sched.c 161.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
58
#include <linux/tsacct_kern.h>
59
#include <linux/kprobes.h>
60
#include <linux/delayacct.h>
61
#include <linux/reciprocal_div.h>
62
#include <linux/unistd.h>
L
Linus Torvalds 已提交
63

64
#include <asm/tlb.h>
L
Linus Torvalds 已提交
65

66 67 68 69 70 71 72 73 74 75
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
134 135 136
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

137
/*
I
Ingo Molnar 已提交
138
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 140
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
141
static unsigned int static_prio_timeslice(int static_prio)
142
{
I
Ingo Molnar 已提交
143 144 145 146 147 148 149
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
164
/*
I
Ingo Molnar 已提交
165
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
166
 */
I
Ingo Molnar 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
209

I
Ingo Molnar 已提交
210 211 212 213 214 215 216
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
217 218 219 220 221 222 223
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
224
struct rq {
I
Ingo Molnar 已提交
225
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
226 227 228 229 230 231

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
232 233
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234
	unsigned char idle_at_tick;
235 236 237
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
238 239 240 241 242 243 244
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
245
#endif
I
Ingo Molnar 已提交
246
	struct rt_rq  rt;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

256
	struct task_struct *curr, *idle;
257
	unsigned long next_balance;
L
Linus Torvalds 已提交
258
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
259 260 261 262 263 264 265

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
266 267 268 269 270 271 272 273
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
274
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
275

276
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
299
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
300 301
};

302
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
303
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
304

I
Ingo Molnar 已提交
305 306 307 308 309
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

310 311 312 313 314 315 316 317 318
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
365 366
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
367
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
368 369 370 371
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
372 373
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
374 375 376 377 378 379

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

380 381 382 383 384 385 386 387 388
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;

389 390 391
	local_irq_save(flags);
	now = rq_clock(cpu_rq(cpu));
	local_irq_restore(flags);
392 393 394 395

	return now;
}

I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405 406 407
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
408
#ifndef prepare_arch_switch
409 410 411 412 413 414 415
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
416
static inline int task_running(struct rq *rq, struct task_struct *p)
417 418 419 420
{
	return rq->curr == p;
}

421
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
422 423 424
{
}

425
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
426
{
427 428 429 430
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
431 432 433 434 435 436 437
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

438 439 440 441
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
442
static inline int task_running(struct rq *rq, struct task_struct *p)
443 444 445 446 447 448 449 450
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

451
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

468
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
469 470 471 472 473 474 475 476 477 478 479 480
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
481
#endif
482 483
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
484

485 486 487 488
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
489
static inline struct rq *__task_rq_lock(struct task_struct *p)
490 491
	__acquires(rq->lock)
{
492
	struct rq *rq;
493 494 495 496 497 498 499 500 501 502 503

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
504 505 506 507 508
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
509
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
510 511
	__acquires(rq->lock)
{
512
	struct rq *rq;
L
Linus Torvalds 已提交
513 514 515 516 517 518 519 520 521 522 523 524

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

525
static inline void __task_rq_unlock(struct rq *rq)
526 527 528 529 530
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

531
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
532 533 534 535 536 537
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
538
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
539
 */
540
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
541 542
	__acquires(rq->lock)
{
543
	struct rq *rq;
L
Linus Torvalds 已提交
544 545 546 547 548 549 550 551

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
735
#define load_weight(lp) \
736 737
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
738
	load_weight(static_prio_timeslice(prio))
739
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
753 754 755
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
756 757 758 759 760 761 762 763 764
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

765 766 767 768 769 770 771
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
772
static const u32 prio_to_wmult[40] = {
773 774 775 776 777 778 779 780
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
781
};
782

783
static inline void
I
Ingo Molnar 已提交
784
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
785
{
I
Ingo Molnar 已提交
786 787
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
788 789
}

790
static inline void
I
Ingo Molnar 已提交
791
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
792
{
I
Ingo Molnar 已提交
793 794
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
795 796
}

I
Ingo Molnar 已提交
797
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
798 799
{
	rq->nr_running++;
I
Ingo Molnar 已提交
800
	inc_load(rq, p, now);
801 802
}

I
Ingo Molnar 已提交
803
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
804 805
{
	rq->nr_running--;
I
Ingo Molnar 已提交
806
	dec_load(rq, p, now);
807 808
}

I
Ingo Molnar 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

839 840
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
841 842 843
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

844
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
845 846 847 848
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
849

I
Ingo Molnar 已提交
850 851 852 853 854 855 856 857
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
858

I
Ingo Molnar 已提交
859 860
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
861 862
}

I
Ingo Molnar 已提交
863 864
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
865
{
I
Ingo Molnar 已提交
866 867 868
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
869 870
}

I
Ingo Molnar 已提交
871 872
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
873
{
I
Ingo Molnar 已提交
874 875
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
876 877
}

878
/*
I
Ingo Molnar 已提交
879
 * __normal_prio - return the priority that is based on the static prio
880 881 882
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
883
	return p->static_prio;
884 885
}

886 887 888 889 890 891 892
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
893
static inline int normal_prio(struct task_struct *p)
894 895 896
{
	int prio;

897
	if (task_has_rt_policy(p))
898 899 900 901 902 903 904 905 906 907 908 909 910
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
911
static int effective_prio(struct task_struct *p)
912 913 914 915 916 917 918 919 920 921 922 923
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
924
/*
I
Ingo Molnar 已提交
925
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
926
 */
I
Ingo Molnar 已提交
927
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
928
{
I
Ingo Molnar 已提交
929
	u64 now = rq_clock(rq);
930

I
Ingo Molnar 已提交
931 932
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
933

I
Ingo Molnar 已提交
934 935
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
936 937 938
}

/*
I
Ingo Molnar 已提交
939
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
940
 */
I
Ingo Molnar 已提交
941
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
942
{
I
Ingo Molnar 已提交
943
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
944

I
Ingo Molnar 已提交
945 946
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
947

I
Ingo Molnar 已提交
948 949
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
950 951 952 953 954
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
955
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
956
{
I
Ingo Molnar 已提交
957 958 959 960 961 962 963
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
964 965 966 967 968 969
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
970
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
971 972 973 974
{
	return cpu_curr(task_cpu(p)) == p;
}

975 976 977
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
978 979 980 981 982 983 984 985 986
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
987 988
}

L
Linus Torvalds 已提交
989
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
990

I
Ingo Molnar 已提交
991
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
992
{
I
Ingo Molnar 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1012 1013
}

1014
struct migration_req {
L
Linus Torvalds 已提交
1015 1016
	struct list_head list;

1017
	struct task_struct *task;
L
Linus Torvalds 已提交
1018 1019 1020
	int dest_cpu;

	struct completion done;
1021
};
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1027
static int
1028
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1029
{
1030
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1036
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1045

L
Linus Torvalds 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1058
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1059 1060
{
	unsigned long flags;
I
Ingo Molnar 已提交
1061
	int running, on_rq;
1062
	struct rq *rq;
L
Linus Torvalds 已提交
1063 1064

repeat:
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1092
	rq = task_rq_lock(p, &flags);
1093
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1094
	on_rq = p->se.on_rq;
1095 1096 1097 1098 1099 1100 1101 1102 1103
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1104 1105 1106
		cpu_relax();
		goto repeat;
	}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1117
	if (unlikely(on_rq)) {
1118 1119 1120 1121 1122 1123 1124 1125 1126
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1142
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1154 1155
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1156 1157 1158 1159
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1160
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1161
{
1162
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1163
	unsigned long total = weighted_cpuload(cpu);
1164

1165
	if (type == 0)
I
Ingo Molnar 已提交
1166
		return total;
1167

I
Ingo Molnar 已提交
1168
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1169 1170 1171
}

/*
1172 1173
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1174
 */
N
Nick Piggin 已提交
1175
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1176
{
1177
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1178
	unsigned long total = weighted_cpuload(cpu);
1179

N
Nick Piggin 已提交
1180
	if (type == 0)
I
Ingo Molnar 已提交
1181
		return total;
1182

I
Ingo Molnar 已提交
1183
	return max(rq->cpu_load[type-1], total);
1184 1185 1186 1187 1188 1189 1190
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1191
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1192
	unsigned long total = weighted_cpuload(cpu);
1193 1194
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1195
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1196 1197
}

N
Nick Piggin 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1215 1216 1217 1218
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1235 1236
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1237 1238 1239 1240 1241 1242 1243 1244

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1245
nextgroup:
N
Nick Piggin 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1255
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1256
 */
I
Ingo Molnar 已提交
1257 1258
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1259
{
1260
	cpumask_t tmp;
N
Nick Piggin 已提交
1261 1262 1263 1264
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1265 1266 1267 1268
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1269
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1295

1296
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1297 1298 1299
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1300 1301
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1302 1303
		if (tmp->flags & flag)
			sd = tmp;
1304
	}
N
Nick Piggin 已提交
1305 1306 1307 1308

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1309 1310 1311 1312 1313 1314
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1315 1316 1317

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1318 1319 1320 1321
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1322

1323
		new_cpu = find_idlest_cpu(group, t, cpu);
1324 1325 1326 1327 1328
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1329

1330
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1357
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1373 1374 1375 1376
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1377
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1378 1379 1380 1381
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1382
		} else {
N
Nick Piggin 已提交
1383
			break;
I
Ingo Molnar 已提交
1384
		}
L
Linus Torvalds 已提交
1385 1386 1387 1388
	}
	return cpu;
}
#else
1389
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1409
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1410 1411 1412 1413
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1414
	struct rq *rq;
L
Linus Torvalds 已提交
1415
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1416
	struct sched_domain *sd, *this_sd = NULL;
1417
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1426
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1436 1437
	new_cpu = cpu;

L
Linus Torvalds 已提交
1438 1439 1440
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1441 1442 1443 1444 1445 1446 1447 1448
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1449 1450 1451
		}
	}

N
Nick Piggin 已提交
1452
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1453 1454 1455
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1456
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1457
	 */
N
Nick Piggin 已提交
1458 1459 1460
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1461

1462 1463
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1464 1465
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1466

N
Nick Piggin 已提交
1467 1468
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1469 1470
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1471 1472 1473
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1474

L
Linus Torvalds 已提交
1475
			/*
1476 1477 1478
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1479
			 */
1480
			if (sync)
I
Ingo Molnar 已提交
1481
				tl -= current->se.load.weight;
1482 1483

			if ((tl <= load &&
1484
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1485
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1519
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1528
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1537 1538
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1549
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1556
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561 1562 1563
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1588

I
Ingo Molnar 已提交
1589 1590
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1591

1592 1593 1594 1595
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1618 1619 1620 1621 1622 1623

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1624
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1625
	if (likely(sched_info_on()))
1626
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1627
#endif
1628
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1629 1630
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1631
#ifdef CONFIG_PREEMPT
1632
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1633
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1634
#endif
N
Nick Piggin 已提交
1635
	put_cpu();
L
Linus Torvalds 已提交
1636 1637
}

I
Ingo Molnar 已提交
1638 1639 1640 1641 1642 1643
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1651
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1652 1653
{
	unsigned long flags;
I
Ingo Molnar 已提交
1654 1655
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1656 1657

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1658
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1659
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1660 1661 1662

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1663 1664 1665
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1666 1667
	} else {
		/*
I
Ingo Molnar 已提交
1668 1669
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1670
		 */
I
Ingo Molnar 已提交
1671
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1672
	}
I
Ingo Molnar 已提交
1673 1674
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
 * preempt_notifier_register - tell me when current is being being preempted
 *                         and rescheduled
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1746 1747 1748
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1749
{
1750
	fire_sched_out_preempt_notifiers(prev, next);
1751 1752 1753 1754
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1755 1756
/**
 * finish_task_switch - clean up after a task-switch
1757
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1758 1759
 * @prev: the thread we just switched away from.
 *
1760 1761 1762 1763
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1770
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1771 1772 1773
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1774
	long prev_state;
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1780
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1781 1782
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1783
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1789
	prev_state = prev->state;
1790 1791
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1792
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1793 1794
	if (mm)
		mmdrop(mm);
1795
	if (unlikely(prev_state == TASK_DEAD)) {
1796 1797 1798
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1799
		 */
1800
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1801
		put_task_struct(prev);
1802
	}
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807 1808
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1809
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1810 1811
	__releases(rq->lock)
{
1812 1813
	struct rq *rq = this_rq();

1814 1815 1816 1817 1818
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823 1824 1825 1826
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1827
static inline void
1828
context_switch(struct rq *rq, struct task_struct *prev,
1829
	       struct task_struct *next)
L
Linus Torvalds 已提交
1830
{
I
Ingo Molnar 已提交
1831
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1832

1833
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1834 1835
	mm = next->mm;
	oldmm = prev->active_mm;
1836 1837 1838 1839 1840 1841 1842
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1843
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1850
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1851 1852 1853
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1854 1855 1856 1857 1858 1859 1860
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1861
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1862
#endif
L
Linus Torvalds 已提交
1863 1864 1865 1866

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1897
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1912 1913
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1914

1915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1946
/*
I
Ingo Molnar 已提交
1947 1948
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1949
 */
I
Ingo Molnar 已提交
1950
static void update_cpu_load(struct rq *this_rq)
1951
{
I
Ingo Molnar 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2001 2002
}

I
Ingo Molnar 已提交
2003 2004
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2011
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2012 2013 2014
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2015
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2016 2017 2018 2019
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2020
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2036
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2050
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2051 2052 2053 2054
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2055 2056 2057 2058 2059
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2060
	if (unlikely(!spin_trylock(&busiest->lock))) {
2061
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2076
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2077
{
2078
	struct migration_req req;
L
Linus Torvalds 已提交
2079
	unsigned long flags;
2080
	struct rq *rq;
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2091

L
Linus Torvalds 已提交
2092 2093 2094 2095 2096
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2097

L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103 2104
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2105 2106
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2107 2108 2109 2110
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2111
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2112
	put_cpu();
N
Nick Piggin 已提交
2113 2114
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2115 2116 2117 2118 2119 2120
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2121 2122
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2123
{
I
Ingo Molnar 已提交
2124
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2125
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2126
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2127 2128 2129 2130
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2131
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2137
static
2138
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2139
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2140
		     int *all_pinned)
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2150 2151 2152 2153
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2154 2155

	/*
I
Ingo Molnar 已提交
2156
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2157
	 */
I
Ingo Molnar 已提交
2158
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2164
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2165
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2166
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2167 2168 2169
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2170
{
I
Ingo Molnar 已提交
2171 2172 2173
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2174

2175
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2176 2177
		goto out;

2178 2179
	pinned = 1;

L
Linus Torvalds 已提交
2180
	/*
I
Ingo Molnar 已提交
2181
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2182
	 */
I
Ingo Molnar 已提交
2183 2184 2185
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2186
		goto out;
2187 2188 2189 2190 2191
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2192 2193 2194 2195
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2196
	if (skip_for_load ||
I
Ingo Molnar 已提交
2197
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2198

I
Ingo Molnar 已提交
2199 2200 2201
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2202 2203
	}

I
Ingo Molnar 已提交
2204
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2205
	pulled++;
I
Ingo Molnar 已提交
2206
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2207

2208 2209 2210 2211 2212
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2213 2214 2215 2216
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222 2223 2224
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2225 2226 2227

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2228
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2229 2230 2231
	return pulled;
}

I
Ingo Molnar 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2261 2262
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2263 2264
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2265 2266 2267
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2268 2269
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2270 2271 2272
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2273
	unsigned long max_pull;
2274 2275
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2276
	int load_idx;
2277 2278 2279 2280 2281 2282
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2283 2284

	max_load = this_load = total_load = total_pwr = 0;
2285 2286
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2287
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2288
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2289
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2290 2291 2292
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2293 2294

	do {
2295
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2296 2297
		int local_group;
		int i;
2298
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2299
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2300 2301 2302

		local_group = cpu_isset(this_cpu, group->cpumask);

2303 2304 2305
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2306
		/* Tally up the load of all CPUs in the group */
2307
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2308 2309

		for_each_cpu_mask(i, group->cpumask) {
2310 2311 2312 2313 2314 2315
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2316

2317
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2318 2319
				*sd_idle = 0;

L
Linus Torvalds 已提交
2320
			/* Bias balancing toward cpus of our domain */
2321 2322 2323 2324 2325 2326
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2327
				load = target_load(i, load_idx);
2328
			} else
N
Nick Piggin 已提交
2329
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2330 2331

			avg_load += load;
2332
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2333
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2334 2335
		}

2336 2337 2338
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2339 2340
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2341
		 */
2342 2343
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2344 2345 2346 2347
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2348
		total_load += avg_load;
2349
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2350 2351

		/* Adjust by relative CPU power of the group */
2352 2353
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2354

2355
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2356

L
Linus Torvalds 已提交
2357 2358 2359
		if (local_group) {
			this_load = avg_load;
			this = group;
2360 2361 2362
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2363
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2364 2365
			max_load = avg_load;
			busiest = group;
2366 2367
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2368
		}
2369 2370 2371 2372 2373 2374

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2375 2376 2377
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2378 2379 2380 2381 2382 2383 2384 2385 2386

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2387
		/*
2388 2389
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2390 2391
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2392
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2393
			goto group_next;
2394

I
Ingo Molnar 已提交
2395
		/*
2396
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2397 2398 2399 2400 2401
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2402 2403
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2404 2405
			group_min = group;
			min_nr_running = sum_nr_running;
2406 2407
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2408
		}
2409

I
Ingo Molnar 已提交
2410
		/*
2411
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2423
		}
2424 2425
group_next:
#endif
L
Linus Torvalds 已提交
2426 2427 2428
		group = group->next;
	} while (group != sd->groups);

2429
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435 2436 2437
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2438
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2462 2463

	/* Don't want to pull so many tasks that a group would go idle */
2464
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2465

L
Linus Torvalds 已提交
2466
	/* How much load to actually move to equalise the imbalance */
2467 2468
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2469 2470
			/ SCHED_LOAD_SCALE;

2471 2472 2473 2474 2475 2476
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2477
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2478
		unsigned long tmp, pwr_now, pwr_move;
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2490

I
Ingo Molnar 已提交
2491 2492
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2493
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2503 2504 2505 2506
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2507 2508 2509
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2510 2511
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2512
		if (max_load > tmp)
2513
			pwr_move += busiest->__cpu_power *
2514
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2515 2516

		/* Amount of load we'd add */
2517
		if (max_load * busiest->__cpu_power <
2518
				busiest_load_per_task * SCHED_LOAD_SCALE)
2519 2520
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2521
		else
2522 2523 2524 2525
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2532
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2533 2534 2535 2536 2537
	}

	return busiest;

out_balanced:
2538
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2539
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2540
		goto ret;
L
Linus Torvalds 已提交
2541

2542 2543 2544 2545 2546
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2547
ret:
L
Linus Torvalds 已提交
2548 2549 2550 2551 2552 2553 2554
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2555
static struct rq *
I
Ingo Molnar 已提交
2556
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2557
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2558
{
2559
	struct rq *busiest = NULL, *rq;
2560
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2561 2562 2563
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2564
		unsigned long wl;
2565 2566 2567 2568

		if (!cpu_isset(i, *cpus))
			continue;

2569
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2570
		wl = weighted_cpuload(i);
2571

I
Ingo Molnar 已提交
2572
		if (rq->nr_running == 1 && wl > imbalance)
2573
			continue;
L
Linus Torvalds 已提交
2574

I
Ingo Molnar 已提交
2575 2576
		if (wl > max_load) {
			max_load = wl;
2577
			busiest = rq;
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583
		}
	}

	return busiest;
}

2584 2585 2586 2587 2588 2589
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2590 2591 2592 2593 2594
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2595 2596 2597 2598
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2599
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2600
			struct sched_domain *sd, enum cpu_idle_type idle,
2601
			int *balance)
L
Linus Torvalds 已提交
2602
{
2603
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2604 2605
	struct sched_group *group;
	unsigned long imbalance;
2606
	struct rq *busiest;
2607
	cpumask_t cpus = CPU_MASK_ALL;
2608
	unsigned long flags;
N
Nick Piggin 已提交
2609

2610 2611 2612
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2613
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2614
	 * portraying it as CPU_NOT_IDLE.
2615
	 */
I
Ingo Molnar 已提交
2616
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2617
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2618
		sd_idle = 1;
L
Linus Torvalds 已提交
2619 2620 2621

	schedstat_inc(sd, lb_cnt[idle]);

2622 2623
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2624 2625
				   &cpus, balance);

2626
	if (*balance == 0)
2627 2628
		goto out_balanced;

L
Linus Torvalds 已提交
2629 2630 2631 2632 2633
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2634
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2640
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2652
		local_irq_save(flags);
N
Nick Piggin 已提交
2653
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2654
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2655 2656
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2657
		double_rq_unlock(this_rq, busiest);
2658
		local_irq_restore(flags);
2659

2660 2661 2662 2663 2664 2665
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2666
		/* All tasks on this runqueue were pinned by CPU affinity */
2667 2668 2669 2670
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2671
			goto out_balanced;
2672
		}
L
Linus Torvalds 已提交
2673
	}
2674

L
Linus Torvalds 已提交
2675 2676 2677 2678 2679 2680
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2681
			spin_lock_irqsave(&busiest->lock, flags);
2682 2683 2684 2685 2686

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2687
				spin_unlock_irqrestore(&busiest->lock, flags);
2688 2689 2690 2691
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2692 2693 2694
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2695
				active_balance = 1;
L
Linus Torvalds 已提交
2696
			}
2697
			spin_unlock_irqrestore(&busiest->lock, flags);
2698
			if (active_balance)
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2705
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2706
		}
2707
	} else
L
Linus Torvalds 已提交
2708 2709
		sd->nr_balance_failed = 0;

2710
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2711 2712
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2713 2714 2715 2716 2717 2718 2719 2720 2721
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2722 2723
	}

2724
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2725
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2726
		return -1;
L
Linus Torvalds 已提交
2727 2728 2729 2730 2731
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2732
	sd->nr_balance_failed = 0;
2733 2734

out_one_pinned:
L
Linus Torvalds 已提交
2735
	/* tune up the balancing interval */
2736 2737
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2738 2739
		sd->balance_interval *= 2;

2740
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2741
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2742
		return -1;
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748 2749
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2750
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2751 2752
 * this_rq is locked.
 */
2753
static int
2754
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2755 2756
{
	struct sched_group *group;
2757
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2758 2759
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2760
	int sd_idle = 0;
2761
	int all_pinned = 0;
2762
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2763

2764 2765 2766 2767
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2768
	 * portraying it as CPU_NOT_IDLE.
2769 2770 2771
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2772
		sd_idle = 1;
L
Linus Torvalds 已提交
2773

I
Ingo Molnar 已提交
2774
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2775
redo:
I
Ingo Molnar 已提交
2776
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2777
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2778
	if (!group) {
I
Ingo Molnar 已提交
2779
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2780
		goto out_balanced;
L
Linus Torvalds 已提交
2781 2782
	}

I
Ingo Molnar 已提交
2783
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2784
				&cpus);
N
Nick Piggin 已提交
2785
	if (!busiest) {
I
Ingo Molnar 已提交
2786
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2787
		goto out_balanced;
L
Linus Torvalds 已提交
2788 2789
	}

N
Nick Piggin 已提交
2790 2791
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2792
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2793 2794 2795 2796 2797 2798

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2799
					minus_1_or_zero(busiest->nr_running),
2800 2801
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2802
		spin_unlock(&busiest->lock);
2803

2804
		if (unlikely(all_pinned)) {
2805 2806 2807 2808
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2809 2810
	}

N
Nick Piggin 已提交
2811
	if (!nr_moved) {
I
Ingo Molnar 已提交
2812
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2813 2814
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2815 2816
			return -1;
	} else
2817
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2818 2819

	return nr_moved;
2820 2821

out_balanced:
I
Ingo Molnar 已提交
2822
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2823
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2824
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2825
		return -1;
2826
	sd->nr_balance_failed = 0;
2827

2828
	return 0;
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833 2834
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2835
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2836 2837
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2838 2839
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2840 2841

	for_each_domain(this_cpu, sd) {
2842 2843 2844 2845 2846 2847
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2848
			/* If we've pulled tasks over stop searching: */
2849
			pulled_task = load_balance_newidle(this_cpu,
2850 2851 2852 2853 2854 2855 2856
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2857
	}
I
Ingo Molnar 已提交
2858
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2859 2860 2861 2862 2863
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2864
	}
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2875
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2876
{
2877
	int target_cpu = busiest_rq->push_cpu;
2878 2879
	struct sched_domain *sd;
	struct rq *target_rq;
2880

2881
	/* Is there any task to move? */
2882 2883 2884 2885
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2886 2887

	/*
2888 2889 2890
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2891
	 */
2892
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2893

2894 2895 2896 2897
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2898
	for_each_domain(target_cpu, sd) {
2899
		if ((sd->flags & SD_LOAD_BALANCE) &&
2900
		    cpu_isset(busiest_cpu, sd->span))
2901
				break;
2902
	}
2903

2904 2905
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2906

2907
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2908
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2909 2910 2911 2912 2913
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2914
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2926
/*
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2937
 *
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2994 2995 2996 2997 2998
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2999
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3000
{
3001 3002
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3003 3004
	unsigned long interval;
	struct sched_domain *sd;
3005
	/* Earliest time when we have to do rebalance again */
3006
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3007

3008
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3009 3010 3011 3012
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3013
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3014 3015 3016 3017 3018 3019
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3020 3021 3022
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3023

3024 3025 3026 3027 3028
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3029
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3030
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3031 3032
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3033 3034 3035
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3036
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3037
			}
3038
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3039
		}
3040 3041 3042
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3043 3044
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3045 3046 3047 3048 3049 3050 3051 3052

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3053
	}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3064 3065 3066 3067
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3068

I
Ingo Molnar 已提交
3069
	rebalance_domains(this_cpu, idle);
3070 3071 3072 3073 3074 3075 3076

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3077 3078
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3079 3080 3081 3082
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3083
		cpu_clear(this_cpu, cpus);
3084 3085 3086 3087 3088 3089 3090 3091 3092
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3093
			rebalance_domains(balance_cpu, SCHED_IDLE);
3094 3095

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3096 3097
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3110
static inline void trigger_load_balance(struct rq *rq, int cpu)
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3162
}
I
Ingo Molnar 已提交
3163 3164 3165

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3166 3167 3168
/*
 * on UP we do not need to balance between CPUs:
 */
3169
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3170 3171
{
}
I
Ingo Molnar 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3186 3187 3188 3189 3190 3191 3192
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3193 3194
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3195
 */
3196
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3197 3198
{
	unsigned long flags;
3199 3200
	u64 ns, delta_exec;
	struct rq *rq;
3201

3202 3203 3204 3205 3206 3207 3208 3209
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3210

L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3275
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3298 3299 3300 3301 3302 3303 3304
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3305

3306
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3307 3308
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3309
#endif
L
Linus Torvalds 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3319 3320
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3321 3322 3323 3324
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3325 3326
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333 3334
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3335 3336
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3337 3338 3339
	/*
	 * Is the spinlock portion underflowing?
	 */
3340 3341 3342 3343
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3344 3345 3346 3347 3348 3349 3350
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3351
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3352
 */
I
Ingo Molnar 已提交
3353
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3354
{
I
Ingo Molnar 已提交
3355 3356 3357 3358 3359 3360 3361
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3362

I
Ingo Molnar 已提交
3363 3364 3365 3366 3367
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3368 3369 3370 3371 3372
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3373 3374 3375
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3376 3377
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3389 3390

	/*
I
Ingo Molnar 已提交
3391 3392
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3393
	 */
I
Ingo Molnar 已提交
3394 3395 3396 3397
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3398 3399
	}

I
Ingo Molnar 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3412

I
Ingo Molnar 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3436 3437

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3438
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3439 3440 3441

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3442
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3443
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3444 3445
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3446
		}
I
Ingo Molnar 已提交
3447
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3448 3449
	}

I
Ingo Molnar 已提交
3450
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3451 3452
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3453 3454 3455
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3456 3457

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3458

L
Linus Torvalds 已提交
3459 3460 3461 3462 3463
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3464
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3465 3466 3467
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3468 3469 3470
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3471
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3472
	}
L
Linus Torvalds 已提交
3473 3474 3475 3476 3477 3478 3479 3480
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3481
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3496
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3524
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3536
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3566 3567
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3568
{
3569
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3588 3589 3590
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3591
		if (curr->func(curr, mode, sync, key) &&
3592
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3602
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3603 3604
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3605
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3624
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3636 3637
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3681

L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3800 3801 3802 3803 3804
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3805
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3806
}
L
Linus Torvalds 已提交
3807

I
Ingo Molnar 已提交
3808 3809 3810 3811 3812 3813 3814
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3815

I
Ingo Molnar 已提交
3816
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3817
{
I
Ingo Molnar 已提交
3818 3819 3820 3821
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3822 3823 3824

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3825
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3826
	schedule();
I
Ingo Molnar 已提交
3827
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3828 3829 3830
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3831
long __sched
I
Ingo Molnar 已提交
3832
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3833
{
I
Ingo Molnar 已提交
3834 3835 3836 3837
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3838 3839 3840

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3841
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3842
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3843
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3849
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3850
{
I
Ingo Molnar 已提交
3851 3852 3853 3854
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3855 3856 3857

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3858
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3859
	schedule();
I
Ingo Molnar 已提交
3860
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3861 3862 3863
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3864
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3865
{
I
Ingo Molnar 已提交
3866 3867 3868 3869
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3870 3871 3872

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3873
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3874
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3875
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3893
void rt_mutex_setprio(struct task_struct *p, int prio)
3894 3895
{
	unsigned long flags;
I
Ingo Molnar 已提交
3896
	int oldprio, on_rq;
3897
	struct rq *rq;
I
Ingo Molnar 已提交
3898
	u64 now;
3899 3900 3901 3902

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3903
	now = rq_clock(rq);
3904

3905
	oldprio = p->prio;
I
Ingo Molnar 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3915 3916
	p->prio = prio;

I
Ingo Molnar 已提交
3917 3918
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3919 3920
		/*
		 * Reschedule if we are currently running on this runqueue and
3921 3922
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3923
		 */
3924 3925 3926
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3927 3928 3929
		} else {
			check_preempt_curr(rq, p);
		}
3930 3931 3932 3933 3934 3935
	}
	task_rq_unlock(rq, &flags);
}

#endif

3936
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3937
{
I
Ingo Molnar 已提交
3938
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3939
	unsigned long flags;
3940
	struct rq *rq;
I
Ingo Molnar 已提交
3941
	u64 now;
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3950
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3951 3952 3953 3954
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3955
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3956
	 */
3957
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3958 3959 3960
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3961 3962 3963 3964
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3965
	}
L
Linus Torvalds 已提交
3966 3967

	p->static_prio = NICE_TO_PRIO(nice);
3968
	set_load_weight(p);
3969 3970 3971
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3972

I
Ingo Molnar 已提交
3973 3974 3975
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3976
		/*
3977 3978
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3979
		 */
3980
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3988 3989 3990 3991 3992
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3993
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3994
{
3995 3996
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3997

M
Matt Mackall 已提交
3998 3999 4000 4001
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4013
	long nice, retval;
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018 4019

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4020 4021
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4031 4032 4033
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4052
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4061
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4080
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4089
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4095 4096
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4097
{
I
Ingo Molnar 已提交
4098
	BUG_ON(p->se.on_rq);
4099

L
Linus Torvalds 已提交
4100
	p->policy = policy;
I
Ingo Molnar 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4113
	p->rt_priority = prio;
4114 4115 4116
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4117
	set_load_weight(p);
L
Linus Torvalds 已提交
4118 4119 4120
}

/**
4121
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4122 4123 4124
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4125
 *
4126
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4127
 */
I
Ingo Molnar 已提交
4128 4129
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4130
{
I
Ingo Molnar 已提交
4131
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4132
	unsigned long flags;
4133
	struct rq *rq;
L
Linus Torvalds 已提交
4134

4135 4136
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4142 4143
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4144
		return -EINVAL;
L
Linus Torvalds 已提交
4145 4146
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4147 4148
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4149 4150
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4151
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4152
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4153
		return -EINVAL;
4154
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4155 4156
		return -EINVAL;

4157 4158 4159 4160
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4161
		if (rt_policy(policy)) {
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4178 4179 4180 4181 4182 4183
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4184

4185 4186 4187 4188 4189
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4190 4191 4192 4193

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4194 4195 4196 4197 4198
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4199 4200 4201 4202
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4203
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4204 4205 4206
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4207 4208
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4209 4210
		goto recheck;
	}
I
Ingo Molnar 已提交
4211 4212 4213
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4214
	oldprio = p->prio;
I
Ingo Molnar 已提交
4215 4216 4217
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4218 4219
		/*
		 * Reschedule if we are currently running on this runqueue and
4220 4221
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4222
		 */
4223 4224 4225
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4226 4227 4228
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4229
	}
4230 4231 4232
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4233 4234
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4235 4236 4237 4238
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4239 4240
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4241 4242 4243
{
	struct sched_param lparam;
	struct task_struct *p;
4244
	int retval;
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4250 4251 4252

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4253
	p = find_process_by_pid(pid);
4254 4255 4256
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4257

L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4270 4271 4272 4273
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4293
	struct task_struct *p;
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4321
	struct task_struct *p;
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4356 4357
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4358

4359
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4365
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4382 4383 4384 4385
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4392
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4433
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4434 4435 4436
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4437
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4438 4439
EXPORT_SYMBOL(cpu_online_map);

4440
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4441
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4442 4443 4444 4445
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4446
	struct task_struct *p;
L
Linus Torvalds 已提交
4447 4448
	int retval;

4449
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4457 4458 4459 4460
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4461
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4462 4463 4464

out_unlock:
	read_unlock(&tasklist_lock);
4465
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4500 4501
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4502 4503 4504
 */
asmlinkage long sys_sched_yield(void)
{
4505
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4506 4507

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4508
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4509
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4510 4511
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4512 4513 4514 4515 4516 4517

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4518
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525 4526
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4527
static void __cond_resched(void)
L
Linus Torvalds 已提交
4528
{
4529 4530 4531
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4532 4533 4534 4535 4536
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4546 4547
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4563
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4564
{
J
Jan Kara 已提交
4565 4566
	int ret = 0;

L
Linus Torvalds 已提交
4567 4568 4569
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4570
		ret = 1;
L
Linus Torvalds 已提交
4571 4572
		spin_lock(lock);
	}
4573
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4574
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4575 4576 4577
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4578
		ret = 1;
L
Linus Torvalds 已提交
4579 4580
		spin_lock(lock);
	}
J
Jan Kara 已提交
4581
	return ret;
L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4589
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4590
		local_bh_enable();
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4602
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4621
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4622

4623
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4624 4625 4626
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4627
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4633
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4634 4635
	long ret;

4636
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4637 4638 4639
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4640
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4661
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4662
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4686
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4687
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4704
	struct task_struct *p;
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4721
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4722
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4732
static const char stat_nam[] = "RSDTtZX";
4733 4734

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4735 4736
{
	unsigned long free = 0;
4737
	unsigned state;
L
Linus Torvalds 已提交
4738 4739

	state = p->state ? __ffs(p->state) + 1 : 0;
4740 4741
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4742
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4743
	if (state == TASK_RUNNING)
4744
		printk(" running  ");
L
Linus Torvalds 已提交
4745
	else
4746
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4747 4748
#else
	if (state == TASK_RUNNING)
4749
		printk("  running task    ");
L
Linus Torvalds 已提交
4750 4751 4752 4753 4754
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4755
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4756 4757
		while (!*n)
			n++;
4758
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4759 4760
	}
#endif
4761
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4767
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4768
{
4769
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4770

4771 4772 4773
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4774
#else
4775 4776
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782 4783 4784
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4785
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4786
			show_task(p);
L
Linus Torvalds 已提交
4787 4788
	} while_each_thread(g, p);

4789 4790
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4791 4792 4793
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4794
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4795 4796 4797 4798 4799
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4800 4801
}

I
Ingo Molnar 已提交
4802 4803
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4804
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4805 4806
}

4807 4808 4809 4810 4811 4812 4813 4814
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4815
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4816
{
4817
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4818 4819
	unsigned long flags;

I
Ingo Molnar 已提交
4820 4821 4822
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4823
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4824
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4825
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4826 4827 4828

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4829 4830 4831
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4832 4833 4834 4835
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4836
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4837
#else
A
Al Viro 已提交
4838
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4839
#endif
I
Ingo Molnar 已提交
4840 4841 4842 4843
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4867
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4877 4878 4879 4880
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4881
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4903
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4904
{
4905
	struct migration_req req;
L
Linus Torvalds 已提交
4906
	unsigned long flags;
4907
	struct rq *rq;
4908
	int ret = 0;
L
Linus Torvalds 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4931

L
Linus Torvalds 已提交
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4944 4945
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4946
 */
4947
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4948
{
4949
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4950
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4951 4952

	if (unlikely(cpu_is_offline(dest_cpu)))
4953
		return ret;
L
Linus Torvalds 已提交
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4966 4967 4968
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4969
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4970 4971 4972
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4973
	}
4974
	ret = 1;
L
Linus Torvalds 已提交
4975 4976
out:
	double_rq_unlock(rq_src, rq_dest);
4977
	return ret;
L
Linus Torvalds 已提交
4978 4979 4980 4981 4982 4983 4984
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4985
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4986 4987
{
	int cpu = (long)data;
4988
	struct rq *rq;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4995
		struct migration_req *req;
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5018
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5019 5020
		list_del_init(head->next);

N
Nick Piggin 已提交
5021 5022 5023
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5042 5043 5044 5045
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5046
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5047
{
5048
	unsigned long flags;
L
Linus Torvalds 已提交
5049
	cpumask_t mask;
5050 5051
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5052

5053
restart:
L
Linus Torvalds 已提交
5054 5055
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5056
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5057 5058 5059 5060
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5061
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5062 5063 5064

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5065 5066 5067
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5068
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5075
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5076 5077
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5078
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5079
	}
5080
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5081
		goto restart;
L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5091
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5092
{
5093
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5107
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5108 5109 5110

	write_lock_irq(&tasklist_lock);

5111 5112
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5113 5114
			continue;

5115 5116 5117
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5118 5119 5120 5121

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5122 5123
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5124
 * It does so by boosting its priority to highest possible and adding it to
5125
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5126 5127 5128
 */
void sched_idle_next(void)
{
5129
	int this_cpu = smp_processor_id();
5130
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5131 5132 5133 5134
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5135
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5136

5137 5138 5139
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5140 5141 5142
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5143
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5144 5145

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5146
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5147 5148 5149 5150

	spin_unlock_irqrestore(&rq->lock, flags);
}

5151 5152
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5166
/* called under rq->lock with disabled interrupts */
5167
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5168
{
5169
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5170 5171

	/* Must be exiting, otherwise would be on tasklist. */
5172
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5173 5174

	/* Cannot have done final schedule yet: would have vanished. */
5175
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5176

5177
	get_task_struct(p);
L
Linus Torvalds 已提交
5178 5179 5180 5181 5182

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5183
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5184
	 */
5185
	spin_unlock(&rq->lock);
5186
	move_task_off_dead_cpu(dead_cpu, p);
5187
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5188

5189
	put_task_struct(p);
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5195
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5196
	struct task_struct *next;
5197

I
Ingo Molnar 已提交
5198 5199 5200 5201 5202 5203 5204
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5205 5206 5207 5208 5209 5210 5211 5212
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5213 5214
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5215 5216
{
	struct task_struct *p;
5217
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5218
	unsigned long flags;
5219
	struct rq *rq;
L
Linus Torvalds 已提交
5220 5221

	switch (action) {
5222 5223 5224 5225
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5226
	case CPU_UP_PREPARE:
5227
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5228
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5234
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5235 5236 5237
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5238

L
Linus Torvalds 已提交
5239
	case CPU_ONLINE:
5240
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5241 5242 5243
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5244

L
Linus Torvalds 已提交
5245 5246
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5247
	case CPU_UP_CANCELED_FROZEN:
5248 5249
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5250
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5251 5252
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5253 5254 5255
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5256

L
Linus Torvalds 已提交
5257
	case CPU_DEAD:
5258
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5265
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5266
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5267 5268
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273 5274
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5275
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5276 5277 5278
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5279 5280
			struct migration_req *req;

L
Linus Torvalds 已提交
5281
			req = list_entry(rq->migration_queue.next,
5282
					 struct migration_req, list);
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287 5288
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5289 5290 5291
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297 5298
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5299
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304 5305 5306
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5307
	int err;
5308 5309

	/* Start one for the boot CPU: */
5310 5311
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5312 5313
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5314

L
Linus Torvalds 已提交
5315 5316 5317 5318 5319
	return 0;
}
#endif

#ifdef CONFIG_SMP
5320 5321 5322 5323 5324

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5325
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5326 5327 5328 5329 5330
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5331 5332 5333 5334 5335
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5355 5356
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5363 5364
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5365
		if (!cpu_isset(cpu, group->cpumask))
5366 5367
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5380
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5381
				printk("\n");
5382 5383
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5406 5407
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5408 5409 5410

		level++;
		sd = sd->parent;
5411 5412
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5413

5414 5415 5416
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5417 5418 5419 5420

	} while (sd);
}
#else
5421
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5422 5423
#endif

5424
static int sd_degenerate(struct sched_domain *sd)
5425 5426 5427 5428 5429 5430 5431 5432
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5433 5434 5435
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5449 5450
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5469 5470 5471
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5472 5473 5474 5475 5476 5477 5478
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5479 5480 5481 5482
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5483
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5484
{
5485
	struct rq *rq = cpu_rq(cpu);
5486 5487 5488 5489 5490 5491 5492
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5493
		if (sd_parent_degenerate(tmp, parent)) {
5494
			tmp->parent = parent->parent;
5495 5496 5497
			if (parent->parent)
				parent->parent->child = tmp;
		}
5498 5499
	}

5500
	if (sd && sd_degenerate(sd)) {
5501
		sd = sd->parent;
5502 5503 5504
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5505 5506 5507

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5508
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5509 5510 5511
}

/* cpus with isolated domains */
5512
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5530 5531 5532 5533
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5534 5535 5536 5537 5538
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5539
static void
5540 5541 5542
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5549 5550
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5551 5552 5553 5554 5555 5556
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5557
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5558 5559

		for_each_cpu_mask(j, span) {
5560
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5575
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5576

5577
#ifdef CONFIG_NUMA
5578

5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5631 5632
	cpumask_t span, nodemask;
	int i;
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5643

5644 5645 5646 5647 5648 5649 5650 5651
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5652
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5653

5654
/*
5655
 * SMT sched-domains:
5656
 */
L
Linus Torvalds 已提交
5657 5658
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5659
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5660

5661 5662
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5663
{
5664 5665
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5666 5667 5668 5669
	return cpu;
}
#endif

5670 5671 5672
/*
 * multi-core sched-domains:
 */
5673 5674
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5675
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5676 5677 5678
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5679 5680
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5681
{
5682
	int group;
5683 5684
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5685 5686 5687 5688
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5689 5690
}
#elif defined(CONFIG_SCHED_MC)
5691 5692
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5693
{
5694 5695
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5696 5697 5698 5699
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5700
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5701
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5702

5703 5704
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5705
{
5706
	int group;
5707
#ifdef CONFIG_SCHED_MC
5708
	cpumask_t mask = cpu_coregroup_map(cpu);
5709
	cpus_and(mask, mask, *cpu_map);
5710
	group = first_cpu(mask);
5711
#elif defined(CONFIG_SCHED_SMT)
5712 5713
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5714
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5715
#else
5716
	group = cpu;
L
Linus Torvalds 已提交
5717
#endif
5718 5719 5720
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5721 5722 5723 5724
}

#ifdef CONFIG_NUMA
/*
5725 5726 5727
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5728
 */
5729
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5730
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5731

5732
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5733
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5734

5735 5736
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5737
{
5738 5739 5740 5741 5742 5743 5744 5745 5746
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5747
}
5748

5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5769
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5770 5771 5772 5773 5774
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5775 5776
#endif

5777
#ifdef CONFIG_NUMA
5778 5779 5780
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5781
	int cpu, i;
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5812 5813 5814 5815 5816
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5817

5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5844 5845
	sd->groups->__cpu_power = 0;

5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5856
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5857 5858 5859 5860 5861 5862 5863 5864
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5865
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5866 5867 5868 5869
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5870
/*
5871 5872
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5873
 */
5874
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5875 5876
{
	int i;
5877 5878
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5879
	int sd_allnodes = 0;
5880 5881 5882 5883

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5884
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5885
					   GFP_KERNEL);
5886 5887
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5888
		return -ENOMEM;
5889 5890 5891
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5892 5893

	/*
5894
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5895
	 */
5896
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5897 5898 5899
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5900
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5901 5902

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5903 5904
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5905 5906 5907
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5908
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5909
			p = sd;
5910
			sd_allnodes = 1;
5911 5912 5913
		} else
			p = NULL;

L
Linus Torvalds 已提交
5914 5915
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5916 5917
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5918 5919
		if (p)
			p->child = sd;
5920
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5921 5922 5923 5924 5925 5926 5927
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5928 5929
		if (p)
			p->child = sd;
5930
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5931

5932 5933 5934 5935 5936 5937 5938
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5939
		p->child = sd;
5940
		cpu_to_core_group(i, cpu_map, &sd->groups);
5941 5942
#endif

L
Linus Torvalds 已提交
5943 5944 5945 5946 5947
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5948
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5949
		sd->parent = p;
5950
		p->child = sd;
5951
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5952 5953 5954 5955 5956
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5957
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5958
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5959
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5960 5961 5962
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5963 5964
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5965 5966 5967
	}
#endif

5968 5969 5970 5971 5972 5973 5974
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5975 5976
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5977 5978 5979
	}
#endif

L
Linus Torvalds 已提交
5980 5981 5982 5983
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5984
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5985 5986 5987
		if (cpus_empty(nodemask))
			continue;

5988
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5989 5990 5991 5992
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5993
	if (sd_allnodes)
I
Ingo Molnar 已提交
5994 5995
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6006 6007
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6008
			continue;
6009
		}
6010 6011 6012 6013

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6014
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6015 6016 6017 6018 6019
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6020 6021 6022
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6023

6024 6025 6026
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6027
		sg->__cpu_power = 0;
6028
		sg->cpumask = nodemask;
6029
		sg->next = sg;
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6048 6049
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6050 6051 6052
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6053
				goto error;
6054
			}
6055
			sg->__cpu_power = 0;
6056
			sg->cpumask = tmp;
6057
			sg->next = prev->next;
6058 6059 6060 6061 6062
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6063 6064 6065
#endif

	/* Calculate CPU power for physical packages and nodes */
6066
#ifdef CONFIG_SCHED_SMT
6067
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6068 6069
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6070
		init_sched_groups_power(i, sd);
6071
	}
L
Linus Torvalds 已提交
6072
#endif
6073
#ifdef CONFIG_SCHED_MC
6074
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6075 6076
		struct sched_domain *sd = &per_cpu(core_domains, i);

6077
		init_sched_groups_power(i, sd);
6078 6079
	}
#endif
6080

6081
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6082 6083
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6084
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6085 6086
	}

6087
#ifdef CONFIG_NUMA
6088 6089
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6090

6091 6092
	if (sd_allnodes) {
		struct sched_group *sg;
6093

6094
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6095 6096
		init_numa_sched_groups_power(sg);
	}
6097 6098
#endif

L
Linus Torvalds 已提交
6099
	/* Attach the domains */
6100
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6101 6102 6103
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6104 6105
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6106 6107 6108 6109 6110
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6111 6112 6113

	return 0;

6114
#ifdef CONFIG_NUMA
6115 6116 6117
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6118
#endif
L
Linus Torvalds 已提交
6119
}
6120 6121 6122
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6123
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6124 6125
{
	cpumask_t cpu_default_map;
6126
	int err;
L
Linus Torvalds 已提交
6127

6128 6129 6130 6131 6132 6133 6134
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6135 6136 6137
	err = build_sched_domains(&cpu_default_map);

	return err;
6138 6139 6140
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6141
{
6142
	free_sched_groups(cpu_map);
6143
}
L
Linus Torvalds 已提交
6144

6145 6146 6147 6148
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6149
static void detach_destroy_domains(const cpumask_t *cpu_map)
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6167
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6168 6169
{
	cpumask_t change_map;
6170
	int err = 0;
6171 6172 6173 6174 6175 6176 6177 6178

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6179 6180 6181 6182 6183
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6184 6185
}

6186 6187 6188 6189 6190
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6191
	mutex_lock(&sched_hotcpu_mutex);
6192 6193
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6194
	mutex_unlock(&sched_hotcpu_mutex);
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6219

6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6239 6240
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6253 6254
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6255 6256 6257 6258 6259 6260 6261
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6262 6263 6264
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6265
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6266 6267 6268 6269 6270 6271 6272
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6273
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6274
	case CPU_DOWN_PREPARE:
6275
	case CPU_DOWN_PREPARE_FROZEN:
6276
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6277 6278 6279
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6280
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6281
	case CPU_DOWN_FAILED:
6282
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6283
	case CPU_ONLINE:
6284
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6285
	case CPU_DEAD:
6286
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6296
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6297 6298 6299 6300 6301 6302

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6303 6304
	cpumask_t non_isolated_cpus;

6305
	mutex_lock(&sched_hotcpu_mutex);
6306
	arch_init_sched_domains(&cpu_online_map);
6307
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6308 6309
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6310
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6311 6312
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6313 6314 6315 6316

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6317
	sched_init_granularity();
L
Linus Torvalds 已提交
6318 6319 6320 6321
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6322
	sched_init_granularity();
L
Linus Torvalds 已提交
6323 6324 6325 6326 6327 6328 6329
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6330

L
Linus Torvalds 已提交
6331 6332 6333 6334 6335
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6336 6337 6338 6339 6340 6341 6342 6343 6344
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6345 6346
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6347
	u64 now = sched_clock();
6348
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6349 6350 6351 6352 6353 6354 6355 6356
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6357

6358
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6359
		struct rt_prio_array *array;
6360
		struct rq *rq;
L
Linus Torvalds 已提交
6361 6362 6363

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6364
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6365
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6366 6367 6368 6369 6370 6371 6372 6373
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6374

I
Ingo Molnar 已提交
6375 6376
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6377
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6378
		rq->sd = NULL;
L
Linus Torvalds 已提交
6379
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6380
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6381
		rq->push_cpu = 0;
6382
		rq->cpu = i;
L
Linus Torvalds 已提交
6383 6384 6385 6386 6387
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6388 6389 6390 6391
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6392
		}
6393
		highest_cpu = i;
I
Ingo Molnar 已提交
6394 6395
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6396 6397
	}

6398
	set_load_weight(&init_task);
6399

6400 6401 6402 6403
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6404
#ifdef CONFIG_SMP
6405
	nr_cpu_ids = highest_cpu + 1;
6406 6407 6408
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6409 6410 6411 6412
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6426 6427 6428 6429
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6435
#ifdef in_atomic
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6443
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6444 6445 6446
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6447
		debug_show_held_locks(current);
6448 6449
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6460
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6461
	unsigned long flags;
6462
	struct rq *rq;
I
Ingo Molnar 已提交
6463
	int on_rq;
L
Linus Torvalds 已提交
6464 6465

	read_lock_irq(&tasklist_lock);
6466
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6485
			continue;
I
Ingo Molnar 已提交
6486
		}
L
Linus Torvalds 已提交
6487

6488 6489
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6490 6491 6492 6493 6494 6495 6496
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6497

I
Ingo Molnar 已提交
6498 6499 6500 6501 6502 6503
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6504 6505
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6506 6507 6508
#ifdef CONFIG_SMP
 out_unlock:
#endif
6509 6510
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6511 6512
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6513 6514 6515 6516
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6535
struct task_struct *curr_task(int cpu)
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6555
void set_curr_task(int cpu, struct task_struct *p)
6556 6557 6558 6559 6560
{
	cpu_curr(cpu) = p;
}

#endif