Linus Torvalds 已提交
5567 5568 5569 5570
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5571
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5572
			  void *key)
L
Linus Torvalds 已提交
5573
{
P
Peter Zijlstra 已提交
5574
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5575 5576 5577 5578
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5579 5580
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5581 5582 5583
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5584
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5585 5586
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5587
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5588
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5589
{
5590
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5591

5592
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5593 5594
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5595
		if (curr->func(curr, mode, wake_flags, key) &&
5596
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5597 5598 5599 5600 5601 5602 5603 5604 5605
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5606
 * @key: is directly passed to the wakeup function
5607 5608 5609
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5610
 */
5611
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5612
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5625
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5626 5627 5628 5629
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5630 5631 5632 5633 5634
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5635
/**
5636
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5637 5638 5639
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5640
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5648 5649 5650
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5651
 */
5652 5653
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5654 5655
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5656
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5662
		wake_flags = 0;
L
Linus Torvalds 已提交
5663 5664

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5665
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5666 5667
	spin_unlock_irqrestore(&q->lock, flags);
}
5668 5669 5670 5671 5672 5673 5674 5675 5676
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5677 5678
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5679 5680 5681 5682 5683 5684 5685 5686
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5687 5688 5689
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5690
 */
5691
void complete(struct completion *x)
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5697
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5698 5699 5700 5701
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5702 5703 5704 5705 5706
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5707 5708 5709
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5710
 */
5711
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5717
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5718 5719 5720 5721
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5722 5723
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5724 5725 5726 5727 5728 5729 5730
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5731
			if (signal_pending_state(state, current)) {
5732 5733
				timeout = -ERESTARTSYS;
				break;
5734 5735
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5736 5737 5738
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5739
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5740
		__remove_wait_queue(&x->wait, &wait);
5741 5742
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5743 5744
	}
	x->done--;
5745
	return timeout ?: 1;
L
Linus Torvalds 已提交
5746 5747
}

5748 5749
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5750 5751 5752 5753
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5754
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5755
	spin_unlock_irq(&x->wait.lock);
5756 5757
	return timeout;
}
L
Linus Torvalds 已提交
5758

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5769
void __sched wait_for_completion(struct completion *x)
5770 5771
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5772
}
5773
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5774

5775 5776 5777 5778 5779 5780 5781 5782 5783
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5784
unsigned long __sched
5785
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5786
{
5787
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5788
}
5789
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5790

5791 5792 5793 5794 5795 5796 5797
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5798
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5799
{
5800 5801 5802 5803
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5804
}
5805
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5806

5807 5808 5809 5810 5811 5812 5813 5814
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5815
unsigned long __sched
5816 5817
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5818
{
5819
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5820
}
5821
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5822

5823 5824 5825 5826 5827 5828 5829
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5830 5831 5832 5833 5834 5835 5836 5837 5838
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5885 5886
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5887
{
I
Ingo Molnar 已提交
5888 5889 5890 5891
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5892

5893
	__set_current_state(state);
L
Linus Torvalds 已提交
5894

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5909 5910 5911
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5912
long __sched
I
Ingo Molnar 已提交
5913
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5914
{
5915
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5916 5917 5918
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5919
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5920
{
5921
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5922 5923 5924
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5925
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5926
{
5927
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5928 5929 5930
}
EXPORT_SYMBOL(sleep_on_timeout);

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5943
void rt_mutex_setprio(struct task_struct *p, int prio)
5944 5945
{
	unsigned long flags;
5946
	int oldprio, on_rq, running;
5947
	struct rq *rq;
5948
	const struct sched_class *prev_class = p->sched_class;
5949 5950 5951 5952

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5953
	update_rq_clock(rq);
5954

5955
	oldprio = p->prio;
I
Ingo Molnar 已提交
5956
	on_rq = p->se.on_rq;
5957
	running = task_current(rq, p);
5958
	if (on_rq)
5959
		dequeue_task(rq, p, 0);
5960 5961
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5962 5963 5964 5965 5966 5967

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5968 5969
	p->prio = prio;

5970 5971
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5972
	if (on_rq) {
5973
		enqueue_task(rq, p, 0);
5974 5975

		check_class_changed(rq, p, prev_class, oldprio, running);
5976 5977 5978 5979 5980 5981
	}
	task_rq_unlock(rq, &flags);
}

#endif

5982
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5983
{
I
Ingo Molnar 已提交
5984
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5985
	unsigned long flags;
5986
	struct rq *rq;
L
Linus Torvalds 已提交
5987 5988 5989 5990 5991 5992 5993 5994

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5995
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5996 5997 5998 5999
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6000
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6001
	 */
6002
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6003 6004 6005
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6006
	on_rq = p->se.on_rq;
6007
	if (on_rq)
6008
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6009 6010

	p->static_prio = NICE_TO_PRIO(nice);
6011
	set_load_weight(p);
6012 6013 6014
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6015

I
Ingo Molnar 已提交
6016
	if (on_rq) {
6017
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6018
		/*
6019 6020
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6021
		 */
6022
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6023 6024 6025 6026 6027 6028 6029
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6030 6031 6032 6033 6034
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6035
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6036
{
6037 6038
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6039

M
Matt Mackall 已提交
6040 6041 6042 6043
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6044 6045 6046 6047 6048 6049 6050 6051 6052
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6053
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6054
{
6055
	long nice, retval;
L
Linus Torvalds 已提交
6056 6057 6058 6059 6060 6061

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6062 6063
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6064 6065 6066
	if (increment > 40)
		increment = 40;

6067
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6068 6069 6070 6071 6072
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6073 6074 6075
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6094
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6095 6096 6097 6098 6099 6100 6101 6102
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6103
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6104 6105 6106
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6107
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6122
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6123 6124 6125 6126 6127 6128 6129 6130
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6131
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6132
{
6133
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6134 6135 6136
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6137 6138
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6139
{
I
Ingo Molnar 已提交
6140
	BUG_ON(p->se.on_rq);
6141

L
Linus Torvalds 已提交
6142
	p->policy = policy;
I
Ingo Molnar 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6155
	p->rt_priority = prio;
6156 6157 6158
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6159
	set_load_weight(p);
L
Linus Torvalds 已提交
6160 6161
}

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6178 6179
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6180
{
6181
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6182
	unsigned long flags;
6183
	const struct sched_class *prev_class = p->sched_class;
6184
	struct rq *rq;
6185
	int reset_on_fork;
L
Linus Torvalds 已提交
6186

6187 6188
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6189 6190
recheck:
	/* double check policy once rq lock held */
6191 6192
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6193
		policy = oldpolicy = p->policy;
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6204 6205
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6206 6207
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6208 6209
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6210
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6211
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6212
		return -EINVAL;
6213
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6214 6215
		return -EINVAL;

6216 6217 6218
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6219
	if (user && !capable(CAP_SYS_NICE)) {
6220
		if (rt_policy(policy)) {
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6237 6238 6239 6240 6241 6242
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6243

6244
		/* can't change other user's priorities */
6245
		if (!check_same_owner(p))
6246
			return -EPERM;
6247 6248 6249 6250

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6251
	}
L
Linus Torvalds 已提交
6252

6253
	if (user) {
6254
#ifdef CONFIG_RT_GROUP_SCHED
6255 6256 6257 6258
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6259 6260
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6261
			return -EPERM;
6262 6263
#endif

6264 6265 6266 6267 6268
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6269 6270 6271 6272 6273
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6274 6275 6276 6277
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6278
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6279 6280 6281
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6282 6283
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6284 6285
		goto recheck;
	}
I
Ingo Molnar 已提交
6286
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6287
	on_rq = p->se.on_rq;
6288
	running = task_current(rq, p);
6289
	if (on_rq)
6290
		deactivate_task(rq, p, 0);
6291 6292
	if (running)
		p->sched_class->put_prev_task(rq, p);
6293

6294 6295
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6296
	oldprio = p->prio;
I
Ingo Molnar 已提交
6297
	__setscheduler(rq, p, policy, param->sched_priority);
6298

6299 6300
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6301 6302
	if (on_rq) {
		activate_task(rq, p, 0);
6303 6304

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6305
	}
6306 6307 6308
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6309 6310
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6311 6312
	return 0;
}
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6327 6328
EXPORT_SYMBOL_GPL(sched_setscheduler);

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6346 6347
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6348 6349 6350
{
	struct sched_param lparam;
	struct task_struct *p;
6351
	int retval;
L
Linus Torvalds 已提交
6352 6353 6354 6355 6356

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6357 6358 6359

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6360
	p = find_process_by_pid(pid);
6361 6362 6363
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6364

L
Linus Torvalds 已提交
6365 6366 6367 6368 6369 6370 6371 6372 6373
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6374 6375
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6376
{
6377 6378 6379 6380
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6381 6382 6383 6384 6385 6386 6387 6388
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6389
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6390 6391 6392 6393 6394 6395 6396 6397
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6398
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6399
{
6400
	struct task_struct *p;
6401
	int retval;
L
Linus Torvalds 已提交
6402 6403

	if (pid < 0)
6404
		return -EINVAL;
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409 6410 6411

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6412 6413
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6414 6415 6416 6417 6418 6419
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6420
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6421 6422 6423
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6424
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6425 6426
{
	struct sched_param lp;
6427
	struct task_struct *p;
6428
	int retval;
L
Linus Torvalds 已提交
6429 6430

	if (!param || pid < 0)
6431
		return -EINVAL;
L
Linus Torvalds 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6458
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6459
{
6460
	cpumask_var_t cpus_allowed, new_mask;
6461 6462
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6463

6464
	get_online_cpus();
L
Linus Torvalds 已提交
6465 6466 6467 6468 6469
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6470
		put_online_cpus();
L
Linus Torvalds 已提交
6471 6472 6473 6474 6475
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6476
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6477 6478 6479 6480 6481
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6482 6483 6484 6485 6486 6487 6488 6489
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6490
	retval = -EPERM;
6491
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6492 6493
		goto out_unlock;

6494 6495 6496 6497
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6498 6499
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6500
 again:
6501
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6502

P
Paul Menage 已提交
6503
	if (!retval) {
6504 6505
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6506 6507 6508 6509 6510
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6511
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6512 6513 6514
			goto again;
		}
	}
L
Linus Torvalds 已提交
6515
out_unlock:
6516 6517 6518 6519
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6520
	put_task_struct(p);
6521
	put_online_cpus();
L
Linus Torvalds 已提交
6522 6523 6524 6525
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6526
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6527
{
6528 6529 6530 6531 6532
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6542 6543
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6544
{
6545
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6546 6547
	int retval;

6548 6549
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6550

6551 6552 6553 6554 6555
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6556 6557
}

6558
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6559
{
6560
	struct task_struct *p;
L
Linus Torvalds 已提交
6561 6562
	int retval;

6563
	get_online_cpus();
L
Linus Torvalds 已提交
6564 6565 6566 6567 6568 6569 6570
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6571 6572 6573 6574
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6575
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6576 6577 6578

out_unlock:
	read_unlock(&tasklist_lock);
6579
	put_online_cpus();
L
Linus Torvalds 已提交
6580

6581
	return retval;
L
Linus Torvalds 已提交
6582 6583 6584 6585 6586 6587 6588 6589
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6590 6591
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6592 6593
{
	int ret;
6594
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6595

6596
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6597 6598
		return -EINVAL;

6599 6600
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6601

6602 6603 6604 6605 6606 6607 6608 6609
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6610

6611
	return ret;
L
Linus Torvalds 已提交
6612 6613 6614 6615 6616
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6617 6618
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6619
 */
6620
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6621
{
6622
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6623

6624
	schedstat_inc(rq, yld_count);
6625
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630 6631

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6632
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6633 6634 6635 6636 6637 6638 6639 6640
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6641 6642 6643 6644 6645
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6646
static void __cond_resched(void)
L
Linus Torvalds 已提交
6647
{
6648 6649 6650
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6651 6652
}

6653
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6654
{
P
Peter Zijlstra 已提交
6655
	if (should_resched()) {
L
Linus Torvalds 已提交
6656 6657 6658 6659 6660
		__cond_resched();
		return 1;
	}
	return 0;
}
6661
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6662 6663

/*
6664
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6665 6666
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6667
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6668 6669 6670
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6671
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6672
{
P
Peter Zijlstra 已提交
6673
	int resched = should_resched();
J
Jan Kara 已提交
6674 6675
	int ret = 0;

6676 6677
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6678
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6679
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6680
		if (resched)
N
Nick Piggin 已提交
6681 6682 6683
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6684
		ret = 1;
L
Linus Torvalds 已提交
6685 6686
		spin_lock(lock);
	}
J
Jan Kara 已提交
6687
	return ret;
L
Linus Torvalds 已提交
6688
}
6689
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6690

6691
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6692 6693 6694
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6695
	if (should_resched()) {
6696
		local_bh_enable();
L
Linus Torvalds 已提交
6697 6698 6699 6700 6701 6702
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6703
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6704 6705 6706 6707

/**
 * yield - yield the current processor to other threads.
 *
6708
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6719
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6720 6721 6722 6723 6724 6725 6726
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6727
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6728

6729
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6730
	atomic_inc(&rq->nr_iowait);
6731
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6732
	schedule();
6733
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6734
	atomic_dec(&rq->nr_iowait);
6735
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6736 6737 6738 6739 6740
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6741
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6742 6743
	long ret;

6744
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6745
	atomic_inc(&rq->nr_iowait);
6746
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6747
	ret = schedule_timeout(timeout);
6748
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6749
	atomic_dec(&rq->nr_iowait);
6750
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6761
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6771
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6772
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6786
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6796
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6797
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6811
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6812
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6813
{
6814
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6815
	unsigned int time_slice;
6816
	int retval;
L
Linus Torvalds 已提交
6817 6818 6819
	struct timespec t;

	if (pid < 0)
6820
		return -EINVAL;
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6832
	time_slice = p->sched_class->get_rr_interval(p);
D
Dmitry Adamushko 已提交
6833

L
Linus Torvalds 已提交
6834
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6835
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6836 6837
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6838

L
Linus Torvalds 已提交
6839 6840 6841 6842 6843
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6844
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6845

6846
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6847 6848
{
	unsigned long free = 0;
6849
	unsigned state;
L
Linus Torvalds 已提交
6850 6851

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6852
	printk(KERN_INFO "%-13.13s %c", p->comm,
6853
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6854
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6855
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6856
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6857
	else
I
Ingo Molnar 已提交
6858
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6859 6860
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6861
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6862
	else
I
Ingo Molnar 已提交
6863
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6864 6865
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6866
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6867
#endif
6868 6869 6870
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6871

6872
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6873 6874
}

I
Ingo Molnar 已提交
6875
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6876
{
6877
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6878

6879 6880 6881
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6882
#else
6883 6884
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6885 6886 6887 6888 6889 6890 6891 6892
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6893
		if (!state_filter || (p->state & state_filter))
6894
			sched_show_task(p);
L
Linus Torvalds 已提交
6895 6896
	} while_each_thread(g, p);

6897 6898
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6899 6900 6901
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6902
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6903 6904 6905 6906 6907
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6908 6909
}

I
Ingo Molnar 已提交
6910 6911
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6912
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6913 6914
}

6915 6916 6917 6918 6919 6920 6921 6922
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6923
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6924
{
6925
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6926 6927
	unsigned long flags;

6928 6929
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6930 6931 6932
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6933
	idle->prio = idle->normal_prio = MAX_PRIO;
6934
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6935
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6936 6937

	rq->curr = rq->idle = idle;
6938 6939 6940
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6941 6942 6943
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6944 6945 6946
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6947
	task_thread_info(idle)->preempt_count = 0;
6948
#endif
I
Ingo Molnar 已提交
6949 6950 6951 6952
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6953
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6954 6955 6956 6957 6958 6959 6960
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6961
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6962
 */
6963
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6964

I
Ingo Molnar 已提交
6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6988 6989

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6990 6991
}

L
Linus Torvalds 已提交
6992 6993 6994 6995
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6996
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7015
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7016 7017
 * call is not atomic; no spinlocks may be held.
 */
7018
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7019
{
7020
	struct migration_req req;
L
Linus Torvalds 已提交
7021
	unsigned long flags;
7022
	struct rq *rq;
7023
	int ret = 0;
L
Linus Torvalds 已提交
7024 7025

	rq = task_rq_lock(p, &flags);
7026
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7027 7028 7029 7030
		ret = -EINVAL;
		goto out;
	}

7031
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7032
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7033 7034 7035 7036
		ret = -EINVAL;
		goto out;
	}

7037
	if (p->sched_class->set_cpus_allowed)
7038
		p->sched_class->set_cpus_allowed(p, new_mask);
7039
	else {
7040 7041
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7042 7043
	}

L
Linus Torvalds 已提交
7044
	/* Can the task run on the task's current CPU? If so, we're done */
7045
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7046 7047
		goto out;

R
Rusty Russell 已提交
7048
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7049
		/* Need help from migration thread: drop lock and wait. */
7050 7051 7052
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7053 7054
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7055
		put_task_struct(mt);
L
Linus Torvalds 已提交
7056 7057 7058 7059 7060 7061
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7062

L
Linus Torvalds 已提交
7063 7064
	return ret;
}
7065
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7066 7067

/*
I
Ingo Molnar 已提交
7068
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7069 7070 7071 7072 7073 7074
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7075 7076
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7077
 */
7078
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7079
{
7080
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7081
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7082

7083
	if (unlikely(!cpu_active(dest_cpu)))
7084
		return ret;
L
Linus Torvalds 已提交
7085 7086 7087 7088 7089 7090 7091

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7092
		goto done;
L
Linus Torvalds 已提交
7093
	/* Affinity changed (again). */
7094
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7095
		goto fail;
L
Linus Torvalds 已提交
7096

I
Ingo Molnar 已提交
7097
	on_rq = p->se.on_rq;
7098
	if (on_rq)
7099
		deactivate_task(rq_src, p, 0);
7100

L
Linus Torvalds 已提交
7101
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7102 7103
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7104
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7105
	}
L
Linus Torvalds 已提交
7106
done:
7107
	ret = 1;
L
Linus Torvalds 已提交
7108
fail:
L
Linus Torvalds 已提交
7109
	double_rq_unlock(rq_src, rq_dest);
7110
	return ret;
L
Linus Torvalds 已提交
7111 7112
}

7113 7114 7115 7116 7117
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7118 7119 7120 7121 7122
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7123
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7124
{
7125
	int badcpu;
L
Linus Torvalds 已提交
7126
	int cpu = (long)data;
7127
	struct rq *rq;
L
Linus Torvalds 已提交
7128 7129 7130 7131 7132 7133

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7134
		struct migration_req *req;
L
Linus Torvalds 已提交
7135 7136 7137 7138 7139 7140
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7141
			break;
L
Linus Torvalds 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7157
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7158 7159
		list_del_init(head->next);

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7171
		local_irq_enable();
L
Linus Torvalds 已提交
7172 7173 7174 7175 7176 7177 7178 7179 7180

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7192
/*
7193
 * Figure out where task on dead CPU should go, use force if necessary.
7194
 */
7195
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7196
{
7197
	int dest_cpu;
7198
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7215

7216 7217 7218 7219 7220 7221 7222 7223 7224
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7225
		}
7226 7227 7228 7229 7230 7231
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7241
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7242
{
R
Rusty Russell 已提交
7243
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7257
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7258

7259
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7260

7261 7262
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7263 7264
			continue;

7265 7266 7267
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7268

7269
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7270 7271
}

I
Ingo Molnar 已提交
7272 7273
/*
 * Schedules idle task to be the next runnable task on current CPU.
7274 7275
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7276 7277 7278
 */
void sched_idle_next(void)
{
7279
	int this_cpu = smp_processor_id();
7280
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7281 7282 7283 7284
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7285
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7286

7287 7288 7289
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7290 7291 7292
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7293
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7294

7295 7296
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7297 7298 7299 7300

	spin_unlock_irqrestore(&rq->lock, flags);
}

7301 7302
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7316
/* called under rq->lock with disabled interrupts */
7317
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7318
{
7319
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7320 7321

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7322
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7323 7324

	/* Cannot have done final schedule yet: would have vanished. */
7325
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7326

7327
	get_task_struct(p);
L
Linus Torvalds 已提交
7328 7329 7330

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7331
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7332 7333
	 * fine.
	 */
7334
	spin_unlock_irq(&rq->lock);
7335
	move_task_off_dead_cpu(dead_cpu, p);
7336
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7337

7338
	put_task_struct(p);
L
Linus Torvalds 已提交
7339 7340 7341 7342 7343
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7344
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7345
	struct task_struct *next;
7346

I
Ingo Molnar 已提交
7347 7348 7349
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7350
		update_rq_clock(rq);
7351
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7352 7353
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7354
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7355
		migrate_dead(dead_cpu, next);
7356

L
Linus Torvalds 已提交
7357 7358
	}
}
7359 7360 7361 7362 7363 7364 7365

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7366
	rq->calc_load_active = 0;
7367
}
L
Linus Torvalds 已提交
7368 7369
#endif /* CONFIG_HOTPLUG_CPU */

7370 7371 7372
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7373 7374
	{
		.procname	= "sched_domain",
7375
		.mode		= 0555,
7376
	},
I
Ingo Molnar 已提交
7377
	{0, },
7378 7379 7380
};

static struct ctl_table sd_ctl_root[] = {
7381
	{
7382
		.ctl_name	= CTL_KERN,
7383
		.procname	= "kernel",
7384
		.mode		= 0555,
7385 7386
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7387
	{0, },
7388 7389 7390 7391 7392
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7393
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7394 7395 7396 7397

	return entry;
}

7398 7399
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7400
	struct ctl_table *entry;
7401

7402 7403 7404
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7405
	 * will always be set. In the lowest directory the names are
7406 7407 7408
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7409 7410
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7411 7412 7413
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7414 7415 7416 7417 7418

	kfree(*tablep);
	*tablep = NULL;
}

7419
static void
7420
set_table_entry(struct ctl_table *entry,
7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7434
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7435

7436 7437 7438
	if (table == NULL)
		return NULL;

7439
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7440
		sizeof(long), 0644, proc_doulongvec_minmax);
7441
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7442
		sizeof(long), 0644, proc_doulongvec_minmax);
7443
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7444
		sizeof(int), 0644, proc_dointvec_minmax);
7445
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7446
		sizeof(int), 0644, proc_dointvec_minmax);
7447
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7448
		sizeof(int), 0644, proc_dointvec_minmax);
7449
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7450
		sizeof(int), 0644, proc_dointvec_minmax);
7451
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7452
		sizeof(int), 0644, proc_dointvec_minmax);
7453
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7454
		sizeof(int), 0644, proc_dointvec_minmax);
7455
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7456
		sizeof(int), 0644, proc_dointvec_minmax);
7457
	set_table_entry(&table[9], "cache_nice_tries",
7458 7459
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7460
	set_table_entry(&table[10], "flags", &sd->flags,
7461
		sizeof(int), 0644, proc_dointvec_minmax);
7462 7463 7464
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7465 7466 7467 7468

	return table;
}

7469
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7470 7471 7472 7473 7474 7475 7476 7477 7478
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7479 7480
	if (table == NULL)
		return NULL;
7481 7482 7483 7484 7485

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7486
		entry->mode = 0555;
7487 7488 7489 7490 7491 7492 7493 7494
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7495
static void register_sched_domain_sysctl(void)
7496 7497 7498 7499 7500
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7501 7502 7503
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7504 7505 7506
	if (entry == NULL)
		return;

7507
	for_each_online_cpu(i) {
7508 7509
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7510
		entry->mode = 0555;
7511
		entry->child = sd_alloc_ctl_cpu_table(i);
7512
		entry++;
7513
	}
7514 7515

	WARN_ON(sd_sysctl_header);
7516 7517
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7518

7519
/* may be called multiple times per register */
7520 7521
static void unregister_sched_domain_sysctl(void)
{
7522 7523
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7524
	sd_sysctl_header = NULL;
7525 7526
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7527
}
7528
#else
7529 7530 7531 7532
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7533 7534 7535 7536
{
}
#endif

7537 7538 7539 7540 7541
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7542
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7562
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7563 7564 7565 7566
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7567 7568 7569 7570
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7571 7572
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7573 7574
{
	struct task_struct *p;
7575
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7576
	unsigned long flags;
7577
	struct rq *rq;
L
Linus Torvalds 已提交
7578 7579

	switch (action) {
7580

L
Linus Torvalds 已提交
7581
	case CPU_UP_PREPARE:
7582
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7583
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7584 7585 7586 7587 7588
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7589
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7590
		task_rq_unlock(rq, &flags);
7591
		get_task_struct(p);
L
Linus Torvalds 已提交
7592
		cpu_rq(cpu)->migration_thread = p;
7593
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7594
		break;
7595

L
Linus Torvalds 已提交
7596
	case CPU_ONLINE:
7597
	case CPU_ONLINE_FROZEN:
7598
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7599
		wake_up_process(cpu_rq(cpu)->migration_thread);
7600 7601 7602 7603 7604

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7605
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7606 7607

			set_rq_online(rq);
7608 7609
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7610
		break;
7611

L
Linus Torvalds 已提交
7612 7613
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7614
	case CPU_UP_CANCELED_FROZEN:
7615 7616
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7617
		/* Unbind it from offline cpu so it can run. Fall thru. */
7618
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7619
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7620
		kthread_stop(cpu_rq(cpu)->migration_thread);
7621
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7622 7623
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7624

L
Linus Torvalds 已提交
7625
	case CPU_DEAD:
7626
	case CPU_DEAD_FROZEN:
7627
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7628 7629 7630
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7631
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7632 7633
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7634
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7635
		update_rq_clock(rq);
7636
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7637
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7638 7639
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7640
		migrate_dead_tasks(cpu);
7641
		spin_unlock_irq(&rq->lock);
7642
		cpuset_unlock();
L
Linus Torvalds 已提交
7643 7644
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7645
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7646 7647 7648 7649 7650
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7651 7652
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7653 7654
			struct migration_req *req;

L
Linus Torvalds 已提交
7655
			req = list_entry(rq->migration_queue.next,
7656
					 struct migration_req, list);
L
Linus Torvalds 已提交
7657
			list_del_init(&req->list);
B
Brian King 已提交
7658
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7659
			complete(&req->done);
B
Brian King 已提交
7660
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7661 7662 7663
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7664

7665 7666
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7667 7668 7669 7670
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7671
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7672
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7673 7674 7675
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7676 7677 7678 7679 7680
#endif
	}
	return NOTIFY_OK;
}

7681 7682 7683
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7684
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7685
 */
7686
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7687 7688 7689 7690
	.notifier_call = migration_call,
	.priority = 10
};

7691
static int __init migration_init(void)
L
Linus Torvalds 已提交
7692 7693
{
	void *cpu = (void *)(long)smp_processor_id();
7694
	int err;
7695 7696

	/* Start one for the boot CPU: */
7697 7698
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7699 7700
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7701

7702
	return 0;
L
Linus Torvalds 已提交
7703
}
7704
early_initcall(migration_init);
L
Linus Torvalds 已提交
7705 7706 7707
#endif

#ifdef CONFIG_SMP
7708

7709
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7710

7711
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7712
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7713
{
I
Ingo Molnar 已提交
7714
	struct sched_group *group = sd->groups;
7715
	char str[256];
L
Linus Torvalds 已提交
7716

R
Rusty Russell 已提交
7717
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7718
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7719 7720 7721 7722 7723 7724 7725 7726 7727

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7728 7729
	}

7730
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7731

7732
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7733 7734 7735
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7736
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7737 7738 7739
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7740

I
Ingo Molnar 已提交
7741
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7742
	do {
I
Ingo Molnar 已提交
7743 7744 7745
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7746 7747 7748
			break;
		}

7749
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7750 7751 7752 7753 7754
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7755

7756
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7757 7758 7759 7760
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7761

7762
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7763 7764 7765 7766
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7767

7768
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7769

R
Rusty Russell 已提交
7770
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7771 7772

		printk(KERN_CONT " %s", str);
7773 7774 7775
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7776
		}
L
Linus Torvalds 已提交
7777

I
Ingo Molnar 已提交
7778 7779 7780
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7781

7782
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7783
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7784

7785 7786
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7787 7788 7789 7790
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7791

I
Ingo Molnar 已提交
7792 7793
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7794
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7795
	int level = 0;
L
Linus Torvalds 已提交
7796

I
Ingo Molnar 已提交
7797 7798 7799 7800
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7801

I
Ingo Molnar 已提交
7802 7803
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7804
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7805 7806 7807 7808
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7809
	for (;;) {
7810
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7811
			break;
L
Linus Torvalds 已提交
7812 7813
		level++;
		sd = sd->parent;
7814
		if (!sd)
I
Ingo Molnar 已提交
7815 7816
			break;
	}
7817
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7818
}
7819
#else /* !CONFIG_SCHED_DEBUG */
7820
# define sched_domain_debug(sd, cpu) do { } while (0)
7821
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7822

7823
static int sd_degenerate(struct sched_domain *sd)
7824
{
7825
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7826 7827 7828 7829 7830 7831
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7832 7833 7834
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7835 7836 7837 7838 7839
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7840
	if (sd->flags & (SD_WAKE_AFFINE))
7841 7842 7843 7844 7845
		return 0;

	return 1;
}

7846 7847
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7848 7849 7850 7851 7852 7853
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7854
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7855 7856 7857 7858 7859 7860 7861
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7862 7863 7864
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7865 7866
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7867 7868 7869 7870 7871 7872 7873
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7874 7875
static void free_rootdomain(struct root_domain *rd)
{
7876 7877
	cpupri_cleanup(&rd->cpupri);

7878 7879 7880 7881 7882 7883
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7884 7885
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7886
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7887 7888 7889 7890 7891
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7892
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7893

7894
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7895
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7896

7897
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7898

I
Ingo Molnar 已提交
7899 7900 7901 7902 7903 7904 7905
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7906 7907 7908 7909 7910
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7911
	cpumask_set_cpu(rq->cpu, rd->span);
7912
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7913
		set_rq_online(rq);
G
Gregory Haskins 已提交
7914 7915

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7916 7917 7918

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7919 7920
}

L
Li Zefan 已提交
7921
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7922
{
7923 7924
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7925 7926
	memset(rd, 0, sizeof(*rd));

7927 7928
	if (bootmem)
		gfp = GFP_NOWAIT;
7929

7930
	if (!alloc_cpumask_var(&rd->span, gfp))
7931
		goto out;
7932
	if (!alloc_cpumask_var(&rd->online, gfp))
7933
		goto free_span;
7934
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7935
		goto free_online;
7936

P
Pekka Enberg 已提交
7937
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7938
		goto free_rto_mask;
7939
	return 0;
7940

7941 7942
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7943 7944 7945 7946
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7947
out:
7948
	return -ENOMEM;
G
Gregory Haskins 已提交
7949 7950 7951 7952
}

static void init_defrootdomain(void)
{
7953 7954
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7955 7956 7957
	atomic_set(&def_root_domain.refcount, 1);
}

7958
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7959 7960 7961 7962 7963 7964 7965
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7966 7967 7968 7969
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7970 7971 7972 7973

	return rd;
}

L
Linus Torvalds 已提交
7974
/*
I
Ingo Molnar 已提交
7975
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7976 7977
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7978 7979
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7980
{
7981
	struct rq *rq = cpu_rq(cpu);
7982 7983 7984
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7985
	for (tmp = sd; tmp; ) {
7986 7987 7988
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7989

7990
		if (sd_parent_degenerate(tmp, parent)) {
7991
			tmp->parent = parent->parent;
7992 7993
			if (parent->parent)
				parent->parent->child = tmp;
7994 7995
		} else
			tmp = tmp->parent;
7996 7997
	}

7998
	if (sd && sd_degenerate(sd)) {
7999
		sd = sd->parent;
8000 8001 8002
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8003 8004 8005

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8006
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8007
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8008 8009 8010
}

/* cpus with isolated domains */
8011
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8012 8013 8014 8015

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8016
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8017 8018 8019
	return 1;
}

I
Ingo Molnar 已提交
8020
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8021 8022

/*
8023 8024
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8025 8026
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8027 8028 8029 8030 8031
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8032
static void
8033 8034 8035
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8036
					struct sched_group **sg,
8037 8038
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8039 8040 8041 8042
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8043
	cpumask_clear(covered);
8044

8045
	for_each_cpu(i, span) {
8046
		struct sched_group *sg;
8047
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8048 8049
		int j;

8050
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8051 8052
			continue;

8053
		cpumask_clear(sched_group_cpus(sg));
8054
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8055

8056
		for_each_cpu(j, span) {
8057
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8058 8059
				continue;

8060
			cpumask_set_cpu(j, covered);
8061
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8072
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8073

8074
#ifdef CONFIG_NUMA
8075

8076 8077 8078 8079 8080
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8081
 * Find the next node to include in a given scheduling domain. Simply
8082 8083 8084 8085
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8086
static int find_next_best_node(int node, nodemask_t *used_nodes)
8087 8088 8089 8090 8091
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8092
	for (i = 0; i < nr_node_ids; i++) {
8093
		/* Start at @node */
8094
		n = (node + i) % nr_node_ids;
8095 8096 8097 8098 8099

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8100
		if (node_isset(n, *used_nodes))
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8112
	node_set(best_node, *used_nodes);
8113 8114 8115 8116 8117 8118
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8119
 * @span: resulting cpumask
8120
 *
I
Ingo Molnar 已提交
8121
 * Given a node, construct a good cpumask for its sched_domain to span. It
8122 8123 8124
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8125
static void sched_domain_node_span(int node, struct cpumask *span)
8126
{
8127
	nodemask_t used_nodes;
8128
	int i;
8129

8130
	cpumask_clear(span);
8131
	nodes_clear(used_nodes);
8132

8133
	cpumask_or(span, span, cpumask_of_node(node));
8134
	node_set(node, used_nodes);
8135 8136

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8137
		int next_node = find_next_best_node(node, &used_nodes);
8138

8139
		cpumask_or(span, span, cpumask_of_node(next_node));
8140 8141
	}
}
8142
#endif /* CONFIG_NUMA */
8143

8144
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8145

8146 8147
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8148 8149 8150
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8195
/*
8196
 * SMT sched-domains:
8197
 */
L
Linus Torvalds 已提交
8198
#ifdef CONFIG_SCHED_SMT
8199 8200
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8201

I
Ingo Molnar 已提交
8202
static int
8203 8204
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8205
{
8206
	if (sg)
8207
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8208 8209
	return cpu;
}
8210
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8211

8212 8213 8214
/*
 * multi-core sched-domains:
 */
8215
#ifdef CONFIG_SCHED_MC
8216 8217
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8218
#endif /* CONFIG_SCHED_MC */
8219 8220

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8221
static int
8222 8223
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8224
{
8225
	int group;
8226

8227
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8228
	group = cpumask_first(mask);
8229
	if (sg)
8230
		*sg = &per_cpu(sched_group_core, group).sg;
8231
	return group;
8232 8233
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8234
static int
8235 8236
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8237
{
8238
	if (sg)
8239
		*sg = &per_cpu(sched_group_core, cpu).sg;
8240 8241 8242 8243
	return cpu;
}
#endif

8244 8245
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8246

I
Ingo Molnar 已提交
8247
static int
8248 8249
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8250
{
8251
	int group;
8252
#ifdef CONFIG_SCHED_MC
8253
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8254
	group = cpumask_first(mask);
8255
#elif defined(CONFIG_SCHED_SMT)
8256
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8257
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8258
#else
8259
	group = cpu;
L
Linus Torvalds 已提交
8260
#endif
8261
	if (sg)
8262
		*sg = &per_cpu(sched_group_phys, group).sg;
8263
	return group;
L
Linus Torvalds 已提交
8264 8265 8266 8267
}

#ifdef CONFIG_NUMA
/*
8268 8269 8270
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8271
 */
8272
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8273
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8274

8275
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8276
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8277

8278 8279 8280
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8281
{
8282 8283
	int group;

8284
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8285
	group = cpumask_first(nodemask);
8286 8287

	if (sg)
8288
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8289
	return group;
L
Linus Torvalds 已提交
8290
}
8291

8292 8293 8294 8295 8296 8297 8298
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8299
	do {
8300
		for_each_cpu(j, sched_group_cpus(sg)) {
8301
			struct sched_domain *sd;
8302

8303
			sd = &per_cpu(phys_domains, j).sd;
8304
			if (j != group_first_cpu(sd->groups)) {
8305 8306 8307 8308 8309 8310
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8311

8312
			sg->cpu_power += sd->groups->cpu_power;
8313 8314 8315
		}
		sg = sg->next;
	} while (sg != group_head);
8316
}
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8349
	sg->cpu_power = 0;
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8372
		sg->cpu_power = 0;
8373 8374 8375 8376 8377 8378 8379 8380 8381
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8382
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8383

8384
#ifdef CONFIG_NUMA
8385
/* Free memory allocated for various sched_group structures */
8386 8387
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8388
{
8389
	int cpu, i;
8390

8391
	for_each_cpu(cpu, cpu_map) {
8392 8393 8394 8395 8396 8397
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8398
		for (i = 0; i < nr_node_ids; i++) {
8399 8400
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8401
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8402
			if (cpumask_empty(nodemask))
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8419
#else /* !CONFIG_NUMA */
8420 8421
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8422 8423
{
}
8424
#endif /* CONFIG_NUMA */
8425

8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8440 8441
	long power;
	int weight;
8442 8443 8444

	WARN_ON(!sd || !sd->groups);

8445
	if (cpu != group_first_cpu(sd->groups))
8446 8447 8448 8449
		return;

	child = sd->child;

8450
	sd->groups->cpu_power = 0;
8451

8452 8453 8454 8455 8456
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8457 8458 8459
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8460
		 */
P
Peter Zijlstra 已提交
8461 8462
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8463
			power /= weight;
P
Peter Zijlstra 已提交
8464 8465
			power >>= SCHED_LOAD_SHIFT;
		}
8466
		sd->groups->cpu_power += power;
8467 8468 8469 8470
		return;
	}

	/*
8471
	 * Add cpu_power of each child group to this groups cpu_power.
8472 8473 8474
	 */
	group = child->groups;
	do {
8475
		sd->groups->cpu_power += group->cpu_power;
8476 8477 8478 8479
		group = group->next;
	} while (group != child->groups);
}

8480 8481 8482 8483 8484
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8485 8486 8487 8488 8489 8490
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8491
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8492

8493 8494 8495 8496 8497
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8498
	sd->level = SD_LV_##type;				\
8499
	SD_INIT_NAME(sd, type);					\
8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8514 8515 8516 8517
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8518 8519 8520 8521 8522 8523
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8542
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8543 8544
	} else {
		/* turn on idle balance on this domain */
8545
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8546 8547 8548
	}
}

8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8569
#ifdef CONFIG_NUMA
8570 8571 8572 8573 8574 8575 8576
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8577
#endif
8578 8579 8580 8581
	case sa_none:
		break;
	}
}
8582

8583 8584 8585
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8586
#ifdef CONFIG_NUMA
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8597
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8598
		return sa_notcovered;
8599
	}
8600
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8601
#endif
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8614
		printk(KERN_WARNING "Cannot alloc root domain\n");
8615
		return sa_tmpmask;
G
Gregory Haskins 已提交
8616
	}
8617 8618
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8619

8620 8621 8622 8623
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8624
#ifdef CONFIG_NUMA
8625
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8626

8627 8628 8629 8630 8631
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8632
		set_domain_attribute(sd, attr);
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8647
#endif
8648 8649
	return sd;
}
L
Linus Torvalds 已提交
8650

8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8666

8667 8668 8669 8670 8671
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8672
#ifdef CONFIG_SCHED_MC
8673 8674 8675 8676 8677 8678 8679
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8680
#endif
8681 8682
	return sd;
}
8683

8684 8685 8686 8687 8688
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8689
#ifdef CONFIG_SCHED_SMT
8690 8691 8692 8693 8694 8695 8696
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8697
#endif
8698 8699
	return sd;
}
L
Linus Torvalds 已提交
8700

8701 8702 8703 8704
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8705
#ifdef CONFIG_SCHED_SMT
8706 8707 8708 8709 8710 8711 8712 8713
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8714
#endif
8715
#ifdef CONFIG_SCHED_MC
8716 8717 8718 8719 8720 8721 8722
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8723
#endif
8724 8725 8726 8727 8728 8729 8730
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8731
#ifdef CONFIG_NUMA
8732 8733 8734 8735 8736
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8737 8738
	default:
		break;
8739
	}
8740
}
8741

8742 8743 8744 8745 8746 8747 8748 8749 8750
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8751
	struct sched_domain *sd;
8752
	int i;
8753
#ifdef CONFIG_NUMA
8754
	d.sd_allnodes = 0;
8755
#endif
8756

8757 8758 8759 8760
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8761

L
Linus Torvalds 已提交
8762
	/*
8763
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8764
	 */
8765
	for_each_cpu(i, cpu_map) {
8766 8767
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8768

8769
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8770
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8771
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8772
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8773
	}
8774

8775
	for_each_cpu(i, cpu_map) {
8776
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8777
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8778
	}
8779

L
Linus Torvalds 已提交
8780
	/* Set up physical groups */
8781 8782
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8783

L
Linus Torvalds 已提交
8784 8785
#ifdef CONFIG_NUMA
	/* Set up node groups */
8786 8787
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8788

8789 8790
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8791
			goto error;
L
Linus Torvalds 已提交
8792 8793 8794
#endif

	/* Calculate CPU power for physical packages and nodes */
8795
#ifdef CONFIG_SCHED_SMT
8796
	for_each_cpu(i, cpu_map) {
8797
		sd = &per_cpu(cpu_domains, i).sd;
8798
		init_sched_groups_power(i, sd);
8799
	}
L
Linus Torvalds 已提交
8800
#endif
8801
#ifdef CONFIG_SCHED_MC
8802
	for_each_cpu(i, cpu_map) {
8803
		sd = &per_cpu(core_domains, i).sd;
8804
		init_sched_groups_power(i, sd);
8805 8806
	}
#endif
8807

8808
	for_each_cpu(i, cpu_map) {
8809
		sd = &per_cpu(phys_domains, i).sd;
8810
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8811 8812
	}

8813
#ifdef CONFIG_NUMA
8814
	for (i = 0; i < nr_node_ids; i++)
8815
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8816

8817
	if (d.sd_allnodes) {
8818
		struct sched_group *sg;
8819

8820
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8821
								d.tmpmask);
8822 8823
		init_numa_sched_groups_power(sg);
	}
8824 8825
#endif

L
Linus Torvalds 已提交
8826
	/* Attach the domains */
8827
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8828
#ifdef CONFIG_SCHED_SMT
8829
		sd = &per_cpu(cpu_domains, i).sd;
8830
#elif defined(CONFIG_SCHED_MC)
8831
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8832
#else
8833
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8834
#endif
8835
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8836
	}
8837

8838 8839 8840
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8841 8842

error:
8843 8844
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8845
}
P
Paul Jackson 已提交
8846

8847
static int build_sched_domains(const struct cpumask *cpu_map)
8848 8849 8850 8851
{
	return __build_sched_domains(cpu_map, NULL);
}

8852
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8853
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8854 8855
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8856 8857 8858

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8859 8860
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8861
 */
8862
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8863

8864 8865 8866 8867 8868 8869
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8870
{
8871
	return 0;
8872 8873
}

8874
/*
I
Ingo Molnar 已提交
8875
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8876 8877
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8878
 */
8879
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8880
{
8881 8882
	int err;

8883
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8884
	ndoms_cur = 1;
8885
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8886
	if (!doms_cur)
8887
		doms_cur = fallback_doms;
8888
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8889
	dattr_cur = NULL;
8890
	err = build_sched_domains(doms_cur);
8891
	register_sched_domain_sysctl();
8892 8893

	return err;
8894 8895
}

8896 8897
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8898
{
8899
	free_sched_groups(cpu_map, tmpmask);
8900
}
L
Linus Torvalds 已提交
8901

8902 8903 8904 8905
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8906
static void detach_destroy_domains(const struct cpumask *cpu_map)
8907
{
8908 8909
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8910 8911
	int i;

8912
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8913
		cpu_attach_domain(NULL, &def_root_domain, i);
8914
	synchronize_sched();
8915
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8916 8917
}

8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8934 8935
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8936
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8937 8938 8939
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8940
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8941 8942 8943
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8944 8945 8946
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8947 8948
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8949 8950 8951 8952
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8953
 *
8954
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8955 8956
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8957
 *
P
Paul Jackson 已提交
8958 8959
 * Call with hotplug lock held
 */
8960 8961
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8962
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8963
{
8964
	int i, j, n;
8965
	int new_topology;
P
Paul Jackson 已提交
8966

8967
	mutex_lock(&sched_domains_mutex);
8968

8969 8970 8971
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8972 8973 8974
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8975
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8976 8977 8978

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8979
		for (j = 0; j < n && !new_topology; j++) {
8980
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8981
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8982 8983 8984 8985 8986 8987 8988 8989
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8990 8991
	if (doms_new == NULL) {
		ndoms_cur = 0;
8992
		doms_new = fallback_doms;
8993
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8994
		WARN_ON_ONCE(dattr_new);
8995 8996
	}

P
Paul Jackson 已提交
8997 8998
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8999
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9000
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9001
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9002 9003 9004
				goto match2;
		}
		/* no match - add a new doms_new */
9005 9006
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9007 9008 9009 9010 9011
match2:
		;
	}

	/* Remember the new sched domains */
9012
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9013
		kfree(doms_cur);
9014
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9015
	doms_cur = doms_new;
9016
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9017
	ndoms_cur = ndoms_new;
9018 9019

	register_sched_domain_sysctl();
9020

9021
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9022 9023
}

9024
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9025
static void arch_reinit_sched_domains(void)
9026
{
9027
	get_online_cpus();
9028 9029 9030 9031

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9032
	rebuild_sched_domains();
9033
	put_online_cpus();
9034 9035 9036 9037
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9038
	unsigned int level = 0;
9039

9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9051 9052 9053
		return -EINVAL;

	if (smt)
9054
		sched_smt_power_savings = level;
9055
	else
9056
		sched_mc_power_savings = level;
9057

9058
	arch_reinit_sched_domains();
9059

9060
	return count;
9061 9062 9063
}

#ifdef CONFIG_SCHED_MC
9064 9065
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9066 9067 9068
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9069
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9070
					    const char *buf, size_t count)
9071 9072 9073
{
	return sched_power_savings_store(buf, count, 0);
}
9074 9075 9076
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9077 9078 9079
#endif

#ifdef CONFIG_SCHED_SMT
9080 9081
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9082 9083 9084
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9085
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9086
					     const char *buf, size_t count)
9087 9088 9089
{
	return sched_power_savings_store(buf, count, 1);
}
9090 9091
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9092 9093 9094
		   sched_smt_power_savings_store);
#endif

9095
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9111
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9112

9113
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9114
/*
9115 9116
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9117 9118 9119
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9120 9121 9122 9123 9124 9125
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9126
		partition_sched_domains(1, NULL, NULL);
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9137
{
P
Peter Zijlstra 已提交
9138 9139
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9140 9141
	switch (action) {
	case CPU_DOWN_PREPARE:
9142
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9143
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9144 9145 9146
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9147
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9148
	case CPU_ONLINE:
9149
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9150
		enable_runtime(cpu_rq(cpu));
9151 9152
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9153 9154 9155 9156 9157 9158 9159
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9160 9161 9162
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9163
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9164

9165 9166 9167 9168 9169
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9170
	get_online_cpus();
9171
	mutex_lock(&sched_domains_mutex);
9172 9173 9174 9175
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9176
	mutex_unlock(&sched_domains_mutex);
9177
	put_online_cpus();
9178 9179

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9180 9181
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9182 9183 9184 9185 9186
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9187
	init_hrtick();
9188 9189

	/* Move init over to a non-isolated CPU */
9190
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9191
		BUG();
I
Ingo Molnar 已提交
9192
	sched_init_granularity();
9193
	free_cpumask_var(non_isolated_cpus);
9194

9195
	init_sched_rt_class();
L
Linus Torvalds 已提交
9196 9197 9198 9199
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9200
	sched_init_granularity();
L
Linus Torvalds 已提交
9201 9202 9203
}
#endif /* CONFIG_SMP */

9204 9205
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9206 9207 9208 9209 9210 9211 9212
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9213
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9214 9215
{
	cfs_rq->tasks_timeline = RB_ROOT;
9216
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9217 9218 9219
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9220
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9221 9222
}

P
Peter Zijlstra 已提交
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9236
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9237
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9238
#ifdef CONFIG_SMP
9239
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9240 9241
#endif
#endif
P
Peter Zijlstra 已提交
9242 9243 9244
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9245
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9246 9247 9248 9249
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9250 9251
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9252

9253
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9254
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9255 9256
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9257 9258
}

P
Peter Zijlstra 已提交
9259
#ifdef CONFIG_FAIR_GROUP_SCHED
9260 9261 9262
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9263
{
9264
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9265 9266 9267 9268 9269 9270 9271
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9272 9273 9274 9275
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9276 9277 9278 9279 9280
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9281 9282
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9283
	se->load.inv_weight = 0;
9284
	se->parent = parent;
P
Peter Zijlstra 已提交
9285
}
9286
#endif
P
Peter Zijlstra 已提交
9287

9288
#ifdef CONFIG_RT_GROUP_SCHED
9289 9290 9291
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9292
{
9293 9294
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9295 9296 9297 9298
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9299
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9300 9301 9302 9303
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9304 9305 9306
	if (!rt_se)
		return;

9307 9308 9309 9310 9311
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9312
	rt_se->my_q = rt_rq;
9313
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9314 9315 9316 9317
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9318 9319
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9320
	int i, j;
9321 9322 9323 9324 9325 9326 9327
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9328 9329 9330
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9331 9332
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9333
	alloc_size += num_possible_cpus() * cpumask_size();
9334 9335 9336 9337 9338 9339
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9340
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9341 9342 9343 9344 9345 9346 9347

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9348 9349 9350 9351 9352 9353 9354

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9355 9356
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9357 9358 9359 9360 9361
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9362 9363 9364 9365 9366 9367 9368 9369
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9370 9371
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9372 9373 9374 9375 9376 9377
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9378
	}
I
Ingo Molnar 已提交
9379

G
Gregory Haskins 已提交
9380 9381 9382 9383
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9384 9385 9386 9387 9388 9389
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9390 9391 9392
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9393 9394
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9395

9396
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9397
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9398 9399 9400 9401 9402 9403
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9404 9405
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9406

9407
	for_each_possible_cpu(i) {
9408
		struct rq *rq;
L
Linus Torvalds 已提交
9409 9410 9411

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9412
		rq->nr_running = 0;
9413 9414
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9415
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9416
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9417
#ifdef CONFIG_FAIR_GROUP_SCHED
9418
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9419
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9435
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9436 9437 9438 9439
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9440
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9441
#elif defined CONFIG_USER_SCHED
9442 9443
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9444 9445 9446 9447 9448 9449 9450 9451
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9452
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9453 9454
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9455
		init_tg_cfs_entry(&init_task_group,
9456
				&per_cpu(init_tg_cfs_rq, i),
9457 9458
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9459

9460
#endif
D
Dhaval Giani 已提交
9461 9462 9463
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9464
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9465
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9466
#ifdef CONFIG_CGROUP_SCHED
9467
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9468
#elif defined CONFIG_USER_SCHED
9469
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9470
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9471
				&per_cpu(init_rt_rq, i),
9472 9473
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9474
#endif
I
Ingo Molnar 已提交
9475
#endif
L
Linus Torvalds 已提交
9476

I
Ingo Molnar 已提交
9477 9478
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9479
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9480
		rq->sd = NULL;
G
Gregory Haskins 已提交
9481
		rq->rd = NULL;
9482
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9483
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9484
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9485
		rq->push_cpu = 0;
9486
		rq->cpu = i;
9487
		rq->online = 0;
L
Linus Torvalds 已提交
9488 9489
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9490
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9491
#endif
P
Peter Zijlstra 已提交
9492
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9493 9494 9495
		atomic_set(&rq->nr_iowait, 0);
	}

9496
	set_load_weight(&init_task);
9497

9498 9499 9500 9501
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9502
#ifdef CONFIG_SMP
9503
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9504 9505
#endif

9506 9507 9508 9509
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9523 9524 9525

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9526 9527 9528 9529
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9530

9531
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9532
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9533
#ifdef CONFIG_SMP
9534
#ifdef CONFIG_NO_HZ
9535 9536
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9537
#endif
9538
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9539
#endif /* SMP */
9540

9541
	perf_event_init();
9542

9543
	scheduler_running = 1;
L
Linus Torvalds 已提交
9544 9545 9546
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9547 9548 9549 9550 9551 9552 9553 9554
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9555
{
9556
#ifdef in_atomic
L
Linus Torvalds 已提交
9557 9558
	static unsigned long prev_jiffy;	/* ratelimiting */

9559 9560
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9578 9579 9580 9581 9582 9583
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9584 9585 9586
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9587

9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9599 9600
void normalize_rt_tasks(void)
{
9601
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9602
	unsigned long flags;
9603
	struct rq *rq;
L
Linus Torvalds 已提交
9604

9605
	read_lock_irqsave(&tasklist_lock, flags);
9606
	do_each_thread(g, p) {
9607 9608 9609 9610 9611 9612
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9613 9614
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9615 9616 9617
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9618
#endif
I
Ingo Molnar 已提交
9619 9620 9621 9622 9623 9624 9625 9626

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9627
			continue;
I
Ingo Molnar 已提交
9628
		}
L
Linus Torvalds 已提交
9629

9630
		spin_lock(&p->pi_lock);
9631
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9632

9633
		normalize_task(rq, p);
9634

9635
		__task_rq_unlock(rq);
9636
		spin_unlock(&p->pi_lock);
9637 9638
	} while_each_thread(g, p);

9639
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9640 9641 9642
}

#endif /* CONFIG_MAGIC_SYSRQ */
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9661
struct task_struct *curr_task(int cpu)
9662 9663 9664 9665 9666 9667 9668 9669 9670 9671
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9672 9673
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9674 9675 9676 9677 9678 9679 9680
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9681
void set_curr_task(int cpu, struct task_struct *p)
9682 9683 9684 9685 9686
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9687

9688 9689
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9704 9705
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9706 9707
{
	struct cfs_rq *cfs_rq;
9708
	struct sched_entity *se;
9709
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9710 9711
	int i;

9712
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9713 9714
	if (!tg->cfs_rq)
		goto err;
9715
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9716 9717
	if (!tg->se)
		goto err;
9718 9719

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9720 9721

	for_each_possible_cpu(i) {
9722
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9723

9724 9725
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9726 9727 9728
		if (!cfs_rq)
			goto err;

9729 9730
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9731 9732 9733
		if (!se)
			goto err;

9734
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9753
#else /* !CONFG_FAIR_GROUP_SCHED */
9754 9755 9756 9757
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9758 9759
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9771
#endif /* CONFIG_FAIR_GROUP_SCHED */
9772 9773

#ifdef CONFIG_RT_GROUP_SCHED
9774 9775 9776 9777
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9778 9779
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9791 9792
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9793 9794
{
	struct rt_rq *rt_rq;
9795
	struct sched_rt_entity *rt_se;
9796 9797 9798
	struct rq *rq;
	int i;

9799
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9800 9801
	if (!tg->rt_rq)
		goto err;
9802
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9803 9804 9805
	if (!tg->rt_se)
		goto err;

9806 9807
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9808 9809 9810 9811

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9812 9813
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9814 9815
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9816

9817 9818
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9819 9820
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9821

9822
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9823 9824
	}

9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9841
#else /* !CONFIG_RT_GROUP_SCHED */
9842 9843 9844 9845
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9846 9847
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9859
#endif /* CONFIG_RT_GROUP_SCHED */
9860

9861
#ifdef CONFIG_GROUP_SCHED
9862 9863 9864 9865 9866 9867 9868 9869
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9870
struct task_group *sched_create_group(struct task_group *parent)
9871 9872 9873 9874 9875 9876 9877 9878 9879
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9880
	if (!alloc_fair_sched_group(tg, parent))
9881 9882
		goto err;

9883
	if (!alloc_rt_sched_group(tg, parent))
9884 9885
		goto err;

9886
	spin_lock_irqsave(&task_group_lock, flags);
9887
	for_each_possible_cpu(i) {
9888 9889
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9890
	}
P
Peter Zijlstra 已提交
9891
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9892 9893 9894 9895 9896

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9897
	list_add_rcu(&tg->siblings, &parent->children);
9898
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9899

9900
	return tg;
S
Srivatsa Vaddagiri 已提交
9901 9902

err:
P
Peter Zijlstra 已提交
9903
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9904 9905 9906
	return ERR_PTR(-ENOMEM);
}

9907
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9908
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9909 9910
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9911
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9912 9913
}

9914
/* Destroy runqueue etc associated with a task group */
9915
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9916
{
9917
	unsigned long flags;
9918
	int i;
S
Srivatsa Vaddagiri 已提交
9919

9920
	spin_lock_irqsave(&task_group_lock, flags);
9921
	for_each_possible_cpu(i) {
9922 9923
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9924
	}
P
Peter Zijlstra 已提交
9925
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9926
	list_del_rcu(&tg->siblings);
9927
	spin_unlock_irqrestore(&task_group_lock, flags);
9928 9929

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9930
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9931 9932
}

9933
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9934 9935 9936
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9937 9938
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9939 9940 9941 9942 9943 9944 9945 9946 9947
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9948
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9949 9950
	on_rq = tsk->se.on_rq;

9951
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9952
		dequeue_task(rq, tsk, 0);
9953 9954
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9955

P
Peter Zijlstra 已提交
9956
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9957

P
Peter Zijlstra 已提交
9958 9959 9960 9961 9962
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9963 9964 9965
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9966
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9967 9968 9969

	task_rq_unlock(rq, &flags);
}
9970
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9971

9972
#ifdef CONFIG_FAIR_GROUP_SCHED
9973
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9974 9975 9976 9977 9978
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9979
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9980 9981 9982
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9983
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9984

9985
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9986
		enqueue_entity(cfs_rq, se, 0);
9987
}
9988

9989 9990 9991 9992 9993 9994 9995 9996 9997
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9998 9999
}

10000 10001
static DEFINE_MUTEX(shares_mutex);

10002
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10003 10004
{
	int i;
10005
	unsigned long flags;
10006

10007 10008 10009 10010 10011 10012
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10013 10014
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10015 10016
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10017

10018
	mutex_lock(&shares_mutex);
10019
	if (tg->shares == shares)
10020
		goto done;
S
Srivatsa Vaddagiri 已提交
10021

10022
	spin_lock_irqsave(&task_group_lock, flags);
10023 10024
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10025
	list_del_rcu(&tg->siblings);
10026
	spin_unlock_irqrestore(&task_group_lock, flags);
10027 10028 10029 10030 10031 10032 10033 10034

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10035
	tg->shares = shares;
10036 10037 10038 10039 10040
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10041
		set_se_shares(tg->se[i], shares);
10042
	}
S
Srivatsa Vaddagiri 已提交
10043

10044 10045 10046 10047
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10048
	spin_lock_irqsave(&task_group_lock, flags);
10049 10050
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10051
	list_add_rcu(&tg->siblings, &tg->parent->children);
10052
	spin_unlock_irqrestore(&task_group_lock, flags);
10053
done:
10054
	mutex_unlock(&shares_mutex);
10055
	return 0;
S
Srivatsa Vaddagiri 已提交
10056 10057
}

10058 10059 10060 10061
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10062
#endif
10063

10064
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10065
/*
P
Peter Zijlstra 已提交
10066
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10067
 */
P
Peter Zijlstra 已提交
10068 10069 10070 10071 10072
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10073
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10074

P
Peter Zijlstra 已提交
10075
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10076 10077
}

P
Peter Zijlstra 已提交
10078 10079
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10080
{
P
Peter Zijlstra 已提交
10081
	struct task_struct *g, *p;
10082

P
Peter Zijlstra 已提交
10083 10084 10085 10086
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10087

P
Peter Zijlstra 已提交
10088 10089
	return 0;
}
10090

P
Peter Zijlstra 已提交
10091 10092 10093 10094 10095
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10096

P
Peter Zijlstra 已提交
10097 10098 10099 10100 10101 10102
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10103

P
Peter Zijlstra 已提交
10104 10105
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10106

P
Peter Zijlstra 已提交
10107 10108 10109
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10110 10111
	}

10112 10113 10114 10115 10116 10117 10118
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10119 10120 10121 10122 10123
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10124

10125 10126 10127
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10128 10129
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10130

P
Peter Zijlstra 已提交
10131
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10132

10133 10134 10135 10136 10137
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10138

10139 10140 10141
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10142 10143 10144
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10145

P
Peter Zijlstra 已提交
10146 10147 10148 10149
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10150

P
Peter Zijlstra 已提交
10151
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10152
	}
P
Peter Zijlstra 已提交
10153

P
Peter Zijlstra 已提交
10154 10155 10156 10157
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10158 10159
}

P
Peter Zijlstra 已提交
10160
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10161
{
P
Peter Zijlstra 已提交
10162 10163 10164 10165 10166 10167 10168
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10169 10170
}

10171 10172
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10173
{
P
Peter Zijlstra 已提交
10174
	int i, err = 0;
P
Peter Zijlstra 已提交
10175 10176

	mutex_lock(&rt_constraints_mutex);
10177
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10178 10179
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10180
		goto unlock;
P
Peter Zijlstra 已提交
10181 10182

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10183 10184
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10185 10186 10187 10188 10189 10190 10191 10192 10193

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10194
 unlock:
10195
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10196 10197 10198
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10199 10200
}

10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10213 10214 10215 10216
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10217
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10218 10219
		return -1;

10220
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10221 10222 10223
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10224 10225 10226 10227 10228 10229 10230 10231

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10232 10233 10234
	if (rt_period == 0)
		return -EINVAL;

10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10249
	u64 runtime, period;
10250 10251
	int ret = 0;

10252 10253 10254
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10255 10256 10257 10258 10259 10260 10261 10262
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10263

10264
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10265
	read_lock(&tasklist_lock);
10266
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10267
	read_unlock(&tasklist_lock);
10268 10269 10270 10271
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10272 10273 10274 10275 10276 10277 10278 10279 10280 10281

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10282
#else /* !CONFIG_RT_GROUP_SCHED */
10283 10284
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10285 10286 10287
	unsigned long flags;
	int i;

10288 10289 10290
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10291 10292 10293 10294 10295 10296 10297
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10308 10309
	return 0;
}
10310
#endif /* CONFIG_RT_GROUP_SCHED */
10311 10312

int sched_rt_handler(struct ctl_table *table, int write,
10313
		void __user *buffer, size_t *lenp,
10314 10315 10316 10317 10318 10319 10320 10321 10322 10323
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10324
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10341

10342
#ifdef CONFIG_CGROUP_SCHED
10343 10344

/* return corresponding task_group object of a cgroup */
10345
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10346
{
10347 10348
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10349 10350 10351
}

static struct cgroup_subsys_state *
10352
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10353
{
10354
	struct task_group *tg, *parent;
10355

10356
	if (!cgrp->parent) {
10357 10358 10359 10360
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10361 10362
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10363 10364 10365 10366 10367 10368
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10369 10370
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10371
{
10372
	struct task_group *tg = cgroup_tg(cgrp);
10373 10374 10375 10376

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10377
static int
10378
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10379
{
10380
#ifdef CONFIG_RT_GROUP_SCHED
10381
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10382 10383
		return -EINVAL;
#else
10384 10385 10386
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10387
#endif
10388 10389
	return 0;
}
10390

10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10410 10411 10412 10413
	return 0;
}

static void
10414
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10415 10416
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10417 10418
{
	sched_move_task(tsk);
10419 10420 10421 10422 10423 10424 10425 10426
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10427 10428
}

10429
#ifdef CONFIG_FAIR_GROUP_SCHED
10430
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10431
				u64 shareval)
10432
{
10433
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10434 10435
}

10436
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10437
{
10438
	struct task_group *tg = cgroup_tg(cgrp);
10439 10440 10441

	return (u64) tg->shares;
}
10442
#endif /* CONFIG_FAIR_GROUP_SCHED */
10443

10444
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10445
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10446
				s64 val)
P
Peter Zijlstra 已提交
10447
{
10448
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10449 10450
}

10451
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10452
{
10453
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10454
}
10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10466
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10467

10468
static struct cftype cpu_files[] = {
10469
#ifdef CONFIG_FAIR_GROUP_SCHED
10470 10471
	{
		.name = "shares",
10472 10473
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10474
	},
10475 10476
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10477
	{
P
Peter Zijlstra 已提交
10478
		.name = "rt_runtime_us",
10479 10480
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10481
	},
10482 10483
	{
		.name = "rt_period_us",
10484 10485
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10486
	},
10487
#endif
10488 10489 10490 10491
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10492
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10493 10494 10495
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10496 10497 10498 10499 10500 10501 10502
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10503 10504 10505
	.early_init	= 1,
};

10506
#endif	/* CONFIG_CGROUP_SCHED */
10507 10508 10509 10510 10511 10512 10513 10514 10515 10516

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10517
/* track cpu usage of a group of tasks and its child groups */
10518 10519 10520 10521
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10522
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10523
	struct cpuacct *parent;
10524 10525 10526 10527 10528
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10529
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10530
{
10531
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10544
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10545 10546
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10547
	int i;
10548 10549

	if (!ca)
10550
		goto out;
10551 10552

	ca->cpuusage = alloc_percpu(u64);
10553 10554 10555 10556 10557 10558
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10559

10560 10561 10562
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10563
	return &ca->css;
10564 10565 10566 10567 10568 10569 10570 10571 10572

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10573 10574 10575
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10576
static void
10577
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10578
{
10579
	struct cpuacct *ca = cgroup_ca(cgrp);
10580
	int i;
10581

10582 10583
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10584 10585 10586 10587
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10588 10589
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10590
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10609
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10623
/* return total cpu usage (in nanoseconds) of a group */
10624
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10625
{
10626
	struct cpuacct *ca = cgroup_ca(cgrp);
10627 10628 10629
	u64 totalcpuusage = 0;
	int i;

10630 10631
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10632 10633 10634 10635

	return totalcpuusage;
}

10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10648 10649
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10650 10651 10652 10653 10654

out:
	return err;
}

10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10689 10690 10691
static struct cftype files[] = {
	{
		.name = "usage",
10692 10693
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10694
	},
10695 10696 10697 10698
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10699 10700 10701 10702
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10703 10704
};

10705
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10706
{
10707
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10708 10709 10710 10711 10712 10713 10714 10715 10716 10717
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10718
	int cpu;
10719

L
Li Zefan 已提交
10720
	if (unlikely(!cpuacct_subsys.active))
10721 10722
		return;

10723
	cpu = task_cpu(tsk);
10724 10725 10726

	rcu_read_lock();

10727 10728
	ca = task_ca(tsk);

10729
	for (; ca; ca = ca->parent) {
10730
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10731 10732
		*cpuusage += cputime;
	}
10733 10734

	rcu_read_unlock();
10735 10736
}

10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10758 10759 10760 10761 10762 10763 10764 10765
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */