sched.c 222.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82
#include "sched_autogroup.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127
static inline int rt_policy(int policy)
{
128
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 130 131 132 133 134 135 136 137
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
138
/*
I
Ingo Molnar 已提交
139
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
140
 */
I
Ingo Molnar 已提交
141 142 143 144 145
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

146
struct rt_bandwidth {
I
Ingo Molnar 已提交
147
	/* nests inside the rq lock: */
148
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
149 150 151
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

185
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
186

187 188 189 190 191
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

192 193 194
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
195 196 197 198 199 200
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

201
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

207
	raw_spin_lock(&rt_b->rt_runtime_lock);
208
	for (;;) {
209 210 211
		unsigned long delta;
		ktime_t soft, hard;

212 213 214 215 216
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 218 219 220 221

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222
				HRTIMER_MODE_ABS_PINNED, 0);
223
	}
224
	raw_spin_unlock(&rt_b->rt_runtime_lock);
225 226 227 228 229 230 231 232 233
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

234 235 236 237 238 239
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
240
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
241

242 243
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
244 245
struct cfs_rq;

P
Peter Zijlstra 已提交
246 247
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
248
/* task group related information */
249
struct task_group {
250
	struct cgroup_subsys_state css;
251

252
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
253 254 255 256 257
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
258 259

	atomic_t load_weight;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
275 276 277 278

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
279 280
};

281
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
282

283
/* task_group_lock serializes the addition/removal of task groups */
284
static DEFINE_SPINLOCK(task_group_lock);
285

286 287
#ifdef CONFIG_FAIR_GROUP_SCHED

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308

D
Dhaval Giani 已提交
309
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
310

I
Ingo Molnar 已提交
311 312 313 314 315 316
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
317
	u64 min_vruntime;
I
Ingo Molnar 已提交
318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
321 322 323 324 325 326

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
327 328
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
329
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
332

333
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
334 335
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
336 337
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
338 339 340 341 342 343
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
344
	int on_list;
I
Ingo Molnar 已提交
345 346
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
347 348 349

#ifdef CONFIG_SMP
	/*
350
	 * the part of load.weight contributed by tasks
351
	 */
352
	unsigned long task_weight;
353

354 355 356 357 358 359 360
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
361

362
	/*
363 364 365 366 367
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
368
	 */
P
Peter Zijlstra 已提交
369 370
	u64 load_avg;
	u64 load_period;
371
	u64 load_stamp, load_last, load_unacc_exec_time;
372

P
Peter Zijlstra 已提交
373
	unsigned long load_contribution;
374
#endif
I
Ingo Molnar 已提交
375 376
#endif
};
L
Linus Torvalds 已提交
377

I
Ingo Molnar 已提交
378 379 380
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
381
	unsigned long rt_nr_running;
382
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
383 384
	struct {
		int curr; /* highest queued rt task prio */
385
#ifdef CONFIG_SMP
386
		int next; /* next highest */
387
#endif
388
	} highest_prio;
P
Peter Zijlstra 已提交
389
#endif
P
Peter Zijlstra 已提交
390
#ifdef CONFIG_SMP
391
	unsigned long rt_nr_migratory;
392
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
393
	int overloaded;
394
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
395
#endif
P
Peter Zijlstra 已提交
396
	int rt_throttled;
P
Peter Zijlstra 已提交
397
	u64 rt_time;
P
Peter Zijlstra 已提交
398
	u64 rt_runtime;
I
Ingo Molnar 已提交
399
	/* Nests inside the rq lock: */
400
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
401

402
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
403 404
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
405 406 407 408
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
409 410
};

G
Gregory Haskins 已提交
411 412 413 414
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
415 416
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
417 418 419 420 421 422
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
423 424
	cpumask_var_t span;
	cpumask_var_t online;
425

I
Ingo Molnar 已提交
426
	/*
427 428 429
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
430
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
431
	atomic_t rto_count;
432
	struct cpupri cpupri;
G
Gregory Haskins 已提交
433 434
};

435 436 437 438
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
439 440
static struct root_domain def_root_domain;

441
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
442

L
Linus Torvalds 已提交
443 444 445 446 447 448 449
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
450
struct rq {
451
	/* runqueue lock: */
452
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
453 454 455 456 457 458

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
459 460
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461
	unsigned long last_load_update_tick;
462
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
463
	u64 nohz_stamp;
464
	unsigned char nohz_balance_kick;
465
#endif
466 467
	unsigned int skip_clock_update;

468 469
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
470 471 472 473
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
474 475
	struct rt_rq rt;

I
Ingo Molnar 已提交
476
#ifdef CONFIG_FAIR_GROUP_SCHED
477 478
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
479 480
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
481
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

492
	struct task_struct *curr, *idle, *stop;
493
	unsigned long next_balance;
L
Linus Torvalds 已提交
494
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
495

496
	u64 clock;
497
	u64 clock_task;
I
Ingo Molnar 已提交
498

L
Linus Torvalds 已提交
499 500 501
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
502
	struct root_domain *rd;
L
Linus Torvalds 已提交
503 504
	struct sched_domain *sd;

505 506
	unsigned long cpu_power;

507
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
508
	/* For active balancing */
509
	int post_schedule;
L
Linus Torvalds 已提交
510 511
	int active_balance;
	int push_cpu;
512
	struct cpu_stop_work active_balance_work;
513 514
	/* cpu of this runqueue: */
	int cpu;
515
	int online;
L
Linus Torvalds 已提交
516

517
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
518

519 520
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
521 522
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
523 524
#endif

525 526 527 528
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

529 530 531 532
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
533
#ifdef CONFIG_SCHED_HRTICK
534 535 536 537
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
538 539 540
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
541 542 543
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
544 545
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
546 547

	/* sys_sched_yield() stats */
548
	unsigned int yld_count;
L
Linus Torvalds 已提交
549 550

	/* schedule() stats */
551 552 553
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
554 555

	/* try_to_wake_up() stats */
556 557
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
558 559

	/* BKL stats */
560
	unsigned int bkl_count;
L
Linus Torvalds 已提交
561 562 563
#endif
};

564
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
565

566

567
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
568

569 570 571 572 573 574 575 576 577
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

578
#define rcu_dereference_check_sched_domain(p) \
579 580 581 582
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
583 584
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
586 587 588 589
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
590
#define for_each_domain(cpu, __sd) \
591
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
592 593 594 595 596

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
597
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
598

599 600 601 602 603 604 605 606 607 608 609 610
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
611
	struct task_group *tg;
612 613 614 615
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
616 617 618
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

645
static void update_rq_clock_task(struct rq *rq, s64 delta);
646

647
static void update_rq_clock(struct rq *rq)
648
{
649
	s64 delta;
650

651 652
	if (rq->skip_clock_update)
		return;
653

654 655 656
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
657 658
}

I
Ingo Molnar 已提交
659 660 661 662 663 664 665 666 667
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
668 669
/**
 * runqueue_is_locked
670
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
671 672 673 674 675
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
676
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
677
{
678
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
679 680
}

I
Ingo Molnar 已提交
681 682 683
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
684 685 686 687

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
688
enum {
P
Peter Zijlstra 已提交
689
#include "sched_features.h"
I
Ingo Molnar 已提交
690 691
};

P
Peter Zijlstra 已提交
692 693 694 695 696
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
697
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
698 699 700 701 702 703 704 705 706
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

707
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
708 709 710 711 712 713
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
714
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
715 716 717 718
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
719 720 721
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
722
	}
L
Li Zefan 已提交
723
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
724

L
Li Zefan 已提交
725
	return 0;
P
Peter Zijlstra 已提交
726 727 728 729 730 731 732
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
733
	char *cmp;
P
Peter Zijlstra 已提交
734 735 736 737 738 739 740 741 742 743
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
744
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
745

I
Ingo Molnar 已提交
746
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
747 748 749 750 751
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
752
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
753 754 755 756 757 758 759 760 761 762 763
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

764
	*ppos += cnt;
P
Peter Zijlstra 已提交
765 766 767 768

	return cnt;
}

L
Li Zefan 已提交
769 770 771 772 773
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

774
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
775 776 777 778 779
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
794

795 796 797 798 799 800
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

801 802 803 804 805 806 807 808
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
809
/*
P
Peter Zijlstra 已提交
810
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
811 812
 * default: 1s
 */
P
Peter Zijlstra 已提交
813
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
814

815 816
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
817 818 819 820 821
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
822

823 824 825 826 827 828 829
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
830
	if (sysctl_sched_rt_runtime < 0)
831 832 833 834
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
835

L
Linus Torvalds 已提交
836
#ifndef prepare_arch_switch
837 838 839 840 841 842
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

843 844 845 846 847
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

848
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
849
static inline int task_running(struct rq *rq, struct task_struct *p)
850
{
851
	return task_current(rq, p);
852 853
}

854
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
855 856 857
{
}

858
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
859
{
860 861 862 863
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
864 865 866 867 868 869 870
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

871
	raw_spin_unlock_irq(&rq->lock);
872 873 874
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
875
static inline int task_running(struct rq *rq, struct task_struct *p)
876 877 878 879
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
880
	return task_current(rq, p);
881 882 883
#endif
}

884
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 886 887 888 889 890 891 892 893 894
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
895
	raw_spin_unlock_irq(&rq->lock);
896
#else
897
	raw_spin_unlock(&rq->lock);
898 899 900
#endif
}

901
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
902 903 904 905 906 907 908 909 910 911 912 913
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
914
#endif
915 916
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
917

918
/*
P
Peter Zijlstra 已提交
919 920
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
921 922 923
 */
static inline int task_is_waking(struct task_struct *p)
{
924
	return unlikely(p->state == TASK_WAKING);
925 926
}

927 928 929 930
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
931
static inline struct rq *__task_rq_lock(struct task_struct *p)
932 933
	__acquires(rq->lock)
{
934 935
	struct rq *rq;

936
	for (;;) {
937
		rq = task_rq(p);
938
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
939
		if (likely(rq == task_rq(p)))
940
			return rq;
941
		raw_spin_unlock(&rq->lock);
942 943 944
	}
}

L
Linus Torvalds 已提交
945 946
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
947
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
948 949
 * explicitly disabling preemption.
 */
950
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
951 952
	__acquires(rq->lock)
{
953
	struct rq *rq;
L
Linus Torvalds 已提交
954

955 956 957
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
958
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
959
		if (likely(rq == task_rq(p)))
960
			return rq;
961
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
962 963 964
	}
}

A
Alexey Dobriyan 已提交
965
static void __task_rq_unlock(struct rq *rq)
966 967
	__releases(rq->lock)
{
968
	raw_spin_unlock(&rq->lock);
969 970
}

971
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
972 973
	__releases(rq->lock)
{
974
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
975 976 977
}

/*
978
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
979
 */
A
Alexey Dobriyan 已提交
980
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
981 982
	__acquires(rq->lock)
{
983
	struct rq *rq;
L
Linus Torvalds 已提交
984 985 986

	local_irq_disable();
	rq = this_rq();
987
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
988 989 990 991

	return rq;
}

P
Peter Zijlstra 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1013
	if (!cpu_active(cpu_of(rq)))
1014
		return 0;
P
Peter Zijlstra 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1034
	raw_spin_lock(&rq->lock);
1035
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1036
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1037
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1038 1039 1040 1041

	return HRTIMER_NORESTART;
}

1042
#ifdef CONFIG_SMP
1043 1044 1045 1046
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1047
{
1048
	struct rq *rq = arg;
1049

1050
	raw_spin_lock(&rq->lock);
1051 1052
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1053
	raw_spin_unlock(&rq->lock);
1054 1055
}

1056 1057 1058 1059 1060 1061
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1062
{
1063 1064
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1065

1066
	hrtimer_set_expires(timer, time);
1067 1068 1069 1070

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1071
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1072 1073
		rq->hrtick_csd_pending = 1;
	}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1088
		hrtick_clear(cpu_rq(cpu));
1089 1090 1091 1092 1093 1094
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1095
static __init void init_hrtick(void)
1096 1097 1098
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1099 1100 1101 1102 1103 1104 1105 1106
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1107
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1108
			HRTIMER_MODE_REL_PINNED, 0);
1109
}
1110

A
Andrew Morton 已提交
1111
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1112 1113
{
}
1114
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1115

1116
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1117
{
1118 1119
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1120

1121 1122 1123 1124
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1125

1126 1127
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1128
}
A
Andrew Morton 已提交
1129
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1138 1139 1140
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1141
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1142

I
Ingo Molnar 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1156
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1157 1158 1159
{
	int cpu;

1160
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1161

1162
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1163 1164
		return;

1165
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1182
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1183 1184
		return;
	resched_task(cpu_curr(cpu));
1185
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1186
}
1187 1188

#ifdef CONFIG_NO_HZ
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1242
	set_tsk_need_resched(rq->idle);
1243 1244 1245 1246 1247 1248

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1249

1250
#endif /* CONFIG_NO_HZ */
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 1263 1264 1265 1266 1267
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1279
#else /* !CONFIG_SMP */
1280
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1281
{
1282
	assert_raw_spin_locked(&task_rq(p)->lock);
1283
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1284
}
1285 1286 1287 1288

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1289 1290 1291 1292

static void sched_avg_update(struct rq *rq)
{
}
1293
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1303 1304 1305
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1306
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1307

1308 1309 1310
/*
 * delta *= weight / lw
 */
1311
static unsigned long
1312 1313 1314 1315 1316
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1317 1318 1319 1320 1321 1322 1323
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1324 1325 1326 1327 1328

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1329
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1330
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1331 1332
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1333
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1334

1335
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1336 1337
}

1338
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1339 1340
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

1344
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1345 1346
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1347
	lw->inv_weight = 0;
1348 1349
}

P
Peter Zijlstra 已提交
1350 1351 1352 1353 1354 1355
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1356 1357 1358 1359
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1360
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1361 1362 1363 1364
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1365 1366
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1376 1377 1378
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1379 1380
 */
static const int prio_to_weight[40] = {
1381 1382 1383 1384 1385 1386 1387 1388
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1389 1390
};

1391 1392 1393 1394 1395 1396 1397
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1398
static const u32 prio_to_wmult[40] = {
1399 1400 1401 1402 1403 1404 1405 1406
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1407
};
1408

1409 1410 1411 1412 1413 1414 1415 1416
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1419 1420
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1421 1422
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1423 1424
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1425 1426
#endif

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1437
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1438
typedef int (*tg_visitor)(struct task_group *, void *);
1439 1440 1441 1442 1443

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1444
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1445 1446
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1447
	int ret;
1448 1449 1450 1451

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1452 1453 1454
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1455 1456 1457 1458 1459 1460 1461
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1470
out_unlock:
1471
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1472 1473

	return ret;
1474 1475
}

P
Peter Zijlstra 已提交
1476 1477 1478
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1479
}
P
Peter Zijlstra 已提交
1480 1481 1482
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1522 1523
static unsigned long power_of(int cpu)
{
1524
	return cpu_rq(cpu)->cpu_power;
1525 1526
}

P
Peter Zijlstra 已提交
1527 1528 1529 1530 1531
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1532
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1533

1534 1535
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1536 1537
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1538 1539 1540 1541 1542

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1543 1544

/*
1545 1546 1547
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1548
 */
P
Peter Zijlstra 已提交
1549
static int tg_load_down(struct task_group *tg, void *data)
1550
{
1551
	unsigned long load;
P
Peter Zijlstra 已提交
1552
	long cpu = (long)data;
1553

1554 1555 1556 1557
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1558
		load *= tg->se[cpu]->load.weight;
1559 1560
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1561

1562
	tg->cfs_rq[cpu]->h_load = load;
1563

P
Peter Zijlstra 已提交
1564
	return 0;
1565 1566
}

P
Peter Zijlstra 已提交
1567
static void update_h_load(long cpu)
1568
{
P
Peter Zijlstra 已提交
1569
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1570 1571
}

1572 1573
#endif

1574 1575
#ifdef CONFIG_PREEMPT

1576 1577
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1578
/*
1579 1580 1581 1582 1583 1584
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1585
 */
1586 1587 1588 1589 1590
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1591
	raw_spin_unlock(&this_rq->lock);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1606 1607 1608 1609 1610 1611
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1612
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1613
		if (busiest < this_rq) {
1614 1615 1616 1617
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1618 1619
			ret = 1;
		} else
1620 1621
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1622 1623 1624 1625
	}
	return ret;
}

1626 1627 1628 1629 1630 1631 1632 1633 1634
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1635
		raw_spin_unlock(&this_rq->lock);
1636 1637 1638 1639 1640 1641
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1642 1643 1644
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1645
	raw_spin_unlock(&busiest->lock);
1646 1647
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1691 1692
#endif

1693
static void calc_load_account_idle(struct rq *this_rq);
1694
static void update_sysctl(void);
1695
static int get_update_sysctl_factor(void);
1696
static void update_cpu_load(struct rq *this_rq);
1697

P
Peter Zijlstra 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1711

1712
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1713

1714
#define sched_class_highest (&stop_sched_class)
1715 1716
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1717

1718 1719
#include "sched_stats.h"

1720
static void inc_nr_running(struct rq *rq)
1721 1722 1723 1724
{
	rq->nr_running++;
}

1725
static void dec_nr_running(struct rq *rq)
1726 1727 1728 1729
{
	rq->nr_running--;
}

1730 1731
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1732 1733 1734 1735 1736 1737 1738 1739
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1740

I
Ingo Molnar 已提交
1741 1742
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1743 1744
}

1745
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1746
{
1747
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1748
	sched_info_queued(p);
1749
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1750
	p->se.on_rq = 1;
1751 1752
}

1753
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1754
{
1755
	update_rq_clock(rq);
1756
	sched_info_dequeued(p);
1757
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1758
	p->se.on_rq = 0;
1759 1760
}

1761 1762 1763
/*
 * activate_task - move a task to the runqueue.
 */
1764
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1765 1766 1767 1768
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1769
	enqueue_task(rq, p, flags);
1770 1771 1772 1773 1774 1775
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1776
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1777 1778 1779 1780
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1781
	dequeue_task(rq, p, flags);
1782 1783 1784
	dec_nr_running(rq);
}

1785 1786
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1787 1788 1789 1790 1791 1792 1793
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1794 1795 1796
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1797
 */
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1852 1853 1854
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1855
#endif /* CONFIG_64BIT */
1856

1857 1858 1859 1860
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1861 1862 1863
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1864
	s64 delta;
1865 1866 1867 1868 1869 1870 1871 1872
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1873 1874 1875
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1876
	irq_time_write_begin();
1877 1878 1879 1880 1881 1882 1883
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1884
		__this_cpu_add(cpu_hardirq_time, delta);
1885
	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1886
		__this_cpu_add(cpu_softirq_time, delta);
1887

1888
	irq_time_write_end();
1889 1890
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1891
EXPORT_SYMBOL_GPL(account_system_vtime);
1892

1893
static void update_rq_clock_task(struct rq *rq, s64 delta)
1894
{
1895 1896
	s64 irq_delta;

1897
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1923 1924
}

1925
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1926

1927
static void update_rq_clock_task(struct rq *rq, s64 delta)
1928
{
1929
	rq->clock_task += delta;
1930 1931
}

1932
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1933

1934 1935 1936
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1937
#include "sched_autogroup.c"
1938
#include "sched_stoptask.c"
1939 1940 1941 1942
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1973
/*
I
Ingo Molnar 已提交
1974
 * __normal_prio - return the priority that is based on the static prio
1975 1976 1977
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1978
	return p->static_prio;
1979 1980
}

1981 1982 1983 1984 1985 1986 1987
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1988
static inline int normal_prio(struct task_struct *p)
1989 1990 1991
{
	int prio;

1992
	if (task_has_rt_policy(p))
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2006
static int effective_prio(struct task_struct *p)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2019 2020 2021 2022
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2023
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2024 2025 2026 2027
{
	return cpu_curr(task_cpu(p)) == p;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2061
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2062 2063 2064
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2065
#ifdef CONFIG_SMP
2066 2067 2068
/*
 * Is this task likely cache-hot:
 */
2069
static int
2070 2071 2072 2073
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2074 2075 2076
	if (p->sched_class != &fair_sched_class)
		return 0;

2077 2078 2079
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2080 2081 2082
	/*
	 * Buddy candidates are cache hot:
	 */
2083
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2084 2085
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2086 2087
		return 1;

2088 2089 2090 2091 2092
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2093 2094 2095 2096 2097
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2098
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2099
{
2100 2101 2102 2103 2104
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2105 2106
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2107 2108
#endif

2109
	trace_sched_migrate_task(p, new_cpu);
2110

2111 2112 2113 2114
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2115 2116

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2117 2118
}

2119
struct migration_arg {
2120
	struct task_struct *task;
L
Linus Torvalds 已提交
2121
	int dest_cpu;
2122
};
L
Linus Torvalds 已提交
2123

2124 2125
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2126 2127 2128 2129
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2130
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2131 2132 2133
{
	/*
	 * If the task is not on a runqueue (and not running), then
2134
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2135
	 */
2136
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2142 2143 2144 2145 2146 2147 2148
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2155
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2156 2157
{
	unsigned long flags;
I
Ingo Molnar 已提交
2158
	int running, on_rq;
R
Roland McGrath 已提交
2159
	unsigned long ncsw;
2160
	struct rq *rq;
L
Linus Torvalds 已提交
2161

2162 2163 2164 2165 2166 2167 2168 2169
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2182 2183 2184
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2185
			cpu_relax();
R
Roland McGrath 已提交
2186
		}
2187

2188 2189 2190 2191 2192 2193
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2194
		trace_sched_wait_task(p);
2195 2196
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2197
		ncsw = 0;
2198
		if (!match_state || p->state == match_state)
2199
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2200
		task_rq_unlock(rq, &flags);
2201

R
Roland McGrath 已提交
2202 2203 2204 2205 2206 2207
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2218

2219 2220 2221 2222 2223
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2224
		 * So if it was still runnable (but just not actively
2225 2226 2227 2228 2229 2230 2231
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2232

2233 2234 2235 2236 2237 2238 2239
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2240 2241

	return ncsw;
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2257
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2267
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2268
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2269

T
Thomas Gleixner 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2291
#ifdef CONFIG_SMP
2292 2293 2294
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2311 2312 2313 2314 2315 2316 2317 2318 2319
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2320 2321 2322 2323 2324
	}

	return dest_cpu;
}

2325
/*
2326
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2327
 */
2328
static inline
2329
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2330
{
2331
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2344
		     !cpu_online(cpu)))
2345
		cpu = select_fallback_rq(task_cpu(p), p);
2346 2347

	return cpu;
2348
}
2349 2350 2351 2352 2353 2354

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2355 2356
#endif

T
Tejun Heo 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2396 2397 2398
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2399 2400 2401
}

/**
L
Linus Torvalds 已提交
2402
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2403
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2404
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2405
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2413 2414
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2415
 */
P
Peter Zijlstra 已提交
2416 2417
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2418
{
2419
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2420
	unsigned long flags;
2421
	unsigned long en_flags = ENQUEUE_WAKEUP;
2422
	struct rq *rq;
L
Linus Torvalds 已提交
2423

P
Peter Zijlstra 已提交
2424
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2425

2426
	smp_wmb();
2427
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2428
	if (!(p->state & state))
L
Linus Torvalds 已提交
2429 2430
		goto out;

I
Ingo Molnar 已提交
2431
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2432 2433 2434
		goto out_running;

	cpu = task_cpu(p);
2435
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2441 2442 2443
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2444 2445
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2446
	 */
2447 2448 2449 2450 2451 2452
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2453
	p->state = TASK_WAKING;
2454

2455
	if (p->sched_class->task_waking) {
2456
		p->sched_class->task_waking(rq, p);
2457 2458
		en_flags |= ENQUEUE_WAKING;
	}
2459

2460 2461
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2462
		set_task_cpu(p, cpu);
2463
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2464

2465 2466
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2467

2468 2469 2470 2471 2472 2473 2474
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2475
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2476

2477 2478 2479 2480 2481 2482 2483
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2484
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2485 2486 2487 2488 2489
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2490
#endif /* CONFIG_SCHEDSTATS */
2491

L
Linus Torvalds 已提交
2492 2493
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2494 2495
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2496 2497
	success = 1;
out_running:
T
Tejun Heo 已提交
2498
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2499 2500
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2501
	put_cpu();
L
Linus Torvalds 已提交
2502 2503 2504 2505

	return success;
}

T
Tejun Heo 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2548
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2549
{
2550
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2551 2552 2553
}
EXPORT_SYMBOL(wake_up_process);

2554
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560 2561
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2562 2563 2564 2565 2566 2567 2568
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2569
	p->se.prev_sum_exec_runtime	= 0;
2570
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2571 2572

#ifdef CONFIG_SCHEDSTATS
2573
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2574
#endif
N
Nick Piggin 已提交
2575

P
Peter Zijlstra 已提交
2576
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2577
	p->se.on_rq = 0;
2578
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2579

2580 2581 2582
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2593
	/*
2594
	 * We mark the process as running here. This guarantees that
2595 2596 2597
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2598
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2599

2600 2601 2602 2603
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2604
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2605
			p->policy = SCHED_NORMAL;
2606 2607
			p->normal_prio = p->static_prio;
		}
2608

2609 2610
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2611
			p->normal_prio = p->static_prio;
2612 2613 2614
			set_load_weight(p);
		}

2615 2616 2617 2618 2619 2620
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2621

2622 2623 2624 2625 2626
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2627 2628
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2629

P
Peter Zijlstra 已提交
2630 2631 2632
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2641
	set_task_cpu(p, cpu);
2642
	rcu_read_unlock();
2643

2644
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2645
	if (likely(sched_info_on()))
2646
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2647
#endif
2648
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2649 2650
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2651
#ifdef CONFIG_PREEMPT
2652
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2653
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2654
#endif
2655
#ifdef CONFIG_SMP
2656
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2657
#endif
2658

N
Nick Piggin 已提交
2659
	put_cpu();
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2669
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2670 2671
{
	unsigned long flags;
I
Ingo Molnar 已提交
2672
	struct rq *rq;
2673
	int cpu __maybe_unused = get_cpu();
2674 2675

#ifdef CONFIG_SMP
2676 2677 2678
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2679 2680 2681 2682 2683
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2684 2685
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2686
	 */
2687
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2688
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2689

2690
	p->state = TASK_RUNNING;
2691 2692 2693 2694
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2695
	activate_task(rq, p, 0);
2696
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2697
	check_preempt_curr(rq, p, WF_FORK);
2698
#ifdef CONFIG_SMP
2699 2700
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2701
#endif
I
Ingo Molnar 已提交
2702
	task_rq_unlock(rq, &flags);
2703
	put_cpu();
L
Linus Torvalds 已提交
2704 2705
}

2706 2707 2708
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2709
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2710
 * @notifier: notifier struct to register
2711 2712 2713 2714 2715 2716 2717 2718 2719
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2720
 * @notifier: notifier struct to unregister
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2750
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2762
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2763

2764 2765 2766
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2767
 * @prev: the current task that is being switched out
2768 2769 2770 2771 2772 2773 2774 2775 2776
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2777 2778 2779
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2780
{
2781
	fire_sched_out_preempt_notifiers(prev, next);
2782 2783 2784 2785
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2786 2787
/**
 * finish_task_switch - clean up after a task-switch
2788
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2789 2790
 * @prev: the thread we just switched away from.
 *
2791 2792 2793 2794
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2795 2796
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2797
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2798 2799 2800
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2801
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2802 2803 2804
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2805
	long prev_state;
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2811
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2812 2813
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2814
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2820
	prev_state = prev->state;
2821
	finish_arch_switch(prev);
2822 2823 2824
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2825
	perf_event_task_sched_in(current);
2826 2827 2828
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2829
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2830

2831
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2832 2833
	if (mm)
		mmdrop(mm);
2834
	if (unlikely(prev_state == TASK_DEAD)) {
2835 2836 2837
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2838
		 */
2839
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2840
		put_task_struct(prev);
2841
	}
L
Linus Torvalds 已提交
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2859
		raw_spin_lock_irqsave(&rq->lock, flags);
2860 2861
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2862
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2863 2864 2865 2866 2867 2868

		rq->post_schedule = 0;
	}
}

#else
2869

2870 2871 2872 2873 2874 2875
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2876 2877
}

2878 2879
#endif

L
Linus Torvalds 已提交
2880 2881 2882 2883
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2884
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2885 2886
	__releases(rq->lock)
{
2887 2888
	struct rq *rq = this_rq();

2889
	finish_task_switch(rq, prev);
2890

2891 2892 2893 2894 2895
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2896

2897 2898 2899 2900
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2901
	if (current->set_child_tid)
2902
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907 2908
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2909
static inline void
2910
context_switch(struct rq *rq, struct task_struct *prev,
2911
	       struct task_struct *next)
L
Linus Torvalds 已提交
2912
{
I
Ingo Molnar 已提交
2913
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2914

2915
	prepare_task_switch(rq, prev, next);
2916
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2917 2918
	mm = next->mm;
	oldmm = prev->active_mm;
2919 2920 2921 2922 2923
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2924
	arch_start_context_switch(prev);
2925

2926
	if (!mm) {
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2933
	if (!prev->mm) {
L
Linus Torvalds 已提交
2934 2935 2936
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2937 2938 2939 2940 2941 2942 2943
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2944
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2945
#endif
L
Linus Torvalds 已提交
2946 2947 2948 2949

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2950 2951 2952 2953 2954 2955 2956
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2974
}
L
Linus Torvalds 已提交
2975 2976

unsigned long nr_uninterruptible(void)
2977
{
L
Linus Torvalds 已提交
2978
	unsigned long i, sum = 0;
2979

2980
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2981
		sum += cpu_rq(i)->nr_uninterruptible;
2982 2983

	/*
L
Linus Torvalds 已提交
2984 2985
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2986
	 */
L
Linus Torvalds 已提交
2987 2988
	if (unlikely((long)sum < 0))
		sum = 0;
2989

L
Linus Torvalds 已提交
2990
	return sum;
2991 2992
}

L
Linus Torvalds 已提交
2993
unsigned long long nr_context_switches(void)
2994
{
2995 2996
	int i;
	unsigned long long sum = 0;
2997

2998
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2999
		sum += cpu_rq(i)->nr_switches;
3000

L
Linus Torvalds 已提交
3001 3002
	return sum;
}
3003

L
Linus Torvalds 已提交
3004 3005 3006
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3007

3008
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3009
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3010

L
Linus Torvalds 已提交
3011 3012
	return sum;
}
3013

3014
unsigned long nr_iowait_cpu(int cpu)
3015
{
3016
	struct rq *this = cpu_rq(cpu);
3017 3018
	return atomic_read(&this->nr_iowait);
}
3019

3020 3021 3022 3023 3024
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3025

3026

3027 3028 3029 3030 3031
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3048 3049 3050 3051 3052 3053 3054 3055 3056
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3208 3209 3210 3211 3212 3213 3214 3215 3216
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3217 3218 3219 3220

static void calc_global_nohz(unsigned long ticks)
{
}
3221 3222
#endif

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3236 3237 3238
}

/*
3239 3240
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3241
 */
3242
void calc_global_load(unsigned long ticks)
3243
{
3244
	long active;
L
Linus Torvalds 已提交
3245

3246 3247 3248
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3249
		return;
L
Linus Torvalds 已提交
3250

3251 3252
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3253

3254 3255 3256
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3257

3258 3259
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3260

3261
/*
3262 3263
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3264 3265 3266
 */
static void calc_load_account_active(struct rq *this_rq)
{
3267
	long delta;
3268

3269 3270
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3271

3272 3273 3274
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3275
		atomic_long_add(delta, &calc_load_tasks);
3276 3277

	this_rq->calc_load_update += LOAD_FREQ;
3278 3279
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3347
/*
I
Ingo Molnar 已提交
3348
 * Update rq->cpu_load[] statistics. This function is usually called every
3349 3350
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3351
 */
I
Ingo Molnar 已提交
3352
static void update_cpu_load(struct rq *this_rq)
3353
{
3354
	unsigned long this_load = this_rq->load.weight;
3355 3356
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3357
	int i, scale;
3358

I
Ingo Molnar 已提交
3359
	this_rq->nr_load_updates++;
3360

3361 3362 3363 3364 3365 3366 3367
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3368
	/* Update our load: */
3369 3370
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3371
		unsigned long old_load, new_load;
3372

I
Ingo Molnar 已提交
3373
		/* scale is effectively 1 << i now, and >> i divides by scale */
3374

I
Ingo Molnar 已提交
3375
		old_load = this_rq->cpu_load[i];
3376
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3377
		new_load = this_load;
I
Ingo Molnar 已提交
3378 3379 3380 3381 3382 3383
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3384 3385 3386
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3387
	}
3388 3389

	sched_avg_update(this_rq);
3390 3391 3392 3393 3394
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3395

3396
	calc_load_account_active(this_rq);
3397 3398
}

I
Ingo Molnar 已提交
3399
#ifdef CONFIG_SMP
3400

3401
/*
P
Peter Zijlstra 已提交
3402 3403
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3404
 */
P
Peter Zijlstra 已提交
3405
void sched_exec(void)
3406
{
P
Peter Zijlstra 已提交
3407
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3408
	unsigned long flags;
3409
	struct rq *rq;
3410
	int dest_cpu;
3411

L
Linus Torvalds 已提交
3412
	rq = task_rq_lock(p, &flags);
3413 3414 3415
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3416

3417
	/*
P
Peter Zijlstra 已提交
3418
	 * select_task_rq() can race against ->cpus_allowed
3419
	 */
3420
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3421
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3422
		struct migration_arg arg = { p, dest_cpu };
3423

L
Linus Torvalds 已提交
3424
		task_rq_unlock(rq, &flags);
3425
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3426 3427
		return;
	}
3428
unlock:
L
Linus Torvalds 已提交
3429 3430
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3431

L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3439
 * Return any ns on the sched_clock that have not yet been accounted in
3440
 * @p in case that task is currently running.
3441 3442
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3443
 */
3444 3445 3446 3447 3448 3449
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3450
		ns = rq->clock_task - p->se.exec_start;
3451 3452 3453 3454 3455 3456 3457
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3458
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3459 3460
{
	unsigned long flags;
3461
	struct rq *rq;
3462
	u64 ns = 0;
3463

3464
	rq = task_rq_lock(p, &flags);
3465 3466
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3467

3468 3469
	return ns;
}
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3508
	task_rq_unlock(rq, &flags);
3509

L
Linus Torvalds 已提交
3510 3511 3512 3513 3514 3515 3516
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3517
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3518
 */
3519 3520
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3521 3522 3523 3524
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3525
	/* Add user time to process. */
L
Linus Torvalds 已提交
3526
	p->utime = cputime_add(p->utime, cputime);
3527
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3528
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3536 3537

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3538 3539
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3540 3541
}

3542 3543 3544 3545
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3546
 * @cputime_scaled: cputime scaled by cpu frequency
3547
 */
3548 3549
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3550 3551 3552 3553 3554 3555
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3556
	/* Add guest time to process. */
3557
	p->utime = cputime_add(p->utime, cputime);
3558
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3559
	account_group_user_time(p, cputime);
3560 3561
	p->gtime = cputime_add(p->gtime, cputime);

3562
	/* Add guest time to cpustat. */
3563 3564 3565 3566 3567 3568 3569
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3570 3571
}

L
Linus Torvalds 已提交
3572 3573 3574 3575 3576
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3577
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3578 3579
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3580
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3581 3582 3583 3584
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3585
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3586
		account_guest_time(p, cputime, cputime_scaled);
3587 3588
		return;
	}
3589

3590
	/* Add system time to process. */
L
Linus Torvalds 已提交
3591
	p->stime = cputime_add(p->stime, cputime);
3592
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3593
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3599
	else if (in_serving_softirq())
L
Linus Torvalds 已提交
3600 3601
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3602 3603
		cpustat->system = cputime64_add(cpustat->system, tmp);

3604 3605
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3606 3607 3608 3609
	/* Account for system time used */
	acct_update_integrals(p);
}

3610
/*
L
Linus Torvalds 已提交
3611 3612
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3613
 */
3614
void account_steal_time(cputime_t cputime)
3615
{
3616 3617 3618 3619
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3620 3621
}

L
Linus Torvalds 已提交
3622
/*
3623 3624
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3625
 */
3626
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3627 3628
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3629
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3630
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3631

3632 3633 3634 3635
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3636 3637
}

3638 3639 3640 3641 3642 3643 3644 3645 3646
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3647
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3648 3649 3650
	struct rq *rq = this_rq();

	if (user_tick)
3651
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3652
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3653
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3654 3655
				    one_jiffy_scaled);
	else
3656
		account_idle_time(cputime_one_jiffy);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3676 3677
}

3678 3679
#endif

3680 3681 3682 3683
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3684
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3685
{
3686 3687
	*ut = p->utime;
	*st = p->stime;
3688 3689
}

3690
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3691
{
3692 3693 3694 3695 3696 3697
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3698 3699
}
#else
3700 3701

#ifndef nsecs_to_cputime
3702
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3703 3704
#endif

3705
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3706
{
3707
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3708 3709 3710 3711

	/*
	 * Use CFS's precise accounting:
	 */
3712
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3713 3714

	if (total) {
3715
		u64 temp = rtime;
3716

3717
		temp *= utime;
3718
		do_div(temp, total);
3719 3720 3721
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3722

3723 3724 3725
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3726
	p->prev_utime = max(p->prev_utime, utime);
3727
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3728

3729 3730
	*ut = p->prev_utime;
	*st = p->prev_stime;
3731 3732
}

3733 3734 3735 3736
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3737
{
3738 3739 3740
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3741

3742
	thread_group_cputime(p, &cputime);
3743

3744 3745
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3746

3747
	if (total) {
3748
		u64 temp = rtime;
3749

3750
		temp *= cputime.utime;
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3762 3763 3764
}
#endif

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3776
	struct task_struct *curr = rq->curr;
3777 3778

	sched_clock_tick();
I
Ingo Molnar 已提交
3779

3780
	raw_spin_lock(&rq->lock);
3781
	update_rq_clock(rq);
3782
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3783
	curr->sched_class->task_tick(rq, curr, 0);
3784
	raw_spin_unlock(&rq->lock);
3785

3786
	perf_event_task_tick();
3787

3788
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3789 3790
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3791
#endif
L
Linus Torvalds 已提交
3792 3793
}

3794
notrace unsigned long get_parent_ip(unsigned long addr)
3795 3796 3797 3798 3799 3800 3801 3802
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3803

3804 3805 3806
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3807
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3808
{
3809
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3810 3811 3812
	/*
	 * Underflow?
	 */
3813 3814
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3815
#endif
L
Linus Torvalds 已提交
3816
	preempt_count() += val;
3817
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3818 3819 3820
	/*
	 * Spinlock count overflowing soon?
	 */
3821 3822
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3823 3824 3825
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3826 3827 3828
}
EXPORT_SYMBOL(add_preempt_count);

3829
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3830
{
3831
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3832 3833 3834
	/*
	 * Underflow?
	 */
3835
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3836
		return;
L
Linus Torvalds 已提交
3837 3838 3839
	/*
	 * Is the spinlock portion underflowing?
	 */
3840 3841 3842
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3843
#endif
3844

3845 3846
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851 3852 3853
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3854
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3855
 */
I
Ingo Molnar 已提交
3856
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3857
{
3858 3859
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3860 3861
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3862

I
Ingo Molnar 已提交
3863
	debug_show_held_locks(prev);
3864
	print_modules();
I
Ingo Molnar 已提交
3865 3866
	if (irqs_disabled())
		print_irqtrace_events(prev);
3867 3868 3869 3870 3871

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3872
}
L
Linus Torvalds 已提交
3873

I
Ingo Molnar 已提交
3874 3875 3876 3877 3878
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3879
	/*
I
Ingo Molnar 已提交
3880
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3881 3882 3883
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3884
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3885 3886
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3887 3888
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3889
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3890 3891
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3892 3893
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3894 3895
	}
#endif
I
Ingo Molnar 已提交
3896 3897
}

P
Peter Zijlstra 已提交
3898
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3899
{
3900 3901
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3902
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3903 3904
}

I
Ingo Molnar 已提交
3905 3906 3907 3908
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3909
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3910
{
3911
	const struct sched_class *class;
I
Ingo Molnar 已提交
3912
	struct task_struct *p;
L
Linus Torvalds 已提交
3913 3914

	/*
I
Ingo Molnar 已提交
3915 3916
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3917
	 */
I
Ingo Molnar 已提交
3918
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3919
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3920 3921
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3922 3923
	}

3924
	for_each_class(class) {
3925
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3926 3927 3928
		if (p)
			return p;
	}
3929 3930

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3931
}
L
Linus Torvalds 已提交
3932

I
Ingo Molnar 已提交
3933 3934 3935
/*
 * schedule() is the main scheduler function.
 */
3936
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3937 3938
{
	struct task_struct *prev, *next;
3939
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3940
	struct rq *rq;
3941
	int cpu;
I
Ingo Molnar 已提交
3942

3943 3944
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3945 3946
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3947
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3948 3949 3950 3951 3952 3953
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3954

3955
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3956
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3957

3958
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3959

3960
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3961
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3962
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3963
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3978
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3979
		}
I
Ingo Molnar 已提交
3980
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3981 3982
	}

3983
	pre_schedule(rq, prev);
3984

I
Ingo Molnar 已提交
3985
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3986 3987
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3988
	put_prev_task(rq, prev);
3989
	next = pick_next_task(rq);
3990 3991
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3992 3993

	if (likely(prev != next)) {
3994
		sched_info_switch(prev, next);
3995
		perf_event_task_sched_out(prev, next);
3996

L
Linus Torvalds 已提交
3997 3998 3999 4000
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4001
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4002
		/*
4003 4004 4005 4006
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4007 4008 4009
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4010
	} else
4011
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4012

4013
	post_schedule(rq);
L
Linus Torvalds 已提交
4014

4015
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
4016
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4017

L
Linus Torvalds 已提交
4018
	preempt_enable_no_resched();
4019
	if (need_resched())
L
Linus Torvalds 已提交
4020 4021 4022 4023
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4024
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4044
		return 0;
4045 4046 4047 4048 4049 4050 4051 4052 4053
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4054
		return 0;
4055 4056 4057 4058 4059 4060

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4061
		return 0;
4062 4063 4064 4065 4066 4067 4068

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4069 4070 4071 4072 4073 4074 4075 4076
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4077
			break;
4078
		}
4079 4080 4081 4082 4083 4084 4085

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4086
		arch_mutex_cpu_relax();
4087
	}
4088

4089 4090 4091 4092
	return 1;
}
#endif

L
Linus Torvalds 已提交
4093 4094
#ifdef CONFIG_PREEMPT
/*
4095
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4096
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4097 4098
 * occur there and call schedule directly.
 */
4099
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4100 4101
{
	struct thread_info *ti = current_thread_info();
4102

L
Linus Torvalds 已提交
4103 4104
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4105
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4106
	 */
N
Nick Piggin 已提交
4107
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4108 4109
		return;

4110
	do {
4111
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4112
		schedule();
4113
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4114

4115 4116 4117 4118 4119
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4120
	} while (need_resched());
L
Linus Torvalds 已提交
4121 4122 4123 4124
}
EXPORT_SYMBOL(preempt_schedule);

/*
4125
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131 4132
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4133

4134
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4135 4136
	BUG_ON(ti->preempt_count || !irqs_disabled());

4137 4138 4139 4140 4141 4142
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4143

4144 4145 4146 4147 4148
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4149
	} while (need_resched());
L
Linus Torvalds 已提交
4150 4151 4152 4153
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4154
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4155
			  void *key)
L
Linus Torvalds 已提交
4156
{
P
Peter Zijlstra 已提交
4157
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4158 4159 4160 4161
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4162 4163
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4164 4165 4166
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4167
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4168 4169
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4170
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4171
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4172
{
4173
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4174

4175
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4176 4177
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4178
		if (curr->func(curr, mode, wake_flags, key) &&
4179
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4189
 * @key: is directly passed to the wakeup function
4190 4191 4192
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4193
 */
4194
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4195
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4208
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4209 4210 4211
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4212
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4213

4214 4215 4216 4217 4218
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4219
/**
4220
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4221 4222 4223
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4224
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229 4230 4231
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4232 4233 4234
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4235
 */
4236 4237
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4238 4239
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4240
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4246
		wake_flags = 0;
L
Linus Torvalds 已提交
4247 4248

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4249
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4250 4251
	spin_unlock_irqrestore(&q->lock, flags);
}
4252 4253 4254 4255 4256 4257 4258 4259 4260
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4261 4262
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4263 4264 4265 4266 4267 4268 4269 4270
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4271 4272 4273
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4274
 */
4275
void complete(struct completion *x)
L
Linus Torvalds 已提交
4276 4277 4278 4279 4280
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4281
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4282 4283 4284 4285
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4286 4287 4288 4289 4290
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4291 4292 4293
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4294
 */
4295
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4301
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4302 4303 4304 4305
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4306 4307
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4308 4309 4310 4311
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4312
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4313
		do {
4314
			if (signal_pending_state(state, current)) {
4315 4316
				timeout = -ERESTARTSYS;
				break;
4317 4318
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4319 4320 4321
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4322
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4323
		__remove_wait_queue(&x->wait, &wait);
4324 4325
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4326 4327
	}
	x->done--;
4328
	return timeout ?: 1;
L
Linus Torvalds 已提交
4329 4330
}

4331 4332
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4333 4334 4335 4336
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4337
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4338
	spin_unlock_irq(&x->wait.lock);
4339 4340
	return timeout;
}
L
Linus Torvalds 已提交
4341

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4352
void __sched wait_for_completion(struct completion *x)
4353 4354
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4355
}
4356
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4367
unsigned long __sched
4368
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4369
{
4370
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4371
}
4372
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4373

4374 4375 4376 4377 4378 4379 4380
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4381
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4382
{
4383 4384 4385 4386
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4387
}
4388
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4389

4390 4391 4392 4393 4394 4395 4396 4397
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4398
long __sched
4399 4400
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4401
{
4402
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4403
}
4404
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4405

4406 4407 4408 4409 4410 4411 4412
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4422 4423 4424 4425 4426 4427 4428 4429 4430
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4431
long __sched
4432 4433 4434 4435 4436 4437 4438
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4453
	unsigned long flags;
4454 4455
	int ret = 1;

4456
	spin_lock_irqsave(&x->wait.lock, flags);
4457 4458 4459 4460
	if (!x->done)
		ret = 0;
	else
		x->done--;
4461
	spin_unlock_irqrestore(&x->wait.lock, flags);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4476
	unsigned long flags;
4477 4478
	int ret = 1;

4479
	spin_lock_irqsave(&x->wait.lock, flags);
4480 4481
	if (!x->done)
		ret = 0;
4482
	spin_unlock_irqrestore(&x->wait.lock, flags);
4483 4484 4485 4486
	return ret;
}
EXPORT_SYMBOL(completion_done);

4487 4488
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4489
{
I
Ingo Molnar 已提交
4490 4491 4492 4493
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4494

4495
	__set_current_state(state);
L
Linus Torvalds 已提交
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4511 4512 4513
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4514
long __sched
I
Ingo Molnar 已提交
4515
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4516
{
4517
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4518 4519 4520
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4521
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4522
{
4523
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4524 4525 4526
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4527
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4528
{
4529
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4530 4531 4532
}
EXPORT_SYMBOL(sleep_on_timeout);

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4545
void rt_mutex_setprio(struct task_struct *p, int prio)
4546 4547
{
	unsigned long flags;
4548
	int oldprio, on_rq, running;
4549
	struct rq *rq;
4550
	const struct sched_class *prev_class;
4551 4552 4553 4554 4555

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4556
	trace_sched_pi_setprio(p, prio);
4557
	oldprio = p->prio;
4558
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4559
	on_rq = p->se.on_rq;
4560
	running = task_current(rq, p);
4561
	if (on_rq)
4562
		dequeue_task(rq, p, 0);
4563 4564
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4565 4566 4567 4568 4569 4570

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4571 4572
	p->prio = prio;

4573 4574
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4575
	if (on_rq) {
4576
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4577 4578

		check_class_changed(rq, p, prev_class, oldprio, running);
4579 4580 4581 4582 4583 4584
	}
	task_rq_unlock(rq, &flags);
}

#endif

4585
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4586
{
I
Ingo Molnar 已提交
4587
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4588
	unsigned long flags;
4589
	struct rq *rq;
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4602
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4603
	 */
4604
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4605 4606 4607
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4608
	on_rq = p->se.on_rq;
4609
	if (on_rq)
4610
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4611 4612

	p->static_prio = NICE_TO_PRIO(nice);
4613
	set_load_weight(p);
4614 4615 4616
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4617

I
Ingo Molnar 已提交
4618
	if (on_rq) {
4619
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4620
		/*
4621 4622
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4623
		 */
4624
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4632 4633 4634 4635 4636
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4637
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4638
{
4639 4640
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4641

4642
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4643 4644 4645
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4655
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4656
{
4657
	long nice, retval;
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4664 4665
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4666 4667 4668
	if (increment > 40)
		increment = 40;

4669
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4675 4676 4677
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4696
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4705
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4706 4707 4708
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4709
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4724
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4733
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4734
{
4735
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4736 4737 4738
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4739 4740
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4741
{
I
Ingo Molnar 已提交
4742
	BUG_ON(p->se.on_rq);
4743

L
Linus Torvalds 已提交
4744 4745
	p->policy = policy;
	p->rt_priority = prio;
4746 4747 4748
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4749 4750 4751 4752
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4753
	set_load_weight(p);
L
Linus Torvalds 已提交
4754 4755
}

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4772
static int __sched_setscheduler(struct task_struct *p, int policy,
4773
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4774
{
4775
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4776
	unsigned long flags;
4777
	const struct sched_class *prev_class;
4778
	struct rq *rq;
4779
	int reset_on_fork;
L
Linus Torvalds 已提交
4780

4781 4782
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4783 4784
recheck:
	/* double check policy once rq lock held */
4785 4786
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4787
		policy = oldpolicy = p->policy;
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4798 4799
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4800 4801
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4802 4803
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4804
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4805
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4806
		return -EINVAL;
4807
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4808 4809
		return -EINVAL;

4810 4811 4812
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4813
	if (user && !capable(CAP_SYS_NICE)) {
4814
		if (rt_policy(policy)) {
4815 4816
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4827 4828 4829 4830 4831 4832
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4833

4834
		/* can't change other user's priorities */
4835
		if (!check_same_owner(p))
4836
			return -EPERM;
4837 4838 4839 4840

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4841
	}
L
Linus Torvalds 已提交
4842

4843
	if (user) {
4844
		retval = security_task_setscheduler(p);
4845 4846 4847 4848
		if (retval)
			return retval;
	}

4849 4850 4851 4852
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4853
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4854 4855 4856 4857
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4858
	rq = __task_rq_lock(p);
4859

4860 4861 4862 4863 4864 4865 4866 4867 4868
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4884 4885 4886
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4887
		__task_rq_unlock(rq);
4888
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4889 4890
		goto recheck;
	}
I
Ingo Molnar 已提交
4891
	on_rq = p->se.on_rq;
4892
	running = task_current(rq, p);
4893
	if (on_rq)
4894
		deactivate_task(rq, p, 0);
4895 4896
	if (running)
		p->sched_class->put_prev_task(rq, p);
4897

4898 4899
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4900
	oldprio = p->prio;
4901
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4902
	__setscheduler(rq, p, policy, param->sched_priority);
4903

4904 4905
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4906 4907
	if (on_rq) {
		activate_task(rq, p, 0);
4908 4909

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4910
	}
4911
	__task_rq_unlock(rq);
4912
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4913

4914 4915
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4916 4917
	return 0;
}
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4928
		       const struct sched_param *param)
4929 4930 4931
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4932 4933
EXPORT_SYMBOL_GPL(sched_setscheduler);

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4946
			       const struct sched_param *param)
4947 4948 4949 4950
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4951 4952
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4953 4954 4955
{
	struct sched_param lparam;
	struct task_struct *p;
4956
	int retval;
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4962 4963 4964

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4965
	p = find_process_by_pid(pid);
4966 4967 4968
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4969

L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4979 4980
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4981
{
4982 4983 4984 4985
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4994
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001 5002
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5003
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5004
{
5005
	struct task_struct *p;
5006
	int retval;
L
Linus Torvalds 已提交
5007 5008

	if (pid < 0)
5009
		return -EINVAL;
L
Linus Torvalds 已提交
5010 5011

	retval = -ESRCH;
5012
	rcu_read_lock();
L
Linus Torvalds 已提交
5013 5014 5015 5016
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5017 5018
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5019
	}
5020
	rcu_read_unlock();
L
Linus Torvalds 已提交
5021 5022 5023 5024
	return retval;
}

/**
5025
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5026 5027 5028
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5029
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5030 5031
{
	struct sched_param lp;
5032
	struct task_struct *p;
5033
	int retval;
L
Linus Torvalds 已提交
5034 5035

	if (!param || pid < 0)
5036
		return -EINVAL;
L
Linus Torvalds 已提交
5037

5038
	rcu_read_lock();
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5049
	rcu_read_unlock();
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5059
	rcu_read_unlock();
L
Linus Torvalds 已提交
5060 5061 5062
	return retval;
}

5063
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5064
{
5065
	cpumask_var_t cpus_allowed, new_mask;
5066 5067
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5068

5069
	get_online_cpus();
5070
	rcu_read_lock();
L
Linus Torvalds 已提交
5071 5072 5073

	p = find_process_by_pid(pid);
	if (!p) {
5074
		rcu_read_unlock();
5075
		put_online_cpus();
L
Linus Torvalds 已提交
5076 5077 5078
		return -ESRCH;
	}

5079
	/* Prevent p going away */
L
Linus Torvalds 已提交
5080
	get_task_struct(p);
5081
	rcu_read_unlock();
L
Linus Torvalds 已提交
5082

5083 5084 5085 5086 5087 5088 5089 5090
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5091
	retval = -EPERM;
5092
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5093 5094
		goto out_unlock;

5095
	retval = security_task_setscheduler(p);
5096 5097 5098
	if (retval)
		goto out_unlock;

5099 5100
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5101
again:
5102
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5103

P
Paul Menage 已提交
5104
	if (!retval) {
5105 5106
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5107 5108 5109 5110 5111
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5112
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5113 5114 5115
			goto again;
		}
	}
L
Linus Torvalds 已提交
5116
out_unlock:
5117 5118 5119 5120
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5121
	put_task_struct(p);
5122
	put_online_cpus();
L
Linus Torvalds 已提交
5123 5124 5125 5126
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5127
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5128
{
5129 5130 5131 5132 5133
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5143 5144
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5145
{
5146
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5147 5148
	int retval;

5149 5150
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5151

5152 5153 5154 5155 5156
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5157 5158
}

5159
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5160
{
5161
	struct task_struct *p;
5162 5163
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5164 5165
	int retval;

5166
	get_online_cpus();
5167
	rcu_read_lock();
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5174 5175 5176 5177
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5178
	rq = task_rq_lock(p, &flags);
5179
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5180
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5181 5182

out_unlock:
5183
	rcu_read_unlock();
5184
	put_online_cpus();
L
Linus Torvalds 已提交
5185

5186
	return retval;
L
Linus Torvalds 已提交
5187 5188 5189 5190 5191 5192 5193 5194
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5195 5196
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5197 5198
{
	int ret;
5199
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5200

A
Anton Blanchard 已提交
5201
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5202 5203
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5204 5205
		return -EINVAL;

5206 5207
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5208

5209 5210
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5211
		size_t retlen = min_t(size_t, len, cpumask_size());
5212 5213

		if (copy_to_user(user_mask_ptr, mask, retlen))
5214 5215
			ret = -EFAULT;
		else
5216
			ret = retlen;
5217 5218
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5219

5220
	return ret;
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5226 5227
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5228
 */
5229
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5230
{
5231
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5232

5233
	schedstat_inc(rq, yld_count);
5234
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5241
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5242
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5250 5251 5252 5253 5254
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5255
static void __cond_resched(void)
L
Linus Torvalds 已提交
5256
{
5257 5258 5259
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5260 5261
}

5262
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5263
{
P
Peter Zijlstra 已提交
5264
	if (should_resched()) {
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269
		__cond_resched();
		return 1;
	}
	return 0;
}
5270
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5271 5272

/*
5273
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5274 5275
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5276
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5277 5278 5279
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5280
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5281
{
P
Peter Zijlstra 已提交
5282
	int resched = should_resched();
J
Jan Kara 已提交
5283 5284
	int ret = 0;

5285 5286
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5287
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5288
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5289
		if (resched)
N
Nick Piggin 已提交
5290 5291 5292
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5293
		ret = 1;
L
Linus Torvalds 已提交
5294 5295
		spin_lock(lock);
	}
J
Jan Kara 已提交
5296
	return ret;
L
Linus Torvalds 已提交
5297
}
5298
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5299

5300
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5301 5302 5303
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5304
	if (should_resched()) {
5305
		local_bh_enable();
L
Linus Torvalds 已提交
5306 5307 5308 5309 5310 5311
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5312
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5313 5314 5315 5316

/**
 * yield - yield the current processor to other threads.
 *
5317
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5328
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5329 5330 5331 5332
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5333
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5334

5335
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5336
	atomic_inc(&rq->nr_iowait);
5337
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5338
	schedule();
5339
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5340
	atomic_dec(&rq->nr_iowait);
5341
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5342 5343 5344 5345 5346
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5347
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5348 5349
	long ret;

5350
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5351
	atomic_inc(&rq->nr_iowait);
5352
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5353
	ret = schedule_timeout(timeout);
5354
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5355
	atomic_dec(&rq->nr_iowait);
5356
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5367
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5377
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5378
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5392
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398 5399 5400 5401
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5402
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5403
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5417
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5418
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5419
{
5420
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5421
	unsigned int time_slice;
5422 5423
	unsigned long flags;
	struct rq *rq;
5424
	int retval;
L
Linus Torvalds 已提交
5425 5426 5427
	struct timespec t;

	if (pid < 0)
5428
		return -EINVAL;
L
Linus Torvalds 已提交
5429 5430

	retval = -ESRCH;
5431
	rcu_read_lock();
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437 5438 5439
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5440 5441 5442
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5443

5444
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5445
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5446 5447
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5448

L
Linus Torvalds 已提交
5449
out_unlock:
5450
	rcu_read_unlock();
L
Linus Torvalds 已提交
5451 5452 5453
	return retval;
}

5454
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5455

5456
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5457 5458
{
	unsigned long free = 0;
5459
	unsigned state;
L
Linus Torvalds 已提交
5460 5461

	state = p->state ? __ffs(p->state) + 1 : 0;
5462
	printk(KERN_INFO "%-15.15s %c", p->comm,
5463
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5464
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5465
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5466
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5467
	else
P
Peter Zijlstra 已提交
5468
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5469 5470
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5471
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5472
	else
P
Peter Zijlstra 已提交
5473
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5474 5475
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5476
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5477
#endif
P
Peter Zijlstra 已提交
5478
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5479 5480
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5481

5482
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5483 5484
}

I
Ingo Molnar 已提交
5485
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5486
{
5487
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5488

5489
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5490 5491
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5492
#else
P
Peter Zijlstra 已提交
5493 5494
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5495 5496 5497 5498 5499 5500 5501 5502
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5503
		if (!state_filter || (p->state & state_filter))
5504
			sched_show_task(p);
L
Linus Torvalds 已提交
5505 5506
	} while_each_thread(g, p);

5507 5508
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5509 5510 5511
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5512
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5513 5514 5515
	/*
	 * Only show locks if all tasks are dumped:
	 */
5516
	if (!state_filter)
I
Ingo Molnar 已提交
5517
		debug_show_all_locks();
L
Linus Torvalds 已提交
5518 5519
}

I
Ingo Molnar 已提交
5520 5521
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5522
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5523 5524
}

5525 5526 5527 5528 5529 5530 5531 5532
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5533
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5534
{
5535
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5536 5537
	unsigned long flags;

5538
	raw_spin_lock_irqsave(&rq->lock, flags);
5539

I
Ingo Molnar 已提交
5540
	__sched_fork(idle);
5541
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5542 5543
	idle->se.exec_start = sched_clock();

5544
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5556
	__set_task_cpu(idle, cpu);
5557
	rcu_read_unlock();
L
Linus Torvalds 已提交
5558 5559

	rq->curr = rq->idle = idle;
5560 5561 5562
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5563
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5564 5565

	/* Set the preempt count _outside_ the spinlocks! */
5566 5567 5568
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5569
	task_thread_info(idle)->preempt_count = 0;
5570
#endif
I
Ingo Molnar 已提交
5571 5572 5573 5574
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5575
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5576 5577 5578 5579 5580 5581 5582
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5583
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5584
 */
5585
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5586

I
Ingo Molnar 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5596
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5597
{
5598
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5613

5614 5615
	return factor;
}
I
Ingo Molnar 已提交
5616

5617 5618 5619
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5620

5621 5622 5623 5624 5625 5626 5627
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5628

5629 5630 5631
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5632 5633
}

L
Linus Torvalds 已提交
5634 5635 5636 5637
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5638 5639 5640 5641 5642 5643
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5644
 *    it and puts it into the right queue.
5645 5646
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653 5654
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5655
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5656 5657
 * call is not atomic; no spinlocks may be held.
 */
5658
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5659 5660
{
	unsigned long flags;
5661
	struct rq *rq;
5662
	unsigned int dest_cpu;
5663
	int ret = 0;
L
Linus Torvalds 已提交
5664

P
Peter Zijlstra 已提交
5665 5666 5667 5668 5669 5670 5671
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5672
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5673 5674 5675 5676
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5677

5678
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5679 5680 5681 5682
		ret = -EINVAL;
		goto out;
	}

5683
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5684
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5685 5686 5687 5688
		ret = -EINVAL;
		goto out;
	}

5689
	if (p->sched_class->set_cpus_allowed)
5690
		p->sched_class->set_cpus_allowed(p, new_mask);
5691
	else {
5692 5693
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5694 5695
	}

L
Linus Torvalds 已提交
5696
	/* Can the task run on the task's current CPU? If so, we're done */
5697
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5698 5699
		goto out;

5700
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5701
	if (migrate_task(p, rq)) {
5702
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5703 5704
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5705
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5706 5707 5708 5709 5710
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5711

L
Linus Torvalds 已提交
5712 5713
	return ret;
}
5714
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5715 5716

/*
I
Ingo Molnar 已提交
5717
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5724 5725
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5726
 */
5727
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5728
{
5729
	struct rq *rq_dest, *rq_src;
5730
	int ret = 0;
L
Linus Torvalds 已提交
5731

5732
	if (unlikely(!cpu_active(dest_cpu)))
5733
		return ret;
L
Linus Torvalds 已提交
5734 5735 5736 5737 5738 5739 5740

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5741
		goto done;
L
Linus Torvalds 已提交
5742
	/* Affinity changed (again). */
5743
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5744
		goto fail;
L
Linus Torvalds 已提交
5745

5746 5747 5748 5749 5750
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5751
		deactivate_task(rq_src, p, 0);
5752
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5753
		activate_task(rq_dest, p, 0);
5754
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5755
	}
L
Linus Torvalds 已提交
5756
done:
5757
	ret = 1;
L
Linus Torvalds 已提交
5758
fail:
L
Linus Torvalds 已提交
5759
	double_rq_unlock(rq_src, rq_dest);
5760
	return ret;
L
Linus Torvalds 已提交
5761 5762 5763
}

/*
5764 5765 5766
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5767
 */
5768
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5769
{
5770
	struct migration_arg *arg = data;
5771

5772 5773 5774 5775
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5776
	local_irq_disable();
5777
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5778
	local_irq_enable();
L
Linus Torvalds 已提交
5779
	return 0;
5780 5781
}

L
Linus Torvalds 已提交
5782
#ifdef CONFIG_HOTPLUG_CPU
5783

5784
/*
5785 5786
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5787
 */
5788
void idle_task_exit(void)
L
Linus Torvalds 已提交
5789
{
5790
	struct mm_struct *mm = current->active_mm;
5791

5792
	BUG_ON(cpu_online(smp_processor_id()));
5793

5794 5795 5796
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5806
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5807
{
5808
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5814
/*
5815
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5816
 */
5817
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5818
{
5819 5820
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5821 5822
}

5823
/*
5824 5825 5826 5827 5828 5829
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5830
 */
5831
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5832
{
5833
	struct rq *rq = cpu_rq(dead_cpu);
5834 5835
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5836 5837

	/*
5838 5839 5840 5841 5842 5843 5844
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5845
	 */
5846
	rq->stop = NULL;
5847

I
Ingo Molnar 已提交
5848
	for ( ; ; ) {
5849 5850 5851 5852 5853
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5854
			break;
5855

5856
		next = pick_next_task(rq);
5857
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5858
		next->sched_class->put_prev_task(rq, next);
5859

5860 5861 5862 5863 5864 5865 5866
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5867
	}
5868

5869
	rq->stop = stop;
5870
}
5871

L
Linus Torvalds 已提交
5872 5873
#endif /* CONFIG_HOTPLUG_CPU */

5874 5875 5876
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5877 5878
	{
		.procname	= "sched_domain",
5879
		.mode		= 0555,
5880
	},
5881
	{}
5882 5883 5884
};

static struct ctl_table sd_ctl_root[] = {
5885 5886
	{
		.procname	= "kernel",
5887
		.mode		= 0555,
5888 5889
		.child		= sd_ctl_dir,
	},
5890
	{}
5891 5892 5893 5894 5895
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5896
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5897 5898 5899 5900

	return entry;
}

5901 5902
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5903
	struct ctl_table *entry;
5904

5905 5906 5907
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5908
	 * will always be set. In the lowest directory the names are
5909 5910 5911
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5912 5913
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5914 5915 5916
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5917 5918 5919 5920 5921

	kfree(*tablep);
	*tablep = NULL;
}

5922
static void
5923
set_table_entry(struct ctl_table *entry,
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5937
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5938

5939 5940 5941
	if (table == NULL)
		return NULL;

5942
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5943
		sizeof(long), 0644, proc_doulongvec_minmax);
5944
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5945
		sizeof(long), 0644, proc_doulongvec_minmax);
5946
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5947
		sizeof(int), 0644, proc_dointvec_minmax);
5948
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5949
		sizeof(int), 0644, proc_dointvec_minmax);
5950
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5951
		sizeof(int), 0644, proc_dointvec_minmax);
5952
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5953
		sizeof(int), 0644, proc_dointvec_minmax);
5954
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5955
		sizeof(int), 0644, proc_dointvec_minmax);
5956
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5957
		sizeof(int), 0644, proc_dointvec_minmax);
5958
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5959
		sizeof(int), 0644, proc_dointvec_minmax);
5960
	set_table_entry(&table[9], "cache_nice_tries",
5961 5962
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5963
	set_table_entry(&table[10], "flags", &sd->flags,
5964
		sizeof(int), 0644, proc_dointvec_minmax);
5965 5966 5967
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5968 5969 5970 5971

	return table;
}

5972
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5973 5974 5975 5976 5977 5978 5979 5980 5981
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5982 5983
	if (table == NULL)
		return NULL;
5984 5985 5986 5987 5988

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5989
		entry->mode = 0555;
5990 5991 5992 5993 5994 5995 5996 5997
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5998
static void register_sched_domain_sysctl(void)
5999
{
6000
	int i, cpu_num = num_possible_cpus();
6001 6002 6003
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6004 6005 6006
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6007 6008 6009
	if (entry == NULL)
		return;

6010
	for_each_possible_cpu(i) {
6011 6012
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6013
		entry->mode = 0555;
6014
		entry->child = sd_alloc_ctl_cpu_table(i);
6015
		entry++;
6016
	}
6017 6018

	WARN_ON(sd_sysctl_header);
6019 6020
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6021

6022
/* may be called multiple times per register */
6023 6024
static void unregister_sched_domain_sysctl(void)
{
6025 6026
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6027
	sd_sysctl_header = NULL;
6028 6029
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6030
}
6031
#else
6032 6033 6034 6035
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6036 6037 6038 6039
{
}
#endif

6040 6041 6042 6043 6044
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6045
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6065
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6066 6067 6068 6069
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6070 6071 6072 6073
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6074 6075
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6076
{
6077
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6078
	unsigned long flags;
6079
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6080

6081
	switch (action & ~CPU_TASKS_FROZEN) {
6082

L
Linus Torvalds 已提交
6083
	case CPU_UP_PREPARE:
6084
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6085
		break;
6086

L
Linus Torvalds 已提交
6087
	case CPU_ONLINE:
6088
		/* Update our root-domain */
6089
		raw_spin_lock_irqsave(&rq->lock, flags);
6090
		if (rq->rd) {
6091
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6092 6093

			set_rq_online(rq);
6094
		}
6095
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6096
		break;
6097

L
Linus Torvalds 已提交
6098
#ifdef CONFIG_HOTPLUG_CPU
6099
	case CPU_DYING:
G
Gregory Haskins 已提交
6100
		/* Update our root-domain */
6101
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6102
		if (rq->rd) {
6103
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6104
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6105
		}
6106 6107
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6108
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6109 6110 6111

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6112
		break;
L
Linus Torvalds 已提交
6113 6114 6115 6116 6117
#endif
	}
	return NOTIFY_OK;
}

6118 6119 6120
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6121
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6122
 */
6123
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6124
	.notifier_call = migration_call,
6125
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6126 6127
};

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6153
static int __init migration_init(void)
L
Linus Torvalds 已提交
6154 6155
{
	void *cpu = (void *)(long)smp_processor_id();
6156
	int err;
6157

6158
	/* Initialize migration for the boot CPU */
6159 6160
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6161 6162
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6163

6164 6165 6166 6167
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6168
	return 0;
L
Linus Torvalds 已提交
6169
}
6170
early_initcall(migration_init);
L
Linus Torvalds 已提交
6171 6172 6173
#endif

#ifdef CONFIG_SMP
6174

6175
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6176

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6187
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6188
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6189
{
I
Ingo Molnar 已提交
6190
	struct sched_group *group = sd->groups;
6191
	char str[256];
L
Linus Torvalds 已提交
6192

R
Rusty Russell 已提交
6193
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6194
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6195 6196 6197 6198

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6199
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6200
		if (sd->parent)
P
Peter Zijlstra 已提交
6201 6202
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6203
		return -1;
N
Nick Piggin 已提交
6204 6205
	}

P
Peter Zijlstra 已提交
6206
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6207

6208
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6209 6210
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6211
	}
6212
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6213 6214
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6215
	}
L
Linus Torvalds 已提交
6216

I
Ingo Molnar 已提交
6217
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6218
	do {
I
Ingo Molnar 已提交
6219
		if (!group) {
P
Peter Zijlstra 已提交
6220 6221
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6222 6223 6224
			break;
		}

6225
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6226 6227 6228
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6229 6230
			break;
		}
L
Linus Torvalds 已提交
6231

6232
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6233 6234
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6235 6236
			break;
		}
L
Linus Torvalds 已提交
6237

6238
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6239 6240
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6241 6242
			break;
		}
L
Linus Torvalds 已提交
6243

6244
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6245

R
Rusty Russell 已提交
6246
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6247

P
Peter Zijlstra 已提交
6248
		printk(KERN_CONT " %s", str);
6249
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6250 6251
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6252
		}
L
Linus Torvalds 已提交
6253

I
Ingo Molnar 已提交
6254 6255
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6256
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6257

6258
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6259
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6260

6261 6262
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6263 6264
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6265 6266
	return 0;
}
L
Linus Torvalds 已提交
6267

I
Ingo Molnar 已提交
6268 6269
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6270
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6271
	int level = 0;
L
Linus Torvalds 已提交
6272

6273 6274 6275
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6276 6277 6278 6279
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6280

I
Ingo Molnar 已提交
6281 6282
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6283
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6284 6285 6286 6287
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6288
	for (;;) {
6289
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6290
			break;
L
Linus Torvalds 已提交
6291 6292
		level++;
		sd = sd->parent;
6293
		if (!sd)
I
Ingo Molnar 已提交
6294 6295
			break;
	}
6296
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6297
}
6298
#else /* !CONFIG_SCHED_DEBUG */
6299
# define sched_domain_debug(sd, cpu) do { } while (0)
6300
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6301

6302
static int sd_degenerate(struct sched_domain *sd)
6303
{
6304
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6305 6306 6307 6308 6309 6310
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6311 6312 6313
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6314 6315 6316 6317 6318
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6319
	if (sd->flags & (SD_WAKE_AFFINE))
6320 6321 6322 6323 6324
		return 0;

	return 1;
}

6325 6326
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6327 6328 6329 6330 6331 6332
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6333
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6334 6335 6336 6337 6338 6339 6340
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6341 6342 6343
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6344 6345
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6346 6347 6348 6349 6350 6351 6352
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6353 6354
static void free_rootdomain(struct root_domain *rd)
{
6355 6356
	synchronize_sched();

6357 6358
	cpupri_cleanup(&rd->cpupri);

6359 6360 6361 6362 6363 6364
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6365 6366
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6367
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6368 6369
	unsigned long flags;

6370
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6371 6372

	if (rq->rd) {
I
Ingo Molnar 已提交
6373
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6374

6375
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6376
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6377

6378
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6379

I
Ingo Molnar 已提交
6380 6381 6382 6383 6384 6385 6386
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6387 6388 6389 6390 6391
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6392
	cpumask_set_cpu(rq->cpu, rd->span);
6393
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6394
		set_rq_online(rq);
G
Gregory Haskins 已提交
6395

6396
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6397 6398 6399

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6400 6401
}

6402
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6403 6404 6405
{
	memset(rd, 0, sizeof(*rd));

6406
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6407
		goto out;
6408
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6409
		goto free_span;
6410
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6411
		goto free_online;
6412

6413
	if (cpupri_init(&rd->cpupri) != 0)
6414
		goto free_rto_mask;
6415
	return 0;
6416

6417 6418
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6419 6420 6421 6422
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6423
out:
6424
	return -ENOMEM;
G
Gregory Haskins 已提交
6425 6426 6427 6428
}

static void init_defrootdomain(void)
{
6429
	init_rootdomain(&def_root_domain);
6430

G
Gregory Haskins 已提交
6431 6432 6433
	atomic_set(&def_root_domain.refcount, 1);
}

6434
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6435 6436 6437 6438 6439 6440 6441
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6442
	if (init_rootdomain(rd) != 0) {
6443 6444 6445
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6446 6447 6448 6449

	return rd;
}

L
Linus Torvalds 已提交
6450
/*
I
Ingo Molnar 已提交
6451
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6452 6453
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6454 6455
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6456
{
6457
	struct rq *rq = cpu_rq(cpu);
6458 6459
	struct sched_domain *tmp;

6460 6461 6462
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6463
	/* Remove the sched domains which do not contribute to scheduling. */
6464
	for (tmp = sd; tmp; ) {
6465 6466 6467
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6468

6469
		if (sd_parent_degenerate(tmp, parent)) {
6470
			tmp->parent = parent->parent;
6471 6472
			if (parent->parent)
				parent->parent->child = tmp;
6473 6474
		} else
			tmp = tmp->parent;
6475 6476
	}

6477
	if (sd && sd_degenerate(sd)) {
6478
		sd = sd->parent;
6479 6480 6481
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6482 6483 6484

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6485
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6486
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6487 6488 6489
}

/* cpus with isolated domains */
6490
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6491 6492 6493 6494

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6495
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6496
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6497 6498 6499
	return 1;
}

I
Ingo Molnar 已提交
6500
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6501 6502

/*
6503 6504
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6505 6506
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6507 6508 6509 6510 6511
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6512
static void
6513 6514 6515
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6516
					struct sched_group **sg,
6517 6518
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6519 6520 6521 6522
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6523
	cpumask_clear(covered);
6524

6525
	for_each_cpu(i, span) {
6526
		struct sched_group *sg;
6527
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6528 6529
		int j;

6530
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6531 6532
			continue;

6533
		cpumask_clear(sched_group_cpus(sg));
6534
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6535

6536
		for_each_cpu(j, span) {
6537
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6538 6539
				continue;

6540
			cpumask_set_cpu(j, covered);
6541
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6552
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6553

6554
#ifdef CONFIG_NUMA
6555

6556 6557 6558 6559 6560
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6561
 * Find the next node to include in a given scheduling domain. Simply
6562 6563 6564 6565
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6566
static int find_next_best_node(int node, nodemask_t *used_nodes)
6567 6568 6569 6570 6571
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6572
	for (i = 0; i < nr_node_ids; i++) {
6573
		/* Start at @node */
6574
		n = (node + i) % nr_node_ids;
6575 6576 6577 6578 6579

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6580
		if (node_isset(n, *used_nodes))
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6592
	node_set(best_node, *used_nodes);
6593 6594 6595 6596 6597 6598
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6599
 * @span: resulting cpumask
6600
 *
I
Ingo Molnar 已提交
6601
 * Given a node, construct a good cpumask for its sched_domain to span. It
6602 6603 6604
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6605
static void sched_domain_node_span(int node, struct cpumask *span)
6606
{
6607
	nodemask_t used_nodes;
6608
	int i;
6609

6610
	cpumask_clear(span);
6611
	nodes_clear(used_nodes);
6612

6613
	cpumask_or(span, span, cpumask_of_node(node));
6614
	node_set(node, used_nodes);
6615 6616

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6617
		int next_node = find_next_best_node(node, &used_nodes);
6618

6619
		cpumask_or(span, span, cpumask_of_node(next_node));
6620 6621
	}
}
6622
#endif /* CONFIG_NUMA */
6623

6624
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6625

6626 6627
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6628 6629 6630
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6652
	cpumask_var_t		this_book_map;
6653 6654 6655 6656 6657 6658
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6659 6660 6661 6662 6663
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6664
	sa_this_book_map,
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6677
/*
6678
 * SMT sched-domains:
6679
 */
L
Linus Torvalds 已提交
6680
#ifdef CONFIG_SCHED_SMT
6681
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6682
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6683

I
Ingo Molnar 已提交
6684
static int
6685 6686
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6687
{
6688
	if (sg)
6689
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6690 6691
	return cpu;
}
6692
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6693

6694 6695 6696
/*
 * multi-core sched-domains:
 */
6697
#ifdef CONFIG_SCHED_MC
6698 6699
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6700

I
Ingo Molnar 已提交
6701
static int
6702 6703
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6704
{
6705
	int group;
6706
#ifdef CONFIG_SCHED_SMT
6707
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6708
	group = cpumask_first(mask);
6709 6710 6711
#else
	group = cpu;
#endif
6712
	if (sg)
6713
		*sg = &per_cpu(sched_group_core, group).sg;
6714
	return group;
6715
}
6716
#endif /* CONFIG_SCHED_MC */
6717

6718 6719 6720 6721 6722 6723 6724
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6725
static int
6726 6727
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6728
{
6729 6730 6731 6732 6733 6734 6735 6736
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6737
	if (sg)
6738 6739
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6740
}
6741
#endif /* CONFIG_SCHED_BOOK */
6742

6743 6744
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6745

I
Ingo Molnar 已提交
6746
static int
6747 6748
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6749
{
6750
	int group;
6751 6752 6753 6754
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6755
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6756
	group = cpumask_first(mask);
6757
#elif defined(CONFIG_SCHED_SMT)
6758
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6759
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6760
#else
6761
	group = cpu;
L
Linus Torvalds 已提交
6762
#endif
6763
	if (sg)
6764
		*sg = &per_cpu(sched_group_phys, group).sg;
6765
	return group;
L
Linus Torvalds 已提交
6766 6767 6768 6769
}

#ifdef CONFIG_NUMA
/*
6770 6771 6772
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6773
 */
6774
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6775
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6776

6777
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6778
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6779

6780 6781 6782
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6783
{
6784 6785
	int group;

6786
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6787
	group = cpumask_first(nodemask);
6788 6789

	if (sg)
6790
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6791
	return group;
L
Linus Torvalds 已提交
6792
}
6793

6794 6795 6796 6797 6798 6799 6800
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6801
	do {
6802
		for_each_cpu(j, sched_group_cpus(sg)) {
6803
			struct sched_domain *sd;
6804

6805
			sd = &per_cpu(phys_domains, j).sd;
6806
			if (j != group_first_cpu(sd->groups)) {
6807 6808 6809 6810 6811 6812
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6813

6814
			sg->cpu_power += sd->groups->cpu_power;
6815 6816 6817
		}
		sg = sg->next;
	} while (sg != group_head);
6818
}
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6840 6841
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6842 6843 6844 6845 6846 6847 6848 6849 6850
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6851
	sg->cpu_power = 0;
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6870 6871
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6872 6873
			return -ENOMEM;
		}
6874
		sg->cpu_power = 0;
6875 6876 6877 6878 6879 6880 6881 6882 6883
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6884
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6885

6886
#ifdef CONFIG_NUMA
6887
/* Free memory allocated for various sched_group structures */
6888 6889
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6890
{
6891
	int cpu, i;
6892

6893
	for_each_cpu(cpu, cpu_map) {
6894 6895 6896 6897 6898 6899
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6900
		for (i = 0; i < nr_node_ids; i++) {
6901 6902
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6903
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6904
			if (cpumask_empty(nodemask))
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6921
#else /* !CONFIG_NUMA */
6922 6923
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6924 6925
{
}
6926
#endif /* CONFIG_NUMA */
6927

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6942 6943
	long power;
	int weight;
6944 6945 6946

	WARN_ON(!sd || !sd->groups);

6947
	if (cpu != group_first_cpu(sd->groups))
6948 6949
		return;

6950 6951
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

6952 6953
	child = sd->child;

6954
	sd->groups->cpu_power = 0;
6955

6956 6957 6958 6959 6960
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6961 6962 6963
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6964
		 */
P
Peter Zijlstra 已提交
6965 6966
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6967
			power /= weight;
P
Peter Zijlstra 已提交
6968 6969
			power >>= SCHED_LOAD_SHIFT;
		}
6970
		sd->groups->cpu_power += power;
6971 6972 6973 6974
		return;
	}

	/*
6975
	 * Add cpu_power of each child group to this groups cpu_power.
6976 6977 6978
	 */
	group = child->groups;
	do {
6979
		sd->groups->cpu_power += group->cpu_power;
6980 6981 6982 6983
		group = group->next;
	} while (group != child->groups);
}

6984 6985 6986 6987 6988
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6989 6990 6991 6992 6993 6994
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6995
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6996

6997 6998 6999 7000 7001
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7002
	sd->level = SD_LV_##type;				\
7003
	SD_INIT_NAME(sd, type);					\
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7017 7018 7019
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7020

7021 7022 7023 7024
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7025 7026 7027 7028 7029 7030
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7049
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7050 7051
	} else {
		/* turn on idle balance on this domain */
7052
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7053 7054 7055
	}
}

7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7069 7070
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7071 7072 7073 7074 7075 7076 7077
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7078
#ifdef CONFIG_NUMA
7079 7080 7081 7082 7083 7084 7085
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7086
#endif
7087 7088 7089 7090
	case sa_none:
		break;
	}
}
7091

7092 7093 7094
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7095
#ifdef CONFIG_NUMA
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7106
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7107
		return sa_notcovered;
7108
	}
7109
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7110
#endif
7111 7112 7113 7114 7115 7116
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7117
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7118
		return sa_this_core_map;
7119 7120
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7121 7122 7123 7124
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7125
		printk(KERN_WARNING "Cannot alloc root domain\n");
7126
		return sa_tmpmask;
G
Gregory Haskins 已提交
7127
	}
7128 7129
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7130

7131 7132 7133 7134
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7135
#ifdef CONFIG_NUMA
7136
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7137

7138 7139 7140 7141 7142
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7143
		set_domain_attribute(sd, attr);
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7158
#endif
7159 7160
	return sd;
}
L
Linus Torvalds 已提交
7161

7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7177

7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7195 7196 7197 7198 7199
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7200
#ifdef CONFIG_SCHED_MC
7201 7202 7203 7204 7205 7206 7207
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7208
#endif
7209 7210
	return sd;
}
7211

7212 7213 7214 7215 7216
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7217
#ifdef CONFIG_SCHED_SMT
7218 7219 7220 7221 7222 7223 7224
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7225
#endif
7226 7227
	return sd;
}
L
Linus Torvalds 已提交
7228

7229 7230 7231 7232
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7233
#ifdef CONFIG_SCHED_SMT
7234 7235 7236 7237 7238 7239 7240 7241
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7242
#endif
7243
#ifdef CONFIG_SCHED_MC
7244 7245 7246 7247 7248 7249 7250
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7251 7252 7253 7254 7255 7256 7257 7258 7259
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7260
#endif
7261 7262 7263 7264 7265 7266 7267
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7268
#ifdef CONFIG_NUMA
7269 7270 7271 7272 7273
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7274 7275
	default:
		break;
7276
	}
7277
}
7278

7279 7280 7281 7282 7283 7284 7285 7286 7287
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7288
	struct sched_domain *sd;
7289
	int i;
7290
#ifdef CONFIG_NUMA
7291
	d.sd_allnodes = 0;
7292
#endif
7293

7294 7295 7296 7297
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7298

L
Linus Torvalds 已提交
7299
	/*
7300
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7301
	 */
7302
	for_each_cpu(i, cpu_map) {
7303 7304
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7305

7306
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7307
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7308
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7309
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7310
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7311
	}
7312

7313
	for_each_cpu(i, cpu_map) {
7314
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7315
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7316
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7317
	}
7318

L
Linus Torvalds 已提交
7319
	/* Set up physical groups */
7320 7321
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7322

L
Linus Torvalds 已提交
7323 7324
#ifdef CONFIG_NUMA
	/* Set up node groups */
7325 7326
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7327

7328 7329
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7330
			goto error;
L
Linus Torvalds 已提交
7331 7332 7333
#endif

	/* Calculate CPU power for physical packages and nodes */
7334
#ifdef CONFIG_SCHED_SMT
7335
	for_each_cpu(i, cpu_map) {
7336
		sd = &per_cpu(cpu_domains, i).sd;
7337
		init_sched_groups_power(i, sd);
7338
	}
L
Linus Torvalds 已提交
7339
#endif
7340
#ifdef CONFIG_SCHED_MC
7341
	for_each_cpu(i, cpu_map) {
7342
		sd = &per_cpu(core_domains, i).sd;
7343
		init_sched_groups_power(i, sd);
7344 7345
	}
#endif
7346 7347 7348 7349 7350 7351
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7352

7353
	for_each_cpu(i, cpu_map) {
7354
		sd = &per_cpu(phys_domains, i).sd;
7355
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7356 7357
	}

7358
#ifdef CONFIG_NUMA
7359
	for (i = 0; i < nr_node_ids; i++)
7360
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7361

7362
	if (d.sd_allnodes) {
7363
		struct sched_group *sg;
7364

7365
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7366
								d.tmpmask);
7367 7368
		init_numa_sched_groups_power(sg);
	}
7369 7370
#endif

L
Linus Torvalds 已提交
7371
	/* Attach the domains */
7372
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7373
#ifdef CONFIG_SCHED_SMT
7374
		sd = &per_cpu(cpu_domains, i).sd;
7375
#elif defined(CONFIG_SCHED_MC)
7376
		sd = &per_cpu(core_domains, i).sd;
7377 7378
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7379
#else
7380
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7381
#endif
7382
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7383
	}
7384

7385 7386 7387
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7388 7389

error:
7390 7391
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7392
}
P
Paul Jackson 已提交
7393

7394
static int build_sched_domains(const struct cpumask *cpu_map)
7395 7396 7397 7398
{
	return __build_sched_domains(cpu_map, NULL);
}

7399
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7400
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7401 7402
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7403 7404 7405

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7406 7407
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7408
 */
7409
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7410

7411 7412 7413 7414 7415 7416
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7417
{
7418
	return 0;
7419 7420
}

7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7446
/*
I
Ingo Molnar 已提交
7447
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7448 7449
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7450
 */
7451
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7452
{
7453 7454
	int err;

7455
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7456
	ndoms_cur = 1;
7457
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7458
	if (!doms_cur)
7459 7460
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7461
	dattr_cur = NULL;
7462
	err = build_sched_domains(doms_cur[0]);
7463
	register_sched_domain_sysctl();
7464 7465

	return err;
7466 7467
}

7468 7469
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7470
{
7471
	free_sched_groups(cpu_map, tmpmask);
7472
}
L
Linus Torvalds 已提交
7473

7474 7475 7476 7477
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7478
static void detach_destroy_domains(const struct cpumask *cpu_map)
7479
{
7480 7481
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7482 7483
	int i;

7484
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7485
		cpu_attach_domain(NULL, &def_root_domain, i);
7486
	synchronize_sched();
7487
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7488 7489
}

7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7506 7507
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7508
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7509 7510 7511
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7512
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7513 7514 7515
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7516 7517 7518
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7519 7520 7521 7522 7523 7524
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7525
 *
7526
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7527 7528
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7529
 *
P
Paul Jackson 已提交
7530 7531
 * Call with hotplug lock held
 */
7532
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7533
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7534
{
7535
	int i, j, n;
7536
	int new_topology;
P
Paul Jackson 已提交
7537

7538
	mutex_lock(&sched_domains_mutex);
7539

7540 7541 7542
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7543 7544 7545
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7546
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7547 7548 7549

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7550
		for (j = 0; j < n && !new_topology; j++) {
7551
			if (cpumask_equal(doms_cur[i], doms_new[j])
7552
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7553 7554 7555
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7556
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7557 7558 7559 7560
match1:
		;
	}

7561 7562
	if (doms_new == NULL) {
		ndoms_cur = 0;
7563
		doms_new = &fallback_doms;
7564
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7565
		WARN_ON_ONCE(dattr_new);
7566 7567
	}

P
Paul Jackson 已提交
7568 7569
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7570
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7571
			if (cpumask_equal(doms_new[i], doms_cur[j])
7572
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7573 7574 7575
				goto match2;
		}
		/* no match - add a new doms_new */
7576
		__build_sched_domains(doms_new[i],
7577
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7578 7579 7580 7581 7582
match2:
		;
	}

	/* Remember the new sched domains */
7583 7584
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7585
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7586
	doms_cur = doms_new;
7587
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7588
	ndoms_cur = ndoms_new;
7589 7590

	register_sched_domain_sysctl();
7591

7592
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7593 7594
}

7595
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7596
static void arch_reinit_sched_domains(void)
7597
{
7598
	get_online_cpus();
7599 7600 7601 7602

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7603
	rebuild_sched_domains();
7604
	put_online_cpus();
7605 7606 7607 7608
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7609
	unsigned int level = 0;
7610

7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7622 7623 7624
		return -EINVAL;

	if (smt)
7625
		sched_smt_power_savings = level;
7626
	else
7627
		sched_mc_power_savings = level;
7628

7629
	arch_reinit_sched_domains();
7630

7631
	return count;
7632 7633 7634
}

#ifdef CONFIG_SCHED_MC
7635
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7636
					   struct sysdev_class_attribute *attr,
7637
					   char *page)
7638 7639 7640
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7641
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7642
					    struct sysdev_class_attribute *attr,
7643
					    const char *buf, size_t count)
7644 7645 7646
{
	return sched_power_savings_store(buf, count, 0);
}
7647 7648 7649
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7650 7651 7652
#endif

#ifdef CONFIG_SCHED_SMT
7653
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7654
					    struct sysdev_class_attribute *attr,
7655
					    char *page)
7656 7657 7658
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7659
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7660
					     struct sysdev_class_attribute *attr,
7661
					     const char *buf, size_t count)
7662 7663 7664
{
	return sched_power_savings_store(buf, count, 1);
}
7665 7666
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7667 7668 7669
		   sched_smt_power_savings_store);
#endif

7670
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7686
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7687

L
Linus Torvalds 已提交
7688
/*
7689 7690 7691
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7692
 */
7693 7694
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7695
{
7696
	switch (action & ~CPU_TASKS_FROZEN) {
7697
	case CPU_ONLINE:
7698
	case CPU_DOWN_FAILED:
7699
		cpuset_update_active_cpus();
7700
		return NOTIFY_OK;
7701 7702 7703 7704
	default:
		return NOTIFY_DONE;
	}
}
7705

7706 7707
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7708 7709 7710 7711 7712
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7713 7714 7715 7716 7717 7718 7719
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7720
{
P
Peter Zijlstra 已提交
7721 7722
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7723 7724
	switch (action) {
	case CPU_DOWN_PREPARE:
7725
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7726
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7727 7728 7729
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7730
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7731
	case CPU_ONLINE:
7732
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7733
		enable_runtime(cpu_rq(cpu));
7734 7735
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7736 7737 7738 7739 7740 7741 7742
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7743 7744 7745
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7746
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7747

7748 7749 7750 7751 7752
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7753
	get_online_cpus();
7754
	mutex_lock(&sched_domains_mutex);
7755
	arch_init_sched_domains(cpu_active_mask);
7756 7757 7758
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7759
	mutex_unlock(&sched_domains_mutex);
7760
	put_online_cpus();
7761

7762 7763
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7764 7765 7766 7767

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7768
	init_hrtick();
7769 7770

	/* Move init over to a non-isolated CPU */
7771
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7772
		BUG();
I
Ingo Molnar 已提交
7773
	sched_init_granularity();
7774
	free_cpumask_var(non_isolated_cpus);
7775

7776
	init_sched_rt_class();
L
Linus Torvalds 已提交
7777 7778 7779 7780
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7781
	sched_init_granularity();
L
Linus Torvalds 已提交
7782 7783 7784
}
#endif /* CONFIG_SMP */

7785 7786
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7787 7788 7789 7790 7791 7792 7793
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7794
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7795 7796
{
	cfs_rq->tasks_timeline = RB_ROOT;
7797
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7798 7799 7800
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7801
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7802 7803
}

P
Peter Zijlstra 已提交
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7817
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7818
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7819
#ifdef CONFIG_SMP
7820
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7821 7822
#endif
#endif
P
Peter Zijlstra 已提交
7823 7824 7825
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7826
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7827 7828 7829 7830
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7831
	rt_rq->rt_runtime = 0;
7832
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7833

7834
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7835
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7836 7837
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7838 7839
}

P
Peter Zijlstra 已提交
7840
#ifdef CONFIG_FAIR_GROUP_SCHED
7841
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7842
				struct sched_entity *se, int cpu,
7843
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7844
{
7845
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7846 7847 7848 7849 7850
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7851 7852 7853 7854
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7855 7856 7857 7858 7859
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7860
	se->my_q = cfs_rq;
7861
	update_load_set(&se->load, 0);
7862
	se->parent = parent;
P
Peter Zijlstra 已提交
7863
}
7864
#endif
P
Peter Zijlstra 已提交
7865

7866
#ifdef CONFIG_RT_GROUP_SCHED
7867
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7868
		struct sched_rt_entity *rt_se, int cpu,
7869
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7870
{
7871 7872
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7873 7874 7875
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7876
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7877 7878

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7879 7880 7881
	if (!rt_se)
		return;

7882 7883 7884 7885 7886
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7887
	rt_se->my_q = rt_rq;
7888
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7889 7890 7891 7892
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7893 7894
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7895
	int i, j;
7896 7897 7898 7899 7900 7901 7902
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7903
#endif
7904
#ifdef CONFIG_CPUMASK_OFFSTACK
7905
	alloc_size += num_possible_cpus() * cpumask_size();
7906 7907
#endif
	if (alloc_size) {
7908
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7909 7910 7911 7912 7913 7914 7915

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7916

7917
#endif /* CONFIG_FAIR_GROUP_SCHED */
7918 7919 7920 7921 7922
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7923 7924
		ptr += nr_cpu_ids * sizeof(void **);

7925
#endif /* CONFIG_RT_GROUP_SCHED */
7926 7927 7928 7929 7930 7931
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7932
	}
I
Ingo Molnar 已提交
7933

G
Gregory Haskins 已提交
7934 7935 7936 7937
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7938 7939 7940 7941 7942 7943
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7944
#endif /* CONFIG_RT_GROUP_SCHED */
7945

D
Dhaval Giani 已提交
7946
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7947
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7948
	INIT_LIST_HEAD(&init_task_group.children);
7949
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7950
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7951

7952
	for_each_possible_cpu(i) {
7953
		struct rq *rq;
L
Linus Torvalds 已提交
7954 7955

		rq = cpu_rq(i);
7956
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7957
		rq->nr_running = 0;
7958 7959
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7960
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7961
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7962
#ifdef CONFIG_FAIR_GROUP_SCHED
7963
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7964
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7979
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7980 7981 7982 7983
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7984
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7985 7986 7987
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7988
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7989
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7990
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7991
#endif
L
Linus Torvalds 已提交
7992

I
Ingo Molnar 已提交
7993 7994
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7995 7996 7997

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7998
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7999
		rq->sd = NULL;
G
Gregory Haskins 已提交
8000
		rq->rd = NULL;
8001
		rq->cpu_power = SCHED_LOAD_SCALE;
8002
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8003
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8004
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8005
		rq->push_cpu = 0;
8006
		rq->cpu = i;
8007
		rq->online = 0;
8008 8009
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8010
		rq_attach_root(rq, &def_root_domain);
8011 8012 8013 8014
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8015
#endif
P
Peter Zijlstra 已提交
8016
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8017 8018 8019
		atomic_set(&rq->nr_iowait, 0);
	}

8020
	set_load_weight(&init_task);
8021

8022 8023 8024 8025
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8026
#ifdef CONFIG_SMP
8027
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8028 8029
#endif

8030
#ifdef CONFIG_RT_MUTEXES
8031
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8032 8033
#endif

L
Linus Torvalds 已提交
8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8047 8048 8049

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8050 8051 8052 8053
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8054

8055
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8056
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8057
#ifdef CONFIG_SMP
8058
#ifdef CONFIG_NO_HZ
8059 8060 8061 8062 8063
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8064
#endif
R
Rusty Russell 已提交
8065 8066 8067
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8068
#endif /* SMP */
8069

8070
	scheduler_running = 1;
L
Linus Torvalds 已提交
8071 8072 8073
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8074 8075
static inline int preempt_count_equals(int preempt_offset)
{
8076
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8077 8078 8079 8080

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

8081
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8082
{
8083
#ifdef in_atomic
L
Linus Torvalds 已提交
8084 8085
	static unsigned long prev_jiffy;	/* ratelimiting */

8086 8087
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8088 8089 8090 8091 8092
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8093 8094 8095 8096 8097 8098 8099
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8100 8101 8102 8103 8104

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8105 8106 8107 8108 8109 8110
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8111 8112 8113
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8114

8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8125 8126
void normalize_rt_tasks(void)
{
8127
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8128
	unsigned long flags;
8129
	struct rq *rq;
L
Linus Torvalds 已提交
8130

8131
	read_lock_irqsave(&tasklist_lock, flags);
8132
	do_each_thread(g, p) {
8133 8134 8135 8136 8137 8138
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8139 8140
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8141 8142 8143
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8144
#endif
I
Ingo Molnar 已提交
8145 8146 8147 8148 8149 8150 8151 8152

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8153
			continue;
I
Ingo Molnar 已提交
8154
		}
L
Linus Torvalds 已提交
8155

8156
		raw_spin_lock(&p->pi_lock);
8157
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8158

8159
		normalize_task(rq, p);
8160

8161
		__task_rq_unlock(rq);
8162
		raw_spin_unlock(&p->pi_lock);
8163 8164
	} while_each_thread(g, p);

8165
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8166 8167 8168
}

#endif /* CONFIG_MAGIC_SYSRQ */
8169

8170
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8171
/*
8172
 * These functions are only useful for the IA64 MCA handling, or kdb.
8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8187
struct task_struct *curr_task(int cpu)
8188 8189 8190 8191
{
	return cpu_curr(cpu);
}

8192 8193 8194
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8195 8196 8197 8198 8199 8200
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8201 8202
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8203 8204 8205 8206 8207 8208 8209
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8210
void set_curr_task(int cpu, struct task_struct *p)
8211 8212 8213 8214 8215
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8216

8217 8218
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8233 8234
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8235 8236
{
	struct cfs_rq *cfs_rq;
8237
	struct sched_entity *se;
8238
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8239 8240
	int i;

8241
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8242 8243
	if (!tg->cfs_rq)
		goto err;
8244
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8245 8246
	if (!tg->se)
		goto err;
8247 8248

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8249 8250

	for_each_possible_cpu(i) {
8251
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8252

8253 8254
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8255 8256 8257
		if (!cfs_rq)
			goto err;

8258 8259
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8260
		if (!se)
8261
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8262

8263
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8264 8265 8266 8267
	}

	return 1;

P
Peter Zijlstra 已提交
8268
err_free_rq:
8269
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8270
err:
8271 8272 8273 8274 8275
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8287
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8288
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8289
}
8290
#else /* !CONFG_FAIR_GROUP_SCHED */
8291 8292 8293 8294
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8295 8296
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8297 8298 8299 8300 8301 8302 8303
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8304
#endif /* CONFIG_FAIR_GROUP_SCHED */
8305 8306

#ifdef CONFIG_RT_GROUP_SCHED
8307 8308 8309 8310
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8311 8312
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8324 8325
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8326 8327
{
	struct rt_rq *rt_rq;
8328
	struct sched_rt_entity *rt_se;
8329 8330 8331
	struct rq *rq;
	int i;

8332
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8333 8334
	if (!tg->rt_rq)
		goto err;
8335
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8336 8337 8338
	if (!tg->rt_se)
		goto err;

8339 8340
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8341 8342 8343 8344

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8345 8346
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8347 8348
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8349

8350 8351
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8352
		if (!rt_se)
8353
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8354

8355
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8356 8357
	}

8358 8359
	return 1;

P
Peter Zijlstra 已提交
8360
err_free_rq:
8361
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8362
err:
8363 8364
	return 0;
}
8365
#else /* !CONFIG_RT_GROUP_SCHED */
8366 8367 8368 8369
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8370 8371
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8372 8373 8374
{
	return 1;
}
8375
#endif /* CONFIG_RT_GROUP_SCHED */
8376

D
Dhaval Giani 已提交
8377
#ifdef CONFIG_CGROUP_SCHED
8378 8379 8380 8381 8382 8383 8384 8385
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8386
struct task_group *sched_create_group(struct task_group *parent)
8387 8388 8389 8390 8391 8392 8393 8394
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8395
	if (!alloc_fair_sched_group(tg, parent))
8396 8397
		goto err;

8398
	if (!alloc_rt_sched_group(tg, parent))
8399 8400
		goto err;

8401
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8402
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8403 8404 8405 8406 8407

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8408
	list_add_rcu(&tg->siblings, &parent->children);
8409
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8410

8411
	return tg;
S
Srivatsa Vaddagiri 已提交
8412 8413

err:
P
Peter Zijlstra 已提交
8414
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8415 8416 8417
	return ERR_PTR(-ENOMEM);
}

8418
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8419
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8420 8421
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8422
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8423 8424
}

8425
/* Destroy runqueue etc associated with a task group */
8426
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8427
{
8428
	unsigned long flags;
8429
	int i;
S
Srivatsa Vaddagiri 已提交
8430

8431 8432
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8433
		unregister_fair_sched_group(tg, i);
8434 8435

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8436
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8437
	list_del_rcu(&tg->siblings);
8438
	spin_unlock_irqrestore(&task_group_lock, flags);
8439 8440

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8441
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8442 8443
}

8444
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8445 8446 8447
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8448 8449
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8450 8451 8452 8453 8454 8455 8456
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8457
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8458 8459
	on_rq = tsk->se.on_rq;

8460
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8461
		dequeue_task(rq, tsk, 0);
8462 8463
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8464

P
Peter Zijlstra 已提交
8465
#ifdef CONFIG_FAIR_GROUP_SCHED
8466 8467 8468
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8469
#endif
8470
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8471

8472 8473 8474
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8475
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8476 8477 8478

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8479
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8480

8481
#ifdef CONFIG_FAIR_GROUP_SCHED
8482 8483
static DEFINE_MUTEX(shares_mutex);

8484
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8485 8486
{
	int i;
8487
	unsigned long flags;
8488

8489 8490 8491 8492 8493 8494
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8495 8496
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8497 8498
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8499

8500
	mutex_lock(&shares_mutex);
8501
	if (tg->shares == shares)
8502
		goto done;
S
Srivatsa Vaddagiri 已提交
8503

8504
	tg->shares = shares;
8505
	for_each_possible_cpu(i) {
8506 8507 8508 8509 8510 8511 8512 8513 8514
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se), 0);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8515
	}
S
Srivatsa Vaddagiri 已提交
8516

8517
done:
8518
	mutex_unlock(&shares_mutex);
8519
	return 0;
S
Srivatsa Vaddagiri 已提交
8520 8521
}

8522 8523 8524 8525
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8526
#endif
8527

8528
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8529
/*
P
Peter Zijlstra 已提交
8530
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8531
 */
P
Peter Zijlstra 已提交
8532 8533 8534 8535 8536
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8537
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8538

P
Peter Zijlstra 已提交
8539
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8540 8541
}

P
Peter Zijlstra 已提交
8542 8543
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8544
{
P
Peter Zijlstra 已提交
8545
	struct task_struct *g, *p;
8546

P
Peter Zijlstra 已提交
8547 8548 8549 8550
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8551

P
Peter Zijlstra 已提交
8552 8553
	return 0;
}
8554

P
Peter Zijlstra 已提交
8555 8556 8557 8558 8559
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8560

P
Peter Zijlstra 已提交
8561 8562 8563 8564 8565 8566
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8567

P
Peter Zijlstra 已提交
8568 8569
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8570

P
Peter Zijlstra 已提交
8571 8572 8573
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8574 8575
	}

8576 8577 8578 8579 8580
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8581

8582 8583 8584
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8585 8586
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8587

P
Peter Zijlstra 已提交
8588
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8589

8590 8591 8592 8593 8594
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8595

8596 8597 8598
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8599 8600 8601
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8602

P
Peter Zijlstra 已提交
8603 8604 8605 8606
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8607

P
Peter Zijlstra 已提交
8608
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8609
	}
P
Peter Zijlstra 已提交
8610

P
Peter Zijlstra 已提交
8611 8612 8613 8614
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8615 8616
}

P
Peter Zijlstra 已提交
8617
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8618
{
P
Peter Zijlstra 已提交
8619 8620 8621 8622 8623 8624 8625
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8626 8627
}

8628 8629
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8630
{
P
Peter Zijlstra 已提交
8631
	int i, err = 0;
P
Peter Zijlstra 已提交
8632 8633

	mutex_lock(&rt_constraints_mutex);
8634
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8635 8636
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8637
		goto unlock;
P
Peter Zijlstra 已提交
8638

8639
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8640 8641
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8642 8643 8644 8645

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8646
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8647
		rt_rq->rt_runtime = rt_runtime;
8648
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8649
	}
8650
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8651
unlock:
8652
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8653 8654 8655
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8656 8657
}

8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8670 8671 8672 8673
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8674
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8675 8676
		return -1;

8677
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8678 8679 8680
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8681 8682 8683 8684 8685 8686 8687 8688

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8689 8690 8691
	if (rt_period == 0)
		return -EINVAL;

8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8706
	u64 runtime, period;
8707 8708
	int ret = 0;

8709 8710 8711
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8712 8713 8714 8715 8716 8717 8718 8719
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8720

8721
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8722
	read_lock(&tasklist_lock);
8723
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8724
	read_unlock(&tasklist_lock);
8725 8726 8727 8728
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8739
#else /* !CONFIG_RT_GROUP_SCHED */
8740 8741
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8742 8743 8744
	unsigned long flags;
	int i;

8745 8746 8747
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8748 8749 8750 8751 8752 8753 8754
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8755
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8756 8757 8758
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8759
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8760
		rt_rq->rt_runtime = global_rt_runtime();
8761
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8762
	}
8763
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8764

8765 8766
	return 0;
}
8767
#endif /* CONFIG_RT_GROUP_SCHED */
8768 8769

int sched_rt_handler(struct ctl_table *table, int write,
8770
		void __user *buffer, size_t *lenp,
8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8781
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8798

8799
#ifdef CONFIG_CGROUP_SCHED
8800 8801

/* return corresponding task_group object of a cgroup */
8802
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8803
{
8804 8805
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8806 8807 8808
}

static struct cgroup_subsys_state *
8809
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8810
{
8811
	struct task_group *tg, *parent;
8812

8813
	if (!cgrp->parent) {
8814 8815 8816 8817
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8818 8819
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8820 8821 8822 8823 8824 8825
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8826 8827
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8828
{
8829
	struct task_group *tg = cgroup_tg(cgrp);
8830 8831 8832 8833

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8834
static int
8835
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8836
{
8837
#ifdef CONFIG_RT_GROUP_SCHED
8838
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8839 8840
		return -EINVAL;
#else
8841 8842 8843
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8844
#endif
8845 8846
	return 0;
}
8847

8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8867 8868 8869 8870
	return 0;
}

static void
8871
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8872 8873
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8874 8875
{
	sched_move_task(tsk);
8876 8877 8878 8879 8880 8881 8882 8883
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8884 8885
}

8886
#ifdef CONFIG_FAIR_GROUP_SCHED
8887
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8888
				u64 shareval)
8889
{
8890
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8891 8892
}

8893
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8894
{
8895
	struct task_group *tg = cgroup_tg(cgrp);
8896 8897 8898

	return (u64) tg->shares;
}
8899
#endif /* CONFIG_FAIR_GROUP_SCHED */
8900

8901
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8902
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8903
				s64 val)
P
Peter Zijlstra 已提交
8904
{
8905
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8906 8907
}

8908
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8909
{
8910
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8911
}
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8923
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8924

8925
static struct cftype cpu_files[] = {
8926
#ifdef CONFIG_FAIR_GROUP_SCHED
8927 8928
	{
		.name = "shares",
8929 8930
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8931
	},
8932 8933
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8934
	{
P
Peter Zijlstra 已提交
8935
		.name = "rt_runtime_us",
8936 8937
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8938
	},
8939 8940
	{
		.name = "rt_period_us",
8941 8942
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8943
	},
8944
#endif
8945 8946 8947 8948
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8949
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8950 8951 8952
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8953 8954 8955 8956 8957 8958 8959
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8960 8961 8962
	.early_init	= 1,
};

8963
#endif	/* CONFIG_CGROUP_SCHED */
8964 8965 8966 8967 8968 8969 8970 8971 8972 8973

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8974
/* track cpu usage of a group of tasks and its child groups */
8975 8976 8977
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8978
	u64 __percpu *cpuusage;
8979
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8980
	struct cpuacct *parent;
8981 8982 8983 8984 8985
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8986
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8987
{
8988
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9001
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9002 9003
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9004
	int i;
9005 9006

	if (!ca)
9007
		goto out;
9008 9009

	ca->cpuusage = alloc_percpu(u64);
9010 9011 9012 9013 9014 9015
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9016

9017 9018 9019
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9020
	return &ca->css;
9021 9022 9023 9024 9025 9026 9027 9028 9029

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9030 9031 9032
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9033
static void
9034
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9035
{
9036
	struct cpuacct *ca = cgroup_ca(cgrp);
9037
	int i;
9038

9039 9040
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9041 9042 9043 9044
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9045 9046
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9047
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9048 9049 9050 9051 9052 9053
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9054
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9055
	data = *cpuusage;
9056
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9057 9058 9059 9060 9061 9062 9063 9064 9065
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9066
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9067 9068 9069 9070 9071

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9072
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9073
	*cpuusage = val;
9074
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9075 9076 9077 9078 9079
#else
	*cpuusage = val;
#endif
}

9080
/* return total cpu usage (in nanoseconds) of a group */
9081
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9082
{
9083
	struct cpuacct *ca = cgroup_ca(cgrp);
9084 9085 9086
	u64 totalcpuusage = 0;
	int i;

9087 9088
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9089 9090 9091 9092

	return totalcpuusage;
}

9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9105 9106
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9107 9108 9109 9110 9111

out:
	return err;
}

9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9146 9147 9148
static struct cftype files[] = {
	{
		.name = "usage",
9149 9150
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9151
	},
9152 9153 9154 9155
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9156 9157 9158 9159
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9160 9161
};

9162
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9163
{
9164
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9175
	int cpu;
9176

L
Li Zefan 已提交
9177
	if (unlikely(!cpuacct_subsys.active))
9178 9179
		return;

9180
	cpu = task_cpu(tsk);
9181 9182 9183

	rcu_read_lock();

9184 9185
	ca = task_ca(tsk);

9186
	for (; ca; ca = ca->parent) {
9187
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9188 9189
		*cpuusage += cputime;
	}
9190 9191

	rcu_read_unlock();
9192 9193
}

9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9211 9212 9213 9214 9215 9216 9217
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9218
	int batch = CPUACCT_BATCH;
9219 9220 9221 9222 9223 9224 9225 9226

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9227
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9228 9229 9230 9231 9232
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9233 9234 9235 9236 9237 9238 9239 9240
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9241