sched.c 269.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
473
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527 528
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
817

818 819 820 821 822 823 824
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

825 826 827 828 829 830 831 832
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
833
/*
P
Peter Zijlstra 已提交
834
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
835 836
 * default: 1s
 */
P
Peter Zijlstra 已提交
837
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
838

839 840
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
841 842 843 844 845
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
854
	if (sysctl_sched_rt_runtime < 0)
855 856 857 858
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
859

L
Linus Torvalds 已提交
860
#ifndef prepare_arch_switch
861 862 863 864 865 866
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

867 868 869 870 871
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

872
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874
{
875
	return task_current(rq, p);
876 877
}

878
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 880 881
{
}

882
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883
{
884 885 886 887
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
888 889 890 891 892 893 894
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

895 896 897 898
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
899
static inline int task_running(struct rq *rq, struct task_struct *p)
900 901 902 903
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
904
	return task_current(rq, p);
905 906 907
#endif
}

908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

925
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 927 928 929 930 931 932 933 934 935 936 937
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
938
#endif
939 940
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
941

942 943 944 945
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
946
static inline struct rq *__task_rq_lock(struct task_struct *p)
947 948
	__acquires(rq->lock)
{
949 950 951 952 953
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
954 955 956 957
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
958 959
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
960
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
961 962
 * explicitly disabling preemption.
 */
963
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
964 965
	__acquires(rq->lock)
{
966
	struct rq *rq;
L
Linus Torvalds 已提交
967

968 969 970 971 972 973
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
974 975 976 977
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

978 979 980 981 982 983 984 985
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
986
static void __task_rq_unlock(struct rq *rq)
987 988 989 990 991
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

992
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
993 994 995 996 997 998
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
999
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1000
 */
A
Alexey Dobriyan 已提交
1001
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1002 1003
	__acquires(rq->lock)
{
1004
	struct rq *rq;
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010 1011 1012

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1034
	if (!cpu_active(cpu_of(rq)))
1035
		return 0;
P
Peter Zijlstra 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1056
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1063
#ifdef CONFIG_SMP
1064 1065 1066 1067
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1068
{
1069
	struct rq *rq = arg;
1070

1071 1072 1073 1074
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1075 1076
}

1077 1078 1079 1080 1081 1082
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1083
{
1084 1085
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086

1087
	hrtimer_set_expires(timer, time);
1088 1089 1090 1091

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1092
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1093 1094
		rq->hrtick_csd_pending = 1;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1109
		hrtick_clear(cpu_rq(cpu));
1110 1111 1112 1113 1114 1115
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1116
static __init void init_hrtick(void)
1117 1118 1119
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1120 1121 1122 1123 1124 1125 1126 1127
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1128
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1129
			HRTIMER_MODE_REL_PINNED, 0);
1130
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1149
}
A
Andrew Morton 已提交
1150
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151 1152 1153 1154 1155 1156 1157 1158
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1159 1160 1161
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1162
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1177
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1178 1179 1180 1181 1182
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1183
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1184 1185
		return;

1186
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1242
	set_tsk_need_resched(rq->idle);
1243 1244 1245 1246 1247 1248

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1249
#endif /* CONFIG_NO_HZ */
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1272
#else /* !CONFIG_SMP */
1273
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1274 1275
{
	assert_spin_locked(&task_rq(p)->lock);
1276
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1277
}
1278 1279 1280 1281

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1282
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1292 1293 1294
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1295
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1296

1297 1298 1299
/*
 * delta *= weight / lw
 */
1300
static unsigned long
1301 1302 1303 1304 1305
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1306 1307 1308 1309 1310 1311 1312
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1313 1314 1315 1316 1317

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1318
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1319
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1320 1321
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1322
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323

1324
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 1326
}

1327
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 1329
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1330
	lw->inv_weight = 0;
1331 1332
}

1333
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 1335
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339 1340 1341 1342
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1343
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 1345 1346 1347
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1348 1349
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 1360 1361
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1362 1363
 */
static const int prio_to_weight[40] = {
1364 1365 1366 1367 1368 1369 1370 1371
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1372 1373
};

1374 1375 1376 1377 1378 1379 1380
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1381
static const u32 prio_to_wmult[40] = {
1382 1383 1384 1385 1386 1387 1388 1389
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1390
};
1391

I
Ingo Molnar 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1417

1418 1419 1420 1421 1422 1423 1424 1425
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1426 1427
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1428 1429
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1430 1431
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432 1433
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1434 1435
#endif

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1446
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1447
typedef int (*tg_visitor)(struct task_group *, void *);
1448 1449 1450 1451 1452

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1453
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 1455
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1456
	int ret;
1457 1458 1459 1460

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1461 1462 1463
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1464 1465 1466 1467 1468 1469 1470
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1471 1472 1473
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1474 1475 1476 1477 1478

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1479
out_unlock:
1480
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1481 1482

	return ret;
1483 1484
}

P
Peter Zijlstra 已提交
1485 1486 1487
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1488
}
P
Peter Zijlstra 已提交
1489 1490 1491
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1551 1552 1553 1554 1555
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1556
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1557

1558 1559
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1560 1561
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1562 1563 1564 1565 1566

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1567

1568
static __read_mostly unsigned long *update_shares_data;
1569

1570 1571 1572 1573 1574
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1575 1576 1577
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1578
				    unsigned long *usd_rq_weight)
1579
{
1580
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1581
	int boost = 0;
1582

1583
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1584 1585 1586 1587
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1588

1589
	/*
P
Peter Zijlstra 已提交
1590 1591 1592
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1593
	 */
1594
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1595
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596

1597 1598 1599 1600
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1601

1602
		spin_lock_irqsave(&rq->lock, flags);
1603
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1604
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605 1606 1607
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1608
}
1609 1610

/*
1611 1612 1613
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1614
 */
P
Peter Zijlstra 已提交
1615
static int tg_shares_up(struct task_group *tg, void *data)
1616
{
1617
	unsigned long weight, rq_weight = 0, shares = 0;
1618
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1619
	struct sched_domain *sd = data;
1620
	unsigned long flags;
1621
	int i;
1622

1623 1624 1625 1626
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1627
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628

1629
	for_each_cpu(i, sched_domain_span(sd)) {
1630
		weight = tg->cfs_rq[i]->load.weight;
1631
		usd_rq_weight[i] = weight;
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1642
		shares += tg->cfs_rq[i]->shares;
1643 1644
	}

1645 1646 1647 1648 1649
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1650

1651
	for_each_cpu(i, sched_domain_span(sd))
1652
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653 1654

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1655 1656

	return 0;
1657 1658 1659
}

/*
1660 1661 1662
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1663
 */
P
Peter Zijlstra 已提交
1664
static int tg_load_down(struct task_group *tg, void *data)
1665
{
1666
	unsigned long load;
P
Peter Zijlstra 已提交
1667
	long cpu = (long)data;
1668

1669 1670 1671 1672 1673 1674 1675
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1676

1677
	tg->cfs_rq[cpu]->h_load = load;
1678

P
Peter Zijlstra 已提交
1679
	return 0;
1680 1681
}

1682
static void update_shares(struct sched_domain *sd)
1683
{
1684 1685 1686 1687 1688 1689 1690 1691
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1692 1693 1694

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1695
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1696
	}
1697 1698
}

1699 1700
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1701 1702 1703
	if (root_task_group_empty())
		return;

1704 1705 1706 1707 1708
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1709
static void update_h_load(long cpu)
1710
{
1711 1712 1713
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1714
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1715 1716 1717 1718
}

#else

1719
static inline void update_shares(struct sched_domain *sd)
1720 1721 1722
{
}

1723 1724 1725 1726
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1727 1728
#endif

1729 1730
#ifdef CONFIG_PREEMPT

1731 1732
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1733
/*
1734 1735 1736 1737 1738 1739
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1740
 */
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1795 1796 1797 1798 1799 1800
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1801 1802
#endif

V
Vegard Nossum 已提交
1803
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1804 1805
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1806
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1807 1808 1809
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1810
#endif
1811

1812 1813
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1814 1815
#include "sched_stats.h"
#include "sched_idletask.c"
1816 1817
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1818 1819 1820 1821 1822
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1823 1824
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1825

1826
static void inc_nr_running(struct rq *rq)
1827 1828 1829 1830
{
	rq->nr_running++;
}

1831
static void dec_nr_running(struct rq *rq)
1832 1833 1834 1835
{
	rq->nr_running--;
}

1836 1837 1838
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1839 1840 1841 1842
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1843

I
Ingo Molnar 已提交
1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1852

I
Ingo Molnar 已提交
1853 1854
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1855 1856
}

1857 1858 1859 1860 1861 1862
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1863
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1864
{
P
Peter Zijlstra 已提交
1865 1866 1867
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1868
	sched_info_queued(p);
1869
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1870
	p->se.on_rq = 1;
1871 1872
}

1873
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1874
{
P
Peter Zijlstra 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1884 1885
	}

1886
	sched_info_dequeued(p);
1887
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1888
	p->se.on_rq = 0;
1889 1890
}

1891
/*
I
Ingo Molnar 已提交
1892
 * __normal_prio - return the priority that is based on the static prio
1893 1894 1895
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1896
	return p->static_prio;
1897 1898
}

1899 1900 1901 1902 1903 1904 1905
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1906
static inline int normal_prio(struct task_struct *p)
1907 1908 1909
{
	int prio;

1910
	if (task_has_rt_policy(p))
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1924
static int effective_prio(struct task_struct *p)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1937
/*
I
Ingo Molnar 已提交
1938
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1939
 */
I
Ingo Molnar 已提交
1940
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1941
{
1942
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1943
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1944

1945
	enqueue_task(rq, p, wakeup);
1946
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1952
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1953
{
1954
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1955 1956
		rq->nr_uninterruptible++;

1957
	dequeue_task(rq, p, sleep);
1958
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1965
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1966 1967 1968 1969
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1970 1971
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1972
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1973
#ifdef CONFIG_SMP
1974 1975 1976 1977 1978 1979
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1980 1981
	task_thread_info(p)->cpu = cpu;
#endif
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

1996 1997
/**
 * kthread_bind - bind a just-created kthread to a cpu.
1998
 * @p: thread created by kthread_create().
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

	spin_lock_irqsave(&rq->lock, flags);
2020
	update_rq_clock(rq);
2021 2022 2023 2024 2025 2026 2027 2028
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
	spin_unlock_irqrestore(&rq->lock, flags);
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2029
#ifdef CONFIG_SMP
2030 2031 2032
/*
 * Is this task likely cache-hot:
 */
2033
static int
2034 2035 2036 2037
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2038 2039 2040
	/*
	 * Buddy candidates are cache hot:
	 */
2041
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2042 2043
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2044 2045
		return 1;

2046 2047 2048
	if (p->sched_class != &fair_sched_class)
		return 0;

2049 2050 2051 2052 2053
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2054 2055 2056 2057 2058 2059
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2060
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2061
{
I
Ingo Molnar 已提交
2062 2063
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2064 2065
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2066
	u64 clock_offset;
I
Ingo Molnar 已提交
2067 2068

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2069

2070
	trace_sched_migrate_task(p, new_cpu);
2071

I
Ingo Molnar 已提交
2072 2073 2074
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2075 2076 2077 2078
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2079
#endif
2080
	if (old_cpu != new_cpu) {
2081 2082
		p->se.nr_migrations++;
#ifdef CONFIG_SCHEDSTATS
2083 2084
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2085
#endif
2086
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2087
				     1, 1, NULL, 0);
2088
	}
2089 2090
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2091 2092

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2093 2094
}

2095
struct migration_req {
L
Linus Torvalds 已提交
2096 2097
	struct list_head list;

2098
	struct task_struct *task;
L
Linus Torvalds 已提交
2099 2100 2101
	int dest_cpu;

	struct completion done;
2102
};
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2108
static int
2109
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2110
{
2111
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2117
	if (!p->se.on_rq && !task_running(rq, p)) {
2118
		update_rq_clock(rq);
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2127

L
Linus Torvalds 已提交
2128 2129 2130
	return 1;
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2174 2175 2176
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2177 2178 2179 2180 2181 2182 2183
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2190
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2191 2192
{
	unsigned long flags;
I
Ingo Molnar 已提交
2193
	int running, on_rq;
R
Roland McGrath 已提交
2194
	unsigned long ncsw;
2195
	struct rq *rq;
L
Linus Torvalds 已提交
2196

2197 2198 2199 2200 2201 2202 2203 2204
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2217 2218 2219
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2220
			cpu_relax();
R
Roland McGrath 已提交
2221
		}
2222

2223 2224 2225 2226 2227 2228
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2229
		trace_sched_wait_task(rq, p);
2230 2231
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2232
		ncsw = 0;
2233
		if (!match_state || p->state == match_state)
2234
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2235
		task_rq_unlock(rq, &flags);
2236

R
Roland McGrath 已提交
2237 2238 2239 2240 2241 2242
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2253

2254 2255 2256 2257 2258
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2259
		 * So if it was still runnable (but just not actively
2260 2261 2262 2263 2264 2265 2266
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2267

2268 2269 2270 2271 2272 2273 2274
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2275 2276

	return ncsw;
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2292
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2302
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2303
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2304

T
Thomas Gleixner 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2340 2341
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2342
{
2343
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2344
	unsigned long flags;
2345
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2346

2347
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2348
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2349

P
Peter Zijlstra 已提交
2350
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2351

2352
	smp_wmb();
2353
	rq = orig_rq = task_rq_lock(p, &flags);
2354
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2355
	if (!(p->state & state))
L
Linus Torvalds 已提交
2356 2357
		goto out;

I
Ingo Molnar 已提交
2358
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2359 2360 2361
		goto out_running;

	cpu = task_cpu(p);
2362
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2368 2369 2370
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2371 2372
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2373
	 */
2374 2375
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2376 2377 2378
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2379
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2380 2381 2382 2383
	if (cpu != orig_cpu) {
		local_irq_save(flags);
		rq = cpu_rq(cpu);
		update_rq_clock(rq);
2384
		set_task_cpu(p, cpu);
2385 2386
		local_irq_restore(flags);
	}
P
Peter Zijlstra 已提交
2387
	rq = task_rq_lock(p, &flags);
2388

P
Peter Zijlstra 已提交
2389 2390
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2391

2392 2393 2394 2395 2396 2397 2398
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2399
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 2401 2402 2403 2404
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2405
#endif /* CONFIG_SCHEDSTATS */
2406

L
Linus Torvalds 已提交
2407 2408
out_activate:
#endif /* CONFIG_SMP */
2409
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2410
	if (wake_flags & WF_SYNC)
2411 2412 2413 2414 2415 2416 2417
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2418
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2419 2420
	success = 1;

P
Peter Zijlstra 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2437
out_running:
2438
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2439
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2440

L
Linus Torvalds 已提交
2441
	p->state = TASK_RUNNING;
2442 2443 2444
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2456
#endif
L
Linus Torvalds 已提交
2457 2458
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2459
	put_cpu();
L
Linus Torvalds 已提交
2460 2461 2462 2463

	return success;
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2475
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2476
{
2477
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2478 2479 2480
}
EXPORT_SYMBOL(wake_up_process);

2481
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2489 2490 2491 2492 2493 2494 2495
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2496
	p->se.prev_sum_exec_runtime	= 0;
2497
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2498 2499
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2500 2501
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2502
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2503 2504

#ifdef CONFIG_SCHEDSTATS
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2536
#endif
N
Nick Piggin 已提交
2537

P
Peter Zijlstra 已提交
2538
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2539
	p->se.on_rq = 0;
2540
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2541

2542 2543 2544 2545
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551 2552
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2553 2554 2555 2556 2557 2558 2559 2560
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();
2561
	unsigned long flags;
I
Ingo Molnar 已提交
2562 2563 2564

	__sched_fork(p);

2565 2566 2567 2568
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2569
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2570
			p->policy = SCHED_NORMAL;
2571 2572
			p->normal_prio = p->static_prio;
		}
2573

2574 2575
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2576
			p->normal_prio = p->static_prio;
2577 2578 2579
			set_load_weight(p);
		}

2580 2581 2582 2583 2584 2585
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2586

2587 2588 2589 2590 2591
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2592 2593
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2594

2595 2596 2597
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
2598 2599
	local_irq_save(flags);
	update_rq_clock(cpu_rq(cpu));
2600
	set_task_cpu(p, cpu);
2601
	local_irq_restore(flags);
2602

2603
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2604
	if (likely(sched_info_on()))
2605
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2606
#endif
2607
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2608 2609
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2610
#ifdef CONFIG_PREEMPT
2611
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2612
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2613
#endif
2614 2615
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2616
	put_cpu();
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2626
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2627 2628
{
	unsigned long flags;
I
Ingo Molnar 已提交
2629
	struct rq *rq;
L
Linus Torvalds 已提交
2630 2631

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2632
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2633
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2634

2635
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2636
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2637 2638
	} else {
		/*
I
Ingo Molnar 已提交
2639 2640
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2641
		 */
2642
		p->sched_class->task_new(rq, p);
2643
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2644
	}
2645
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2646
	check_preempt_curr(rq, p, WF_FORK);
2647 2648 2649 2650
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2651
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2652 2653
}

2654 2655 2656
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2657
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2658
 * @notifier: notifier struct to register
2659 2660 2661 2662 2663 2664 2665 2666 2667
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2668
 * @notifier: notifier struct to unregister
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2698
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2710
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2711

2712 2713 2714
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2715
 * @prev: the current task that is being switched out
2716 2717 2718 2719 2720 2721 2722 2723 2724
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2725 2726 2727
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2728
{
2729
	fire_sched_out_preempt_notifiers(prev, next);
2730 2731 2732 2733
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2734 2735
/**
 * finish_task_switch - clean up after a task-switch
2736
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2737 2738
 * @prev: the thread we just switched away from.
 *
2739 2740 2741 2742
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2743 2744
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2745
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2746 2747 2748
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2749
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2750 2751 2752
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2753
	long prev_state;
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2759
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2760 2761
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2762
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2763 2764 2765 2766 2767
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2768
	prev_state = prev->state;
2769
	finish_arch_switch(prev);
2770
	perf_event_task_sched_in(current, cpu_of(rq));
2771
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2772

2773
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2774 2775
	if (mm)
		mmdrop(mm);
2776
	if (unlikely(prev_state == TASK_DEAD)) {
2777 2778 2779
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2780
		 */
2781
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2782
		put_task_struct(prev);
2783
	}
L
Linus Torvalds 已提交
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2811

2812 2813 2814 2815 2816 2817
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2818 2819
}

2820 2821
#endif

L
Linus Torvalds 已提交
2822 2823 2824 2825
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2826
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2827 2828
	__releases(rq->lock)
{
2829 2830
	struct rq *rq = this_rq();

2831
	finish_task_switch(rq, prev);
2832

2833 2834 2835 2836 2837
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2838

2839 2840 2841 2842
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2843
	if (current->set_child_tid)
2844
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849 2850
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2851
static inline void
2852
context_switch(struct rq *rq, struct task_struct *prev,
2853
	       struct task_struct *next)
L
Linus Torvalds 已提交
2854
{
I
Ingo Molnar 已提交
2855
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2856

2857
	prepare_task_switch(rq, prev, next);
2858
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2859 2860
	mm = next->mm;
	oldmm = prev->active_mm;
2861 2862 2863 2864 2865
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2866
	arch_start_context_switch(prev);
2867

2868
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2875
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2876 2877 2878
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2879 2880 2881 2882 2883 2884 2885
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2886
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2887
#endif
L
Linus Torvalds 已提交
2888 2889 2890 2891

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2892 2893 2894 2895 2896 2897 2898
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2922
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2937 2938
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2939

2940
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2950
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2969 2970 2971 2972 2973 2974
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2990 2991
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2992
{
2993 2994 2995 2996
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3009

3010 3011
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3035 3036
}

3037
/*
I
Ingo Molnar 已提交
3038 3039
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3040
 */
I
Ingo Molnar 已提交
3041
static void update_cpu_load(struct rq *this_rq)
3042
{
3043
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3056 3057 3058 3059 3060 3061 3062
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3063 3064
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3065 3066 3067 3068 3069

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3070 3071
}

I
Ingo Molnar 已提交
3072 3073
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3074 3075 3076 3077 3078 3079
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3080
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3081 3082 3083
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3084
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3085 3086 3087 3088
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3089
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3090
			spin_lock(&rq1->lock);
3091
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3092 3093
		} else {
			spin_lock(&rq2->lock);
3094
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3095 3096
		}
	}
3097 3098
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105 3106
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3107
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3121
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3122 3123
 * the cpu_allowed mask is restored.
 */
3124
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3125
{
3126
	struct migration_req req;
L
Linus Torvalds 已提交
3127
	unsigned long flags;
3128
	struct rq *rq;
L
Linus Torvalds 已提交
3129 3130

	rq = task_rq_lock(p, &flags);
3131
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3132
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3139

L
Linus Torvalds 已提交
3140 3141 3142 3143 3144
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3145

L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3153 3154
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3155 3156 3157 3158
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3159
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3160
	put_cpu();
N
Nick Piggin 已提交
3161 3162
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3169 3170
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3171
{
3172
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3173
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3174
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3175 3176 3177 3178
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3179
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3185
static
3186
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3187
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3188
		     int *all_pinned)
L
Linus Torvalds 已提交
3189
{
3190
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3197
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3198
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3199
		return 0;
3200
	}
3201 3202
	*all_pinned = 0;

3203 3204
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3205
		return 0;
3206
	}
L
Linus Torvalds 已提交
3207

3208 3209 3210 3211 3212 3213
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3214 3215 3216
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3217
#ifdef CONFIG_SCHEDSTATS
3218
		if (tsk_cache_hot) {
3219
			schedstat_inc(sd, lb_hot_gained[idle]);
3220 3221
			schedstat_inc(p, se.nr_forced_migrations);
		}
3222 3223 3224 3225
#endif
		return 1;
	}

3226
	if (tsk_cache_hot) {
3227
		schedstat_inc(p, se.nr_failed_migrations_hot);
3228
		return 0;
3229
	}
L
Linus Torvalds 已提交
3230 3231 3232
	return 1;
}

3233 3234 3235 3236 3237
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3238
{
3239
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3240 3241
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3242

3243
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3244 3245
		goto out;

3246 3247
	pinned = 1;

L
Linus Torvalds 已提交
3248
	/*
I
Ingo Molnar 已提交
3249
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3250
	 */
I
Ingo Molnar 已提交
3251 3252
	p = iterator->start(iterator->arg);
next:
3253
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3254
		goto out;
3255 3256

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3257 3258 3259
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3260 3261
	}

I
Ingo Molnar 已提交
3262
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3263
	pulled++;
I
Ingo Molnar 已提交
3264
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3276
	/*
3277
	 * We only want to steal up to the prescribed amount of weighted load.
3278
	 */
3279
	if (rem_load_move > 0) {
3280 3281
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3282 3283
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3284 3285 3286
	}
out:
	/*
3287
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3288 3289 3290 3291
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3292 3293 3294

	if (all_pinned)
		*all_pinned = pinned;
3295 3296

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3297 3298
}

I
Ingo Molnar 已提交
3299
/*
P
Peter Williams 已提交
3300 3301 3302
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3303 3304 3305 3306
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3307
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3308 3309 3310
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3311
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3312
	unsigned long total_load_moved = 0;
3313
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3314 3315

	do {
P
Peter Williams 已提交
3316 3317
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3318
				max_load_move - total_load_moved,
3319
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3320
		class = class->next;
3321

3322 3323 3324 3325 3326 3327
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3328 3329
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3330
#endif
P
Peter Williams 已提交
3331
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3332

P
Peter Williams 已提交
3333 3334 3335
	return total_load_moved > 0;
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3372
	const struct sched_class *class;
P
Peter Williams 已提交
3373

3374
	for_each_class(class) {
3375
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3376
			return 1;
3377
	}
P
Peter Williams 已提交
3378 3379

	return 0;
I
Ingo Molnar 已提交
3380
}
3381
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3382
/*
3383 3384
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3385
 */
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3404
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3405 3406 3407 3408 3409 3410
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3411
#endif
3412
};
L
Linus Torvalds 已提交
3413

3414
/*
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3447
		load_idx = sd->busy_idx;
3448 3449 3450
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3451
		load_idx = sd->newidle_idx;
3452 3453
		break;
	default:
N
Nick Piggin 已提交
3454
		load_idx = sd->idle_idx;
3455 3456
		break;
	}
L
Linus Torvalds 已提交
3457

3458 3459
	return load_idx;
}
L
Linus Torvalds 已提交
3460 3461


3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3500

3501 3502
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3503

3504 3505 3506 3507 3508 3509 3510
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3511

3512 3513 3514 3515 3516 3517 3518 3519
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3534

3535 3536 3537 3538 3539
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3540
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3541
		return;
L
Linus Torvalds 已提交
3542

3543 3544 3545 3546 3547 3548 3549
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3550

3551
/**
3552
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3553 3554 3555 3556 3557
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3558 3559 3560 3561 3562
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3563 3564 3565 3566 3567 3568 3569 3570
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3571

3572 3573 3574
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3575

3576 3577
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3578

3579
	return 1;
L
Linus Torvalds 已提交
3580

3581 3582 3583 3584 3585 3586 3587
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3588

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3614 3615 3616 3617 3618 3619 3620 3621 3622
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3623 3624 3625 3626 3627
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3646 3647 3648 3649 3650 3651
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3652 3653 3654 3655 3656
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3657
	power >>= SCHED_LOAD_SHIFT;
3658 3659

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3660 3661 3662 3663 3664
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3665 3666 3667
		power >>= SCHED_LOAD_SHIFT;
	}

3668 3669 3670 3671 3672
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3673

3674
	sdg->cpu_power = power;
3675 3676 3677
}

static void update_group_power(struct sched_domain *sd, int cpu)
3678 3679 3680
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3681
	unsigned long power;
3682 3683

	if (!child) {
3684
		update_cpu_power(sd, cpu);
3685 3686 3687
		return;
	}

3688
	power = 0;
3689 3690 3691

	group = child->groups;
	do {
3692
		power += group->cpu_power;
3693 3694
		group = group->next;
	} while (group != child->groups);
3695 3696

	sdg->cpu_power = power;
3697
}
3698

3699 3700
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3701
 * @sd: The sched_domain whose statistics are to be updated.
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3712 3713
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3724
	if (local_group) {
3725
		balance_cpu = group_first_cpu(group);
3726
		if (balance_cpu == this_cpu)
3727
			update_group_power(sd, this_cpu);
3728
	}
3729 3730 3731 3732 3733

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3734

3735 3736
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3737

3738 3739
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3740

3741
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3742
		if (local_group) {
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3755
		}
3756

3757 3758 3759
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3760

3761 3762
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3775

3776
	/* Adjust by relative CPU power of the group */
3777
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3789 3790
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3791 3792 3793 3794

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3795
	sgs->group_capacity =
3796
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3797
}
I
Ingo Molnar 已提交
3798

3799 3800 3801 3802 3803 3804 3805 3806 3807
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3808
 */
3809 3810 3811 3812
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3813
{
P
Peter Zijlstra 已提交
3814
	struct sched_domain *child = sd->child;
3815
	struct sched_group *group = sd->groups;
3816
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3817 3818 3819 3820
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3821

3822
	init_sd_power_savings_stats(sd, sds, idle);
3823
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3824 3825 3826 3827

	do {
		int local_group;

3828 3829
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3830
		memset(&sgs, 0, sizeof(sgs));
3831
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3832
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3833

3834 3835
		if (local_group && balance && !(*balance))
			return;
3836

3837
		sds->total_load += sgs.group_load;
3838
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3839

P
Peter Zijlstra 已提交
3840 3841 3842 3843 3844 3845
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3846
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3847 3848

		if (local_group) {
3849 3850 3851 3852 3853
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3854 3855
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3856 3857 3858 3859 3860
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3861
		}
3862

3863
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3864 3865
		group = group->next;
	} while (group != sd->groups);
3866
}
L
Linus Torvalds 已提交
3867

3868 3869
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3870 3871
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3890

3891 3892 3893 3894 3895
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3896

L
Linus Torvalds 已提交
3897
	/*
3898 3899 3900
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3901
	 */
3902

3903
	pwr_now += sds->busiest->cpu_power *
3904
			min(sds->busiest_load_per_task, sds->max_load);
3905
	pwr_now += sds->this->cpu_power *
3906 3907 3908 3909
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3910 3911
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3912
	if (sds->max_load > tmp)
3913
		pwr_move += sds->busiest->cpu_power *
3914 3915 3916
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3917
	if (sds->max_load * sds->busiest->cpu_power <
3918
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3919 3920
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3921
	else
3922 3923 3924
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3925 3926 3927 3928 3929 3930 3931
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3944 3945 3946 3947 3948
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3949
	if (sds->max_load < sds->avg_load) {
3950
		*imbalance = 0;
3951
		return fix_small_imbalance(sds, this_cpu, imbalance);
3952
	}
3953 3954

	/* Don't want to pull so many tasks that a group would go idle */
3955 3956
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3957

L
Linus Torvalds 已提交
3958
	/* How much load to actually move to equalise the imbalance */
3959 3960
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3961 3962
			/ SCHED_LOAD_SCALE;

3963 3964 3965 3966 3967 3968
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3969 3970
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3971

3972
}
3973
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3974

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3999 4000 4001 4002 4003 4004 4005
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4006

4007
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4008

4009 4010 4011 4012 4013 4014 4015
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4026 4027
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4028

4029 4030
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4031

4032
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4033 4034
		goto out_balanced;

4035
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4036

4037 4038 4039 4040
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4041 4042
		goto out_balanced;

4043 4044 4045 4046
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4047

L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4056
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4057 4058
	 * appear as very large values with unsigned longs.
	 */
4059
	if (sds.max_load <= sds.busiest_load_per_task)
4060 4061
		goto out_balanced;

4062 4063
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4064
	return sds.busiest;
L
Linus Torvalds 已提交
4065 4066

out_balanced:
4067 4068 4069 4070 4071 4072
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4073
ret:
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4081
static struct rq *
I
Ingo Molnar 已提交
4082
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4083
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4084
{
4085
	struct rq *busiest = NULL, *rq;
4086
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4087 4088
	int i;

4089
	for_each_cpu(i, sched_group_cpus(group)) {
4090 4091
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4092
		unsigned long wl;
4093

4094
		if (!cpumask_test_cpu(i, cpus))
4095 4096
			continue;

4097
		rq = cpu_rq(i);
4098 4099
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4100

4101
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4102
			continue;
L
Linus Torvalds 已提交
4103

I
Ingo Molnar 已提交
4104 4105
		if (wl > max_load) {
			max_load = wl;
4106
			busiest = rq;
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112
		}
	}

	return busiest;
}

4113 4114 4115 4116 4117 4118
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4119 4120 4121
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4122 4123 4124 4125
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4126
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4127
			struct sched_domain *sd, enum cpu_idle_type idle,
4128
			int *balance)
L
Linus Torvalds 已提交
4129
{
P
Peter Williams 已提交
4130
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4131 4132
	struct sched_group *group;
	unsigned long imbalance;
4133
	struct rq *busiest;
4134
	unsigned long flags;
4135
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4136

4137
	cpumask_copy(cpus, cpu_active_mask);
4138

4139 4140 4141
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4142
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4143
	 * portraying it as CPU_NOT_IDLE.
4144
	 */
I
Ingo Molnar 已提交
4145
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4146
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4147
		sd_idle = 1;
L
Linus Torvalds 已提交
4148

4149
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4150

4151
redo:
4152
	update_shares(sd);
4153
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4154
				   cpus, balance);
4155

4156
	if (*balance == 0)
4157 4158
		goto out_balanced;

L
Linus Torvalds 已提交
4159 4160 4161 4162 4163
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4164
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4170
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4171 4172 4173

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4174
	ld_moved = 0;
L
Linus Torvalds 已提交
4175 4176 4177 4178
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4179
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4180 4181
		 * correctly treated as an imbalance.
		 */
4182
		local_irq_save(flags);
N
Nick Piggin 已提交
4183
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4184
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4185
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4186
		double_rq_unlock(this_rq, busiest);
4187
		local_irq_restore(flags);
4188

4189 4190 4191
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4192
		if (ld_moved && this_cpu != smp_processor_id())
4193 4194
			resched_cpu(this_cpu);

4195
		/* All tasks on this runqueue were pinned by CPU affinity */
4196
		if (unlikely(all_pinned)) {
4197 4198
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4199
				goto redo;
4200
			goto out_balanced;
4201
		}
L
Linus Torvalds 已提交
4202
	}
4203

P
Peter Williams 已提交
4204
	if (!ld_moved) {
L
Linus Torvalds 已提交
4205 4206 4207 4208 4209
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4210
			spin_lock_irqsave(&busiest->lock, flags);
4211 4212 4213 4214

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4215 4216
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4217
				spin_unlock_irqrestore(&busiest->lock, flags);
4218 4219 4220 4221
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4222 4223 4224
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4225
				active_balance = 1;
L
Linus Torvalds 已提交
4226
			}
4227
			spin_unlock_irqrestore(&busiest->lock, flags);
4228
			if (active_balance)
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4235
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4236
		}
4237
	} else
L
Linus Torvalds 已提交
4238 4239
		sd->nr_balance_failed = 0;

4240
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4241 4242
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4243 4244 4245 4246 4247 4248 4249 4250 4251
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4252 4253
	}

P
Peter Williams 已提交
4254
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4255
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 4257 4258
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4259 4260 4261 4262

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4263
	sd->nr_balance_failed = 0;
4264 4265

out_one_pinned:
L
Linus Torvalds 已提交
4266
	/* tune up the balancing interval */
4267 4268
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4269 4270
		sd->balance_interval *= 2;

4271
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4272
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4273 4274 4275 4276
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4277 4278
	if (ld_moved)
		update_shares(sd);
4279
	return ld_moved;
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4286
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4287 4288
 * this_rq is locked.
 */
4289
static int
4290
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4291 4292
{
	struct sched_group *group;
4293
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4294
	unsigned long imbalance;
P
Peter Williams 已提交
4295
	int ld_moved = 0;
N
Nick Piggin 已提交
4296
	int sd_idle = 0;
4297
	int all_pinned = 0;
4298
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4299

4300
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4301

4302 4303 4304 4305
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4306
	 * portraying it as CPU_NOT_IDLE.
4307 4308 4309
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4310
		sd_idle = 1;
L
Linus Torvalds 已提交
4311

4312
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4313
redo:
4314
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4315
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4316
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4317
	if (!group) {
I
Ingo Molnar 已提交
4318
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4319
		goto out_balanced;
L
Linus Torvalds 已提交
4320 4321
	}

4322
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4323
	if (!busiest) {
I
Ingo Molnar 已提交
4324
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4325
		goto out_balanced;
L
Linus Torvalds 已提交
4326 4327
	}

N
Nick Piggin 已提交
4328 4329
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4330
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4331

P
Peter Williams 已提交
4332
	ld_moved = 0;
4333 4334 4335
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4336 4337
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4338
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4339 4340
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4341
		double_unlock_balance(this_rq, busiest);
4342

4343
		if (unlikely(all_pinned)) {
4344 4345
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4346 4347
				goto redo;
		}
4348 4349
	}

P
Peter Williams 已提交
4350
	if (!ld_moved) {
4351
		int active_balance = 0;
4352

I
Ingo Molnar 已提交
4353
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4354 4355
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4356
			return -1;
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4393
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4406 4407 4408 4409
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4410 4411
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4412
		spin_lock(&this_rq->lock);
4413

N
Nick Piggin 已提交
4414
	} else
4415
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4416

4417
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4418
	return ld_moved;
4419 4420

out_balanced:
I
Ingo Molnar 已提交
4421
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4422
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4423
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4424
		return -1;
4425
	sd->nr_balance_failed = 0;
4426

4427
	return 0;
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4434
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4435 4436
{
	struct sched_domain *sd;
4437
	int pulled_task = 0;
I
Ingo Molnar 已提交
4438
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4439

M
Mike Galbraith 已提交
4440 4441 4442 4443 4444
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4445
	for_each_domain(this_cpu, sd) {
4446 4447 4448 4449 4450 4451
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4452
			/* If we've pulled tasks over stop searching: */
4453
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4454
							   sd);
4455 4456 4457 4458

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4459 4460
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4461
			break;
M
Mike Galbraith 已提交
4462
		}
L
Linus Torvalds 已提交
4463
	}
I
Ingo Molnar 已提交
4464
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4465 4466 4467 4468 4469
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4470
	}
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4481
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4482
{
4483
	int target_cpu = busiest_rq->push_cpu;
4484 4485
	struct sched_domain *sd;
	struct rq *target_rq;
4486

4487
	/* Is there any task to move? */
4488 4489 4490 4491
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4492 4493

	/*
4494
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4495
	 * we need to fix it. Originally reported by
4496
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4497
	 */
4498
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4499

4500 4501
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4502 4503
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4504 4505

	/* Search for an sd spanning us and the target CPU. */
4506
	for_each_domain(target_cpu, sd) {
4507
		if ((sd->flags & SD_LOAD_BALANCE) &&
4508
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4509
				break;
4510
	}
4511

4512
	if (likely(sd)) {
4513
		schedstat_inc(sd, alb_count);
4514

P
Peter Williams 已提交
4515 4516
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4517 4518 4519 4520
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4521
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4522 4523
}

4524 4525 4526
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4527
	cpumask_var_t cpu_mask;
4528
	cpumask_var_t ilb_grp_nohz_mask;
4529 4530 4531 4532
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4533 4534 4535 4536 4537
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4649
	return cpumask_first(nohz.cpu_mask);
4650 4651 4652
}
#endif

4653
/*
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4664
 *
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4680 4681 4682 4683 4684 4685 4686 4687
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4688 4689
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4690

4691 4692 4693
			return 0;
		}

4694 4695
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4696
		/* time for ilb owner also to sleep */
4697
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4698 4699 4700 4701 4702 4703 4704 4705 4706
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4723
			return 1;
4724
		}
4725
	} else {
4726
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4727 4728
			return 0;

4729
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4742 4743 4744 4745 4746
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4747
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4748
{
4749 4750
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4751 4752
	unsigned long interval;
	struct sched_domain *sd;
4753
	/* Earliest time when we have to do rebalance again */
4754
	unsigned long next_balance = jiffies + 60*HZ;
4755
	int update_next_balance = 0;
4756
	int need_serialize;
L
Linus Torvalds 已提交
4757

4758
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4759 4760 4761 4762
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4763
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4764 4765 4766 4767 4768 4769
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4770 4771 4772
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4773
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4774

4775
		if (need_serialize) {
4776 4777 4778 4779
			if (!spin_trylock(&balancing))
				goto out;
		}

4780
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4781
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4782 4783
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4784 4785 4786
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4787
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4788
			}
4789
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4790
		}
4791
		if (need_serialize)
4792 4793
			spin_unlock(&balancing);
out:
4794
		if (time_after(next_balance, sd->last_balance + interval)) {
4795
			next_balance = sd->last_balance + interval;
4796 4797
			update_next_balance = 1;
		}
4798 4799 4800 4801 4802 4803 4804 4805

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4806
	}
4807 4808 4809 4810 4811 4812 4813 4814

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4815 4816 4817 4818 4819 4820 4821 4822 4823
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4824 4825 4826 4827
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4828

I
Ingo Molnar 已提交
4829
	rebalance_domains(this_cpu, idle);
4830 4831 4832 4833 4834 4835 4836

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4837 4838
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4839 4840 4841
		struct rq *rq;
		int balance_cpu;

4842 4843 4844 4845
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4846 4847 4848 4849 4850 4851 4852 4853
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4854
			rebalance_domains(balance_cpu, CPU_IDLE);
4855 4856

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4857 4858
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4859 4860 4861 4862 4863
		}
	}
#endif
}

4864 4865 4866 4867 4868
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4869 4870 4871 4872 4873 4874 4875
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4876
static inline void trigger_load_balance(struct rq *rq, int cpu)
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4888
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4889 4890 4891 4892
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4893
			int ilb = find_new_ilb(cpu);
4894

4895
			if (ilb < nr_cpu_ids)
4896 4897 4898 4899 4900 4901 4902 4903 4904
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4905
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4906 4907 4908 4909 4910 4911 4912 4913 4914
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4915
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4916 4917
		return;
#endif
4918 4919 4920
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4921
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4922
}
I
Ingo Molnar 已提交
4923 4924 4925

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4926 4927 4928
/*
 * on UP we do not need to balance between CPUs:
 */
4929
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4930 4931
{
}
I
Ingo Molnar 已提交
4932

L
Linus Torvalds 已提交
4933 4934 4935 4936 4937 4938 4939
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4940
 * Return any ns on the sched_clock that have not yet been accounted in
4941
 * @p in case that task is currently running.
4942 4943
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4944
 */
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4959
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4960 4961
{
	unsigned long flags;
4962
	struct rq *rq;
4963
	u64 ns = 0;
4964

4965
	rq = task_rq_lock(p, &flags);
4966 4967
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4968

4969 4970
	return ns;
}
4971

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4989

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5009
	task_rq_unlock(rq, &flags);
5010

L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5018
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5019
 */
5020 5021
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5022 5023 5024 5025
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5026
	/* Add user time to process. */
L
Linus Torvalds 已提交
5027
	p->utime = cputime_add(p->utime, cputime);
5028
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5029
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5037 5038

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5039 5040
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5041 5042
}

5043 5044 5045 5046
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5047
 * @cputime_scaled: cputime scaled by cpu frequency
5048
 */
5049 5050
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5051 5052 5053 5054 5055 5056
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5057
	/* Add guest time to process. */
5058
	p->utime = cputime_add(p->utime, cputime);
5059
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5060
	account_group_user_time(p, cputime);
5061 5062
	p->gtime = cputime_add(p->gtime, cputime);

5063
	/* Add guest time to cpustat. */
5064 5065 5066 5067 5068 5069 5070
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5071 5072
}

L
Linus Torvalds 已提交
5073 5074 5075 5076 5077
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5078
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5079 5080
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5081
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5082 5083 5084 5085
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5086
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5087
		account_guest_time(p, cputime, cputime_scaled);
5088 5089
		return;
	}
5090

5091
	/* Add system time to process. */
L
Linus Torvalds 已提交
5092
	p->stime = cputime_add(p->stime, cputime);
5093
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5094
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101 5102

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5103 5104
		cpustat->system = cputime64_add(cpustat->system, tmp);

5105 5106
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5107 5108 5109 5110
	/* Account for system time used */
	acct_update_integrals(p);
}

5111
/*
L
Linus Torvalds 已提交
5112 5113
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5114
 */
5115
void account_steal_time(cputime_t cputime)
5116
{
5117 5118 5119 5120
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5121 5122
}

L
Linus Torvalds 已提交
5123
/*
5124 5125
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5126
 */
5127
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5128 5129
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5130
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5131
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5132

5133 5134 5135 5136
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5137 5138
}

5139 5140 5141 5142 5143 5144 5145 5146 5147
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5148
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5149 5150 5151
	struct rq *rq = this_rq();

	if (user_tick)
5152
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5153
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5154
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5155 5156
				    one_jiffy_scaled);
	else
5157
		account_idle_time(cputime_one_jiffy);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5177 5178
}

5179 5180
#endif

5181 5182 5183 5184
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5185
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5186
{
5187 5188
	*ut = p->utime;
	*st = p->stime;
5189 5190
}

5191
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5192
{
5193 5194 5195 5196 5197 5198
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5199 5200
}
#else
5201 5202

#ifndef nsecs_to_cputime
5203
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5204 5205
#endif

5206
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5207
{
5208
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5209 5210 5211 5212

	/*
	 * Use CFS's precise accounting:
	 */
5213
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5214 5215

	if (total) {
5216 5217 5218
		u64 temp;

		temp = (u64)(rtime * utime);
5219
		do_div(temp, total);
5220 5221 5222
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5223

5224 5225 5226
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5227
	p->prev_utime = max(p->prev_utime, utime);
5228
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5229

5230 5231
	*ut = p->prev_utime;
	*st = p->prev_stime;
5232 5233
}

5234 5235 5236 5237
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5238
{
5239 5240 5241
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5242

5243
	thread_group_cputime(p, &cputime);
5244

5245 5246
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5247

5248 5249
	if (total) {
		u64 temp;
5250

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5263 5264 5265
}
#endif

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5277
	struct task_struct *curr = rq->curr;
5278 5279

	sched_clock_tick();
I
Ingo Molnar 已提交
5280 5281

	spin_lock(&rq->lock);
5282
	update_rq_clock(rq);
5283
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5284
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5285
	spin_unlock(&rq->lock);
5286

5287
	perf_event_task_tick(curr, cpu);
5288

5289
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5290 5291
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5292
#endif
L
Linus Torvalds 已提交
5293 5294
}

5295
notrace unsigned long get_parent_ip(unsigned long addr)
5296 5297 5298 5299 5300 5301 5302 5303
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5304

5305 5306 5307
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5308
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5309
{
5310
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5311 5312 5313
	/*
	 * Underflow?
	 */
5314 5315
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5316
#endif
L
Linus Torvalds 已提交
5317
	preempt_count() += val;
5318
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5319 5320 5321
	/*
	 * Spinlock count overflowing soon?
	 */
5322 5323
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5324 5325 5326
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5327 5328 5329
}
EXPORT_SYMBOL(add_preempt_count);

5330
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5331
{
5332
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5333 5334 5335
	/*
	 * Underflow?
	 */
5336
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5337
		return;
L
Linus Torvalds 已提交
5338 5339 5340
	/*
	 * Is the spinlock portion underflowing?
	 */
5341 5342 5343
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5344
#endif
5345

5346 5347
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5348 5349 5350 5351 5352 5353 5354
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5355
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5356
 */
I
Ingo Molnar 已提交
5357
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5358
{
5359 5360 5361 5362 5363
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5364
	debug_show_held_locks(prev);
5365
	print_modules();
I
Ingo Molnar 已提交
5366 5367
	if (irqs_disabled())
		print_irqtrace_events(prev);
5368 5369 5370 5371 5372

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5373
}
L
Linus Torvalds 已提交
5374

I
Ingo Molnar 已提交
5375 5376 5377 5378 5379
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5380
	/*
I
Ingo Molnar 已提交
5381
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5382 5383 5384
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5385
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5386 5387
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5388 5389
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5390
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5391 5392
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5393 5394
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5395 5396
	}
#endif
I
Ingo Molnar 已提交
5397 5398
}

5399
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5400
{
5401
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5402

5403
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5404

5405
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5415 5416 5417 5418
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5419
	}
5420
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5421 5422
}

I
Ingo Molnar 已提交
5423 5424 5425 5426
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5427
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5428
{
5429
	const struct sched_class *class;
I
Ingo Molnar 已提交
5430
	struct task_struct *p;
L
Linus Torvalds 已提交
5431 5432

	/*
I
Ingo Molnar 已提交
5433 5434
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5435
	 */
I
Ingo Molnar 已提交
5436
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5437
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5438 5439
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5440 5441
	}

I
Ingo Molnar 已提交
5442 5443
	class = sched_class_highest;
	for ( ; ; ) {
5444
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5454

I
Ingo Molnar 已提交
5455 5456 5457
/*
 * schedule() is the main scheduler function.
 */
5458
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5459 5460
{
	struct task_struct *prev, *next;
5461
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5462
	struct rq *rq;
5463
	int cpu;
I
Ingo Molnar 已提交
5464

5465 5466
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5467 5468
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5469
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5470 5471 5472 5473 5474 5475 5476
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5477

5478
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5479
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5480

5481
	spin_lock_irq(&rq->lock);
5482
	update_rq_clock(rq);
5483
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5484 5485

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5486
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5487
			prev->state = TASK_RUNNING;
5488
		else
5489
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5490
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5491 5492
	}

5493
	pre_schedule(rq, prev);
5494

I
Ingo Molnar 已提交
5495
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5496 5497
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5498
	put_prev_task(rq, prev);
5499
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5500 5501

	if (likely(prev != next)) {
5502
		sched_info_switch(prev, next);
5503
		perf_event_task_sched_out(prev, next, cpu);
5504

L
Linus Torvalds 已提交
5505 5506 5507 5508
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5509
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5510 5511 5512 5513 5514 5515
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5516 5517 5518
	} else
		spin_unlock_irq(&rq->lock);

5519
	post_schedule(rq);
L
Linus Torvalds 已提交
5520

P
Peter Zijlstra 已提交
5521
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5522
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5523

L
Linus Torvalds 已提交
5524
	preempt_enable_no_resched();
5525
	if (need_resched())
L
Linus Torvalds 已提交
5526 5527 5528 5529
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5530
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5591 5592
#ifdef CONFIG_PREEMPT
/*
5593
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5594
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5600

L
Linus Torvalds 已提交
5601 5602
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5603
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5604
	 */
N
Nick Piggin 已提交
5605
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5606 5607
		return;

5608 5609 5610 5611
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5612

5613 5614 5615 5616 5617
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5618
	} while (need_resched());
L
Linus Torvalds 已提交
5619 5620 5621 5622
}
EXPORT_SYMBOL(preempt_schedule);

/*
5623
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5631

5632
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5633 5634
	BUG_ON(ti->preempt_count || !irqs_disabled());

5635 5636 5637 5638 5639 5640
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5641

5642 5643 5644 5645 5646
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5647
	} while (need_resched());
L
Linus Torvalds 已提交
5648 5649 5650 5651
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5652
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5653
			  void *key)
L
Linus Torvalds 已提交
5654
{
P
Peter Zijlstra 已提交
5655
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5656 5657 5658 5659
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5660 5661
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5662 5663 5664
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5665
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5666 5667
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5668
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5669
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5670
{
5671
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5672

5673
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5674 5675
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5676
		if (curr->func(curr, mode, wake_flags, key) &&
5677
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5687
 * @key: is directly passed to the wakeup function
5688 5689 5690
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5691
 */
5692
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5693
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5706
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5707 5708 5709 5710
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5711 5712 5713 5714 5715
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5716
/**
5717
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5718 5719 5720
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5721
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5722 5723 5724 5725 5726 5727 5728
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5729 5730 5731
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5732
 */
5733 5734
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5735 5736
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5737
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5738 5739 5740 5741 5742

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5743
		wake_flags = 0;
L
Linus Torvalds 已提交
5744 5745

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5746
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5747 5748
	spin_unlock_irqrestore(&q->lock, flags);
}
5749 5750 5751 5752 5753 5754 5755 5756 5757
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5758 5759
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5760 5761 5762 5763 5764 5765 5766 5767
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5768 5769 5770
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5771
 */
5772
void complete(struct completion *x)
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5778
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5779 5780 5781 5782
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5783 5784 5785 5786 5787
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5788 5789 5790
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5791
 */
5792
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5793 5794 5795 5796 5797
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5798
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5799 5800 5801 5802
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5803 5804
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809 5810 5811
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5812
			if (signal_pending_state(state, current)) {
5813 5814
				timeout = -ERESTARTSYS;
				break;
5815 5816
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5817 5818 5819
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5820
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5821
		__remove_wait_queue(&x->wait, &wait);
5822 5823
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5824 5825
	}
	x->done--;
5826
	return timeout ?: 1;
L
Linus Torvalds 已提交
5827 5828
}

5829 5830
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5831 5832 5833 5834
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5835
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5836
	spin_unlock_irq(&x->wait.lock);
5837 5838
	return timeout;
}
L
Linus Torvalds 已提交
5839

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5850
void __sched wait_for_completion(struct completion *x)
5851 5852
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5853
}
5854
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5855

5856 5857 5858 5859 5860 5861 5862 5863 5864
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5865
unsigned long __sched
5866
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5867
{
5868
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5869
}
5870
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5871

5872 5873 5874 5875 5876 5877 5878
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5879
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5880
{
5881 5882 5883 5884
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5885
}
5886
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5887

5888 5889 5890 5891 5892 5893 5894 5895
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5896
unsigned long __sched
5897 5898
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5899
{
5900
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5901
}
5902
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5903

5904 5905 5906 5907 5908 5909 5910
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5966 5967
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5968
{
I
Ingo Molnar 已提交
5969 5970 5971 5972
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5973

5974
	__set_current_state(state);
L
Linus Torvalds 已提交
5975

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5990 5991 5992
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5993
long __sched
I
Ingo Molnar 已提交
5994
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5995
{
5996
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5997 5998 5999
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6000
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6001
{
6002
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6003 6004 6005
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6006
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6007
{
6008
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6009 6010 6011
}
EXPORT_SYMBOL(sleep_on_timeout);

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6024
void rt_mutex_setprio(struct task_struct *p, int prio)
6025 6026
{
	unsigned long flags;
6027
	int oldprio, on_rq, running;
6028
	struct rq *rq;
6029
	const struct sched_class *prev_class = p->sched_class;
6030 6031 6032 6033

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6034
	update_rq_clock(rq);
6035

6036
	oldprio = p->prio;
I
Ingo Molnar 已提交
6037
	on_rq = p->se.on_rq;
6038
	running = task_current(rq, p);
6039
	if (on_rq)
6040
		dequeue_task(rq, p, 0);
6041 6042
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6043 6044 6045 6046 6047 6048

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6049 6050
	p->prio = prio;

6051 6052
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6053
	if (on_rq) {
6054
		enqueue_task(rq, p, 0);
6055 6056

		check_class_changed(rq, p, prev_class, oldprio, running);
6057 6058 6059 6060 6061 6062
	}
	task_rq_unlock(rq, &flags);
}

#endif

6063
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6064
{
I
Ingo Molnar 已提交
6065
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6066
	unsigned long flags;
6067
	struct rq *rq;
L
Linus Torvalds 已提交
6068 6069 6070 6071 6072 6073 6074 6075

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6076
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6077 6078 6079 6080
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6081
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6082
	 */
6083
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6084 6085 6086
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6087
	on_rq = p->se.on_rq;
6088
	if (on_rq)
6089
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6090 6091

	p->static_prio = NICE_TO_PRIO(nice);
6092
	set_load_weight(p);
6093 6094 6095
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6096

I
Ingo Molnar 已提交
6097
	if (on_rq) {
6098
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6099
		/*
6100 6101
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6102
		 */
6103
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6111 6112 6113 6114 6115
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6116
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6117
{
6118 6119
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6120

M
Matt Mackall 已提交
6121 6122 6123 6124
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6134
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6135
{
6136
	long nice, retval;
L
Linus Torvalds 已提交
6137 6138 6139 6140 6141 6142

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6143 6144
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6145 6146 6147
	if (increment > 40)
		increment = 40;

6148
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6149 6150 6151 6152 6153
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6154 6155 6156
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6175
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6176 6177 6178 6179 6180 6181 6182 6183
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6184
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6185 6186 6187
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6188
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6203
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210 6211
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6212
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6213
{
6214
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6215 6216 6217
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6218 6219
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6220
{
I
Ingo Molnar 已提交
6221
	BUG_ON(p->se.on_rq);
6222

L
Linus Torvalds 已提交
6223 6224
	p->policy = policy;
	p->rt_priority = prio;
6225 6226 6227
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6228 6229 6230 6231
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6232
	set_load_weight(p);
L
Linus Torvalds 已提交
6233 6234
}

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6251 6252
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6253
{
6254
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6255
	unsigned long flags;
6256
	const struct sched_class *prev_class = p->sched_class;
6257
	struct rq *rq;
6258
	int reset_on_fork;
L
Linus Torvalds 已提交
6259

6260 6261
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6262 6263
recheck:
	/* double check policy once rq lock held */
6264 6265
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6266
		policy = oldpolicy = p->policy;
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6277 6278
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6279 6280
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6281 6282
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6283
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6284
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6285
		return -EINVAL;
6286
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6287 6288
		return -EINVAL;

6289 6290 6291
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6292
	if (user && !capable(CAP_SYS_NICE)) {
6293
		if (rt_policy(policy)) {
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6310 6311 6312 6313 6314 6315
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6316

6317
		/* can't change other user's priorities */
6318
		if (!check_same_owner(p))
6319
			return -EPERM;
6320 6321 6322 6323

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6324
	}
L
Linus Torvalds 已提交
6325

6326
	if (user) {
6327
#ifdef CONFIG_RT_GROUP_SCHED
6328 6329 6330 6331
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6332 6333
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6334
			return -EPERM;
6335 6336
#endif

6337 6338 6339 6340 6341
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6342 6343 6344 6345 6346
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6347 6348 6349 6350
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6351
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6352 6353 6354
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6355 6356
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6357 6358
		goto recheck;
	}
I
Ingo Molnar 已提交
6359
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6360
	on_rq = p->se.on_rq;
6361
	running = task_current(rq, p);
6362
	if (on_rq)
6363
		deactivate_task(rq, p, 0);
6364 6365
	if (running)
		p->sched_class->put_prev_task(rq, p);
6366

6367 6368
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6369
	oldprio = p->prio;
I
Ingo Molnar 已提交
6370
	__setscheduler(rq, p, policy, param->sched_priority);
6371

6372 6373
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6374 6375
	if (on_rq) {
		activate_task(rq, p, 0);
6376 6377

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6378
	}
6379 6380 6381
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6382 6383
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6384 6385
	return 0;
}
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6400 6401
EXPORT_SYMBOL_GPL(sched_setscheduler);

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6419 6420
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6421 6422 6423
{
	struct sched_param lparam;
	struct task_struct *p;
6424
	int retval;
L
Linus Torvalds 已提交
6425 6426 6427 6428 6429

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6430 6431 6432

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6433
	p = find_process_by_pid(pid);
6434 6435 6436
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6437

L
Linus Torvalds 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6447 6448
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6449
{
6450 6451 6452 6453
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459 6460 6461
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6462
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467 6468 6469 6470
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6471
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6472
{
6473
	struct task_struct *p;
6474
	int retval;
L
Linus Torvalds 已提交
6475 6476

	if (pid < 0)
6477
		return -EINVAL;
L
Linus Torvalds 已提交
6478 6479 6480 6481 6482 6483 6484

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6485 6486
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6487 6488 6489 6490 6491 6492
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6493
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6494 6495 6496
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6497
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6498 6499
{
	struct sched_param lp;
6500
	struct task_struct *p;
6501
	int retval;
L
Linus Torvalds 已提交
6502 6503

	if (!param || pid < 0)
6504
		return -EINVAL;
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6531
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6532
{
6533
	cpumask_var_t cpus_allowed, new_mask;
6534 6535
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6536

6537
	get_online_cpus();
L
Linus Torvalds 已提交
6538 6539 6540 6541 6542
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6543
		put_online_cpus();
L
Linus Torvalds 已提交
6544 6545 6546 6547 6548
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6549
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6550 6551 6552 6553 6554
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6555 6556 6557 6558 6559 6560 6561 6562
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6563
	retval = -EPERM;
6564
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6565 6566
		goto out_unlock;

6567 6568 6569 6570
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6571 6572
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6573
 again:
6574
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6575

P
Paul Menage 已提交
6576
	if (!retval) {
6577 6578
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6579 6580 6581 6582 6583
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6584
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6585 6586 6587
			goto again;
		}
	}
L
Linus Torvalds 已提交
6588
out_unlock:
6589 6590 6591 6592
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6593
	put_task_struct(p);
6594
	put_online_cpus();
L
Linus Torvalds 已提交
6595 6596 6597 6598
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6599
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6600
{
6601 6602 6603 6604 6605
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6615 6616
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6617
{
6618
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6619 6620
	int retval;

6621 6622
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6623

6624 6625 6626 6627 6628
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6629 6630
}

6631
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6632
{
6633
	struct task_struct *p;
6634 6635
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6636 6637
	int retval;

6638
	get_online_cpus();
L
Linus Torvalds 已提交
6639 6640 6641 6642 6643 6644 6645
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6646 6647 6648 6649
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6650
	rq = task_rq_lock(p, &flags);
6651
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6652
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6653 6654 6655

out_unlock:
	read_unlock(&tasklist_lock);
6656
	put_online_cpus();
L
Linus Torvalds 已提交
6657

6658
	return retval;
L
Linus Torvalds 已提交
6659 6660 6661 6662 6663 6664 6665 6666
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6667 6668
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6669 6670
{
	int ret;
6671
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6672

6673
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6674 6675
		return -EINVAL;

6676 6677
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6678

6679 6680 6681 6682 6683 6684 6685 6686
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6687

6688
	return ret;
L
Linus Torvalds 已提交
6689 6690 6691 6692 6693
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6694 6695
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6696
 */
6697
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6698
{
6699
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6700

6701
	schedstat_inc(rq, yld_count);
6702
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6703 6704 6705 6706 6707 6708

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6709
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6710 6711 6712 6713 6714 6715 6716 6717
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6718 6719 6720 6721 6722
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6723
static void __cond_resched(void)
L
Linus Torvalds 已提交
6724
{
6725 6726 6727
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6728 6729
}

6730
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6731
{
P
Peter Zijlstra 已提交
6732
	if (should_resched()) {
L
Linus Torvalds 已提交
6733 6734 6735 6736 6737
		__cond_resched();
		return 1;
	}
	return 0;
}
6738
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6739 6740

/*
6741
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6742 6743
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6744
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6745 6746 6747
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6748
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6749
{
P
Peter Zijlstra 已提交
6750
	int resched = should_resched();
J
Jan Kara 已提交
6751 6752
	int ret = 0;

6753 6754
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6755
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6756
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6757
		if (resched)
N
Nick Piggin 已提交
6758 6759 6760
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6761
		ret = 1;
L
Linus Torvalds 已提交
6762 6763
		spin_lock(lock);
	}
J
Jan Kara 已提交
6764
	return ret;
L
Linus Torvalds 已提交
6765
}
6766
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6767

6768
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6769 6770 6771
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6772
	if (should_resched()) {
6773
		local_bh_enable();
L
Linus Torvalds 已提交
6774 6775 6776 6777 6778 6779
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6780
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6781 6782 6783 6784

/**
 * yield - yield the current processor to other threads.
 *
6785
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6796
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6797 6798 6799 6800
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6801
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6802

6803
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6804
	atomic_inc(&rq->nr_iowait);
6805
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6806
	schedule();
6807
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6808
	atomic_dec(&rq->nr_iowait);
6809
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6810 6811 6812 6813 6814
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6815
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6816 6817
	long ret;

6818
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6819
	atomic_inc(&rq->nr_iowait);
6820
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6821
	ret = schedule_timeout(timeout);
6822
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6823
	atomic_dec(&rq->nr_iowait);
6824
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6835
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6845
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6846
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6860
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6861 6862 6863 6864 6865 6866 6867 6868 6869
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6870
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6871
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6885
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6886
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6887
{
6888
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6889
	unsigned int time_slice;
6890 6891
	unsigned long flags;
	struct rq *rq;
6892
	int retval;
L
Linus Torvalds 已提交
6893 6894 6895
	struct timespec t;

	if (pid < 0)
6896
		return -EINVAL;
L
Linus Torvalds 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6908 6909 6910
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6911

L
Linus Torvalds 已提交
6912
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6913
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6914 6915
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6916

L
Linus Torvalds 已提交
6917 6918 6919 6920 6921
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6922
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6923

6924
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6925 6926
{
	unsigned long free = 0;
6927
	unsigned state;
L
Linus Torvalds 已提交
6928 6929

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6930
	printk(KERN_INFO "%-13.13s %c", p->comm,
6931
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6932
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6933
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6934
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6935
	else
I
Ingo Molnar 已提交
6936
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6937 6938
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6939
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6940
	else
I
Ingo Molnar 已提交
6941
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6942 6943
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6944
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6945
#endif
6946 6947 6948
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6949

6950
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6951 6952
}

I
Ingo Molnar 已提交
6953
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6954
{
6955
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6956

6957 6958 6959
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6960
#else
6961 6962
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6963 6964 6965 6966 6967 6968 6969 6970
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6971
		if (!state_filter || (p->state & state_filter))
6972
			sched_show_task(p);
L
Linus Torvalds 已提交
6973 6974
	} while_each_thread(g, p);

6975 6976
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6977 6978 6979
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6980
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6981 6982 6983
	/*
	 * Only show locks if all tasks are dumped:
	 */
6984
	if (!state_filter)
I
Ingo Molnar 已提交
6985
		debug_show_all_locks();
L
Linus Torvalds 已提交
6986 6987
}

I
Ingo Molnar 已提交
6988 6989
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6990
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6991 6992
}

6993 6994 6995 6996 6997 6998 6999 7000
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7001
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7002
{
7003
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7004 7005
	unsigned long flags;

7006 7007
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7008 7009 7010
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

7011
	idle->prio = idle->normal_prio = MAX_PRIO;
7012
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7013
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7014 7015

	rq->curr = rq->idle = idle;
7016 7017 7018
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7019 7020 7021
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7022 7023 7024
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7025
	task_thread_info(idle)->preempt_count = 0;
7026
#endif
I
Ingo Molnar 已提交
7027 7028 7029 7030
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7031
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7032 7033 7034 7035 7036 7037 7038
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7039
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7040
 */
7041
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7042

I
Ingo Molnar 已提交
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7066 7067

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7068 7069
}

L
Linus Torvalds 已提交
7070 7071 7072 7073
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7074
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7093
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7094 7095
 * call is not atomic; no spinlocks may be held.
 */
7096
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7097
{
7098
	struct migration_req req;
L
Linus Torvalds 已提交
7099
	unsigned long flags;
7100
	struct rq *rq;
7101
	int ret = 0;
L
Linus Torvalds 已提交
7102 7103

	rq = task_rq_lock(p, &flags);
7104
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7105 7106 7107 7108
		ret = -EINVAL;
		goto out;
	}

7109
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7110
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7111 7112 7113 7114
		ret = -EINVAL;
		goto out;
	}

7115
	if (p->sched_class->set_cpus_allowed)
7116
		p->sched_class->set_cpus_allowed(p, new_mask);
7117
	else {
7118 7119
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7120 7121
	}

L
Linus Torvalds 已提交
7122
	/* Can the task run on the task's current CPU? If so, we're done */
7123
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7124 7125
		goto out;

7126
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7127
		/* Need help from migration thread: drop lock and wait. */
7128 7129 7130
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7131 7132
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7133
		put_task_struct(mt);
L
Linus Torvalds 已提交
7134 7135 7136 7137 7138 7139
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7140

L
Linus Torvalds 已提交
7141 7142
	return ret;
}
7143
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7144 7145

/*
I
Ingo Molnar 已提交
7146
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7147 7148 7149 7150 7151 7152
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7153 7154
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7155
 */
7156
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7157
{
7158
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7159
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7160

7161
	if (unlikely(!cpu_active(dest_cpu)))
7162
		return ret;
L
Linus Torvalds 已提交
7163 7164 7165 7166 7167 7168 7169

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7170
		goto done;
L
Linus Torvalds 已提交
7171
	/* Affinity changed (again). */
7172
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7173
		goto fail;
L
Linus Torvalds 已提交
7174

I
Ingo Molnar 已提交
7175
	on_rq = p->se.on_rq;
7176
	if (on_rq)
7177
		deactivate_task(rq_src, p, 0);
7178

L
Linus Torvalds 已提交
7179
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7180 7181
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7182
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7183
	}
L
Linus Torvalds 已提交
7184
done:
7185
	ret = 1;
L
Linus Torvalds 已提交
7186
fail:
L
Linus Torvalds 已提交
7187
	double_rq_unlock(rq_src, rq_dest);
7188
	return ret;
L
Linus Torvalds 已提交
7189 7190
}

7191 7192 7193 7194 7195
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7196 7197 7198 7199 7200
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7201
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7202
{
7203
	int badcpu;
L
Linus Torvalds 已提交
7204
	int cpu = (long)data;
7205
	struct rq *rq;
L
Linus Torvalds 已提交
7206 7207 7208 7209 7210 7211

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7212
		struct migration_req *req;
L
Linus Torvalds 已提交
7213 7214 7215 7216 7217 7218
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7219
			break;
L
Linus Torvalds 已提交
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7235
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7236 7237
		list_del_init(head->next);

7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7249
		local_irq_enable();
L
Linus Torvalds 已提交
7250 7251 7252 7253 7254 7255 7256 7257 7258

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7270
/*
7271
 * Figure out where task on dead CPU should go, use force if necessary.
7272
 */
7273
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7274
{
7275
	int dest_cpu;
7276
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7277 7278 7279

again:
	/* Look for allowed, online CPU in same node. */
7280
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7281 7282 7283 7284
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
7285
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7286 7287 7288 7289 7290 7291
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7292
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7293

7294 7295 7296 7297 7298 7299 7300 7301 7302
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7303
		}
7304 7305 7306 7307 7308 7309
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7319
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7320
{
7321
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7335
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7336

7337
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7338

7339 7340
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7341 7342
			continue;

7343 7344 7345
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7346

7347
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7348 7349
}

I
Ingo Molnar 已提交
7350 7351
/*
 * Schedules idle task to be the next runnable task on current CPU.
7352 7353
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7354 7355 7356
 */
void sched_idle_next(void)
{
7357
	int this_cpu = smp_processor_id();
7358
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7359 7360 7361 7362
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7363
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7364

7365 7366 7367
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7368 7369 7370
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7371
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7372

7373 7374
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7375 7376 7377 7378

	spin_unlock_irqrestore(&rq->lock, flags);
}

7379 7380
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7394
/* called under rq->lock with disabled interrupts */
7395
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7396
{
7397
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7398 7399

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7400
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7401 7402

	/* Cannot have done final schedule yet: would have vanished. */
7403
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7404

7405
	get_task_struct(p);
L
Linus Torvalds 已提交
7406 7407 7408

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7409
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7410 7411
	 * fine.
	 */
7412
	spin_unlock_irq(&rq->lock);
7413
	move_task_off_dead_cpu(dead_cpu, p);
7414
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7415

7416
	put_task_struct(p);
L
Linus Torvalds 已提交
7417 7418 7419 7420 7421
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7422
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7423
	struct task_struct *next;
7424

I
Ingo Molnar 已提交
7425 7426 7427
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7428
		update_rq_clock(rq);
7429
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7430 7431
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7432
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7433
		migrate_dead(dead_cpu, next);
7434

L
Linus Torvalds 已提交
7435 7436
	}
}
7437 7438 7439 7440 7441 7442 7443

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7444
	rq->calc_load_active = 0;
7445
}
L
Linus Torvalds 已提交
7446 7447
#endif /* CONFIG_HOTPLUG_CPU */

7448 7449 7450
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7451 7452
	{
		.procname	= "sched_domain",
7453
		.mode		= 0555,
7454
	},
I
Ingo Molnar 已提交
7455
	{0, },
7456 7457 7458
};

static struct ctl_table sd_ctl_root[] = {
7459
	{
7460
		.ctl_name	= CTL_KERN,
7461
		.procname	= "kernel",
7462
		.mode		= 0555,
7463 7464
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7465
	{0, },
7466 7467 7468 7469 7470
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7471
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7472 7473 7474 7475

	return entry;
}

7476 7477
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7478
	struct ctl_table *entry;
7479

7480 7481 7482
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7483
	 * will always be set. In the lowest directory the names are
7484 7485 7486
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7487 7488
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7489 7490 7491
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7492 7493 7494 7495 7496

	kfree(*tablep);
	*tablep = NULL;
}

7497
static void
7498
set_table_entry(struct ctl_table *entry,
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7512
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7513

7514 7515 7516
	if (table == NULL)
		return NULL;

7517
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7518
		sizeof(long), 0644, proc_doulongvec_minmax);
7519
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7520
		sizeof(long), 0644, proc_doulongvec_minmax);
7521
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7522
		sizeof(int), 0644, proc_dointvec_minmax);
7523
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7524
		sizeof(int), 0644, proc_dointvec_minmax);
7525
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7526
		sizeof(int), 0644, proc_dointvec_minmax);
7527
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7528
		sizeof(int), 0644, proc_dointvec_minmax);
7529
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7530
		sizeof(int), 0644, proc_dointvec_minmax);
7531
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7532
		sizeof(int), 0644, proc_dointvec_minmax);
7533
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7534
		sizeof(int), 0644, proc_dointvec_minmax);
7535
	set_table_entry(&table[9], "cache_nice_tries",
7536 7537
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7538
	set_table_entry(&table[10], "flags", &sd->flags,
7539
		sizeof(int), 0644, proc_dointvec_minmax);
7540 7541 7542
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7543 7544 7545 7546

	return table;
}

7547
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7548 7549 7550 7551 7552 7553 7554 7555 7556
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7557 7558
	if (table == NULL)
		return NULL;
7559 7560 7561 7562 7563

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7564
		entry->mode = 0555;
7565 7566 7567 7568 7569 7570 7571 7572
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7573
static void register_sched_domain_sysctl(void)
7574
{
7575
	int i, cpu_num = num_possible_cpus();
7576 7577 7578
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7579 7580 7581
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7582 7583 7584
	if (entry == NULL)
		return;

7585
	for_each_possible_cpu(i) {
7586 7587
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7588
		entry->mode = 0555;
7589
		entry->child = sd_alloc_ctl_cpu_table(i);
7590
		entry++;
7591
	}
7592 7593

	WARN_ON(sd_sysctl_header);
7594 7595
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7596

7597
/* may be called multiple times per register */
7598 7599
static void unregister_sched_domain_sysctl(void)
{
7600 7601
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7602
	sd_sysctl_header = NULL;
7603 7604
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7605
}
7606
#else
7607 7608 7609 7610
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7611 7612 7613 7614
{
}
#endif

7615 7616 7617 7618 7619
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7620
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7640
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7641 7642 7643 7644
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7645 7646 7647 7648
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7649 7650
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7651 7652
{
	struct task_struct *p;
7653
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7654
	unsigned long flags;
7655
	struct rq *rq;
L
Linus Torvalds 已提交
7656 7657

	switch (action) {
7658

L
Linus Torvalds 已提交
7659
	case CPU_UP_PREPARE:
7660
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7661
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7662 7663 7664 7665 7666
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7667
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7668
		task_rq_unlock(rq, &flags);
7669
		get_task_struct(p);
L
Linus Torvalds 已提交
7670
		cpu_rq(cpu)->migration_thread = p;
7671
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7672
		break;
7673

L
Linus Torvalds 已提交
7674
	case CPU_ONLINE:
7675
	case CPU_ONLINE_FROZEN:
7676
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7677
		wake_up_process(cpu_rq(cpu)->migration_thread);
7678 7679 7680 7681 7682

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7683
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7684 7685

			set_rq_online(rq);
7686 7687
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7688
		break;
7689

L
Linus Torvalds 已提交
7690 7691
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7692
	case CPU_UP_CANCELED_FROZEN:
7693 7694
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7695
		/* Unbind it from offline cpu so it can run. Fall thru. */
7696
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7697
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7698
		kthread_stop(cpu_rq(cpu)->migration_thread);
7699
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7700 7701
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7702

L
Linus Torvalds 已提交
7703
	case CPU_DEAD:
7704
	case CPU_DEAD_FROZEN:
7705
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7706 7707 7708
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7709
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7710 7711
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7712
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7713
		update_rq_clock(rq);
7714
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7715
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7716 7717
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7718
		migrate_dead_tasks(cpu);
7719
		spin_unlock_irq(&rq->lock);
7720
		cpuset_unlock();
L
Linus Torvalds 已提交
7721 7722
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7723
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7724 7725 7726 7727 7728
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7729 7730
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7731 7732
			struct migration_req *req;

L
Linus Torvalds 已提交
7733
			req = list_entry(rq->migration_queue.next,
7734
					 struct migration_req, list);
L
Linus Torvalds 已提交
7735
			list_del_init(&req->list);
B
Brian King 已提交
7736
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7737
			complete(&req->done);
B
Brian King 已提交
7738
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7739 7740 7741
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7742

7743 7744
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7745 7746 7747 7748
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7749
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7750
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7751 7752 7753
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7754 7755 7756 7757 7758
#endif
	}
	return NOTIFY_OK;
}

7759 7760 7761
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7762
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7763
 */
7764
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7765 7766 7767 7768
	.notifier_call = migration_call,
	.priority = 10
};

7769
static int __init migration_init(void)
L
Linus Torvalds 已提交
7770 7771
{
	void *cpu = (void *)(long)smp_processor_id();
7772
	int err;
7773 7774

	/* Start one for the boot CPU: */
7775 7776
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7777 7778
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7779

7780
	return 0;
L
Linus Torvalds 已提交
7781
}
7782
early_initcall(migration_init);
L
Linus Torvalds 已提交
7783 7784 7785
#endif

#ifdef CONFIG_SMP
7786

7787
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7788

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7799
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7800
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7801
{
I
Ingo Molnar 已提交
7802
	struct sched_group *group = sd->groups;
7803
	char str[256];
L
Linus Torvalds 已提交
7804

R
Rusty Russell 已提交
7805
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7806
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7816 7817
	}

7818
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7819

7820
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7821 7822 7823
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7824
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7825 7826 7827
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7828

I
Ingo Molnar 已提交
7829
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7830
	do {
I
Ingo Molnar 已提交
7831 7832 7833
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7834 7835 7836
			break;
		}

7837
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7838 7839 7840 7841 7842
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7843

7844
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7845 7846 7847 7848
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7849

7850
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7851 7852 7853 7854
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7855

7856
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7857

R
Rusty Russell 已提交
7858
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7859 7860

		printk(KERN_CONT " %s", str);
7861 7862 7863
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7864
		}
L
Linus Torvalds 已提交
7865

I
Ingo Molnar 已提交
7866 7867 7868
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7869

7870
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7871
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7872

7873 7874
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7875 7876 7877 7878
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7879

I
Ingo Molnar 已提交
7880 7881
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7882
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7883
	int level = 0;
L
Linus Torvalds 已提交
7884

7885 7886 7887
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7888 7889 7890 7891
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7892

I
Ingo Molnar 已提交
7893 7894
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7895
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7896 7897 7898 7899
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7900
	for (;;) {
7901
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7902
			break;
L
Linus Torvalds 已提交
7903 7904
		level++;
		sd = sd->parent;
7905
		if (!sd)
I
Ingo Molnar 已提交
7906 7907
			break;
	}
7908
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7909
}
7910
#else /* !CONFIG_SCHED_DEBUG */
7911
# define sched_domain_debug(sd, cpu) do { } while (0)
7912
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7913

7914
static int sd_degenerate(struct sched_domain *sd)
7915
{
7916
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7917 7918 7919 7920 7921 7922
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7923 7924 7925
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7926 7927 7928 7929 7930
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7931
	if (sd->flags & (SD_WAKE_AFFINE))
7932 7933 7934 7935 7936
		return 0;

	return 1;
}

7937 7938
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7939 7940 7941 7942 7943 7944
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7945
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7946 7947 7948 7949 7950 7951 7952
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7953 7954 7955
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7956 7957
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7958 7959 7960 7961 7962 7963 7964
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7965 7966
static void free_rootdomain(struct root_domain *rd)
{
7967 7968
	synchronize_sched();

7969 7970
	cpupri_cleanup(&rd->cpupri);

7971 7972 7973 7974 7975 7976
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7977 7978
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7979
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7980 7981 7982 7983 7984
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7985
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7986

7987
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7988
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7989

7990
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7991

I
Ingo Molnar 已提交
7992 7993 7994 7995 7996 7997 7998
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7999 8000 8001 8002 8003
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8004
	cpumask_set_cpu(rq->cpu, rd->span);
8005
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8006
		set_rq_online(rq);
G
Gregory Haskins 已提交
8007 8008

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8009 8010 8011

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8012 8013
}

L
Li Zefan 已提交
8014
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8015
{
8016 8017
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8018 8019
	memset(rd, 0, sizeof(*rd));

8020 8021
	if (bootmem)
		gfp = GFP_NOWAIT;
8022

8023
	if (!alloc_cpumask_var(&rd->span, gfp))
8024
		goto out;
8025
	if (!alloc_cpumask_var(&rd->online, gfp))
8026
		goto free_span;
8027
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8028
		goto free_online;
8029

P
Pekka Enberg 已提交
8030
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8031
		goto free_rto_mask;
8032
	return 0;
8033

8034 8035
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8036 8037 8038 8039
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8040
out:
8041
	return -ENOMEM;
G
Gregory Haskins 已提交
8042 8043 8044 8045
}

static void init_defrootdomain(void)
{
8046 8047
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8048 8049 8050
	atomic_set(&def_root_domain.refcount, 1);
}

8051
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8052 8053 8054 8055 8056 8057 8058
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8059 8060 8061 8062
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8063 8064 8065 8066

	return rd;
}

L
Linus Torvalds 已提交
8067
/*
I
Ingo Molnar 已提交
8068
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8069 8070
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8071 8072
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8073
{
8074
	struct rq *rq = cpu_rq(cpu);
8075 8076 8077
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8078
	for (tmp = sd; tmp; ) {
8079 8080 8081
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8082

8083
		if (sd_parent_degenerate(tmp, parent)) {
8084
			tmp->parent = parent->parent;
8085 8086
			if (parent->parent)
				parent->parent->child = tmp;
8087 8088
		} else
			tmp = tmp->parent;
8089 8090
	}

8091
	if (sd && sd_degenerate(sd)) {
8092
		sd = sd->parent;
8093 8094 8095
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8096 8097 8098

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8099
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8100
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8101 8102 8103
}

/* cpus with isolated domains */
8104
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8105 8106 8107 8108

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8109
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8110
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8111 8112 8113
	return 1;
}

I
Ingo Molnar 已提交
8114
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8115 8116

/*
8117 8118
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8119 8120
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8121 8122 8123 8124 8125
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8126
static void
8127 8128 8129
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8130
					struct sched_group **sg,
8131 8132
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8133 8134 8135 8136
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8137
	cpumask_clear(covered);
8138

8139
	for_each_cpu(i, span) {
8140
		struct sched_group *sg;
8141
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8142 8143
		int j;

8144
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8145 8146
			continue;

8147
		cpumask_clear(sched_group_cpus(sg));
8148
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8149

8150
		for_each_cpu(j, span) {
8151
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8152 8153
				continue;

8154
			cpumask_set_cpu(j, covered);
8155
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8166
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8167

8168
#ifdef CONFIG_NUMA
8169

8170 8171 8172 8173 8174
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8175
 * Find the next node to include in a given scheduling domain. Simply
8176 8177 8178 8179
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8180
static int find_next_best_node(int node, nodemask_t *used_nodes)
8181 8182 8183 8184 8185
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8186
	for (i = 0; i < nr_node_ids; i++) {
8187
		/* Start at @node */
8188
		n = (node + i) % nr_node_ids;
8189 8190 8191 8192 8193

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8194
		if (node_isset(n, *used_nodes))
8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8206
	node_set(best_node, *used_nodes);
8207 8208 8209 8210 8211 8212
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8213
 * @span: resulting cpumask
8214
 *
I
Ingo Molnar 已提交
8215
 * Given a node, construct a good cpumask for its sched_domain to span. It
8216 8217 8218
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8219
static void sched_domain_node_span(int node, struct cpumask *span)
8220
{
8221
	nodemask_t used_nodes;
8222
	int i;
8223

8224
	cpumask_clear(span);
8225
	nodes_clear(used_nodes);
8226

8227
	cpumask_or(span, span, cpumask_of_node(node));
8228
	node_set(node, used_nodes);
8229 8230

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8231
		int next_node = find_next_best_node(node, &used_nodes);
8232

8233
		cpumask_or(span, span, cpumask_of_node(next_node));
8234 8235
	}
}
8236
#endif /* CONFIG_NUMA */
8237

8238
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8239

8240 8241
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8242 8243 8244
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8289
/*
8290
 * SMT sched-domains:
8291
 */
L
Linus Torvalds 已提交
8292
#ifdef CONFIG_SCHED_SMT
8293 8294
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8295

I
Ingo Molnar 已提交
8296
static int
8297 8298
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8299
{
8300
	if (sg)
8301
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8302 8303
	return cpu;
}
8304
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8305

8306 8307 8308
/*
 * multi-core sched-domains:
 */
8309
#ifdef CONFIG_SCHED_MC
8310 8311
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8312
#endif /* CONFIG_SCHED_MC */
8313 8314

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8315
static int
8316 8317
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8318
{
8319
	int group;
8320

8321
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8322
	group = cpumask_first(mask);
8323
	if (sg)
8324
		*sg = &per_cpu(sched_group_core, group).sg;
8325
	return group;
8326 8327
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8328
static int
8329 8330
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8331
{
8332
	if (sg)
8333
		*sg = &per_cpu(sched_group_core, cpu).sg;
8334 8335 8336 8337
	return cpu;
}
#endif

8338 8339
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8340

I
Ingo Molnar 已提交
8341
static int
8342 8343
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8344
{
8345
	int group;
8346
#ifdef CONFIG_SCHED_MC
8347
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8348
	group = cpumask_first(mask);
8349
#elif defined(CONFIG_SCHED_SMT)
8350
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8351
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8352
#else
8353
	group = cpu;
L
Linus Torvalds 已提交
8354
#endif
8355
	if (sg)
8356
		*sg = &per_cpu(sched_group_phys, group).sg;
8357
	return group;
L
Linus Torvalds 已提交
8358 8359 8360 8361
}

#ifdef CONFIG_NUMA
/*
8362 8363 8364
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8365
 */
8366
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8367
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8368

8369
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8370
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8371

8372 8373 8374
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8375
{
8376 8377
	int group;

8378
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8379
	group = cpumask_first(nodemask);
8380 8381

	if (sg)
8382
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8383
	return group;
L
Linus Torvalds 已提交
8384
}
8385

8386 8387 8388 8389 8390 8391 8392
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8393
	do {
8394
		for_each_cpu(j, sched_group_cpus(sg)) {
8395
			struct sched_domain *sd;
8396

8397
			sd = &per_cpu(phys_domains, j).sd;
8398
			if (j != group_first_cpu(sd->groups)) {
8399 8400 8401 8402 8403 8404
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8405

8406
			sg->cpu_power += sd->groups->cpu_power;
8407 8408 8409
		}
		sg = sg->next;
	} while (sg != group_head);
8410
}
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8443
	sg->cpu_power = 0;
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8466
		sg->cpu_power = 0;
8467 8468 8469 8470 8471 8472 8473 8474 8475
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8476
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8477

8478
#ifdef CONFIG_NUMA
8479
/* Free memory allocated for various sched_group structures */
8480 8481
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8482
{
8483
	int cpu, i;
8484

8485
	for_each_cpu(cpu, cpu_map) {
8486 8487 8488 8489 8490 8491
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8492
		for (i = 0; i < nr_node_ids; i++) {
8493 8494
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8495
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8496
			if (cpumask_empty(nodemask))
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8513
#else /* !CONFIG_NUMA */
8514 8515
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8516 8517
{
}
8518
#endif /* CONFIG_NUMA */
8519

8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8534 8535
	long power;
	int weight;
8536 8537 8538

	WARN_ON(!sd || !sd->groups);

8539
	if (cpu != group_first_cpu(sd->groups))
8540 8541 8542 8543
		return;

	child = sd->child;

8544
	sd->groups->cpu_power = 0;
8545

8546 8547 8548 8549 8550
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8551 8552 8553
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8554
		 */
P
Peter Zijlstra 已提交
8555 8556
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8557
			power /= weight;
P
Peter Zijlstra 已提交
8558 8559
			power >>= SCHED_LOAD_SHIFT;
		}
8560
		sd->groups->cpu_power += power;
8561 8562 8563 8564
		return;
	}

	/*
8565
	 * Add cpu_power of each child group to this groups cpu_power.
8566 8567 8568
	 */
	group = child->groups;
	do {
8569
		sd->groups->cpu_power += group->cpu_power;
8570 8571 8572 8573
		group = group->next;
	} while (group != child->groups);
}

8574 8575 8576 8577 8578
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8579 8580 8581 8582 8583 8584
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8585
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8586

8587 8588 8589 8590 8591
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8592
	sd->level = SD_LV_##type;				\
8593
	SD_INIT_NAME(sd, type);					\
8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8608 8609 8610 8611
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8612 8613 8614 8615 8616 8617
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8636
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8637 8638
	} else {
		/* turn on idle balance on this domain */
8639
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8640 8641 8642
	}
}

8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8663
#ifdef CONFIG_NUMA
8664 8665 8666 8667 8668 8669 8670
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8671
#endif
8672 8673 8674 8675
	case sa_none:
		break;
	}
}
8676

8677 8678 8679
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8680
#ifdef CONFIG_NUMA
8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8691
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8692
		return sa_notcovered;
8693
	}
8694
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8695
#endif
8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8708
		printk(KERN_WARNING "Cannot alloc root domain\n");
8709
		return sa_tmpmask;
G
Gregory Haskins 已提交
8710
	}
8711 8712
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8713

8714 8715 8716 8717
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8718
#ifdef CONFIG_NUMA
8719
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8720

8721 8722 8723 8724 8725
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8726
		set_domain_attribute(sd, attr);
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8741
#endif
8742 8743
	return sd;
}
L
Linus Torvalds 已提交
8744

8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8760

8761 8762 8763 8764 8765
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8766
#ifdef CONFIG_SCHED_MC
8767 8768 8769 8770 8771 8772 8773
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8774
#endif
8775 8776
	return sd;
}
8777

8778 8779 8780 8781 8782
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8783
#ifdef CONFIG_SCHED_SMT
8784 8785 8786 8787 8788 8789 8790
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8791
#endif
8792 8793
	return sd;
}
L
Linus Torvalds 已提交
8794

8795 8796 8797 8798
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8799
#ifdef CONFIG_SCHED_SMT
8800 8801 8802 8803 8804 8805 8806 8807
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8808
#endif
8809
#ifdef CONFIG_SCHED_MC
8810 8811 8812 8813 8814 8815 8816
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8817
#endif
8818 8819 8820 8821 8822 8823 8824
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8825
#ifdef CONFIG_NUMA
8826 8827 8828 8829 8830
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8831 8832
	default:
		break;
8833
	}
8834
}
8835

8836 8837 8838 8839 8840 8841 8842 8843 8844
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8845
	struct sched_domain *sd;
8846
	int i;
8847
#ifdef CONFIG_NUMA
8848
	d.sd_allnodes = 0;
8849
#endif
8850

8851 8852 8853 8854
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8855

L
Linus Torvalds 已提交
8856
	/*
8857
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8858
	 */
8859
	for_each_cpu(i, cpu_map) {
8860 8861
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8862

8863
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8864
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8865
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8866
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8867
	}
8868

8869
	for_each_cpu(i, cpu_map) {
8870
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8871
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8872
	}
8873

L
Linus Torvalds 已提交
8874
	/* Set up physical groups */
8875 8876
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8877

L
Linus Torvalds 已提交
8878 8879
#ifdef CONFIG_NUMA
	/* Set up node groups */
8880 8881
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8882

8883 8884
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8885
			goto error;
L
Linus Torvalds 已提交
8886 8887 8888
#endif

	/* Calculate CPU power for physical packages and nodes */
8889
#ifdef CONFIG_SCHED_SMT
8890
	for_each_cpu(i, cpu_map) {
8891
		sd = &per_cpu(cpu_domains, i).sd;
8892
		init_sched_groups_power(i, sd);
8893
	}
L
Linus Torvalds 已提交
8894
#endif
8895
#ifdef CONFIG_SCHED_MC
8896
	for_each_cpu(i, cpu_map) {
8897
		sd = &per_cpu(core_domains, i).sd;
8898
		init_sched_groups_power(i, sd);
8899 8900
	}
#endif
8901

8902
	for_each_cpu(i, cpu_map) {
8903
		sd = &per_cpu(phys_domains, i).sd;
8904
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8905 8906
	}

8907
#ifdef CONFIG_NUMA
8908
	for (i = 0; i < nr_node_ids; i++)
8909
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8910

8911
	if (d.sd_allnodes) {
8912
		struct sched_group *sg;
8913

8914
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8915
								d.tmpmask);
8916 8917
		init_numa_sched_groups_power(sg);
	}
8918 8919
#endif

L
Linus Torvalds 已提交
8920
	/* Attach the domains */
8921
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8922
#ifdef CONFIG_SCHED_SMT
8923
		sd = &per_cpu(cpu_domains, i).sd;
8924
#elif defined(CONFIG_SCHED_MC)
8925
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8926
#else
8927
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8928
#endif
8929
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8930
	}
8931

8932 8933 8934
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8935 8936

error:
8937 8938
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8939
}
P
Paul Jackson 已提交
8940

8941
static int build_sched_domains(const struct cpumask *cpu_map)
8942 8943 8944 8945
{
	return __build_sched_domains(cpu_map, NULL);
}

8946
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8947
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8948 8949
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8950 8951 8952

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8953 8954
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8955
 */
8956
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8957

8958 8959 8960 8961 8962 8963
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8964
{
8965
	return 0;
8966 8967
}

8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8993
/*
I
Ingo Molnar 已提交
8994
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8995 8996
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8997
 */
8998
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8999
{
9000 9001
	int err;

9002
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9003
	ndoms_cur = 1;
9004
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
9005
	if (!doms_cur)
9006 9007
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9008
	dattr_cur = NULL;
9009
	err = build_sched_domains(doms_cur[0]);
9010
	register_sched_domain_sysctl();
9011 9012

	return err;
9013 9014
}

9015 9016
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9017
{
9018
	free_sched_groups(cpu_map, tmpmask);
9019
}
L
Linus Torvalds 已提交
9020

9021 9022 9023 9024
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9025
static void detach_destroy_domains(const struct cpumask *cpu_map)
9026
{
9027 9028
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9029 9030
	int i;

9031
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9032
		cpu_attach_domain(NULL, &def_root_domain, i);
9033
	synchronize_sched();
9034
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9035 9036
}

9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9053 9054
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9055
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9056 9057 9058
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9059
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9060 9061 9062
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9063 9064 9065
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9066 9067 9068 9069 9070 9071
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9072
 *
9073
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9074 9075
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9076
 *
P
Paul Jackson 已提交
9077 9078
 * Call with hotplug lock held
 */
9079
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9080
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9081
{
9082
	int i, j, n;
9083
	int new_topology;
P
Paul Jackson 已提交
9084

9085
	mutex_lock(&sched_domains_mutex);
9086

9087 9088 9089
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9090 9091 9092
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9093
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9094 9095 9096

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9097
		for (j = 0; j < n && !new_topology; j++) {
9098
			if (cpumask_equal(doms_cur[i], doms_new[j])
9099
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9100 9101 9102
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9103
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9104 9105 9106 9107
match1:
		;
	}

9108 9109
	if (doms_new == NULL) {
		ndoms_cur = 0;
9110
		doms_new = &fallback_doms;
9111
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9112
		WARN_ON_ONCE(dattr_new);
9113 9114
	}

P
Paul Jackson 已提交
9115 9116
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9117
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9118
			if (cpumask_equal(doms_new[i], doms_cur[j])
9119
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9120 9121 9122
				goto match2;
		}
		/* no match - add a new doms_new */
9123
		__build_sched_domains(doms_new[i],
9124
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9125 9126 9127 9128 9129
match2:
		;
	}

	/* Remember the new sched domains */
9130 9131
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9132
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9133
	doms_cur = doms_new;
9134
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9135
	ndoms_cur = ndoms_new;
9136 9137

	register_sched_domain_sysctl();
9138

9139
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9140 9141
}

9142
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9143
static void arch_reinit_sched_domains(void)
9144
{
9145
	get_online_cpus();
9146 9147 9148 9149

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9150
	rebuild_sched_domains();
9151
	put_online_cpus();
9152 9153 9154 9155
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9156
	unsigned int level = 0;
9157

9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9169 9170 9171
		return -EINVAL;

	if (smt)
9172
		sched_smt_power_savings = level;
9173
	else
9174
		sched_mc_power_savings = level;
9175

9176
	arch_reinit_sched_domains();
9177

9178
	return count;
9179 9180 9181
}

#ifdef CONFIG_SCHED_MC
9182 9183
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9184 9185 9186
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9187
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9188
					    const char *buf, size_t count)
9189 9190 9191
{
	return sched_power_savings_store(buf, count, 0);
}
9192 9193 9194
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9195 9196 9197
#endif

#ifdef CONFIG_SCHED_SMT
9198 9199
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9200 9201 9202
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9203
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9204
					     const char *buf, size_t count)
9205 9206 9207
{
	return sched_power_savings_store(buf, count, 1);
}
9208 9209
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9210 9211 9212
		   sched_smt_power_savings_store);
#endif

9213
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9229
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9230

9231
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9232
/*
9233 9234
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9235 9236 9237
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9238 9239 9240 9241
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9242 9243 9244 9245
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9246
		partition_sched_domains(1, NULL, NULL);
9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9257
{
P
Peter Zijlstra 已提交
9258 9259
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9260 9261
	switch (action) {
	case CPU_DOWN_PREPARE:
9262
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9263
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9264 9265 9266
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9267
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9268
	case CPU_ONLINE:
9269
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9270
		enable_runtime(cpu_rq(cpu));
9271 9272
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9273 9274 9275 9276 9277 9278 9279
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9280 9281 9282
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9283
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9284

9285 9286 9287 9288 9289
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9290
	get_online_cpus();
9291
	mutex_lock(&sched_domains_mutex);
9292
	arch_init_sched_domains(cpu_active_mask);
9293 9294 9295
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9296
	mutex_unlock(&sched_domains_mutex);
9297
	put_online_cpus();
9298 9299

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9300 9301
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9302 9303 9304 9305 9306
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9307
	init_hrtick();
9308 9309

	/* Move init over to a non-isolated CPU */
9310
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9311
		BUG();
I
Ingo Molnar 已提交
9312
	sched_init_granularity();
9313
	free_cpumask_var(non_isolated_cpus);
9314

9315
	init_sched_rt_class();
L
Linus Torvalds 已提交
9316 9317 9318 9319
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9320
	sched_init_granularity();
L
Linus Torvalds 已提交
9321 9322 9323
}
#endif /* CONFIG_SMP */

9324 9325
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9326 9327 9328 9329 9330 9331 9332
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9333
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9334 9335
{
	cfs_rq->tasks_timeline = RB_ROOT;
9336
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9337 9338 9339
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9340
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9341 9342
}

P
Peter Zijlstra 已提交
9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9356
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9357
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9358
#ifdef CONFIG_SMP
9359
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9360 9361
#endif
#endif
P
Peter Zijlstra 已提交
9362 9363 9364
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9365
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9366 9367 9368 9369
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9370 9371
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9372

9373
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9374
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9375 9376
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9377 9378
}

P
Peter Zijlstra 已提交
9379
#ifdef CONFIG_FAIR_GROUP_SCHED
9380 9381 9382
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9383
{
9384
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9385 9386 9387 9388 9389 9390 9391
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9392 9393 9394 9395
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9396 9397 9398 9399 9400
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9401 9402
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9403
	se->load.inv_weight = 0;
9404
	se->parent = parent;
P
Peter Zijlstra 已提交
9405
}
9406
#endif
P
Peter Zijlstra 已提交
9407

9408
#ifdef CONFIG_RT_GROUP_SCHED
9409 9410 9411
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9412
{
9413 9414
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9415 9416 9417 9418
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9419
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9420 9421 9422 9423
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9424 9425 9426
	if (!rt_se)
		return;

9427 9428 9429 9430 9431
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9432
	rt_se->my_q = rt_rq;
9433
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9434 9435 9436 9437
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9438 9439
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9440
	int i, j;
9441 9442 9443 9444 9445 9446 9447
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9448 9449 9450
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9451 9452
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9453
	alloc_size += num_possible_cpus() * cpumask_size();
9454 9455
#endif
	if (alloc_size) {
9456
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9457 9458 9459 9460 9461 9462 9463

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9464 9465 9466 9467 9468 9469 9470

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9471 9472
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9473 9474 9475 9476 9477
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9478 9479 9480 9481 9482 9483 9484 9485
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9486 9487
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9488 9489 9490 9491 9492 9493
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9494
	}
I
Ingo Molnar 已提交
9495

G
Gregory Haskins 已提交
9496 9497 9498 9499
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9500 9501 9502 9503 9504 9505
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9506 9507 9508
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9509 9510
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9511

9512
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9513
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9514 9515 9516 9517 9518 9519
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9520 9521
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9522

9523 9524 9525 9526
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9527
	for_each_possible_cpu(i) {
9528
		struct rq *rq;
L
Linus Torvalds 已提交
9529 9530 9531

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9532
		rq->nr_running = 0;
9533 9534
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9535
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9536
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9537
#ifdef CONFIG_FAIR_GROUP_SCHED
9538
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9539
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9555
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9556 9557 9558 9559
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9560
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9561
#elif defined CONFIG_USER_SCHED
9562 9563
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9564 9565 9566 9567 9568 9569 9570 9571
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9572
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9573 9574
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9575
		init_tg_cfs_entry(&init_task_group,
9576
				&per_cpu(init_tg_cfs_rq, i),
9577 9578
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9579

9580
#endif
D
Dhaval Giani 已提交
9581 9582 9583
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9584
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9585
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9586
#ifdef CONFIG_CGROUP_SCHED
9587
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9588
#elif defined CONFIG_USER_SCHED
9589
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9590
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9591
				&per_cpu(init_rt_rq, i),
9592 9593
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9594
#endif
I
Ingo Molnar 已提交
9595
#endif
L
Linus Torvalds 已提交
9596

I
Ingo Molnar 已提交
9597 9598
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9599
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9600
		rq->sd = NULL;
G
Gregory Haskins 已提交
9601
		rq->rd = NULL;
9602
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9603
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9604
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9605
		rq->push_cpu = 0;
9606
		rq->cpu = i;
9607
		rq->online = 0;
L
Linus Torvalds 已提交
9608
		rq->migration_thread = NULL;
9609 9610
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9611
		INIT_LIST_HEAD(&rq->migration_queue);
9612
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9613
#endif
P
Peter Zijlstra 已提交
9614
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9615 9616 9617
		atomic_set(&rq->nr_iowait, 0);
	}

9618
	set_load_weight(&init_task);
9619

9620 9621 9622 9623
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9624
#ifdef CONFIG_SMP
9625
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9626 9627
#endif

9628 9629 9630 9631
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9645 9646 9647

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9648 9649 9650 9651
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9652

9653
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9654
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9655
#ifdef CONFIG_SMP
9656
#ifdef CONFIG_NO_HZ
9657
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9658
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9659
#endif
R
Rusty Russell 已提交
9660 9661 9662
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9663
#endif /* SMP */
9664

9665
	perf_event_init();
9666

9667
	scheduler_running = 1;
L
Linus Torvalds 已提交
9668 9669 9670
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9671 9672 9673 9674 9675 9676 9677 9678
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9679
{
9680
#ifdef in_atomic
L
Linus Torvalds 已提交
9681 9682
	static unsigned long prev_jiffy;	/* ratelimiting */

9683 9684
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9702 9703 9704 9705 9706 9707
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9708 9709 9710
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9711

9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9723 9724
void normalize_rt_tasks(void)
{
9725
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9726
	unsigned long flags;
9727
	struct rq *rq;
L
Linus Torvalds 已提交
9728

9729
	read_lock_irqsave(&tasklist_lock, flags);
9730
	do_each_thread(g, p) {
9731 9732 9733 9734 9735 9736
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9737 9738
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9739 9740 9741
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9742
#endif
I
Ingo Molnar 已提交
9743 9744 9745 9746 9747 9748 9749 9750

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9751
			continue;
I
Ingo Molnar 已提交
9752
		}
L
Linus Torvalds 已提交
9753

9754
		spin_lock(&p->pi_lock);
9755
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9756

9757
		normalize_task(rq, p);
9758

9759
		__task_rq_unlock(rq);
9760
		spin_unlock(&p->pi_lock);
9761 9762
	} while_each_thread(g, p);

9763
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9764 9765 9766
}

#endif /* CONFIG_MAGIC_SYSRQ */
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9785
struct task_struct *curr_task(int cpu)
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9796 9797
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9798 9799 9800 9801 9802 9803 9804
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9805
void set_curr_task(int cpu, struct task_struct *p)
9806 9807 9808 9809 9810
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9811

9812 9813
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9828 9829
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9830 9831
{
	struct cfs_rq *cfs_rq;
9832
	struct sched_entity *se;
9833
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9834 9835
	int i;

9836
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9837 9838
	if (!tg->cfs_rq)
		goto err;
9839
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9840 9841
	if (!tg->se)
		goto err;
9842 9843

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9844 9845

	for_each_possible_cpu(i) {
9846
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9847

9848 9849
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9850 9851 9852
		if (!cfs_rq)
			goto err;

9853 9854
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9855 9856 9857
		if (!se)
			goto err;

9858
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9877
#else /* !CONFG_FAIR_GROUP_SCHED */
9878 9879 9880 9881
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9882 9883
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9895
#endif /* CONFIG_FAIR_GROUP_SCHED */
9896 9897

#ifdef CONFIG_RT_GROUP_SCHED
9898 9899 9900 9901
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9902 9903
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9915 9916
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9917 9918
{
	struct rt_rq *rt_rq;
9919
	struct sched_rt_entity *rt_se;
9920 9921 9922
	struct rq *rq;
	int i;

9923
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9924 9925
	if (!tg->rt_rq)
		goto err;
9926
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9927 9928 9929
	if (!tg->rt_se)
		goto err;

9930 9931
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9932 9933 9934 9935

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9936 9937
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9938 9939
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9940

9941 9942
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9943 9944
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9945

9946
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9947 9948
	}

9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9965
#else /* !CONFIG_RT_GROUP_SCHED */
9966 9967 9968 9969
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9970 9971
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9983
#endif /* CONFIG_RT_GROUP_SCHED */
9984

9985
#ifdef CONFIG_GROUP_SCHED
9986 9987 9988 9989 9990 9991 9992 9993
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9994
struct task_group *sched_create_group(struct task_group *parent)
9995 9996 9997 9998 9999 10000 10001 10002 10003
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10004
	if (!alloc_fair_sched_group(tg, parent))
10005 10006
		goto err;

10007
	if (!alloc_rt_sched_group(tg, parent))
10008 10009
		goto err;

10010
	spin_lock_irqsave(&task_group_lock, flags);
10011
	for_each_possible_cpu(i) {
10012 10013
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10014
	}
P
Peter Zijlstra 已提交
10015
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10016 10017 10018 10019 10020

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10021
	list_add_rcu(&tg->siblings, &parent->children);
10022
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10023

10024
	return tg;
S
Srivatsa Vaddagiri 已提交
10025 10026

err:
P
Peter Zijlstra 已提交
10027
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10028 10029 10030
	return ERR_PTR(-ENOMEM);
}

10031
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10032
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10033 10034
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10035
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10036 10037
}

10038
/* Destroy runqueue etc associated with a task group */
10039
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10040
{
10041
	unsigned long flags;
10042
	int i;
S
Srivatsa Vaddagiri 已提交
10043

10044
	spin_lock_irqsave(&task_group_lock, flags);
10045
	for_each_possible_cpu(i) {
10046 10047
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10048
	}
P
Peter Zijlstra 已提交
10049
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10050
	list_del_rcu(&tg->siblings);
10051
	spin_unlock_irqrestore(&task_group_lock, flags);
10052 10053

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10054
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10055 10056
}

10057
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10058 10059 10060
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10061 10062
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10063 10064 10065 10066 10067 10068 10069 10070 10071
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10072
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10073 10074
	on_rq = tsk->se.on_rq;

10075
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10076
		dequeue_task(rq, tsk, 0);
10077 10078
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10079

P
Peter Zijlstra 已提交
10080
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10081

P
Peter Zijlstra 已提交
10082 10083 10084 10085 10086
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10087 10088 10089
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10090
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10091 10092 10093

	task_rq_unlock(rq, &flags);
}
10094
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10095

10096
#ifdef CONFIG_FAIR_GROUP_SCHED
10097
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10098 10099 10100 10101 10102
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10103
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10104 10105 10106
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10107
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10108

10109
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10110
		enqueue_entity(cfs_rq, se, 0);
10111
}
10112

10113 10114 10115 10116 10117 10118 10119 10120 10121
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10122 10123
}

10124 10125
static DEFINE_MUTEX(shares_mutex);

10126
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10127 10128
{
	int i;
10129
	unsigned long flags;
10130

10131 10132 10133 10134 10135 10136
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10137 10138
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10139 10140
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10141

10142
	mutex_lock(&shares_mutex);
10143
	if (tg->shares == shares)
10144
		goto done;
S
Srivatsa Vaddagiri 已提交
10145

10146
	spin_lock_irqsave(&task_group_lock, flags);
10147 10148
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10149
	list_del_rcu(&tg->siblings);
10150
	spin_unlock_irqrestore(&task_group_lock, flags);
10151 10152 10153 10154 10155 10156 10157 10158

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10159
	tg->shares = shares;
10160 10161 10162 10163 10164
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10165
		set_se_shares(tg->se[i], shares);
10166
	}
S
Srivatsa Vaddagiri 已提交
10167

10168 10169 10170 10171
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10172
	spin_lock_irqsave(&task_group_lock, flags);
10173 10174
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10175
	list_add_rcu(&tg->siblings, &tg->parent->children);
10176
	spin_unlock_irqrestore(&task_group_lock, flags);
10177
done:
10178
	mutex_unlock(&shares_mutex);
10179
	return 0;
S
Srivatsa Vaddagiri 已提交
10180 10181
}

10182 10183 10184 10185
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10186
#endif
10187

10188
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10189
/*
P
Peter Zijlstra 已提交
10190
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10191
 */
P
Peter Zijlstra 已提交
10192 10193 10194 10195 10196
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10197
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10198

P
Peter Zijlstra 已提交
10199
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10200 10201
}

P
Peter Zijlstra 已提交
10202 10203
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10204
{
P
Peter Zijlstra 已提交
10205
	struct task_struct *g, *p;
10206

P
Peter Zijlstra 已提交
10207 10208 10209 10210
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10211

P
Peter Zijlstra 已提交
10212 10213
	return 0;
}
10214

P
Peter Zijlstra 已提交
10215 10216 10217 10218 10219
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10220

P
Peter Zijlstra 已提交
10221 10222 10223 10224 10225 10226
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10227

P
Peter Zijlstra 已提交
10228 10229
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10230

P
Peter Zijlstra 已提交
10231 10232 10233
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10234 10235
	}

10236 10237 10238 10239 10240 10241 10242
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10243 10244 10245 10246 10247
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10248

10249 10250 10251
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10252 10253
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10254

P
Peter Zijlstra 已提交
10255
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10256

10257 10258 10259 10260 10261
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10262

10263 10264 10265
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10266 10267 10268
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10269

P
Peter Zijlstra 已提交
10270 10271 10272 10273
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10274

P
Peter Zijlstra 已提交
10275
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10276
	}
P
Peter Zijlstra 已提交
10277

P
Peter Zijlstra 已提交
10278 10279 10280 10281
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10282 10283
}

P
Peter Zijlstra 已提交
10284
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10285
{
P
Peter Zijlstra 已提交
10286 10287 10288 10289 10290 10291 10292
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10293 10294
}

10295 10296
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10297
{
P
Peter Zijlstra 已提交
10298
	int i, err = 0;
P
Peter Zijlstra 已提交
10299 10300

	mutex_lock(&rt_constraints_mutex);
10301
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10302 10303
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10304
		goto unlock;
P
Peter Zijlstra 已提交
10305 10306

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10307 10308
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10309 10310 10311 10312 10313 10314 10315 10316 10317

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10318
 unlock:
10319
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10320 10321 10322
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10323 10324
}

10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10337 10338 10339 10340
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10341
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10342 10343
		return -1;

10344
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10345 10346 10347
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10348 10349 10350 10351 10352 10353 10354 10355

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10356 10357 10358
	if (rt_period == 0)
		return -EINVAL;

10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10373
	u64 runtime, period;
10374 10375
	int ret = 0;

10376 10377 10378
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10379 10380 10381 10382 10383 10384 10385 10386
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10387

10388
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10389
	read_lock(&tasklist_lock);
10390
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10391
	read_unlock(&tasklist_lock);
10392 10393 10394 10395
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10396 10397 10398 10399 10400 10401 10402 10403 10404 10405

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10406
#else /* !CONFIG_RT_GROUP_SCHED */
10407 10408
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10409 10410 10411
	unsigned long flags;
	int i;

10412 10413 10414
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10415 10416 10417 10418 10419 10420 10421
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10432 10433
	return 0;
}
10434
#endif /* CONFIG_RT_GROUP_SCHED */
10435 10436

int sched_rt_handler(struct ctl_table *table, int write,
10437
		void __user *buffer, size_t *lenp,
10438 10439 10440 10441 10442 10443 10444 10445 10446 10447
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10448
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10465

10466
#ifdef CONFIG_CGROUP_SCHED
10467 10468

/* return corresponding task_group object of a cgroup */
10469
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10470
{
10471 10472
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10473 10474 10475
}

static struct cgroup_subsys_state *
10476
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10477
{
10478
	struct task_group *tg, *parent;
10479

10480
	if (!cgrp->parent) {
10481 10482 10483 10484
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10485 10486
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10487 10488 10489 10490 10491 10492
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10493 10494
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10495
{
10496
	struct task_group *tg = cgroup_tg(cgrp);
10497 10498 10499 10500

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10501
static int
10502
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10503
{
10504
#ifdef CONFIG_RT_GROUP_SCHED
10505
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10506 10507
		return -EINVAL;
#else
10508 10509 10510
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10511
#endif
10512 10513
	return 0;
}
10514

10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10534 10535 10536 10537
	return 0;
}

static void
10538
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10539 10540
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10541 10542
{
	sched_move_task(tsk);
10543 10544 10545 10546 10547 10548 10549 10550
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10551 10552
}

10553
#ifdef CONFIG_FAIR_GROUP_SCHED
10554
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10555
				u64 shareval)
10556
{
10557
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10558 10559
}

10560
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10561
{
10562
	struct task_group *tg = cgroup_tg(cgrp);
10563 10564 10565

	return (u64) tg->shares;
}
10566
#endif /* CONFIG_FAIR_GROUP_SCHED */
10567

10568
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10569
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10570
				s64 val)
P
Peter Zijlstra 已提交
10571
{
10572
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10573 10574
}

10575
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10576
{
10577
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10578
}
10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10590
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10591

10592
static struct cftype cpu_files[] = {
10593
#ifdef CONFIG_FAIR_GROUP_SCHED
10594 10595
	{
		.name = "shares",
10596 10597
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10598
	},
10599 10600
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10601
	{
P
Peter Zijlstra 已提交
10602
		.name = "rt_runtime_us",
10603 10604
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10605
	},
10606 10607
	{
		.name = "rt_period_us",
10608 10609
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10610
	},
10611
#endif
10612 10613 10614 10615
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10616
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10617 10618 10619
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10620 10621 10622 10623 10624 10625 10626
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10627 10628 10629
	.early_init	= 1,
};

10630
#endif	/* CONFIG_CGROUP_SCHED */
10631 10632 10633 10634 10635 10636 10637 10638 10639 10640

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10641
/* track cpu usage of a group of tasks and its child groups */
10642 10643 10644 10645
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10646
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10647
	struct cpuacct *parent;
10648 10649 10650 10651 10652
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10653
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10654
{
10655
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10668
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10669 10670
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10671
	int i;
10672 10673

	if (!ca)
10674
		goto out;
10675 10676

	ca->cpuusage = alloc_percpu(u64);
10677 10678 10679 10680 10681 10682
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10683

10684 10685 10686
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10687
	return &ca->css;
10688 10689 10690 10691 10692 10693 10694 10695 10696

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10697 10698 10699
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10700
static void
10701
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10702
{
10703
	struct cpuacct *ca = cgroup_ca(cgrp);
10704
	int i;
10705

10706 10707
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10708 10709 10710 10711
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10712 10713
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10714
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10733
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10747
/* return total cpu usage (in nanoseconds) of a group */
10748
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10749
{
10750
	struct cpuacct *ca = cgroup_ca(cgrp);
10751 10752 10753
	u64 totalcpuusage = 0;
	int i;

10754 10755
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10756 10757 10758 10759

	return totalcpuusage;
}

10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10772 10773
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10774 10775 10776 10777 10778

out:
	return err;
}

10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10813 10814 10815
static struct cftype files[] = {
	{
		.name = "usage",
10816 10817
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10818
	},
10819 10820 10821 10822
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10823 10824 10825 10826
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10827 10828
};

10829
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10830
{
10831
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10832 10833 10834 10835 10836 10837 10838 10839 10840 10841
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10842
	int cpu;
10843

L
Li Zefan 已提交
10844
	if (unlikely(!cpuacct_subsys.active))
10845 10846
		return;

10847
	cpu = task_cpu(tsk);
10848 10849 10850

	rcu_read_lock();

10851 10852
	ca = task_ca(tsk);

10853
	for (; ca; ca = ca->parent) {
10854
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10855 10856
		*cpuusage += cputime;
	}
10857 10858

	rcu_read_unlock();
10859 10860
}

10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10882 10883 10884 10885 10886 10887 10888 10889
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10992
	synchronize_sched_expedited_count++;
10993 10994 10995 10996 10997 10998 10999 11000
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */