sched.c 220.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573 574 575 576 577 578
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
579 580 581 582 583
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
584 585 586 587
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
588 589

	/* schedule() stats */
590 591 592
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
593 594

	/* try_to_wake_up() stats */
595 596
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
597 598

	/* BKL stats */
599
	unsigned int bkl_count;
L
Linus Torvalds 已提交
600
#endif
601
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
602 603
};

604
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
605

I
Ingo Molnar 已提交
606 607 608 609 610
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

611 612 613 614 615 616 617 618 619
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627 628
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633 634

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

635 636 637 638 639
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
640 641 642 643 644 645 646 647 648
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
667 668 669
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
670 671 672 673

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
674
enum {
P
Peter Zijlstra 已提交
675
#include "sched_features.h"
I
Ingo Molnar 已提交
676 677
};

P
Peter Zijlstra 已提交
678 679 680 681 682
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
683
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
684 685 686 687 688 689 690 691 692
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

693
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
694 695 696 697 698 699
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

700
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
728
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
758
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
801

802 803 804 805 806 807
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
808 809 810 811 812 813
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
814
/*
P
Peter Zijlstra 已提交
815
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
816 817
 * default: 1s
 */
P
Peter Zijlstra 已提交
818
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
819

820 821
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
822 823 824 825 826
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
827

828 829 830 831 832 833 834 835 836 837 838 839
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
840

L
Linus Torvalds 已提交
841
#ifndef prepare_arch_switch
842 843 844 845 846 847
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

848 849 850 851 852
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

853
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
854
static inline int task_running(struct rq *rq, struct task_struct *p)
855
{
856
	return task_current(rq, p);
857 858
}

859
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 861 862
{
}

863
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864
{
865 866 867 868
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
869 870 871 872 873 874 875
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

876 877 878 879
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
880
static inline int task_running(struct rq *rq, struct task_struct *p)
881 882 883 884
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
885
	return task_current(rq, p);
886 887 888
#endif
}

889
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

906
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
919
#endif
920 921
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
922

923 924 925 926
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
927
static inline struct rq *__task_rq_lock(struct task_struct *p)
928 929
	__acquires(rq->lock)
{
930 931 932 933 934
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
935 936 937 938
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
939 940
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
941
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
942 943
 * explicitly disabling preemption.
 */
944
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
945 946
	__acquires(rq->lock)
{
947
	struct rq *rq;
L
Linus Torvalds 已提交
948

949 950 951 952 953 954
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
955 956 957 958
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
959
static void __task_rq_unlock(struct rq *rq)
960 961 962 963 964
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

965
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
966 967 968 969 970 971
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
972
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
973
 */
A
Alexey Dobriyan 已提交
974
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
975 976
	__acquires(rq->lock)
{
977
	struct rq *rq;
L
Linus Torvalds 已提交
978 979 980 981 982 983 984 985

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1021
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1033 1034
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1110
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1111 1112 1113 1114 1115 1116
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1117
#ifdef CONFIG_SMP
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1173
#endif /* CONFIG_SMP */
1174 1175

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1212 1213 1214 1215

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1216 1217
#endif

I
Ingo Molnar 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1231
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1232 1233 1234 1235 1236
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1237
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1238 1239
		return;

P
Peter Zijlstra 已提交
1240
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1303
#endif /* CONFIG_NO_HZ */
1304

1305
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1306
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1307 1308
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1309
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1310
}
1311
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1312

1313 1314 1315 1316 1317 1318 1319 1320
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1321 1322 1323
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1324
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1325

1326 1327 1328
/*
 * delta *= weight / lw
 */
1329
static unsigned long
1330 1331 1332 1333 1334
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1335 1336 1337 1338 1339 1340 1341
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1342 1343 1344 1345 1346

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1347
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1348
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1349 1350
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1351
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1352

1353
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1354 1355
}

1356
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1357 1358
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1359
	lw->inv_weight = 0;
1360 1361
}

1362
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1363 1364
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1365
	lw->inv_weight = 0;
1366 1367
}

1368 1369 1370 1371
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1372
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1373 1374 1375 1376
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1388 1389 1390
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1391 1392
 */
static const int prio_to_weight[40] = {
1393 1394 1395 1396 1397 1398 1399 1400
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1401 1402
};

1403 1404 1405 1406 1407 1408 1409
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1410
static const u32 prio_to_wmult[40] = {
1411 1412 1413 1414 1415 1416 1417 1418
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1419
};
1420

I
Ingo Molnar 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1446

1447 1448 1449 1450 1451 1452
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1463 1464 1465 1466
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1477 1478

#ifdef CONFIG_FAIR_GROUP_SCHED
1479

1480
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1481 1482 1483 1484 1485

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1486 1487
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1488 1489 1490 1491 1492 1493
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1494
	(*down)(parent, cpu, sd);
1495 1496 1497 1498 1499 1500 1501
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1502
	(*up)(parent, cpu, sd);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1517
__update_group_shares_cpu(struct task_group *tg, int cpu,
1518
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1519
{
1520 1521 1522 1523
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1524
	if (!tg->se[cpu])
1525 1526
		return;

1527
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1539 1540 1541
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1542 1543 1544 1545 1546 1547
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1548
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1549 1550 1551 1552

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1553
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1554
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1555 1556 1557 1558 1559 1560

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1561
	__set_se_shares(tg->se[cpu], shares);
1562
}
1563 1564

/*
1565 1566 1567
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1568 1569
 */
static void
1570
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1571
{
1572 1573 1574
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1575

1576 1577 1578
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1579 1580
	}

1581 1582 1583 1584 1585
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1586

P
Peter Zijlstra 已提交
1587 1588 1589
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1590 1591 1592 1593 1594
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1595
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1596 1597 1598 1599 1600
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1601 1602 1603
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1604
 */
1605
static void
1606
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1607
{
1608
	unsigned long load;
1609

1610 1611 1612 1613 1614 1615 1616
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1617

1618
	tg->cfs_rq[cpu]->h_load = load;
1619 1620
}

1621 1622
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1623 1624 1625
{
}

1626
static void update_shares(struct sched_domain *sd)
1627
{
P
Peter Zijlstra 已提交
1628 1629 1630 1631 1632 1633 1634
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1635 1636
}

1637 1638 1639 1640 1641 1642 1643
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1644
static void update_h_load(int cpu)
1645
{
1646
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1647 1648 1649 1650
}

#else

1651
static inline void update_shares(struct sched_domain *sd)
1652 1653 1654
{
}

1655 1656 1657 1658
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1659 1660 1661 1662
#endif

#endif

V
Vegard Nossum 已提交
1663
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1664 1665
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1666
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1667 1668 1669
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1670
#endif
1671

I
Ingo Molnar 已提交
1672 1673
#include "sched_stats.h"
#include "sched_idletask.c"
1674 1675
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1676 1677 1678 1679 1680
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1681 1682
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1683

1684
static void inc_nr_running(struct rq *rq)
1685 1686 1687 1688
{
	rq->nr_running++;
}

1689
static void dec_nr_running(struct rq *rq)
1690 1691 1692 1693
{
	rq->nr_running--;
}

1694 1695 1696
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1697 1698 1699 1700
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1701

I
Ingo Molnar 已提交
1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1710

I
Ingo Molnar 已提交
1711 1712
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1713 1714
}

1715 1716 1717 1718 1719 1720
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1721
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1722
{
I
Ingo Molnar 已提交
1723
	sched_info_queued(p);
1724
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1725
	p->se.on_rq = 1;
1726 1727
}

1728
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1729
{
1730 1731 1732 1733 1734 1735
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1736
	sched_info_dequeued(p);
1737
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1738
	p->se.on_rq = 0;
1739 1740
}

1741
/*
I
Ingo Molnar 已提交
1742
 * __normal_prio - return the priority that is based on the static prio
1743 1744 1745
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1746
	return p->static_prio;
1747 1748
}

1749 1750 1751 1752 1753 1754 1755
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1756
static inline int normal_prio(struct task_struct *p)
1757 1758 1759
{
	int prio;

1760
	if (task_has_rt_policy(p))
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1774
static int effective_prio(struct task_struct *p)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1787
/*
I
Ingo Molnar 已提交
1788
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1789
 */
I
Ingo Molnar 已提交
1790
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1791
{
1792
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1793
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1794

1795
	enqueue_task(rq, p, wakeup);
1796
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1802
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1803
{
1804
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1805 1806
		rq->nr_uninterruptible++;

1807
	dequeue_task(rq, p, sleep);
1808
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1815
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1816 1817 1818 1819
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1820 1821
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1822
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1823
#ifdef CONFIG_SMP
1824 1825 1826 1827 1828 1829
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1830 1831
	task_thread_info(p)->cpu = cpu;
#endif
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1846
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1847

1848 1849 1850 1851 1852 1853
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1854 1855 1856
/*
 * Is this task likely cache-hot:
 */
1857
static int
1858 1859 1860 1861
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1862 1863 1864
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1865
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1866 1867
		return 1;

1868 1869 1870
	if (p->sched_class != &fair_sched_class)
		return 0;

1871 1872 1873 1874 1875
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1876 1877 1878 1879 1880 1881
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1882
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1883
{
I
Ingo Molnar 已提交
1884 1885
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1886 1887
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1888
	u64 clock_offset;
I
Ingo Molnar 已提交
1889 1890

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1891 1892 1893 1894

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1895 1896 1897 1898
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1899 1900 1901 1902 1903
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1904
#endif
1905 1906
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1907 1908

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1909 1910
}

1911
struct migration_req {
L
Linus Torvalds 已提交
1912 1913
	struct list_head list;

1914
	struct task_struct *task;
L
Linus Torvalds 已提交
1915 1916 1917
	int dest_cpu;

	struct completion done;
1918
};
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1924
static int
1925
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1926
{
1927
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1933
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940 1941
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1942

L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1955
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1956 1957
{
	unsigned long flags;
I
Ingo Molnar 已提交
1958
	int running, on_rq;
1959
	struct rq *rq;
L
Linus Torvalds 已提交
1960

1961 1962 1963 1964 1965 1966 1967 1968
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2018

2019 2020 2021 2022 2023 2024 2025
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2041
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2053 2054
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2055 2056 2057 2058
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2059
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2060
{
2061
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2062
	unsigned long total = weighted_cpuload(cpu);
2063

2064
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2065
		return total;
2066

I
Ingo Molnar 已提交
2067
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2068 2069 2070
}

/*
2071 2072
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2073
 */
A
Alexey Dobriyan 已提交
2074
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2075
{
2076
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2077
	unsigned long total = weighted_cpuload(cpu);
2078

2079
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2080
		return total;
2081

I
Ingo Molnar 已提交
2082
	return max(rq->cpu_load[type-1], total);
2083 2084
}

N
Nick Piggin 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2102 2103
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2104
			continue;
2105

N
Nick Piggin 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2122 2123
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2124 2125 2126 2127 2128 2129 2130 2131

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2132
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2133 2134 2135 2136 2137 2138 2139

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2140
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2141
 */
I
Ingo Molnar 已提交
2142
static int
2143 2144
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2145 2146 2147 2148 2149
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2150
	/* Traverse only the allowed CPUs */
2151
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2152

2153
	for_each_cpu_mask(i, *tmp) {
2154
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2180

2181
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2182 2183 2184
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2185 2186
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2187 2188
		if (tmp->flags & flag)
			sd = tmp;
2189
	}
N
Nick Piggin 已提交
2190

2191 2192 2193
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2194
	while (sd) {
2195
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2196
		struct sched_group *group;
2197 2198 2199 2200 2201 2202
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2203 2204 2205

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2206 2207 2208 2209
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2210

2211
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2212 2213 2214 2215 2216
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2217

2218
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2250
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2251
{
2252
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2253 2254
	unsigned long flags;
	long old_state;
2255
	struct rq *rq;
L
Linus Torvalds 已提交
2256

2257 2258 2259
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2276
	smp_wmb();
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2282
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2283 2284 2285
		goto out_running;

	cpu = task_cpu(p);
2286
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2293 2294 2295
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2302
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2322
#endif /* CONFIG_SCHEDSTATS */
2323

L
Linus Torvalds 已提交
2324 2325
out_activate:
#endif /* CONFIG_SMP */
2326 2327 2328 2329 2330 2331 2332 2333 2334
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2335
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2336
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2337 2338 2339
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2340 2341 2342
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2343 2344
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2345
	p->state = TASK_RUNNING;
2346 2347 2348 2349
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2350
out:
2351 2352
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
	task_rq_unlock(rq, &flags);

	return success;
}

2358
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2359
{
2360
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2361 2362 2363
}
EXPORT_SYMBOL(wake_up_process);

2364
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2372 2373 2374 2375 2376 2377 2378
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2379
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2380 2381
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2382 2383 2384

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2385 2386 2387 2388 2389 2390
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2391
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2392
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2393
#endif
N
Nick Piggin 已提交
2394

P
Peter Zijlstra 已提交
2395
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2396
	p->se.on_rq = 0;
2397
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2398

2399 2400 2401 2402
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2403 2404 2405 2406 2407 2408 2409
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2424
	set_task_cpu(p, cpu);
2425 2426 2427 2428 2429

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2430 2431
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2432

2433
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2434
	if (likely(sched_info_on()))
2435
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2436
#endif
2437
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 2439
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2440
#ifdef CONFIG_PREEMPT
2441
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2442
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2443
#endif
N
Nick Piggin 已提交
2444
	put_cpu();
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2454
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2455 2456
{
	unsigned long flags;
I
Ingo Molnar 已提交
2457
	struct rq *rq;
L
Linus Torvalds 已提交
2458 2459

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2460
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2461
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2462 2463 2464

	p->prio = effective_prio(p);

2465
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2466
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2467 2468
	} else {
		/*
I
Ingo Molnar 已提交
2469 2470
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2471
		 */
2472
		p->sched_class->task_new(rq, p);
2473
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2474
	}
M
Mathieu Desnoyers 已提交
2475 2476 2477
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2478
	check_preempt_curr(rq, p);
2479 2480 2481 2482
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2483
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2484 2485
}

2486 2487 2488
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2489 2490
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2491 2492 2493 2494 2495 2496 2497 2498 2499
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2500
 * @notifier: notifier struct to unregister
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2530
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2542
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543

2544 2545 2546
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2547
 * @prev: the current task that is being switched out
2548 2549 2550 2551 2552 2553 2554 2555 2556
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2557 2558 2559
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2560
{
2561
	fire_sched_out_preempt_notifiers(prev, next);
2562 2563 2564 2565
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2566 2567
/**
 * finish_task_switch - clean up after a task-switch
2568
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2569 2570
 * @prev: the thread we just switched away from.
 *
2571 2572 2573 2574
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2575 2576
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2577
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2578 2579 2580
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2581
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2582 2583 2584
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2585
	long prev_state;
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2591
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2592 2593
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2594
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2600
	prev_state = prev->state;
2601 2602
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2603 2604 2605 2606
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2607

2608
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2609 2610
	if (mm)
		mmdrop(mm);
2611
	if (unlikely(prev_state == TASK_DEAD)) {
2612 2613 2614
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2615
		 */
2616
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2617
		put_task_struct(prev);
2618
	}
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2625
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2626 2627
	__releases(rq->lock)
{
2628 2629
	struct rq *rq = this_rq();

2630 2631 2632 2633 2634
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2635
	if (current->set_child_tid)
2636
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2643
static inline void
2644
context_switch(struct rq *rq, struct task_struct *prev,
2645
	       struct task_struct *next)
L
Linus Torvalds 已提交
2646
{
I
Ingo Molnar 已提交
2647
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2648

2649
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2650 2651 2652 2653 2654
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2655 2656
	mm = next->mm;
	oldmm = prev->active_mm;
2657 2658 2659 2660 2661 2662 2663
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2664
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2671
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2672 2673 2674
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2675 2676 2677 2678 2679 2680 2681
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2682
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2683
#endif
L
Linus Torvalds 已提交
2684 2685 2686 2687

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2688 2689 2690 2691 2692 2693 2694
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2718
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2733 2734
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2735

2736
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2746
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2747 2748 2749 2750 2751
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2767
/*
I
Ingo Molnar 已提交
2768 2769
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2770
 */
I
Ingo Molnar 已提交
2771
static void update_cpu_load(struct rq *this_rq)
2772
{
2773
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2786 2787 2788 2789 2790 2791 2792
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2793 2794
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2795 2796
}

I
Ingo Molnar 已提交
2797 2798
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2799 2800 2801 2802 2803 2804
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2805
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2806 2807 2808
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2809
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2810 2811 2812 2813
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2814
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820 2821
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2822 2823
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2832
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2846
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2847 2848 2849 2850
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2851 2852
	int ret = 0;

2853 2854 2855 2856 2857
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2858
	if (unlikely(!spin_trylock(&busiest->lock))) {
2859
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2860 2861 2862
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2863
			ret = 1;
L
Linus Torvalds 已提交
2864 2865 2866
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2867
	return ret;
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2873
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2874 2875
 * the cpu_allowed mask is restored.
 */
2876
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2877
{
2878
	struct migration_req req;
L
Linus Torvalds 已提交
2879
	unsigned long flags;
2880
	struct rq *rq;
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2891

L
Linus Torvalds 已提交
2892 2893 2894 2895 2896
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2897

L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2905 2906
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2907 2908 2909 2910
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2911
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2912
	put_cpu();
N
Nick Piggin 已提交
2913 2914
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2921 2922
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2923
{
2924
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2925
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2926
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2927 2928 2929 2930
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2931
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2932 2933 2934 2935 2936
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2937
static
2938
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2939
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2940
		     int *all_pinned)
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2948 2949
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2950
		return 0;
2951
	}
2952 2953
	*all_pinned = 0;

2954 2955
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2956
		return 0;
2957
	}
L
Linus Torvalds 已提交
2958

2959 2960 2961 2962 2963 2964
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2965 2966
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2967
#ifdef CONFIG_SCHEDSTATS
2968
		if (task_hot(p, rq->clock, sd)) {
2969
			schedstat_inc(sd, lb_hot_gained[idle]);
2970 2971
			schedstat_inc(p, se.nr_forced_migrations);
		}
2972 2973 2974 2975
#endif
		return 1;
	}

2976 2977
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2978
		return 0;
2979
	}
L
Linus Torvalds 已提交
2980 2981 2982
	return 1;
}

2983 2984 2985 2986 2987
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2988
{
2989
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2990 2991
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2992

2993
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2994 2995
		goto out;

2996 2997
	pinned = 1;

L
Linus Torvalds 已提交
2998
	/*
I
Ingo Molnar 已提交
2999
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3000
	 */
I
Ingo Molnar 已提交
3001 3002
	p = iterator->start(iterator->arg);
next:
3003
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3004
		goto out;
3005 3006

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3007 3008 3009
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3010 3011
	}

I
Ingo Molnar 已提交
3012
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3013
	pulled++;
I
Ingo Molnar 已提交
3014
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3015

3016
	/*
3017
	 * We only want to steal up to the prescribed amount of weighted load.
3018
	 */
3019
	if (rem_load_move > 0) {
3020 3021
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3022 3023
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3024 3025 3026
	}
out:
	/*
3027
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3028 3029 3030 3031
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3032 3033 3034

	if (all_pinned)
		*all_pinned = pinned;
3035 3036

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3037 3038
}

I
Ingo Molnar 已提交
3039
/*
P
Peter Williams 已提交
3040 3041 3042
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3043 3044 3045 3046
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3047
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3048 3049 3050
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3051
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3052
	unsigned long total_load_moved = 0;
3053
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3054 3055

	do {
P
Peter Williams 已提交
3056 3057
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3058
				max_load_move - total_load_moved,
3059
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3060
		class = class->next;
3061 3062 3063 3064

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3065
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3066

P
Peter Williams 已提交
3067 3068 3069
	return total_load_moved > 0;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3106
	const struct sched_class *class;
P
Peter Williams 已提交
3107 3108

	for (class = sched_class_highest; class; class = class->next)
3109
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3110 3111 3112
			return 1;

	return 0;
I
Ingo Molnar 已提交
3113 3114
}

L
Linus Torvalds 已提交
3115 3116
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3117 3118
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3119 3120 3121
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3122
		   unsigned long *imbalance, enum cpu_idle_type idle,
3123
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3124 3125 3126
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3127
	unsigned long max_pull;
3128 3129
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3130
	int load_idx, group_imb = 0;
3131 3132 3133 3134 3135 3136
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3137 3138

	max_load = this_load = total_load = total_pwr = 0;
3139 3140
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3141

I
Ingo Molnar 已提交
3142
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3143
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3144
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3145 3146 3147
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3148 3149

	do {
3150
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3151 3152
		int local_group;
		int i;
3153
		int __group_imb = 0;
3154
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3155
		unsigned long sum_nr_running, sum_weighted_load;
3156 3157
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3158 3159 3160

		local_group = cpu_isset(this_cpu, group->cpumask);

3161 3162 3163
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3164
		/* Tally up the load of all CPUs in the group */
3165
		sum_weighted_load = sum_nr_running = avg_load = 0;
3166 3167
		sum_avg_load_per_task = avg_load_per_task = 0;

3168 3169
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3170 3171

		for_each_cpu_mask(i, group->cpumask) {
3172 3173 3174 3175 3176 3177
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3178

3179
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3180 3181
				*sd_idle = 0;

L
Linus Torvalds 已提交
3182
			/* Bias balancing toward cpus of our domain */
3183 3184 3185 3186 3187 3188
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3189
				load = target_load(i, load_idx);
3190
			} else {
N
Nick Piggin 已提交
3191
				load = source_load(i, load_idx);
3192 3193 3194 3195 3196
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3197 3198

			avg_load += load;
3199
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3200
			sum_weighted_load += weighted_cpuload(i);
3201 3202

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3203 3204
		}

3205 3206 3207
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3208 3209
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3210
		 */
3211 3212
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3213 3214 3215 3216
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3217
		total_load += avg_load;
3218
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3219 3220

		/* Adjust by relative CPU power of the group */
3221 3222
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3238 3239
			__group_imb = 1;

3240
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3241

L
Linus Torvalds 已提交
3242 3243 3244
		if (local_group) {
			this_load = avg_load;
			this = group;
3245 3246 3247
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3248
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3249 3250
			max_load = avg_load;
			busiest = group;
3251 3252
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3253
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3254
		}
3255 3256 3257 3258 3259 3260

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3261 3262 3263
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3264 3265 3266 3267 3268 3269 3270 3271 3272

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3273
		/*
3274 3275
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3276 3277
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3278
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3279
			goto group_next;
3280

I
Ingo Molnar 已提交
3281
		/*
3282
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3283 3284 3285 3286 3287
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3288 3289
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3290 3291
			group_min = group;
			min_nr_running = sum_nr_running;
3292 3293
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3294
		}
3295

I
Ingo Molnar 已提交
3296
		/*
3297
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3309
		}
3310 3311
group_next:
#endif
L
Linus Torvalds 已提交
3312 3313 3314
		group = group->next;
	} while (group != sd->groups);

3315
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3316 3317 3318 3319 3320 3321 3322 3323
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3324
	busiest_load_per_task /= busiest_nr_running;
3325 3326 3327
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334 3335
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3336
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3337 3338
	 * appear as very large values with unsigned longs.
	 */
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3351 3352

	/* Don't want to pull so many tasks that a group would go idle */
3353
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3354

L
Linus Torvalds 已提交
3355
	/* How much load to actually move to equalise the imbalance */
3356 3357
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3358 3359
			/ SCHED_LOAD_SCALE;

3360 3361 3362 3363 3364 3365
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3366
	if (*imbalance < busiest_load_per_task) {
3367
		unsigned long tmp, pwr_now, pwr_move;
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3378
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3379

3380
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3381
					busiest_load_per_task * imbn) {
3382
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3392 3393 3394 3395
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3396 3397 3398
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3399 3400
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3401
		if (max_load > tmp)
3402
			pwr_move += busiest->__cpu_power *
3403
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3404 3405

		/* Amount of load we'd add */
3406
		if (max_load * busiest->__cpu_power <
3407
				busiest_load_per_task * SCHED_LOAD_SCALE)
3408 3409
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3410
		else
3411 3412 3413 3414
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3415 3416 3417
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3418 3419
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424
	}

	return busiest;

out_balanced:
3425
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3426
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3427
		goto ret;
L
Linus Torvalds 已提交
3428

3429 3430 3431 3432 3433
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3434
ret:
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440 3441
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3442
static struct rq *
I
Ingo Molnar 已提交
3443
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3444
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3445
{
3446
	struct rq *busiest = NULL, *rq;
3447
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3448 3449 3450
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3451
		unsigned long wl;
3452 3453 3454 3455

		if (!cpu_isset(i, *cpus))
			continue;

3456
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3457
		wl = weighted_cpuload(i);
3458

I
Ingo Molnar 已提交
3459
		if (rq->nr_running == 1 && wl > imbalance)
3460
			continue;
L
Linus Torvalds 已提交
3461

I
Ingo Molnar 已提交
3462 3463
		if (wl > max_load) {
			max_load = wl;
3464
			busiest = rq;
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470
		}
	}

	return busiest;
}

3471 3472 3473 3474 3475 3476
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3477 3478 3479 3480
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3481
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3482
			struct sched_domain *sd, enum cpu_idle_type idle,
3483
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3484
{
P
Peter Williams 已提交
3485
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3486 3487
	struct sched_group *group;
	unsigned long imbalance;
3488
	struct rq *busiest;
3489
	unsigned long flags;
N
Nick Piggin 已提交
3490

3491 3492
	cpus_setall(*cpus);

3493 3494 3495
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3496
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3497
	 * portraying it as CPU_NOT_IDLE.
3498
	 */
I
Ingo Molnar 已提交
3499
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3500
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3501
		sd_idle = 1;
L
Linus Torvalds 已提交
3502

3503
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3504

3505
redo:
3506
	update_shares(sd);
3507
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3508
				   cpus, balance);
3509

3510
	if (*balance == 0)
3511 3512
		goto out_balanced;

L
Linus Torvalds 已提交
3513 3514 3515 3516 3517
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3518
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3524
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3525 3526 3527

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3528
	ld_moved = 0;
L
Linus Torvalds 已提交
3529 3530 3531 3532
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3533
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3534 3535
		 * correctly treated as an imbalance.
		 */
3536
		local_irq_save(flags);
N
Nick Piggin 已提交
3537
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3538
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3539
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3540
		double_rq_unlock(this_rq, busiest);
3541
		local_irq_restore(flags);
3542

3543 3544 3545
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3546
		if (ld_moved && this_cpu != smp_processor_id())
3547 3548
			resched_cpu(this_cpu);

3549
		/* All tasks on this runqueue were pinned by CPU affinity */
3550
		if (unlikely(all_pinned)) {
3551 3552
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3553
				goto redo;
3554
			goto out_balanced;
3555
		}
L
Linus Torvalds 已提交
3556
	}
3557

P
Peter Williams 已提交
3558
	if (!ld_moved) {
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3564
			spin_lock_irqsave(&busiest->lock, flags);
3565 3566 3567 3568 3569

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3570
				spin_unlock_irqrestore(&busiest->lock, flags);
3571 3572 3573 3574
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3575 3576 3577
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3578
				active_balance = 1;
L
Linus Torvalds 已提交
3579
			}
3580
			spin_unlock_irqrestore(&busiest->lock, flags);
3581
			if (active_balance)
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3588
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3589
		}
3590
	} else
L
Linus Torvalds 已提交
3591 3592
		sd->nr_balance_failed = 0;

3593
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3594 3595
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3596 3597 3598 3599 3600 3601 3602 3603 3604
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3605 3606
	}

P
Peter Williams 已提交
3607
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3608
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3609 3610 3611
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3612 3613 3614 3615

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3616
	sd->nr_balance_failed = 0;
3617 3618

out_one_pinned:
L
Linus Torvalds 已提交
3619
	/* tune up the balancing interval */
3620 3621
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3622 3623
		sd->balance_interval *= 2;

3624
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3625
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3626 3627 3628 3629
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3630 3631
	if (ld_moved)
		update_shares(sd);
3632
	return ld_moved;
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3639
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3640 3641
 * this_rq is locked.
 */
3642
static int
3643 3644
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3645 3646
{
	struct sched_group *group;
3647
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3648
	unsigned long imbalance;
P
Peter Williams 已提交
3649
	int ld_moved = 0;
N
Nick Piggin 已提交
3650
	int sd_idle = 0;
3651
	int all_pinned = 0;
3652 3653

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3654

3655 3656 3657 3658
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3659
	 * portraying it as CPU_NOT_IDLE.
3660 3661 3662
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3663
		sd_idle = 1;
L
Linus Torvalds 已提交
3664

3665
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3666
redo:
3667
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3668
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3669
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3670
	if (!group) {
I
Ingo Molnar 已提交
3671
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3672
		goto out_balanced;
L
Linus Torvalds 已提交
3673 3674
	}

3675
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3676
	if (!busiest) {
I
Ingo Molnar 已提交
3677
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3678
		goto out_balanced;
L
Linus Torvalds 已提交
3679 3680
	}

N
Nick Piggin 已提交
3681 3682
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3683
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3684

P
Peter Williams 已提交
3685
	ld_moved = 0;
3686 3687 3688
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3689 3690
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3691
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3692 3693
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3694
		spin_unlock(&busiest->lock);
3695

3696
		if (unlikely(all_pinned)) {
3697 3698
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3699 3700
				goto redo;
		}
3701 3702
	}

P
Peter Williams 已提交
3703
	if (!ld_moved) {
I
Ingo Molnar 已提交
3704
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3705 3706
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3707 3708
			return -1;
	} else
3709
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3710

3711
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3712
	return ld_moved;
3713 3714

out_balanced:
I
Ingo Molnar 已提交
3715
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3716
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3717
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3718
		return -1;
3719
	sd->nr_balance_failed = 0;
3720

3721
	return 0;
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3728
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3729 3730
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3731 3732
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3733
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3734 3735

	for_each_domain(this_cpu, sd) {
3736 3737 3738 3739 3740 3741
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3742
			/* If we've pulled tasks over stop searching: */
3743 3744
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3745 3746 3747 3748 3749 3750

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3751
	}
I
Ingo Molnar 已提交
3752
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3753 3754 3755 3756 3757
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3758
	}
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3769
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3770
{
3771
	int target_cpu = busiest_rq->push_cpu;
3772 3773
	struct sched_domain *sd;
	struct rq *target_rq;
3774

3775
	/* Is there any task to move? */
3776 3777 3778 3779
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3780 3781

	/*
3782
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3783
	 * we need to fix it. Originally reported by
3784
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3785
	 */
3786
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3787

3788 3789
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3790 3791
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3792 3793

	/* Search for an sd spanning us and the target CPU. */
3794
	for_each_domain(target_cpu, sd) {
3795
		if ((sd->flags & SD_LOAD_BALANCE) &&
3796
		    cpu_isset(busiest_cpu, sd->span))
3797
				break;
3798
	}
3799

3800
	if (likely(sd)) {
3801
		schedstat_inc(sd, alb_count);
3802

P
Peter Williams 已提交
3803 3804
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3805 3806 3807 3808
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3809
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3810 3811
}

3812 3813 3814
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3815
	cpumask_t cpu_mask;
3816 3817 3818 3819 3820
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3821
/*
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3832
 *
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3889 3890 3891 3892 3893
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3894
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3895
{
3896 3897
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3898 3899
	unsigned long interval;
	struct sched_domain *sd;
3900
	/* Earliest time when we have to do rebalance again */
3901
	unsigned long next_balance = jiffies + 60*HZ;
3902
	int update_next_balance = 0;
3903
	int need_serialize;
3904
	cpumask_t tmp;
L
Linus Torvalds 已提交
3905

3906
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3907 3908 3909 3910
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3911
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3912 3913 3914 3915 3916 3917
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3918 3919 3920
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3921
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3922

3923
		if (need_serialize) {
3924 3925 3926 3927
			if (!spin_trylock(&balancing))
				goto out;
		}

3928
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3929
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3930 3931
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3932 3933 3934
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3935
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3936
			}
3937
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3938
		}
3939
		if (need_serialize)
3940 3941
			spin_unlock(&balancing);
out:
3942
		if (time_after(next_balance, sd->last_balance + interval)) {
3943
			next_balance = sd->last_balance + interval;
3944 3945
			update_next_balance = 1;
		}
3946 3947 3948 3949 3950 3951 3952 3953

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3954
	}
3955 3956 3957 3958 3959 3960 3961 3962

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3963 3964 3965 3966 3967 3968 3969 3970 3971
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3972 3973 3974 3975
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3976

I
Ingo Molnar 已提交
3977
	rebalance_domains(this_cpu, idle);
3978 3979 3980 3981 3982 3983 3984

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3985 3986
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3987 3988 3989 3990
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3991
		cpu_clear(this_cpu, cpus);
3992 3993 3994 3995 3996 3997 3998 3999 4000
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4001
			rebalance_domains(balance_cpu, CPU_IDLE);
4002 4003

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4004 4005
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4018
static inline void trigger_load_balance(struct rq *rq, int cpu)
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4045
			if (ilb < nr_cpu_ids)
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4070
}
I
Ingo Molnar 已提交
4071 4072 4073

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4074 4075 4076
/*
 * on UP we do not need to balance between CPUs:
 */
4077
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4078 4079
{
}
I
Ingo Molnar 已提交
4080

L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4088 4089
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4090
 */
4091
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4092 4093
{
	unsigned long flags;
4094 4095
	u64 ns, delta_exec;
	struct rq *rq;
4096

4097 4098
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4099
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4100 4101
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4102 4103 4104 4105
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4106

L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4130 4131 4132 4133 4134
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4135
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4169
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4170 4171
	cputime64_t tmp;

4172 4173 4174 4175
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4176

L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183 4184
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4185
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4186
		cpustat->system = cputime64_add(cpustat->system, tmp);
4187
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192 4193 4194
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4215
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4216 4217 4218 4219 4220 4221 4222

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4223
	} else
L
Linus Torvalds 已提交
4224 4225 4226
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4238
	struct task_struct *curr = rq->curr;
4239 4240

	sched_clock_tick();
I
Ingo Molnar 已提交
4241 4242

	spin_lock(&rq->lock);
4243
	update_rq_clock(rq);
4244
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4245
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4246
	spin_unlock(&rq->lock);
4247

4248
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4249 4250
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4251
#endif
L
Linus Torvalds 已提交
4252 4253
}

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4266

4267
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4268
{
4269
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4270 4271 4272
	/*
	 * Underflow?
	 */
4273 4274
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4275
#endif
L
Linus Torvalds 已提交
4276
	preempt_count() += val;
4277
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4278 4279 4280
	/*
	 * Spinlock count overflowing soon?
	 */
4281 4282
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4283 4284 4285
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4286 4287 4288
}
EXPORT_SYMBOL(add_preempt_count);

4289
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4290
{
4291
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4292 4293 4294
	/*
	 * Underflow?
	 */
4295 4296
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4297 4298 4299
	/*
	 * Is the spinlock portion underflowing?
	 */
4300 4301 4302
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4303
#endif
4304

4305 4306
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4314
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4315
 */
I
Ingo Molnar 已提交
4316
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4317
{
4318 4319 4320 4321 4322
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4323
	debug_show_held_locks(prev);
4324
	print_modules();
I
Ingo Molnar 已提交
4325 4326
	if (irqs_disabled())
		print_irqtrace_events(prev);
4327 4328 4329 4330 4331

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4332
}
L
Linus Torvalds 已提交
4333

I
Ingo Molnar 已提交
4334 4335 4336 4337 4338
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4339
	/*
I
Ingo Molnar 已提交
4340
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4341 4342 4343
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4344
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4345 4346
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4347 4348
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4349
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4350 4351
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4352 4353
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4354 4355
	}
#endif
I
Ingo Molnar 已提交
4356 4357 4358 4359 4360 4361
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4362
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4363
{
4364
	const struct sched_class *class;
I
Ingo Molnar 已提交
4365
	struct task_struct *p;
L
Linus Torvalds 已提交
4366 4367

	/*
I
Ingo Molnar 已提交
4368 4369
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4370
	 */
I
Ingo Molnar 已提交
4371
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4372
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4373 4374
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4375 4376
	}

I
Ingo Molnar 已提交
4377 4378
	class = sched_class_highest;
	for ( ; ; ) {
4379
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4389

I
Ingo Molnar 已提交
4390 4391 4392 4393 4394 4395
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4396
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4397
	struct rq *rq;
M
Mike Galbraith 已提交
4398
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4412

M
Mike Galbraith 已提交
4413 4414
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4415

4416 4417 4418 4419
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4420
	update_rq_clock(rq);
4421 4422
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4423 4424

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4425
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4426
			prev->state = TASK_RUNNING;
4427
		else
4428
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4429
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4430 4431
	}

4432 4433 4434 4435
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4436

I
Ingo Molnar 已提交
4437
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4438 4439
		idle_balance(cpu, rq);

4440
	prev->sched_class->put_prev_task(rq, prev);
4441
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4442 4443

	if (likely(prev != next)) {
4444 4445
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4446 4447 4448 4449
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4450
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4451 4452 4453 4454 4455 4456
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4457 4458 4459
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4460 4461
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4462 4463

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4464
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4465

L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4474
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4475
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4481

L
Linus Torvalds 已提交
4482 4483
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4484
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4485
	 */
N
Nick Piggin 已提交
4486
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4487 4488
		return;

4489 4490 4491 4492
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4493

4494 4495 4496 4497 4498 4499
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4500 4501 4502 4503
}
EXPORT_SYMBOL(preempt_schedule);

/*
4504
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509 4510 4511
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4512

4513
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4514 4515
	BUG_ON(ti->preempt_count || !irqs_disabled());

4516 4517 4518 4519 4520 4521
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4522

4523 4524 4525 4526 4527 4528
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4529 4530 4531 4532
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4533 4534
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4535
{
4536
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4537 4538 4539 4540
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4541 4542
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4543 4544 4545
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4546
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4547 4548 4549 4550 4551
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4552
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4553

4554
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4555 4556
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4557
		if (curr->func(curr, mode, sync, key) &&
4558
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4568
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4569
 */
4570
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4571
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4584
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4590
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4602
void
I
Ingo Molnar 已提交
4603
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4620
void complete(struct completion *x)
L
Linus Torvalds 已提交
4621 4622 4623 4624 4625
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4626
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4627 4628 4629 4630
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4631
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4637
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4638 4639 4640 4641
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4642 4643
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4651 4652 4653 4654
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4655 4656
				timeout = -ERESTARTSYS;
				break;
4657 4658
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4659 4660 4661
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4662
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4663
		__remove_wait_queue(&x->wait, &wait);
4664 4665
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4666 4667
	}
	x->done--;
4668
	return timeout ?: 1;
L
Linus Torvalds 已提交
4669 4670
}

4671 4672
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4673 4674 4675 4676
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4677
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4678
	spin_unlock_irq(&x->wait.lock);
4679 4680
	return timeout;
}
L
Linus Torvalds 已提交
4681

4682
void __sched wait_for_completion(struct completion *x)
4683 4684
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4685
}
4686
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4687

4688
unsigned long __sched
4689
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4690
{
4691
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4692
}
4693
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4694

4695
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4696
{
4697 4698 4699 4700
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4701
}
4702
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4703

4704
unsigned long __sched
4705 4706
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4707
{
4708
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4709
}
4710
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4711

M
Matthew Wilcox 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4721 4722
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4723
{
I
Ingo Molnar 已提交
4724 4725 4726 4727
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4728

4729
	__set_current_state(state);
L
Linus Torvalds 已提交
4730

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4745 4746 4747
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4748
long __sched
I
Ingo Molnar 已提交
4749
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4750
{
4751
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4752 4753 4754
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4755
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4756
{
4757
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4758 4759 4760
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4761
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4762
{
4763
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4764 4765 4766
}
EXPORT_SYMBOL(sleep_on_timeout);

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4779
void rt_mutex_setprio(struct task_struct *p, int prio)
4780 4781
{
	unsigned long flags;
4782
	int oldprio, on_rq, running;
4783
	struct rq *rq;
4784
	const struct sched_class *prev_class = p->sched_class;
4785 4786 4787 4788

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4789
	update_rq_clock(rq);
4790

4791
	oldprio = p->prio;
I
Ingo Molnar 已提交
4792
	on_rq = p->se.on_rq;
4793
	running = task_current(rq, p);
4794
	if (on_rq)
4795
		dequeue_task(rq, p, 0);
4796 4797
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4798 4799 4800 4801 4802 4803

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4804 4805
	p->prio = prio;

4806 4807
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4808
	if (on_rq) {
4809
		enqueue_task(rq, p, 0);
4810 4811

		check_class_changed(rq, p, prev_class, oldprio, running);
4812 4813 4814 4815 4816 4817
	}
	task_rq_unlock(rq, &flags);
}

#endif

4818
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4819
{
I
Ingo Molnar 已提交
4820
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4821
	unsigned long flags;
4822
	struct rq *rq;
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829 4830

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4831
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4832 4833 4834 4835
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4836
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4837
	 */
4838
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4839 4840 4841
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4842
	on_rq = p->se.on_rq;
4843
	if (on_rq)
4844
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4845 4846

	p->static_prio = NICE_TO_PRIO(nice);
4847
	set_load_weight(p);
4848 4849 4850
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4851

I
Ingo Molnar 已提交
4852
	if (on_rq) {
4853
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4854
		/*
4855 4856
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4857
		 */
4858
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4859 4860 4861 4862 4863 4864 4865
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4866 4867 4868 4869 4870
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4871
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4872
{
4873 4874
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4875

M
Matt Mackall 已提交
4876 4877 4878 4879
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4891
	long nice, retval;
L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4898 4899
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4909 4910 4911
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4930
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4931 4932 4933 4934 4935 4936 4937 4938
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4939
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4940 4941 4942
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4943
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4958
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4959 4960 4961 4962 4963 4964 4965 4966
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4967
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4968
{
4969
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4970 4971 4972
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4973 4974
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4975
{
I
Ingo Molnar 已提交
4976
	BUG_ON(p->se.on_rq);
4977

L
Linus Torvalds 已提交
4978
	p->policy = policy;
I
Ingo Molnar 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4991
	p->rt_priority = prio;
4992 4993 4994
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4995
	set_load_weight(p);
L
Linus Torvalds 已提交
4996 4997
}

4998 4999
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5000
{
5001
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5002
	unsigned long flags;
5003
	const struct sched_class *prev_class = p->sched_class;
5004
	struct rq *rq;
L
Linus Torvalds 已提交
5005

5006 5007
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5008 5009 5010 5011 5012
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5013 5014
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5015
		return -EINVAL;
L
Linus Torvalds 已提交
5016 5017
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5018 5019
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5020 5021
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5022
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5023
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5024
		return -EINVAL;
5025
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5026 5027
		return -EINVAL;

5028 5029 5030
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5031
	if (user && !capable(CAP_SYS_NICE)) {
5032
		if (rt_policy(policy)) {
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5049 5050 5051 5052 5053 5054
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5055

5056 5057 5058 5059 5060
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5061

5062 5063 5064 5065 5066
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5067 5068
	if (user
	    && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5069 5070 5071
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5072 5073 5074
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5075 5076 5077 5078 5079
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5080 5081 5082 5083
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5084
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5085 5086 5087
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5088 5089
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5090 5091
		goto recheck;
	}
I
Ingo Molnar 已提交
5092
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5093
	on_rq = p->se.on_rq;
5094
	running = task_current(rq, p);
5095
	if (on_rq)
5096
		deactivate_task(rq, p, 0);
5097 5098
	if (running)
		p->sched_class->put_prev_task(rq, p);
5099

L
Linus Torvalds 已提交
5100
	oldprio = p->prio;
I
Ingo Molnar 已提交
5101
	__setscheduler(rq, p, policy, param->sched_priority);
5102

5103 5104
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5105 5106
	if (on_rq) {
		activate_task(rq, p, 0);
5107 5108

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5109
	}
5110 5111 5112
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5113 5114
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5115 5116
	return 0;
}
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5131 5132
EXPORT_SYMBOL_GPL(sched_setscheduler);

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5150 5151
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5152 5153 5154
{
	struct sched_param lparam;
	struct task_struct *p;
5155
	int retval;
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5161 5162 5163

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5164
	p = find_process_by_pid(pid);
5165 5166 5167
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5168

L
Linus Torvalds 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5178 5179
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5180
{
5181 5182 5183 5184
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5204
	struct task_struct *p;
5205
	int retval;
L
Linus Torvalds 已提交
5206 5207

	if (pid < 0)
5208
		return -EINVAL;
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5230
	struct task_struct *p;
5231
	int retval;
L
Linus Torvalds 已提交
5232 5233

	if (!param || pid < 0)
5234
		return -EINVAL;
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5261
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5262 5263
{
	cpumask_t cpus_allowed;
5264
	cpumask_t new_mask = *in_mask;
5265 5266
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5267

5268
	get_online_cpus();
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5274
		put_online_cpus();
L
Linus Torvalds 已提交
5275 5276 5277 5278 5279
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5280
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5291 5292 5293 5294
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5295
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5296
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5297
 again:
5298
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5299

P
Paul Menage 已提交
5300
	if (!retval) {
5301
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5312 5313
out_unlock:
	put_task_struct(p);
5314
	put_online_cpus();
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5345
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5346 5347 5348 5349
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5350
	struct task_struct *p;
L
Linus Torvalds 已提交
5351 5352
	int retval;

5353
	get_online_cpus();
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359 5360
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5361 5362 5363 5364
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5365
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5366 5367 5368

out_unlock:
	read_unlock(&tasklist_lock);
5369
	put_online_cpus();
L
Linus Torvalds 已提交
5370

5371
	return retval;
L
Linus Torvalds 已提交
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5402 5403
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5404 5405 5406
 */
asmlinkage long sys_sched_yield(void)
{
5407
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5408

5409
	schedstat_inc(rq, yld_count);
5410
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5417
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5418 5419 5420 5421 5422 5423 5424 5425
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5426
static void __cond_resched(void)
L
Linus Torvalds 已提交
5427
{
5428 5429 5430
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5431 5432 5433 5434 5435
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5443
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5444
{
5445 5446
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451
		__cond_resched();
		return 1;
	}
	return 0;
}
5452
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5458
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5459 5460 5461
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5462
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5463
{
N
Nick Piggin 已提交
5464
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5465 5466
	int ret = 0;

N
Nick Piggin 已提交
5467
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5468
		spin_unlock(lock);
N
Nick Piggin 已提交
5469 5470 5471 5472
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5473
		ret = 1;
L
Linus Torvalds 已提交
5474 5475
		spin_lock(lock);
	}
J
Jan Kara 已提交
5476
	return ret;
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481 5482 5483
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5484
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5485
		local_bh_enable();
L
Linus Torvalds 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5497
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5508
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5509 5510 5511 5512 5513 5514 5515
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5516
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5517

5518
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5519 5520 5521
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5522
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5528
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5529 5530
	long ret;

5531
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5532 5533 5534
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5535
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5556
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5557
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5581
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5582
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5599
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5600
	unsigned int time_slice;
5601
	int retval;
L
Linus Torvalds 已提交
5602 5603 5604
	struct timespec t;

	if (pid < 0)
5605
		return -EINVAL;
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5617 5618 5619 5620 5621 5622
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5623
		time_slice = DEF_TIMESLICE;
5624
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5625 5626 5627 5628 5629
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5630 5631
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5632 5633
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5634
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5635
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5636 5637
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5638

L
Linus Torvalds 已提交
5639 5640 5641 5642 5643
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5644
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5645

5646
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5647 5648
{
	unsigned long free = 0;
5649
	unsigned state;
L
Linus Torvalds 已提交
5650 5651

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5652
	printk(KERN_INFO "%-13.13s %c", p->comm,
5653
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5654
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5655
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5656
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5657
	else
I
Ingo Molnar 已提交
5658
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5659 5660
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5661
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5662
	else
I
Ingo Molnar 已提交
5663
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5664 5665 5666
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5667
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5668 5669
		while (!*n)
			n++;
5670
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5671 5672
	}
#endif
5673
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5674
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5675

5676
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5677 5678
}

I
Ingo Molnar 已提交
5679
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5680
{
5681
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5682

5683 5684 5685
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5686
#else
5687 5688
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695 5696
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5697
		if (!state_filter || (p->state & state_filter))
5698
			sched_show_task(p);
L
Linus Torvalds 已提交
5699 5700
	} while_each_thread(g, p);

5701 5702
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5703 5704 5705
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5706
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5707 5708 5709 5710 5711
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5712 5713
}

I
Ingo Molnar 已提交
5714 5715
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5716
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5717 5718
}

5719 5720 5721 5722 5723 5724 5725 5726
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5727
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5728
{
5729
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5730 5731
	unsigned long flags;

I
Ingo Molnar 已提交
5732 5733 5734
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5735
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5736
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5737
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5738 5739 5740

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5741 5742 5743
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5744 5745 5746
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5747 5748 5749
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5750
	task_thread_info(idle)->preempt_count = 0;
5751
#endif
I
Ingo Molnar 已提交
5752 5753 5754 5755
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5792 5793 5794 5795
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5796
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5815
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5816 5817
 * call is not atomic; no spinlocks may be held.
 */
5818
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5819
{
5820
	struct migration_req req;
L
Linus Torvalds 已提交
5821
	unsigned long flags;
5822
	struct rq *rq;
5823
	int ret = 0;
L
Linus Torvalds 已提交
5824 5825

	rq = task_rq_lock(p, &flags);
5826
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5827 5828 5829 5830
		ret = -EINVAL;
		goto out;
	}

5831 5832 5833 5834 5835 5836
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5837
	if (p->sched_class->set_cpus_allowed)
5838
		p->sched_class->set_cpus_allowed(p, new_mask);
5839
	else {
5840 5841
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5842 5843
	}

L
Linus Torvalds 已提交
5844
	/* Can the task run on the task's current CPU? If so, we're done */
5845
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5846 5847
		goto out;

5848
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5849 5850 5851 5852 5853 5854 5855 5856 5857
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5858

L
Linus Torvalds 已提交
5859 5860
	return ret;
}
5861
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5862 5863

/*
I
Ingo Molnar 已提交
5864
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5865 5866 5867 5868 5869 5870
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5871 5872
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5873
 */
5874
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5875
{
5876
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5877
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5878 5879

	if (unlikely(cpu_is_offline(dest_cpu)))
5880
		return ret;
L
Linus Torvalds 已提交
5881 5882 5883 5884 5885 5886 5887

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5888
		goto done;
L
Linus Torvalds 已提交
5889 5890
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5891
		goto fail;
L
Linus Torvalds 已提交
5892

I
Ingo Molnar 已提交
5893
	on_rq = p->se.on_rq;
5894
	if (on_rq)
5895
		deactivate_task(rq_src, p, 0);
5896

L
Linus Torvalds 已提交
5897
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5898 5899 5900
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5901
	}
L
Linus Torvalds 已提交
5902
done:
5903
	ret = 1;
L
Linus Torvalds 已提交
5904
fail:
L
Linus Torvalds 已提交
5905
	double_rq_unlock(rq_src, rq_dest);
5906
	return ret;
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5914
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5915 5916
{
	int cpu = (long)data;
5917
	struct rq *rq;
L
Linus Torvalds 已提交
5918 5919 5920 5921 5922 5923

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5924
		struct migration_req *req;
L
Linus Torvalds 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5947
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5948 5949
		list_del_init(head->next);

N
Nick Piggin 已提交
5950 5951 5952
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5982
/*
5983
 * Figure out where task on dead CPU should go, use force if necessary.
5984 5985
 * NOTE: interrupts should be disabled by the caller
 */
5986
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5987
{
5988
	unsigned long flags;
L
Linus Torvalds 已提交
5989
	cpumask_t mask;
5990 5991
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5992

5993 5994 5995 5996 5997 5998 5999
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6000
		if (dest_cpu >= nr_cpu_ids)
6001 6002 6003
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6004
		if (dest_cpu >= nr_cpu_ids) {
6005 6006 6007
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6008 6009 6010 6011
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6012
			 * cpuset_cpus_allowed() will not block. It must be
6013 6014
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6015
			rq = task_rq_lock(p, &flags);
6016
			p->cpus_allowed = cpus_allowed;
6017 6018
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6019

6020 6021 6022 6023 6024
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6025
			if (p->mm && printk_ratelimit()) {
6026 6027
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6028 6029
					task_pid_nr(p), p->comm, dead_cpu);
			}
6030
		}
6031
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6041
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6042
{
6043
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6057
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6058

6059
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6060

6061 6062
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6063 6064
			continue;

6065 6066 6067
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6068

6069
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6070 6071
}

I
Ingo Molnar 已提交
6072 6073
/*
 * Schedules idle task to be the next runnable task on current CPU.
6074 6075
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6076 6077 6078
 */
void sched_idle_next(void)
{
6079
	int this_cpu = smp_processor_id();
6080
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6081 6082 6083 6084
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6085
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6086

6087 6088 6089
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6090 6091 6092
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6093
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6094

6095 6096
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6097 6098 6099 6100

	spin_unlock_irqrestore(&rq->lock, flags);
}

6101 6102
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6116
/* called under rq->lock with disabled interrupts */
6117
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6118
{
6119
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6120 6121

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6122
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6123 6124

	/* Cannot have done final schedule yet: would have vanished. */
6125
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6126

6127
	get_task_struct(p);
L
Linus Torvalds 已提交
6128 6129 6130

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6131
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6132 6133
	 * fine.
	 */
6134
	spin_unlock_irq(&rq->lock);
6135
	move_task_off_dead_cpu(dead_cpu, p);
6136
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6137

6138
	put_task_struct(p);
L
Linus Torvalds 已提交
6139 6140 6141 6142 6143
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6144
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6145
	struct task_struct *next;
6146

I
Ingo Molnar 已提交
6147 6148 6149
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6150
		update_rq_clock(rq);
6151
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6152 6153
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6154
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6155
		migrate_dead(dead_cpu, next);
6156

L
Linus Torvalds 已提交
6157 6158 6159 6160
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6161 6162 6163
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6164 6165
	{
		.procname	= "sched_domain",
6166
		.mode		= 0555,
6167
	},
I
Ingo Molnar 已提交
6168
	{0, },
6169 6170 6171
};

static struct ctl_table sd_ctl_root[] = {
6172
	{
6173
		.ctl_name	= CTL_KERN,
6174
		.procname	= "kernel",
6175
		.mode		= 0555,
6176 6177
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6178
	{0, },
6179 6180 6181 6182 6183
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6184
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6185 6186 6187 6188

	return entry;
}

6189 6190
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6191
	struct ctl_table *entry;
6192

6193 6194 6195
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6196
	 * will always be set. In the lowest directory the names are
6197 6198 6199
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6200 6201
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6202 6203 6204
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6205 6206 6207 6208 6209

	kfree(*tablep);
	*tablep = NULL;
}

6210
static void
6211
set_table_entry(struct ctl_table *entry,
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6225
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6226

6227 6228 6229
	if (table == NULL)
		return NULL;

6230
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6231
		sizeof(long), 0644, proc_doulongvec_minmax);
6232
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6233
		sizeof(long), 0644, proc_doulongvec_minmax);
6234
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6235
		sizeof(int), 0644, proc_dointvec_minmax);
6236
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6237
		sizeof(int), 0644, proc_dointvec_minmax);
6238
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6239
		sizeof(int), 0644, proc_dointvec_minmax);
6240
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6241
		sizeof(int), 0644, proc_dointvec_minmax);
6242
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6243
		sizeof(int), 0644, proc_dointvec_minmax);
6244
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6245
		sizeof(int), 0644, proc_dointvec_minmax);
6246
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6247
		sizeof(int), 0644, proc_dointvec_minmax);
6248
	set_table_entry(&table[9], "cache_nice_tries",
6249 6250
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6251
	set_table_entry(&table[10], "flags", &sd->flags,
6252
		sizeof(int), 0644, proc_dointvec_minmax);
6253
	/* &table[11] is terminator */
6254 6255 6256 6257

	return table;
}

6258
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6259 6260 6261 6262 6263 6264 6265 6266 6267
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6268 6269
	if (table == NULL)
		return NULL;
6270 6271 6272 6273 6274

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6275
		entry->mode = 0555;
6276 6277 6278 6279 6280 6281 6282 6283
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6284
static void register_sched_domain_sysctl(void)
6285 6286 6287 6288 6289
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6290 6291 6292
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6293 6294 6295
	if (entry == NULL)
		return;

6296
	for_each_online_cpu(i) {
6297 6298
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6299
		entry->mode = 0555;
6300
		entry->child = sd_alloc_ctl_cpu_table(i);
6301
		entry++;
6302
	}
6303 6304

	WARN_ON(sd_sysctl_header);
6305 6306
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6307

6308
/* may be called multiple times per register */
6309 6310
static void unregister_sched_domain_sysctl(void)
{
6311 6312
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6313
	sd_sysctl_header = NULL;
6314 6315
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6316
}
6317
#else
6318 6319 6320 6321
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6322 6323 6324 6325
{
}
#endif

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6356 6357 6358 6359
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6360 6361
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6362 6363
{
	struct task_struct *p;
6364
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6365
	unsigned long flags;
6366
	struct rq *rq;
L
Linus Torvalds 已提交
6367 6368

	switch (action) {
6369

L
Linus Torvalds 已提交
6370
	case CPU_UP_PREPARE:
6371
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6372
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6378
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6379 6380 6381
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6382

L
Linus Torvalds 已提交
6383
	case CPU_ONLINE:
6384
	case CPU_ONLINE_FROZEN:
6385
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6386
		wake_up_process(cpu_rq(cpu)->migration_thread);
6387 6388 6389 6390 6391 6392

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6393 6394

			set_rq_online(rq);
6395 6396
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6397
		break;
6398

L
Linus Torvalds 已提交
6399 6400
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6401
	case CPU_UP_CANCELED_FROZEN:
6402 6403
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6404
		/* Unbind it from offline cpu so it can run. Fall thru. */
6405 6406
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6407 6408 6409
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6410

L
Linus Torvalds 已提交
6411
	case CPU_DEAD:
6412
	case CPU_DEAD_FROZEN:
6413
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6414 6415 6416 6417 6418
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6419
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6420
		update_rq_clock(rq);
6421
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6422
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6423 6424
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6425
		migrate_dead_tasks(cpu);
6426
		spin_unlock_irq(&rq->lock);
6427
		cpuset_unlock();
L
Linus Torvalds 已提交
6428 6429 6430
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6431 6432 6433 6434 6435
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6436 6437
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6438 6439
			struct migration_req *req;

L
Linus Torvalds 已提交
6440
			req = list_entry(rq->migration_queue.next,
6441
					 struct migration_req, list);
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6447

6448 6449
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6450 6451 6452 6453 6454
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6455
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6456 6457 6458
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6459 6460 6461 6462 6463 6464 6465 6466
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6467
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6468 6469 6470 6471
	.notifier_call = migration_call,
	.priority = 10
};

6472
void __init migration_init(void)
L
Linus Torvalds 已提交
6473 6474
{
	void *cpu = (void *)(long)smp_processor_id();
6475
	int err;
6476 6477

	/* Start one for the boot CPU: */
6478 6479
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484 6485
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6486

6487
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6488

6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6511 6512
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6513
{
I
Ingo Molnar 已提交
6514
	struct sched_group *group = sd->groups;
6515
	char str[256];
L
Linus Torvalds 已提交
6516

6517
	cpulist_scnprintf(str, sizeof(str), sd->span);
6518
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6528 6529
	}

6530 6531
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6541

I
Ingo Molnar 已提交
6542
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6543
	do {
I
Ingo Molnar 已提交
6544 6545 6546
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6547 6548 6549
			break;
		}

I
Ingo Molnar 已提交
6550 6551 6552 6553 6554 6555
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6556

I
Ingo Molnar 已提交
6557 6558 6559 6560 6561
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6562

6563
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6564 6565 6566 6567
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6568

6569
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6570

6571
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6572
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6573

I
Ingo Molnar 已提交
6574 6575 6576
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6577

6578
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6579
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6580

6581
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6582 6583 6584 6585
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6586

I
Ingo Molnar 已提交
6587 6588
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6589
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6590
	int level = 0;
L
Linus Torvalds 已提交
6591

I
Ingo Molnar 已提交
6592 6593 6594 6595
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6596

I
Ingo Molnar 已提交
6597 6598
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6599 6600 6601 6602 6603 6604
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6605
	for (;;) {
6606
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6607
			break;
L
Linus Torvalds 已提交
6608 6609
		level++;
		sd = sd->parent;
6610
		if (!sd)
I
Ingo Molnar 已提交
6611 6612
			break;
	}
6613
	kfree(groupmask);
L
Linus Torvalds 已提交
6614
}
6615
#else /* !CONFIG_SCHED_DEBUG */
6616
# define sched_domain_debug(sd, cpu) do { } while (0)
6617
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6618

6619
static int sd_degenerate(struct sched_domain *sd)
6620 6621 6622 6623 6624 6625 6626 6627
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6628 6629 6630
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6644 6645
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6664 6665 6666
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6667 6668 6669 6670 6671 6672 6673
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6683 6684
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6685

6686 6687
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6688 6689 6690 6691 6692 6693 6694
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6695
	cpu_set(rq->cpu, rd->span);
6696
	if (cpu_isset(rq->cpu, cpu_online_map))
6697
		set_rq_online(rq);
G
Gregory Haskins 已提交
6698 6699 6700 6701

	spin_unlock_irqrestore(&rq->lock, flags);
}

6702
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6703 6704 6705
{
	memset(rd, 0, sizeof(*rd));

6706 6707
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6708 6709

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6710 6711 6712 6713
}

static void init_defrootdomain(void)
{
6714
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6715 6716 6717
	atomic_set(&def_root_domain.refcount, 1);
}

6718
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6719 6720 6721 6722 6723 6724 6725
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6726
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6727 6728 6729 6730

	return rd;
}

L
Linus Torvalds 已提交
6731
/*
I
Ingo Molnar 已提交
6732
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6733 6734
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6735 6736
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6737
{
6738
	struct rq *rq = cpu_rq(cpu);
6739 6740 6741 6742 6743 6744 6745
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6746
		if (sd_parent_degenerate(tmp, parent)) {
6747
			tmp->parent = parent->parent;
6748 6749 6750
			if (parent->parent)
				parent->parent->child = tmp;
		}
6751 6752
	}

6753
	if (sd && sd_degenerate(sd)) {
6754
		sd = sd->parent;
6755 6756 6757
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6758 6759 6760

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6761
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6762
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6763 6764 6765
}

/* cpus with isolated domains */
6766
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6767 6768 6769 6770

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6771 6772
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6782
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6783 6784

/*
6785 6786 6787 6788
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6789 6790 6791 6792 6793
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6794
static void
6795
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6796
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6797 6798 6799
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6800 6801 6802 6803
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6804 6805 6806
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6807
		struct sched_group *sg;
6808
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6809 6810
		int j;

6811
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6812 6813
			continue;

6814
		cpus_clear(sg->cpumask);
6815
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6816

6817 6818
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6819 6820
				continue;

6821
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6833
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6834

6835
#ifdef CONFIG_NUMA
6836

6837 6838 6839 6840 6841
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6842
 * Find the next node to include in a given scheduling domain. Simply
6843 6844 6845 6846
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6847
static int find_next_best_node(int node, nodemask_t *used_nodes)
6848 6849 6850 6851 6852
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6853
	for (i = 0; i < nr_node_ids; i++) {
6854
		/* Start at @node */
6855
		n = (node + i) % nr_node_ids;
6856 6857 6858 6859 6860

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6861
		if (node_isset(n, *used_nodes))
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6873
	node_set(best_node, *used_nodes);
6874 6875 6876 6877 6878 6879
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6880
 * @span: resulting cpumask
6881
 *
I
Ingo Molnar 已提交
6882
 * Given a node, construct a good cpumask for its sched_domain to span. It
6883 6884 6885
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6886
static void sched_domain_node_span(int node, cpumask_t *span)
6887
{
6888 6889
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6890
	int i;
6891

6892
	cpus_clear(*span);
6893
	nodes_clear(used_nodes);
6894

6895
	cpus_or(*span, *span, *nodemask);
6896
	node_set(node, used_nodes);
6897 6898

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6899
		int next_node = find_next_best_node(node, &used_nodes);
6900

6901
		node_to_cpumask_ptr_next(nodemask, next_node);
6902
		cpus_or(*span, *span, *nodemask);
6903 6904
	}
}
6905
#endif /* CONFIG_NUMA */
6906

6907
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6908

6909
/*
6910
 * SMT sched-domains:
6911
 */
L
Linus Torvalds 已提交
6912 6913
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6914
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6915

I
Ingo Molnar 已提交
6916
static int
6917 6918
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6919
{
6920 6921
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6922 6923
	return cpu;
}
6924
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6925

6926 6927 6928
/*
 * multi-core sched-domains:
 */
6929 6930
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6931
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6932
#endif /* CONFIG_SCHED_MC */
6933 6934

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6935
static int
6936 6937
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6938
{
6939
	int group;
6940 6941 6942 6943

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6944 6945 6946
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6947 6948
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6949
static int
6950 6951
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6952
{
6953 6954
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6955 6956 6957 6958
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6959
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6960
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6961

I
Ingo Molnar 已提交
6962
static int
6963 6964
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6965
{
6966
	int group;
6967
#ifdef CONFIG_SCHED_MC
6968 6969 6970
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6971
#elif defined(CONFIG_SCHED_SMT)
6972 6973 6974
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6975
#else
6976
	group = cpu;
L
Linus Torvalds 已提交
6977
#endif
6978 6979 6980
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6981 6982 6983 6984
}

#ifdef CONFIG_NUMA
/*
6985 6986 6987
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6988
 */
6989
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6990
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6991

6992
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6993
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6994

6995
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6996
				 struct sched_group **sg, cpumask_t *nodemask)
6997
{
6998 6999
	int group;

7000 7001 7002
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7003 7004 7005 7006

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7007
}
7008

7009 7010 7011 7012 7013 7014 7015
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7016 7017 7018
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7019

7020 7021 7022 7023 7024 7025 7026 7027
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7028

7029 7030 7031 7032
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7033
}
7034
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7035

7036
#ifdef CONFIG_NUMA
7037
/* Free memory allocated for various sched_group structures */
7038
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7039
{
7040
	int cpu, i;
7041 7042 7043 7044 7045 7046 7047 7048

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7049
		for (i = 0; i < nr_node_ids; i++) {
7050 7051
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7052 7053 7054
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7071
#else /* !CONFIG_NUMA */
7072
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7073 7074
{
}
7075
#endif /* CONFIG_NUMA */
7076

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7103 7104
	sd->groups->__cpu_power = 0;

7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7115
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7116 7117 7118 7119 7120 7121 7122 7123
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7124
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7125 7126 7127 7128
		group = group->next;
	} while (group != child->groups);
}

7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7140
	sd->level = SD_LV_##type;				\
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7189 7190 7191 7192
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7193 7194 7195 7196 7197 7198
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7224
/*
7225 7226
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7227
 */
7228 7229
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7230 7231
{
	int i;
G
Gregory Haskins 已提交
7232
	struct root_domain *rd;
7233 7234
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7235 7236
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7237
	int sd_allnodes = 0;
7238 7239 7240 7241

	/*
	 * Allocate the per-node list of sched groups
	 */
7242
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7243
				    GFP_KERNEL);
7244 7245
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7246
		return -ENOMEM;
7247 7248
	}
#endif
L
Linus Torvalds 已提交
7249

7250
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7251 7252
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7253 7254 7255
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7256 7257 7258
		return -ENOMEM;
	}

7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7278
	/*
7279
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7280
	 */
7281
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7282
		struct sched_domain *sd = NULL, *p;
7283
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7284

7285 7286
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7287 7288

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7289
		if (cpus_weight(*cpu_map) >
7290
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7291
			sd = &per_cpu(allnodes_domains, i);
7292
			SD_INIT(sd, ALLNODES);
7293
			set_domain_attribute(sd, attr);
7294
			sd->span = *cpu_map;
7295
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7296
			p = sd;
7297
			sd_allnodes = 1;
7298 7299 7300
		} else
			p = NULL;

L
Linus Torvalds 已提交
7301
		sd = &per_cpu(node_domains, i);
7302
		SD_INIT(sd, NODE);
7303
		set_domain_attribute(sd, attr);
7304
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7305
		sd->parent = p;
7306 7307
		if (p)
			p->child = sd;
7308
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7309 7310 7311 7312
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7313
		SD_INIT(sd, CPU);
7314
		set_domain_attribute(sd, attr);
7315
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7316
		sd->parent = p;
7317 7318
		if (p)
			p->child = sd;
7319
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7320

7321 7322 7323
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7324
		SD_INIT(sd, MC);
7325
		set_domain_attribute(sd, attr);
7326 7327 7328
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7329
		p->child = sd;
7330
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7331 7332
#endif

L
Linus Torvalds 已提交
7333 7334 7335
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7336
		SD_INIT(sd, SIBLING);
7337
		set_domain_attribute(sd, attr);
7338
		sd->span = per_cpu(cpu_sibling_map, i);
7339
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7340
		sd->parent = p;
7341
		p->child = sd;
7342
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7348
	for_each_cpu_mask(i, *cpu_map) {
7349 7350 7351 7352 7353 7354
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7355 7356
			continue;

I
Ingo Molnar 已提交
7357
		init_sched_build_groups(this_sibling_map, cpu_map,
7358 7359
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7360 7361 7362
	}
#endif

7363 7364 7365
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7366 7367 7368 7369 7370 7371
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7372
			continue;
7373

I
Ingo Molnar 已提交
7374
		init_sched_build_groups(this_core_map, cpu_map,
7375 7376
					&cpu_to_core_group,
					send_covered, tmpmask);
7377 7378 7379
	}
#endif

L
Linus Torvalds 已提交
7380
	/* Set up physical groups */
7381
	for (i = 0; i < nr_node_ids; i++) {
7382 7383
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7384

7385 7386 7387
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7388 7389
			continue;

7390 7391 7392
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7393 7394 7395 7396
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7397 7398 7399 7400 7401 7402 7403
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7404

7405
	for (i = 0; i < nr_node_ids; i++) {
7406 7407
		/* Set up node groups */
		struct sched_group *sg, *prev;
7408 7409 7410
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7411 7412
		int j;

7413 7414 7415 7416 7417
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7418
			sched_group_nodes[i] = NULL;
7419
			continue;
7420
		}
7421

7422
		sched_domain_node_span(i, domainspan);
7423
		cpus_and(*domainspan, *domainspan, *cpu_map);
7424

7425
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7426 7427 7428 7429 7430
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7431
		sched_group_nodes[i] = sg;
7432
		for_each_cpu_mask(j, *nodemask) {
7433
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7434

7435 7436 7437
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7438
		sg->__cpu_power = 0;
7439
		sg->cpumask = *nodemask;
7440
		sg->next = sg;
7441
		cpus_or(*covered, *covered, *nodemask);
7442 7443
		prev = sg;

7444
		for (j = 0; j < nr_node_ids; j++) {
7445
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7446
			int n = (i + j) % nr_node_ids;
7447
			node_to_cpumask_ptr(pnodemask, n);
7448

7449 7450 7451 7452
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7453 7454
				break;

7455 7456
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7457 7458
				continue;

7459 7460
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7461 7462 7463
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7464
				goto error;
7465
			}
7466
			sg->__cpu_power = 0;
7467
			sg->cpumask = *tmpmask;
7468
			sg->next = prev->next;
7469
			cpus_or(*covered, *covered, *tmpmask);
7470 7471 7472 7473
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7474 7475 7476
#endif

	/* Calculate CPU power for physical packages and nodes */
7477
#ifdef CONFIG_SCHED_SMT
7478
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7479 7480
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7481
		init_sched_groups_power(i, sd);
7482
	}
L
Linus Torvalds 已提交
7483
#endif
7484
#ifdef CONFIG_SCHED_MC
7485
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7486 7487
		struct sched_domain *sd = &per_cpu(core_domains, i);

7488
		init_sched_groups_power(i, sd);
7489 7490
	}
#endif
7491

7492
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7493 7494
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7495
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7496 7497
	}

7498
#ifdef CONFIG_NUMA
7499
	for (i = 0; i < nr_node_ids; i++)
7500
		init_numa_sched_groups_power(sched_group_nodes[i]);
7501

7502 7503
	if (sd_allnodes) {
		struct sched_group *sg;
7504

7505 7506
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7507 7508
		init_numa_sched_groups_power(sg);
	}
7509 7510
#endif

L
Linus Torvalds 已提交
7511
	/* Attach the domains */
7512
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7513 7514 7515
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7516 7517
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7518 7519 7520
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7521
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7522
	}
7523

7524
	SCHED_CPUMASK_FREE((void *)allmasks);
7525 7526
	return 0;

7527
#ifdef CONFIG_NUMA
7528
error:
7529 7530
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7531
	return -ENOMEM;
7532
#endif
L
Linus Torvalds 已提交
7533
}
P
Paul Jackson 已提交
7534

7535 7536 7537 7538 7539
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7540 7541
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7542 7543
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7544 7545 7546 7547 7548 7549 7550 7551

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7552 7553 7554 7555
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7568
/*
I
Ingo Molnar 已提交
7569
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7570 7571
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7572
 */
7573
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7574
{
7575 7576
	int err;

7577
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7578 7579 7580 7581 7582
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7583
	dattr_cur = NULL;
7584
	err = build_sched_domains(doms_cur);
7585
	register_sched_domain_sysctl();
7586 7587

	return err;
7588 7589
}

7590 7591
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7592
{
7593
	free_sched_groups(cpu_map, tmpmask);
7594
}
L
Linus Torvalds 已提交
7595

7596 7597 7598 7599
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7600
static void detach_destroy_domains(const cpumask_t *cpu_map)
7601
{
7602
	cpumask_t tmpmask;
7603 7604
	int i;

7605 7606
	unregister_sched_domain_sysctl();

7607
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7608
		cpu_attach_domain(NULL, &def_root_domain, i);
7609
	synchronize_sched();
7610
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7611 7612
}

7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7629 7630
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7631
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7632 7633 7634 7635
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7636 7637 7638
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7639 7640 7641
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7642 7643
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7644 7645 7646 7647 7648 7649
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7650 7651
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7652 7653 7654
{
	int i, j;

7655
	mutex_lock(&sched_domains_mutex);
7656

7657 7658 7659
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7660 7661 7662 7663
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7664
		dattr_new = NULL;
P
Paul Jackson 已提交
7665 7666 7667 7668 7669
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7670 7671
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7683 7684
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7685 7686 7687
				goto match2;
		}
		/* no match - add a new doms_new */
7688 7689
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7690 7691 7692 7693 7694 7695 7696
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7697
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7698
	doms_cur = doms_new;
7699
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7700
	ndoms_cur = ndoms_new;
7701 7702

	register_sched_domain_sysctl();
7703

7704
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7705 7706
}

7707
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7708
int arch_reinit_sched_domains(void)
7709 7710 7711
{
	int err;

7712
	get_online_cpus();
7713
	mutex_lock(&sched_domains_mutex);
7714
	detach_destroy_domains(&cpu_online_map);
7715
	free_sched_domains();
7716
	err = arch_init_sched_domains(&cpu_online_map);
7717
	mutex_unlock(&sched_domains_mutex);
7718
	put_online_cpus();
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7745 7746
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7747 7748 7749
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7750 7751
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7752 7753 7754 7755 7756 7757 7758
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7759 7760
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7761 7762 7763
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7784
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7785

L
Linus Torvalds 已提交
7786
/*
I
Ingo Molnar 已提交
7787
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7788
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7789
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7790 7791 7792 7793 7794
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7795 7796
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7797 7798
	switch (action) {
	case CPU_DOWN_PREPARE:
7799
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7800 7801 7802 7803
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7804
		detach_destroy_domains(&cpu_online_map);
7805
		free_sched_domains();
L
Linus Torvalds 已提交
7806 7807
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7808

L
Linus Torvalds 已提交
7809
	case CPU_DOWN_FAILED:
7810
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7811
	case CPU_ONLINE:
7812
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7813 7814 7815 7816
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7817
	case CPU_DEAD:
7818
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7819 7820 7821 7822 7823 7824 7825 7826
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7827 7828 7829 7830 7831 7832 7833
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7834
	/* The hotplug lock is already held by cpu_up/cpu_down */
7835
	arch_init_sched_domains(&cpu_online_map);
7836
#endif
L
Linus Torvalds 已提交
7837 7838 7839 7840 7841 7842

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7843 7844
	cpumask_t non_isolated_cpus;

7845 7846 7847 7848 7849
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7850
	get_online_cpus();
7851
	mutex_lock(&sched_domains_mutex);
7852
	arch_init_sched_domains(&cpu_online_map);
7853
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7854 7855
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7856
	mutex_unlock(&sched_domains_mutex);
7857
	put_online_cpus();
L
Linus Torvalds 已提交
7858 7859
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7860
	init_hrtick();
7861 7862

	/* Move init over to a non-isolated CPU */
7863
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7864
		BUG();
I
Ingo Molnar 已提交
7865
	sched_init_granularity();
L
Linus Torvalds 已提交
7866 7867 7868 7869
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7870
	sched_init_granularity();
L
Linus Torvalds 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7881
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7882 7883
{
	cfs_rq->tasks_timeline = RB_ROOT;
7884
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7885 7886 7887
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7888
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7889 7890
}

P
Peter Zijlstra 已提交
7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7904
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7905 7906
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7907 7908 7909 7910 7911 7912 7913
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7914 7915
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7916

7917
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7918
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7919 7920
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7921 7922
}

P
Peter Zijlstra 已提交
7923
#ifdef CONFIG_FAIR_GROUP_SCHED
7924 7925 7926
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7927
{
7928
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7929 7930 7931 7932 7933 7934 7935
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7936 7937 7938 7939
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7940 7941 7942 7943 7944
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7945 7946
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7947
	se->load.inv_weight = 0;
7948
	se->parent = parent;
P
Peter Zijlstra 已提交
7949
}
7950
#endif
P
Peter Zijlstra 已提交
7951

7952
#ifdef CONFIG_RT_GROUP_SCHED
7953 7954 7955
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7956
{
7957 7958
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7959 7960 7961 7962
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7963
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7964 7965 7966 7967
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7968 7969 7970
	if (!rt_se)
		return;

7971 7972 7973 7974 7975
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7976
	rt_se->my_q = rt_rq;
7977
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7978 7979 7980 7981
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7982 7983
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7984
	int i, j;
7985 7986 7987 7988 7989 7990 7991
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7992 7993 7994
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7995 7996 7997 7998 7999 8000
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8001
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8002 8003 8004 8005 8006 8007 8008

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8009 8010 8011 8012 8013 8014 8015

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8016 8017
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8018 8019 8020 8021 8022
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8023 8024 8025 8026 8027 8028 8029 8030
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8031 8032
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8033
	}
I
Ingo Molnar 已提交
8034

G
Gregory Haskins 已提交
8035 8036 8037 8038
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8039 8040 8041 8042 8043 8044
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8045 8046 8047
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8048 8049
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8050

8051
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8052
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8053 8054 8055 8056 8057 8058
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8059 8060
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8061

8062
	for_each_possible_cpu(i) {
8063
		struct rq *rq;
L
Linus Torvalds 已提交
8064 8065 8066

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8067
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8068
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8069
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8070
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8071
#ifdef CONFIG_FAIR_GROUP_SCHED
8072
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8073
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8094
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8095
#elif defined CONFIG_USER_SCHED
8096 8097
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8109
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8110
				&per_cpu(init_cfs_rq, i),
8111 8112
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8113

8114
#endif
D
Dhaval Giani 已提交
8115 8116 8117
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8118
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8119
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8120
#ifdef CONFIG_CGROUP_SCHED
8121
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8122
#elif defined CONFIG_USER_SCHED
8123
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8124
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8125
				&per_cpu(init_rt_rq, i),
8126 8127
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8128
#endif
I
Ingo Molnar 已提交
8129
#endif
L
Linus Torvalds 已提交
8130

I
Ingo Molnar 已提交
8131 8132
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8133
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8134
		rq->sd = NULL;
G
Gregory Haskins 已提交
8135
		rq->rd = NULL;
L
Linus Torvalds 已提交
8136
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8137
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8138
		rq->push_cpu = 0;
8139
		rq->cpu = i;
8140
		rq->online = 0;
L
Linus Torvalds 已提交
8141 8142
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8143
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8144
#endif
P
Peter Zijlstra 已提交
8145
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8146 8147 8148
		atomic_set(&rq->nr_iowait, 0);
	}

8149
	set_load_weight(&init_task);
8150

8151 8152 8153 8154
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8155
#ifdef CONFIG_SMP
8156
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8157 8158
#endif

8159 8160 8161 8162
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8176 8177 8178 8179
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8180 8181

	scheduler_running = 1;
L
Linus Torvalds 已提交
8182 8183 8184 8185 8186
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8187
#ifdef in_atomic
L
Linus Torvalds 已提交
8188 8189 8190 8191 8192 8193 8194
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8195
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8196 8197 8198
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8199
		debug_show_held_locks(current);
8200 8201
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8202 8203 8204 8205 8206 8207 8208 8209
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8210 8211 8212
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8213

8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8225 8226
void normalize_rt_tasks(void)
{
8227
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8228
	unsigned long flags;
8229
	struct rq *rq;
L
Linus Torvalds 已提交
8230

8231
	read_lock_irqsave(&tasklist_lock, flags);
8232
	do_each_thread(g, p) {
8233 8234 8235 8236 8237 8238
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8239 8240
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8241 8242 8243
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8244
#endif
I
Ingo Molnar 已提交
8245 8246 8247 8248 8249 8250 8251 8252

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8253
			continue;
I
Ingo Molnar 已提交
8254
		}
L
Linus Torvalds 已提交
8255

8256
		spin_lock(&p->pi_lock);
8257
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8258

8259
		normalize_task(rq, p);
8260

8261
		__task_rq_unlock(rq);
8262
		spin_unlock(&p->pi_lock);
8263 8264
	} while_each_thread(g, p);

8265
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8266 8267 8268
}

#endif /* CONFIG_MAGIC_SYSRQ */
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8287
struct task_struct *curr_task(int cpu)
8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8298 8299
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8300 8301 8302 8303 8304 8305 8306
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8307
void set_curr_task(int cpu, struct task_struct *p)
8308 8309 8310 8311 8312
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8313

8314 8315
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8330 8331
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8332 8333
{
	struct cfs_rq *cfs_rq;
8334
	struct sched_entity *se, *parent_se;
8335
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8336 8337
	int i;

8338
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8339 8340
	if (!tg->cfs_rq)
		goto err;
8341
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8342 8343
	if (!tg->se)
		goto err;
8344 8345

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8346 8347

	for_each_possible_cpu(i) {
8348
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8349

P
Peter Zijlstra 已提交
8350 8351
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8352 8353 8354
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8355 8356
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8357 8358 8359
		if (!se)
			goto err;

8360 8361
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8380
#else /* !CONFG_FAIR_GROUP_SCHED */
8381 8382 8383 8384
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8385 8386
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8398
#endif /* CONFIG_FAIR_GROUP_SCHED */
8399 8400

#ifdef CONFIG_RT_GROUP_SCHED
8401 8402 8403 8404
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8405 8406
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8418 8419
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8420 8421
{
	struct rt_rq *rt_rq;
8422
	struct sched_rt_entity *rt_se, *parent_se;
8423 8424 8425
	struct rq *rq;
	int i;

8426
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8427 8428
	if (!tg->rt_rq)
		goto err;
8429
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8430 8431 8432
	if (!tg->rt_se)
		goto err;

8433 8434
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8435 8436 8437 8438

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8439 8440 8441 8442
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8443

P
Peter Zijlstra 已提交
8444 8445 8446 8447
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8448

8449 8450
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8451 8452
	}

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8469
#else /* !CONFIG_RT_GROUP_SCHED */
8470 8471 8472 8473
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8474 8475
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8487
#endif /* CONFIG_RT_GROUP_SCHED */
8488

8489
#ifdef CONFIG_GROUP_SCHED
8490 8491 8492 8493 8494 8495 8496 8497
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8498
struct task_group *sched_create_group(struct task_group *parent)
8499 8500 8501 8502 8503 8504 8505 8506 8507
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8508
	if (!alloc_fair_sched_group(tg, parent))
8509 8510
		goto err;

8511
	if (!alloc_rt_sched_group(tg, parent))
8512 8513
		goto err;

8514
	spin_lock_irqsave(&task_group_lock, flags);
8515
	for_each_possible_cpu(i) {
8516 8517
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8518
	}
P
Peter Zijlstra 已提交
8519
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8520 8521 8522 8523 8524 8525

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8526
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8527

8528
	return tg;
S
Srivatsa Vaddagiri 已提交
8529 8530

err:
P
Peter Zijlstra 已提交
8531
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8532 8533 8534
	return ERR_PTR(-ENOMEM);
}

8535
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8536
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8537 8538
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8539
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8540 8541
}

8542
/* Destroy runqueue etc associated with a task group */
8543
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8544
{
8545
	unsigned long flags;
8546
	int i;
S
Srivatsa Vaddagiri 已提交
8547

8548
	spin_lock_irqsave(&task_group_lock, flags);
8549
	for_each_possible_cpu(i) {
8550 8551
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8552
	}
P
Peter Zijlstra 已提交
8553
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8554
	list_del_rcu(&tg->siblings);
8555
	spin_unlock_irqrestore(&task_group_lock, flags);
8556 8557

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8558
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8559 8560
}

8561
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8562 8563 8564
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8565 8566
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8567 8568 8569 8570 8571 8572 8573 8574 8575
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8576
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8577 8578
	on_rq = tsk->se.on_rq;

8579
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8580
		dequeue_task(rq, tsk, 0);
8581 8582
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8583

P
Peter Zijlstra 已提交
8584
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8585

P
Peter Zijlstra 已提交
8586 8587 8588 8589 8590
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8591 8592 8593
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8594
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8595 8596 8597

	task_rq_unlock(rq, &flags);
}
8598
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8599

8600
#ifdef CONFIG_FAIR_GROUP_SCHED
8601
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8602 8603 8604 8605 8606
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8607
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8608 8609 8610
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8611
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8612

8613
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8614
		enqueue_entity(cfs_rq, se, 0);
8615
}
8616

8617 8618 8619 8620 8621 8622 8623 8624 8625
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8626 8627
}

8628 8629
static DEFINE_MUTEX(shares_mutex);

8630
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8631 8632
{
	int i;
8633
	unsigned long flags;
8634

8635 8636 8637 8638 8639 8640
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8641 8642
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8643 8644
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8645

8646
	mutex_lock(&shares_mutex);
8647
	if (tg->shares == shares)
8648
		goto done;
S
Srivatsa Vaddagiri 已提交
8649

8650
	spin_lock_irqsave(&task_group_lock, flags);
8651 8652
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8653
	list_del_rcu(&tg->siblings);
8654
	spin_unlock_irqrestore(&task_group_lock, flags);
8655 8656 8657 8658 8659 8660 8661 8662

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8663
	tg->shares = shares;
8664 8665 8666 8667 8668
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8669
		set_se_shares(tg->se[i], shares);
8670
	}
S
Srivatsa Vaddagiri 已提交
8671

8672 8673 8674 8675
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8676
	spin_lock_irqsave(&task_group_lock, flags);
8677 8678
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8679
	list_add_rcu(&tg->siblings, &tg->parent->children);
8680
	spin_unlock_irqrestore(&task_group_lock, flags);
8681
done:
8682
	mutex_unlock(&shares_mutex);
8683
	return 0;
S
Srivatsa Vaddagiri 已提交
8684 8685
}

8686 8687 8688 8689
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8690
#endif
8691

8692
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8693
/*
P
Peter Zijlstra 已提交
8694
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8695
 */
P
Peter Zijlstra 已提交
8696 8697 8698 8699 8700 8701 8702
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8703
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8704 8705
}

8706 8707 8708
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8709
	struct task_group *tgi, *parent = tg->parent;
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8733
	return total + to_ratio(period, runtime) <=
8734 8735 8736 8737
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8738
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8739 8740 8741
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8742
	unsigned long global_ratio =
8743
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8744 8745

	rcu_read_lock();
P
Peter Zijlstra 已提交
8746 8747 8748
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8749

8750 8751
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8752 8753
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8754

P
Peter Zijlstra 已提交
8755
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8756
}
8757
#endif
P
Peter Zijlstra 已提交
8758

8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8770 8771
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8772
{
P
Peter Zijlstra 已提交
8773
	int i, err = 0;
P
Peter Zijlstra 已提交
8774 8775

	mutex_lock(&rt_constraints_mutex);
8776
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8777
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8778 8779 8780
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8781 8782 8783 8784
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8785 8786

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8787 8788
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8789 8790 8791 8792 8793 8794 8795 8796 8797

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8798
 unlock:
8799
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8800 8801 8802
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8803 8804
}

8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8817 8818 8819 8820
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8821
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8822 8823
		return -1;

8824
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8825 8826 8827
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8828 8829 8830 8831 8832 8833 8834 8835

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8836 8837 8838
	if (rt_period == 0)
		return -EINVAL;

8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8853 8854
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8855 8856
	int ret = 0;

8857 8858 8859
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8860
	mutex_lock(&rt_constraints_mutex);
8861
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8862 8863 8864 8865 8866
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8867
#else /* !CONFIG_RT_GROUP_SCHED */
8868 8869
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8883 8884
	return 0;
}
8885
#endif /* CONFIG_RT_GROUP_SCHED */
8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8916

8917
#ifdef CONFIG_CGROUP_SCHED
8918 8919

/* return corresponding task_group object of a cgroup */
8920
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8921
{
8922 8923
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8924 8925 8926
}

static struct cgroup_subsys_state *
8927
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8928
{
8929
	struct task_group *tg, *parent;
8930

8931
	if (!cgrp->parent) {
8932
		/* This is early initialization for the top cgroup */
8933
		init_task_group.css.cgroup = cgrp;
8934 8935 8936
		return &init_task_group.css;
	}

8937 8938
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8939 8940 8941 8942
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8943
	tg->css.cgroup = cgrp;
8944 8945 8946 8947

	return &tg->css;
}

I
Ingo Molnar 已提交
8948 8949
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8950
{
8951
	struct task_group *tg = cgroup_tg(cgrp);
8952 8953 8954 8955

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8956 8957 8958
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8959
{
8960 8961
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8962
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8963 8964
		return -EINVAL;
#else
8965 8966 8967
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8968
#endif
8969 8970 8971 8972 8973

	return 0;
}

static void
8974
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8975 8976 8977 8978 8979
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8980
#ifdef CONFIG_FAIR_GROUP_SCHED
8981
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8982
				u64 shareval)
8983
{
8984
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8985 8986
}

8987
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8988
{
8989
	struct task_group *tg = cgroup_tg(cgrp);
8990 8991 8992

	return (u64) tg->shares;
}
8993
#endif /* CONFIG_FAIR_GROUP_SCHED */
8994

8995
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8996
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8997
				s64 val)
P
Peter Zijlstra 已提交
8998
{
8999
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9000 9001
}

9002
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9003
{
9004
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9005
}
9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9017
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9018

9019
static struct cftype cpu_files[] = {
9020
#ifdef CONFIG_FAIR_GROUP_SCHED
9021 9022
	{
		.name = "shares",
9023 9024
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9025
	},
9026 9027
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9028
	{
P
Peter Zijlstra 已提交
9029
		.name = "rt_runtime_us",
9030 9031
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9032
	},
9033 9034
	{
		.name = "rt_period_us",
9035 9036
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9037
	},
9038
#endif
9039 9040 9041 9042
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9043
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9044 9045 9046
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9047 9048 9049 9050 9051 9052 9053
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9054 9055 9056
	.early_init	= 1,
};

9057
#endif	/* CONFIG_CGROUP_SCHED */
9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9078
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9079
{
9080
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9093
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9110
static void
9111
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9112
{
9113
	struct cpuacct *ca = cgroup_ca(cgrp);
9114 9115 9116 9117 9118 9119

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9120
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9121
{
9122
	struct cpuacct *ca = cgroup_ca(cgrp);
9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9164 9165 9166
static struct cftype files[] = {
	{
		.name = "usage",
9167 9168
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9169 9170 9171
	},
};

9172
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9173
{
9174
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */