sched.c 168.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
I
Ingo Molnar 已提交
269
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
270 271 272 273 274 275

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
276 277
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278
	unsigned char idle_at_tick;
279 280 281
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
282
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
283 284 285 286 287 288
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
289
#endif
I
Ingo Molnar 已提交
290
	struct rt_rq  rt;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

300
	struct task_struct *curr, *idle;
301
	unsigned long next_balance;
L
Linus Torvalds 已提交
302
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
303 304 305 306 307

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
308 309
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
310
	u64 tick_timestamp;
I
Ingo Molnar 已提交
311

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
320
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
321

322
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
334
	unsigned long yld_count;
L
Linus Torvalds 已提交
335 336 337

	/* schedule() stats */
	unsigned long sched_switch;
338
	unsigned long sched_count;
L
Linus Torvalds 已提交
339 340 341
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
342
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
343
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
344 345

	/* BKL stats */
346
	unsigned long bkl_count;
L
Linus Torvalds 已提交
347
#endif
348
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
349 350
};

351
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
353

I
Ingo Molnar 已提交
354 355 356 357 358
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

359 360 361 362 363 364 365 366 367
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
368
/*
I
Ingo Molnar 已提交
369 370
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
371
 */
I
Ingo Molnar 已提交
372
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
373 374 375 376 377 378
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
379 380 381
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
392 393 394 395 396
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
407
}
I
Ingo Molnar 已提交
408

I
Ingo Molnar 已提交
409 410 411 412
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
413 414
}

N
Nick Piggin 已提交
415 416
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
418 419 420 421
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
422 423
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
424 425 426 427 428 429

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
445
	SCHED_FEAT_TREE_AVG             = 4,
446
	SCHED_FEAT_APPROX_AVG           = 8,
447
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
448
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
449 450 451 452
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
453
		SCHED_FEAT_START_DEBIT		*1 |
454
		SCHED_FEAT_TREE_AVG		*0 |
455
		SCHED_FEAT_APPROX_AVG		*0 |
456 457
		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
		SCHED_FEAT_PREEMPT_RESTRICT	*1;
I
Ingo Molnar 已提交
458 459 460

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

461 462 463 464 465 466 467 468
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
469
	struct rq *rq;
470

471
	local_irq_save(flags);
I
Ingo Molnar 已提交
472 473 474
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
475
	local_irq_restore(flags);
476 477 478

	return now;
}
P
Paul E. McKenney 已提交
479
EXPORT_SYMBOL_GPL(cpu_clock);
480

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565 566 567 568 569
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
570 571 572 573
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
574 575 576 577 578
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
579
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
580 581
	__acquires(rq->lock)
{
582
	struct rq *rq;
L
Linus Torvalds 已提交
583

584 585 586 587 588 589
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
590 591 592 593
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
594
static void __task_rq_unlock(struct rq *rq)
595 596 597 598 599
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

600
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
601 602 603 604 605 606
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
607
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
608
 */
A
Alexey Dobriyan 已提交
609
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
610 611
	__acquires(rq->lock)
{
612
	struct rq *rq;
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

621
/*
622
 * We are going deep-idle (irqs are disabled):
623
 */
624
void sched_clock_idle_sleep_event(void)
625
{
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
642

643 644 645 646 647 648 649 650 651 652 653
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
654
}
655
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

709 710 711 712 713 714 715 716
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
717 718 719
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
720
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
721

722
static unsigned long
723 724 725 726 727 728
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
729
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730 731 732 733 734

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
735
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
736
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
737 738
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
739
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740

741
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 743 744 745 746 747 748 749
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

750
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 752 753 754
{
	lw->weight += inc;
}

755
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 757 758 759
{
	lw->weight -= dec;
}

760 761 762 763 764 765 766 767 768
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
769 770 771 772 773 774 775 776 777 778 779
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 781 782
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
783 784
 */
static const int prio_to_weight[40] = {
785 786 787 788 789 790 791 792
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
793 794
};

795 796 797 798 799 800 801
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
802
static const u32 prio_to_wmult[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
811
};
812

I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
830
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
831 832 833

#include "sched_stats.h"
#include "sched_idletask.c"
834 835
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
836 837 838 839 840 841
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

842 843 844 845
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
846
 * total load (rq->load.weight) on the runqueue, while
847 848 849 850 851 852 853
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
854
 * This function is called /before/ updating rq->load
855 856
 * and when switching tasks.
 */
857
static inline void inc_load(struct rq *rq, const struct task_struct *p)
858
{
859
	update_load_add(&rq->load, p->se.load.weight);
860 861
}

862
static inline void dec_load(struct rq *rq, const struct task_struct *p)
863
{
864
	update_load_sub(&rq->load, p->se.load.weight);
865 866
}

867
static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 869
{
	rq->nr_running++;
870
	inc_load(rq, p);
871 872
}

873
static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running--;
876
	dec_load(rq, p);
877 878
}

879 880 881
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
882 883 884 885
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
886

I
Ingo Molnar 已提交
887 888 889 890 891 892 893 894
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
895

I
Ingo Molnar 已提交
896 897
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 899
}

900
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901
{
I
Ingo Molnar 已提交
902
	sched_info_queued(p);
903
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
904
	p->se.on_rq = 1;
905 906
}

907
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908
{
909
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 0;
911 912
}

913
/*
I
Ingo Molnar 已提交
914
 * __normal_prio - return the priority that is based on the static prio
915 916 917
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
918
	return p->static_prio;
919 920
}

921 922 923 924 925 926 927
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
928
static inline int normal_prio(struct task_struct *p)
929 930 931
{
	int prio;

932
	if (task_has_rt_policy(p))
933 934 935 936 937 938 939 940 941 942 943 944 945
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
946
static int effective_prio(struct task_struct *p)
947 948 949 950 951 952 953 954 955 956 957 958
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
959
/*
I
Ingo Molnar 已提交
960
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
961
 */
I
Ingo Molnar 已提交
962
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
963
{
I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
966

967
	enqueue_task(rq, p, wakeup);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
995
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1003
	set_task_cfs_rq(p);
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1025
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1026
{
I
Ingo Molnar 已提交
1027 1028
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1029 1030
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1031
	u64 clock_offset;
I
Ingo Molnar 已提交
1032 1033

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1034 1035 1036 1037

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1038 1039 1040 1041
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1042 1043 1044 1045 1046
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1047
#endif
1048 1049
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1050 1051

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1052 1053
}

1054
struct migration_req {
L
Linus Torvalds 已提交
1055 1056
	struct list_head list;

1057
	struct task_struct *task;
L
Linus Torvalds 已提交
1058 1059 1060
	int dest_cpu;

	struct completion done;
1061
};
L
Linus Torvalds 已提交
1062 1063 1064 1065 1066

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1067
static int
1068
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1069
{
1070
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1071 1072 1073 1074 1075

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1076
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1077 1078 1079 1080 1081 1082 1083 1084
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1085

L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1098
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1099 1100
{
	unsigned long flags;
I
Ingo Molnar 已提交
1101
	int running, on_rq;
1102
	struct rq *rq;
L
Linus Torvalds 已提交
1103

1104 1105 1106 1107 1108 1109 1110 1111
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1161

1162 1163 1164 1165 1166 1167 1168
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1184
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1196 1197
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1198 1199 1200 1201
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1202
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1203
{
1204
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1205
	unsigned long total = weighted_cpuload(cpu);
1206

1207
	if (type == 0)
I
Ingo Molnar 已提交
1208
		return total;
1209

I
Ingo Molnar 已提交
1210
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1211 1212 1213
}

/*
1214 1215
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1216
 */
A
Alexey Dobriyan 已提交
1217
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1218
{
1219
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1220
	unsigned long total = weighted_cpuload(cpu);
1221

N
Nick Piggin 已提交
1222
	if (type == 0)
I
Ingo Molnar 已提交
1223
		return total;
1224

I
Ingo Molnar 已提交
1225
	return max(rq->cpu_load[type-1], total);
1226 1227 1228 1229 1230 1231 1232
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1233
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1234
	unsigned long total = weighted_cpuload(cpu);
1235 1236
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1237
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1238 1239
}

N
Nick Piggin 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1257 1258
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1259
			continue;
1260

N
Nick Piggin 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1277 1278
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1279 1280 1281 1282 1283 1284 1285 1286

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1287
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1288 1289 1290 1291 1292 1293 1294

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1295
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1296
 */
I
Ingo Molnar 已提交
1297 1298
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1299
{
1300
	cpumask_t tmp;
N
Nick Piggin 已提交
1301 1302 1303 1304
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1305 1306 1307 1308
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1309
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1335

1336
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1337 1338 1339
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1340 1341
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1342 1343
		if (tmp->flags & flag)
			sd = tmp;
1344
	}
N
Nick Piggin 已提交
1345 1346 1347 1348

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1349 1350 1351 1352 1353 1354
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1355 1356 1357

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1358 1359 1360 1361
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1362

1363
		new_cpu = find_idlest_cpu(group, t, cpu);
1364 1365 1366 1367 1368
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1369

1370
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1397
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1413 1414 1415 1416
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1417
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1418
			for_each_cpu_mask(i, tmp) {
1419 1420 1421 1422 1423
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1424
					return i;
1425
				}
L
Linus Torvalds 已提交
1426
			}
I
Ingo Molnar 已提交
1427
		} else {
N
Nick Piggin 已提交
1428
			break;
I
Ingo Molnar 已提交
1429
		}
L
Linus Torvalds 已提交
1430 1431 1432 1433
	}
	return cpu;
}
#else
1434
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1454
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1455
{
1456
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1457 1458
	unsigned long flags;
	long old_state;
1459
	struct rq *rq;
L
Linus Torvalds 已提交
1460
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1461
	struct sched_domain *sd, *this_sd = NULL;
1462
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1471
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1472 1473 1474
		goto out_running;

	cpu = task_cpu(p);
1475
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1482 1483
	new_cpu = cpu;

1484
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1485 1486
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1487 1488 1489 1490 1491 1492 1493 1494
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1495 1496 1497
		}
	}

N
Nick Piggin 已提交
1498
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1499 1500 1501
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1502
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1503
	 */
N
Nick Piggin 已提交
1504 1505 1506
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1507

1508 1509
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1510 1511
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1512

N
Nick Piggin 已提交
1513 1514
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1515 1516
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1517 1518
			unsigned long tl_per_task;

1519
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1520
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1521

L
Linus Torvalds 已提交
1522
			/*
1523 1524 1525
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1526
			 */
1527
			if (sync)
I
Ingo Molnar 已提交
1528
				tl -= current->se.load.weight;
1529 1530

			if ((tl <= load &&
1531
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1532
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1533 1534 1535 1536 1537 1538
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1539
				schedstat_inc(p, se.nr_wakeups_affine);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1551
				schedstat_inc(p, se.nr_wakeups_passive);
1552 1553
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1568
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575 1576
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1577 1578 1579 1580 1581 1582 1583 1584 1585
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1586
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1587
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1596 1597
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1608
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1615
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1623 1624 1625 1626 1627 1628 1629
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1630
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1631 1632 1633

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1634 1635 1636 1637 1638 1639
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1640
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1641
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1642
#endif
N
Nick Piggin 已提交
1643

I
Ingo Molnar 已提交
1644 1645
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1646

1647 1648 1649 1650
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1672
	set_task_cpu(p, cpu);
1673 1674 1675 1676 1677

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1678 1679
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1680

1681
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1682
	if (likely(sched_info_on()))
1683
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1684
#endif
1685
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1686 1687
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1688
#ifdef CONFIG_PREEMPT
1689
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1690
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1691
#endif
N
Nick Piggin 已提交
1692
	put_cpu();
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1702
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1703 1704
{
	unsigned long flags;
I
Ingo Molnar 已提交
1705
	struct rq *rq;
L
Linus Torvalds 已提交
1706 1707

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1708
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1709
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1710 1711 1712

	p->prio = effective_prio(p);

1713
	if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
I
Ingo Molnar 已提交
1714
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1715 1716
	} else {
		/*
I
Ingo Molnar 已提交
1717 1718
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1719
		 */
1720
		p->sched_class->task_new(rq, p);
1721
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1722
	}
I
Ingo Molnar 已提交
1723 1724
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1725 1726
}

1727 1728 1729
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1730 1731
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1732 1733 1734 1735 1736 1737 1738 1739 1740
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1741
 * @notifier: notifier struct to unregister
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1785 1786 1787
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1788
 * @prev: the current task that is being switched out
1789 1790 1791 1792 1793 1794 1795 1796 1797
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1798 1799 1800
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1801
{
1802
	fire_sched_out_preempt_notifiers(prev, next);
1803 1804 1805 1806
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1807 1808
/**
 * finish_task_switch - clean up after a task-switch
1809
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1810 1811
 * @prev: the thread we just switched away from.
 *
1812 1813 1814 1815
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1822
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1823 1824 1825
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1826
	long prev_state;
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1832
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1833 1834
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1835
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1841
	prev_state = prev->state;
1842 1843
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1844
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1845 1846
	if (mm)
		mmdrop(mm);
1847
	if (unlikely(prev_state == TASK_DEAD)) {
1848 1849 1850
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1851
		 */
1852
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1853
		put_task_struct(prev);
1854
	}
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1861
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1862 1863
	__releases(rq->lock)
{
1864 1865
	struct rq *rq = this_rq();

1866 1867 1868 1869 1870
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1879
static inline void
1880
context_switch(struct rq *rq, struct task_struct *prev,
1881
	       struct task_struct *next)
L
Linus Torvalds 已提交
1882
{
I
Ingo Molnar 已提交
1883
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1884

1885
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1886 1887
	mm = next->mm;
	oldmm = prev->active_mm;
1888 1889 1890 1891 1892 1893 1894
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1895
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1902
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1903 1904 1905
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1906 1907 1908 1909 1910 1911 1912
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1913
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1914
#endif
L
Linus Torvalds 已提交
1915 1916 1917 1918

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1919 1920 1921 1922 1923 1924 1925
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1949
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1964 1965
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1966

1967
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1977
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1998
/*
I
Ingo Molnar 已提交
1999 2000
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2001
 */
I
Ingo Molnar 已提交
2002
static void update_cpu_load(struct rq *this_rq)
2003
{
2004
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2017 2018 2019 2020 2021 2022 2023
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2024 2025
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2026 2027
}

I
Ingo Molnar 已提交
2028 2029
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2036
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2037 2038 2039
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2040
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2041 2042 2043 2044
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2045
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051 2052
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2053 2054
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059 2060 2061 2062
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2063
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2077
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2078 2079 2080 2081
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2082 2083 2084 2085 2086
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2087
	if (unlikely(!spin_trylock(&busiest->lock))) {
2088
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2103
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2104
{
2105
	struct migration_req req;
L
Linus Torvalds 已提交
2106
	unsigned long flags;
2107
	struct rq *rq;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2118

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2124

L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2132 2133
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2134 2135 2136 2137
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2138
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2139
	put_cpu();
N
Nick Piggin 已提交
2140 2141
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2148 2149
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2150
{
2151
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2152
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2153
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2154 2155 2156 2157
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2158
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2164
static
2165
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2166
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2167
		     int *all_pinned)
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2175 2176
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2177
		return 0;
2178
	}
2179 2180
	*all_pinned = 0;

2181 2182
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2183
		return 0;
2184
	}
L
Linus Torvalds 已提交
2185

2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
2194
		if (task_hot(p, rq->clock, sd)) {
2195
			schedstat_inc(sd, lb_hot_gained[idle]);
2196 2197
			schedstat_inc(p, se.nr_forced_migrations);
		}
2198 2199 2200 2201
#endif
		return 1;
	}

2202 2203
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2204
		return 0;
2205
	}
L
Linus Torvalds 已提交
2206 2207 2208
	return 1;
}

I
Ingo Molnar 已提交
2209
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2210
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2211
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2212
		      int *all_pinned, unsigned long *load_moved,
2213
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2214
{
I
Ingo Molnar 已提交
2215 2216 2217
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2218

2219
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2220 2221
		goto out;

2222 2223
	pinned = 1;

L
Linus Torvalds 已提交
2224
	/*
I
Ingo Molnar 已提交
2225
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2226
	 */
I
Ingo Molnar 已提交
2227 2228 2229
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2230
		goto out;
2231 2232 2233 2234 2235
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2236 2237
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2238
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2239 2240 2241
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2242 2243
	}

I
Ingo Molnar 已提交
2244
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2245
	pulled++;
I
Ingo Molnar 已提交
2246
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2247

2248 2249 2250 2251 2252
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2253 2254
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2255 2256
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2257 2258 2259 2260 2261 2262 2263 2264
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2265 2266 2267

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2268
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2269 2270 2271
	return pulled;
}

I
Ingo Molnar 已提交
2272
/*
P
Peter Williams 已提交
2273 2274 2275
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2276 2277 2278 2279
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2280
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2281 2282 2283
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2284
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2285
	unsigned long total_load_moved = 0;
2286
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2287 2288

	do {
P
Peter Williams 已提交
2289 2290 2291
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2292
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2293
		class = class->next;
P
Peter Williams 已提交
2294
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2295

P
Peter Williams 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2309
	const struct sched_class *class;
2310
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2311 2312 2313

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2314 2315
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2316 2317 2318
			return 1;

	return 0;
I
Ingo Molnar 已提交
2319 2320
}

L
Linus Torvalds 已提交
2321 2322
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2323 2324
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2325 2326 2327
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2328 2329
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2330 2331 2332
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2333
	unsigned long max_pull;
2334 2335
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2336
	int load_idx;
2337 2338 2339 2340 2341 2342
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2343 2344

	max_load = this_load = total_load = total_pwr = 0;
2345 2346
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2347
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2348
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2349
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2350 2351 2352
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2353 2354

	do {
2355
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2356 2357
		int local_group;
		int i;
2358
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2359
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2360 2361 2362

		local_group = cpu_isset(this_cpu, group->cpumask);

2363 2364 2365
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2366
		/* Tally up the load of all CPUs in the group */
2367
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2368 2369

		for_each_cpu_mask(i, group->cpumask) {
2370 2371 2372 2373 2374 2375
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2376

2377
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2378 2379
				*sd_idle = 0;

L
Linus Torvalds 已提交
2380
			/* Bias balancing toward cpus of our domain */
2381 2382 2383 2384 2385 2386
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2387
				load = target_load(i, load_idx);
2388
			} else
N
Nick Piggin 已提交
2389
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2390 2391

			avg_load += load;
2392
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2393
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2394 2395
		}

2396 2397 2398
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2399 2400
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2401
		 */
2402 2403
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2404 2405 2406 2407
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2408
		total_load += avg_load;
2409
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2410 2411

		/* Adjust by relative CPU power of the group */
2412 2413
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2414

2415
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2416

L
Linus Torvalds 已提交
2417 2418 2419
		if (local_group) {
			this_load = avg_load;
			this = group;
2420 2421 2422
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2423
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2424 2425
			max_load = avg_load;
			busiest = group;
2426 2427
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2428
		}
2429 2430 2431 2432 2433 2434

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2435 2436 2437
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2438 2439 2440 2441 2442 2443 2444 2445 2446

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2447
		/*
2448 2449
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2450 2451
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2452
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2453
			goto group_next;
2454

I
Ingo Molnar 已提交
2455
		/*
2456
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2457 2458 2459 2460 2461
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2462 2463
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2464 2465
			group_min = group;
			min_nr_running = sum_nr_running;
2466 2467
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2468
		}
2469

I
Ingo Molnar 已提交
2470
		/*
2471
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2483
		}
2484 2485
group_next:
#endif
L
Linus Torvalds 已提交
2486 2487 2488
		group = group->next;
	} while (group != sd->groups);

2489
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496 2497
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2498
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2522 2523

	/* Don't want to pull so many tasks that a group would go idle */
2524
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2525

L
Linus Torvalds 已提交
2526
	/* How much load to actually move to equalise the imbalance */
2527 2528
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2529 2530
			/ SCHED_LOAD_SCALE;

2531 2532 2533 2534 2535 2536
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2537
	if (*imbalance < busiest_load_per_task) {
2538
		unsigned long tmp, pwr_now, pwr_move;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2550

I
Ingo Molnar 已提交
2551 2552
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2553
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2563 2564 2565 2566
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2567 2568 2569
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2570 2571
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2572
		if (max_load > tmp)
2573
			pwr_move += busiest->__cpu_power *
2574
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2575 2576

		/* Amount of load we'd add */
2577
		if (max_load * busiest->__cpu_power <
2578
				busiest_load_per_task * SCHED_LOAD_SCALE)
2579 2580
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2581
		else
2582 2583 2584 2585
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2586 2587 2588
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2589 2590
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595
	}

	return busiest;

out_balanced:
2596
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2597
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2598
		goto ret;
L
Linus Torvalds 已提交
2599

2600 2601 2602 2603 2604
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2605
ret:
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611 2612
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2613
static struct rq *
I
Ingo Molnar 已提交
2614
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2615
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2616
{
2617
	struct rq *busiest = NULL, *rq;
2618
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2619 2620 2621
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2622
		unsigned long wl;
2623 2624 2625 2626

		if (!cpu_isset(i, *cpus))
			continue;

2627
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2628
		wl = weighted_cpuload(i);
2629

I
Ingo Molnar 已提交
2630
		if (rq->nr_running == 1 && wl > imbalance)
2631
			continue;
L
Linus Torvalds 已提交
2632

I
Ingo Molnar 已提交
2633 2634
		if (wl > max_load) {
			max_load = wl;
2635
			busiest = rq;
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640 2641
		}
	}

	return busiest;
}

2642 2643 2644 2645 2646 2647
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2648 2649 2650 2651
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2652
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2653
			struct sched_domain *sd, enum cpu_idle_type idle,
2654
			int *balance)
L
Linus Torvalds 已提交
2655
{
P
Peter Williams 已提交
2656
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2657 2658
	struct sched_group *group;
	unsigned long imbalance;
2659
	struct rq *busiest;
2660
	cpumask_t cpus = CPU_MASK_ALL;
2661
	unsigned long flags;
N
Nick Piggin 已提交
2662

2663 2664 2665
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2666
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2667
	 * portraying it as CPU_NOT_IDLE.
2668
	 */
I
Ingo Molnar 已提交
2669
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2670
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2671
		sd_idle = 1;
L
Linus Torvalds 已提交
2672

2673
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2674

2675 2676
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2677 2678
				   &cpus, balance);

2679
	if (*balance == 0)
2680 2681
		goto out_balanced;

L
Linus Torvalds 已提交
2682 2683 2684 2685 2686
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2687
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2688 2689 2690 2691 2692
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2693
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2694 2695 2696

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2697
	ld_moved = 0;
L
Linus Torvalds 已提交
2698 2699 2700 2701
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2702
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2703 2704
		 * correctly treated as an imbalance.
		 */
2705
		local_irq_save(flags);
N
Nick Piggin 已提交
2706
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2707
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2708
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2709
		double_rq_unlock(this_rq, busiest);
2710
		local_irq_restore(flags);
2711

2712 2713 2714
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2715
		if (ld_moved && this_cpu != smp_processor_id())
2716 2717
			resched_cpu(this_cpu);

2718
		/* All tasks on this runqueue were pinned by CPU affinity */
2719 2720 2721 2722
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2723
			goto out_balanced;
2724
		}
L
Linus Torvalds 已提交
2725
	}
2726

P
Peter Williams 已提交
2727
	if (!ld_moved) {
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2733
			spin_lock_irqsave(&busiest->lock, flags);
2734 2735 2736 2737 2738

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2739
				spin_unlock_irqrestore(&busiest->lock, flags);
2740 2741 2742 2743
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2744 2745 2746
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2747
				active_balance = 1;
L
Linus Torvalds 已提交
2748
			}
2749
			spin_unlock_irqrestore(&busiest->lock, flags);
2750
			if (active_balance)
L
Linus Torvalds 已提交
2751 2752 2753 2754 2755 2756
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2757
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2758
		}
2759
	} else
L
Linus Torvalds 已提交
2760 2761
		sd->nr_balance_failed = 0;

2762
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2763 2764
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2765 2766 2767 2768 2769 2770 2771 2772 2773
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2774 2775
	}

P
Peter Williams 已提交
2776
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2777
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2778
		return -1;
P
Peter Williams 已提交
2779
	return ld_moved;
L
Linus Torvalds 已提交
2780 2781 2782 2783

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2784
	sd->nr_balance_failed = 0;
2785 2786

out_one_pinned:
L
Linus Torvalds 已提交
2787
	/* tune up the balancing interval */
2788 2789
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2790 2791
		sd->balance_interval *= 2;

2792
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2793
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2794
		return -1;
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2802
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2803 2804
 * this_rq is locked.
 */
2805
static int
2806
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2807 2808
{
	struct sched_group *group;
2809
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2810
	unsigned long imbalance;
P
Peter Williams 已提交
2811
	int ld_moved = 0;
N
Nick Piggin 已提交
2812
	int sd_idle = 0;
2813
	int all_pinned = 0;
2814
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2815

2816 2817 2818 2819
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2820
	 * portraying it as CPU_NOT_IDLE.
2821 2822 2823
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2824
		sd_idle = 1;
L
Linus Torvalds 已提交
2825

2826
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2827
redo:
I
Ingo Molnar 已提交
2828
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2829
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2830
	if (!group) {
I
Ingo Molnar 已提交
2831
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2832
		goto out_balanced;
L
Linus Torvalds 已提交
2833 2834
	}

I
Ingo Molnar 已提交
2835
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2836
				&cpus);
N
Nick Piggin 已提交
2837
	if (!busiest) {
I
Ingo Molnar 已提交
2838
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2839
		goto out_balanced;
L
Linus Torvalds 已提交
2840 2841
	}

N
Nick Piggin 已提交
2842 2843
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2844
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2845

P
Peter Williams 已提交
2846
	ld_moved = 0;
2847 2848 2849
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2850 2851
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2852
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2853 2854
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2855
		spin_unlock(&busiest->lock);
2856

2857
		if (unlikely(all_pinned)) {
2858 2859 2860 2861
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2862 2863
	}

P
Peter Williams 已提交
2864
	if (!ld_moved) {
I
Ingo Molnar 已提交
2865
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2866 2867
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2868 2869
			return -1;
	} else
2870
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2871

P
Peter Williams 已提交
2872
	return ld_moved;
2873 2874

out_balanced:
I
Ingo Molnar 已提交
2875
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2876
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2877
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2878
		return -1;
2879
	sd->nr_balance_failed = 0;
2880

2881
	return 0;
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2888
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2889 2890
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2891 2892
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2893 2894

	for_each_domain(this_cpu, sd) {
2895 2896 2897 2898 2899 2900
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2901
			/* If we've pulled tasks over stop searching: */
2902
			pulled_task = load_balance_newidle(this_cpu,
2903 2904 2905 2906 2907 2908 2909
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2910
	}
I
Ingo Molnar 已提交
2911
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2912 2913 2914 2915 2916
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2917
	}
L
Linus Torvalds 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2928
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2929
{
2930
	int target_cpu = busiest_rq->push_cpu;
2931 2932
	struct sched_domain *sd;
	struct rq *target_rq;
2933

2934
	/* Is there any task to move? */
2935 2936 2937 2938
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2939 2940

	/*
2941 2942 2943
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2944
	 */
2945
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2946

2947 2948
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2949 2950
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2951 2952

	/* Search for an sd spanning us and the target CPU. */
2953
	for_each_domain(target_cpu, sd) {
2954
		if ((sd->flags & SD_LOAD_BALANCE) &&
2955
		    cpu_isset(busiest_cpu, sd->span))
2956
				break;
2957
	}
2958

2959
	if (likely(sd)) {
2960
		schedstat_inc(sd, alb_count);
2961

P
Peter Williams 已提交
2962 2963
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2964 2965 2966 2967
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2968
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2969 2970
}

2971 2972 2973 2974 2975 2976 2977 2978 2979
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2980
/*
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2991
 *
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3048 3049 3050 3051 3052
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3053
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3054
{
3055 3056
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3057 3058
	unsigned long interval;
	struct sched_domain *sd;
3059
	/* Earliest time when we have to do rebalance again */
3060
	unsigned long next_balance = jiffies + 60*HZ;
3061
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3062

3063
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3064 3065 3066 3067
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3068
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3075 3076 3077
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3078

3079 3080 3081 3082 3083
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3084
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3085
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3086 3087
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3088 3089 3090
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3091
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3092
			}
3093
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3094
		}
3095 3096 3097
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3098
		if (time_after(next_balance, sd->last_balance + interval)) {
3099
			next_balance = sd->last_balance + interval;
3100 3101
			update_next_balance = 1;
		}
3102 3103 3104 3105 3106 3107 3108 3109

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3110
	}
3111 3112 3113 3114 3115 3116 3117 3118

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3119 3120 3121 3122 3123 3124 3125 3126 3127
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3128 3129 3130 3131
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3132

I
Ingo Molnar 已提交
3133
	rebalance_domains(this_cpu, idle);
3134 3135 3136 3137 3138 3139 3140

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3141 3142
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3143 3144 3145 3146
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3147
		cpu_clear(this_cpu, cpus);
3148 3149 3150 3151 3152 3153 3154 3155 3156
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3157
			rebalance_domains(balance_cpu, CPU_IDLE);
3158 3159

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3160 3161
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3174
static inline void trigger_load_balance(struct rq *rq, int cpu)
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3226
}
I
Ingo Molnar 已提交
3227 3228 3229

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3230 3231 3232
/*
 * on UP we do not need to balance between CPUs:
 */
3233
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3234 3235
{
}
I
Ingo Molnar 已提交
3236 3237 3238 3239 3240 3241

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3242
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3243 3244 3245 3246 3247 3248
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254 3255
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3256 3257
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3258
 */
3259
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3260 3261
{
	unsigned long flags;
3262 3263
	u64 ns, delta_exec;
	struct rq *rq;
3264

3265 3266 3267
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3268 3269
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3270 3271 3272 3273
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3274

L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3339
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3362
	struct task_struct *curr = rq->curr;
3363
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3364 3365

	spin_lock(&rq->lock);
3366
	__update_rq_clock(rq);
3367 3368 3369 3370 3371 3372
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3373
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3374 3375 3376
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3377

3378
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3379 3380
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3381
#endif
L
Linus Torvalds 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3391 3392
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3393 3394 3395 3396
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3397 3398
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404 3405 3406
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3407 3408
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3409 3410 3411
	/*
	 * Is the spinlock portion underflowing?
	 */
3412 3413 3414 3415
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3416 3417 3418 3419 3420 3421 3422
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3423
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3424
 */
I
Ingo Molnar 已提交
3425
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3426
{
I
Ingo Molnar 已提交
3427 3428 3429 3430 3431 3432 3433
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3434

I
Ingo Molnar 已提交
3435 3436 3437 3438 3439
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3445 3446 3447
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3448 3449
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3450
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3451 3452
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3453 3454
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3455 3456
	}
#endif
I
Ingo Molnar 已提交
3457 3458 3459 3460 3461 3462
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3463
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3464
{
3465
	const struct sched_class *class;
I
Ingo Molnar 已提交
3466
	struct task_struct *p;
L
Linus Torvalds 已提交
3467 3468

	/*
I
Ingo Molnar 已提交
3469 3470
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3471
	 */
I
Ingo Molnar 已提交
3472
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3473
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3474 3475
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3476 3477
	}

I
Ingo Molnar 已提交
3478 3479
	class = sched_class_highest;
	for ( ; ; ) {
3480
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3490

I
Ingo Molnar 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3513

3514 3515 3516 3517
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3518
	__update_rq_clock(rq);
3519 3520
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3521 3522 3523

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3524
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3525
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3526
		} else {
3527
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3528
		}
I
Ingo Molnar 已提交
3529
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3530 3531
	}

I
Ingo Molnar 已提交
3532
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3533 3534
		idle_balance(cpu, rq);

3535
	prev->sched_class->put_prev_task(rq, prev);
3536
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3537 3538

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3539

L
Linus Torvalds 已提交
3540 3541 3542 3543 3544
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3545
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3546 3547 3548
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3549 3550 3551
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3552
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3553
	}
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3562
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3577
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3578 3579
		return;

3580 3581 3582 3583 3584 3585 3586 3587
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3588
#ifdef CONFIG_PREEMPT_BKL
3589 3590
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3591
#endif
3592
		schedule();
L
Linus Torvalds 已提交
3593
#ifdef CONFIG_PREEMPT_BKL
3594
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3595
#endif
3596
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3597

3598 3599 3600 3601 3602 3603
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3604 3605 3606 3607
}
EXPORT_SYMBOL(preempt_schedule);

/*
3608
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3620
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3621 3622
	BUG_ON(ti->preempt_count || !irqs_disabled());

3623 3624 3625 3626 3627 3628 3629 3630
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3631
#ifdef CONFIG_PREEMPT_BKL
3632 3633
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3634
#endif
3635 3636 3637
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3638
#ifdef CONFIG_PREEMPT_BKL
3639
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3640
#endif
3641
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3642

3643 3644 3645 3646 3647 3648
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3649 3650 3651 3652
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3653 3654
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3655
{
3656
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3672
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3673

3674
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3675 3676
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3677
		if (curr->func(curr, mode, sync, key) &&
3678
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3688
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3689 3690
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3691
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3710
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3722 3723
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3764 3765
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3773 3774 3775 3776 3777 3778
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3779 3780 3781 3782 3783
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3784
				return timeout;
L
Linus Torvalds 已提交
3785 3786 3787 3788 3789 3790 3791 3792
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3793 3794
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3795 3796 3797 3798
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3799
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3800
	spin_unlock_irq(&x->wait.lock);
3801 3802
	return timeout;
}
L
Linus Torvalds 已提交
3803

3804 3805 3806
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3807
}
3808
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3809 3810

unsigned long fastcall __sched
3811
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3812
{
3813
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3814
}
3815
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3816

3817
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3818
{
3819
	return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3820
}
3821
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3822

3823 3824 3825
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3826
{
3827
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3828
}
3829
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3830

3831 3832
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3833
{
I
Ingo Molnar 已提交
3834 3835 3836 3837
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3838

3839
	__set_current_state(state);
L
Linus Torvalds 已提交
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3855 3856 3857
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3858
long __sched
I
Ingo Molnar 已提交
3859
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3860
{
3861
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3862 3863 3864
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3865
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3866
{
3867
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3868 3869 3870
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3871
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3872
{
3873
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3874 3875 3876
}
EXPORT_SYMBOL(sleep_on_timeout);

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3889
void rt_mutex_setprio(struct task_struct *p, int prio)
3890 3891
{
	unsigned long flags;
3892
	int oldprio, on_rq, running;
3893
	struct rq *rq;
3894 3895 3896 3897

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3898
	update_rq_clock(rq);
3899

3900
	oldprio = p->prio;
I
Ingo Molnar 已提交
3901
	on_rq = p->se.on_rq;
3902 3903
	running = task_running(rq, p);
	if (on_rq) {
3904
		dequeue_task(rq, p, 0);
3905 3906 3907
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3908 3909 3910 3911 3912 3913

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3914 3915
	p->prio = prio;

I
Ingo Molnar 已提交
3916
	if (on_rq) {
3917 3918
		if (running)
			p->sched_class->set_curr_task(rq);
3919
		enqueue_task(rq, p, 0);
3920 3921
		/*
		 * Reschedule if we are currently running on this runqueue and
3922 3923
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3924
		 */
3925
		if (running) {
3926 3927
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3928 3929 3930
		} else {
			check_preempt_curr(rq, p);
		}
3931 3932 3933 3934 3935 3936
	}
	task_rq_unlock(rq, &flags);
}

#endif

3937
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3938
{
I
Ingo Molnar 已提交
3939
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3940
	unsigned long flags;
3941
	struct rq *rq;
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3950
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3951 3952 3953 3954
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3955
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3956
	 */
3957
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3958 3959 3960
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3961 3962
	on_rq = p->se.on_rq;
	if (on_rq) {
3963
		dequeue_task(rq, p, 0);
3964
		dec_load(rq, p);
3965
	}
L
Linus Torvalds 已提交
3966 3967

	p->static_prio = NICE_TO_PRIO(nice);
3968
	set_load_weight(p);
3969 3970 3971
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3972

I
Ingo Molnar 已提交
3973
	if (on_rq) {
3974
		enqueue_task(rq, p, 0);
3975
		inc_load(rq, p);
L
Linus Torvalds 已提交
3976
		/*
3977 3978
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3979
		 */
3980
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3988 3989 3990 3991 3992
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3993
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3994
{
3995 3996
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3997

M
Matt Mackall 已提交
3998 3999 4000 4001
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4013
	long nice, retval;
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018 4019

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4020 4021
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4031 4032 4033
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4052
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4061
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4080
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4089
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4095 4096
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4097
{
I
Ingo Molnar 已提交
4098
	BUG_ON(p->se.on_rq);
4099

L
Linus Torvalds 已提交
4100
	p->policy = policy;
I
Ingo Molnar 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4113
	p->rt_priority = prio;
4114 4115 4116
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4117
	set_load_weight(p);
L
Linus Torvalds 已提交
4118 4119 4120
}

/**
4121
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4122 4123 4124
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4125
 *
4126
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4127
 */
I
Ingo Molnar 已提交
4128 4129
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4130
{
4131
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4132
	unsigned long flags;
4133
	struct rq *rq;
L
Linus Torvalds 已提交
4134

4135 4136
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4142 4143
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4144
		return -EINVAL;
L
Linus Torvalds 已提交
4145 4146
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4147 4148
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4149 4150
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4151
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4152
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4153
		return -EINVAL;
4154
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4155 4156
		return -EINVAL;

4157 4158 4159 4160
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4161
		if (rt_policy(policy)) {
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4178 4179 4180 4181 4182 4183
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4184

4185 4186 4187 4188 4189
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4190 4191 4192 4193

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4194 4195 4196 4197 4198
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4199 4200 4201 4202
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4203
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4204 4205 4206
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4207 4208
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4209 4210
		goto recheck;
	}
I
Ingo Molnar 已提交
4211
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4212
	on_rq = p->se.on_rq;
4213 4214
	running = task_running(rq, p);
	if (on_rq) {
4215
		deactivate_task(rq, p, 0);
4216 4217 4218
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4219

L
Linus Torvalds 已提交
4220
	oldprio = p->prio;
I
Ingo Molnar 已提交
4221
	__setscheduler(rq, p, policy, param->sched_priority);
4222

I
Ingo Molnar 已提交
4223
	if (on_rq) {
4224 4225
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4226
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4227 4228
		/*
		 * Reschedule if we are currently running on this runqueue and
4229 4230
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4231
		 */
4232
		if (running) {
4233 4234
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4235 4236 4237
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4238
	}
4239 4240 4241
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4242 4243
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4244 4245 4246 4247
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4248 4249
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4250 4251 4252
{
	struct sched_param lparam;
	struct task_struct *p;
4253
	int retval;
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4259 4260 4261

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4262
	p = find_process_by_pid(pid);
4263 4264 4265
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4266

L
Linus Torvalds 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4279 4280 4281 4282
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4302
	struct task_struct *p;
4303
	int retval;
L
Linus Torvalds 已提交
4304 4305

	if (pid < 0)
4306
		return -EINVAL;
L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4328
	struct task_struct *p;
4329
	int retval;
L
Linus Torvalds 已提交
4330 4331

	if (!param || pid < 0)
4332
		return -EINVAL;
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4362 4363
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4364

4365
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4371
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4388 4389 4390 4391
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4398
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4439
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4440 4441 4442
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4443
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4444 4445
EXPORT_SYMBOL(cpu_online_map);

4446
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4447
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4448 4449 4450 4451
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4452
	struct task_struct *p;
L
Linus Torvalds 已提交
4453 4454
	int retval;

4455
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461 4462
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4463 4464 4465 4466
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4467
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4468 4469 4470

out_unlock:
	read_unlock(&tasklist_lock);
4471
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4472

4473
	return retval;
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4504 4505
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4506 4507 4508
 */
asmlinkage long sys_sched_yield(void)
{
4509
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4510

4511
	schedstat_inc(rq, yld_count);
4512
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4519
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526 4527
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4528
static void __cond_resched(void)
L
Linus Torvalds 已提交
4529
{
4530 4531 4532
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4533 4534 4535 4536 4537
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4547 4548
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4564
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4565
{
J
Jan Kara 已提交
4566 4567
	int ret = 0;

L
Linus Torvalds 已提交
4568 4569 4570
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4571
		ret = 1;
L
Linus Torvalds 已提交
4572 4573
		spin_lock(lock);
	}
4574
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4575
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4576 4577 4578
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4579
		ret = 1;
L
Linus Torvalds 已提交
4580 4581
		spin_lock(lock);
	}
J
Jan Kara 已提交
4582
	return ret;
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587 4588 4589
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4590
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4591
		local_bh_enable();
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4603
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4622
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4623

4624
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4625 4626 4627
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4628
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4634
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4635 4636
	long ret;

4637
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4638 4639 4640
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4641
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4662
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4663
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4687
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4688
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4705
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4706
	unsigned int time_slice;
4707
	int retval;
L
Linus Torvalds 已提交
4708 4709 4710
	struct timespec t;

	if (pid < 0)
4711
		return -EINVAL;
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4736
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4737
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4738 4739
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4740

L
Linus Torvalds 已提交
4741 4742 4743 4744 4745
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4746
static const char stat_nam[] = "RSDTtZX";
4747 4748

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4749 4750
{
	unsigned long free = 0;
4751
	unsigned state;
L
Linus Torvalds 已提交
4752 4753

	state = p->state ? __ffs(p->state) + 1 : 0;
4754 4755
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4756
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4757
	if (state == TASK_RUNNING)
4758
		printk(" running  ");
L
Linus Torvalds 已提交
4759
	else
4760
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4761 4762
#else
	if (state == TASK_RUNNING)
4763
		printk("  running task    ");
L
Linus Torvalds 已提交
4764 4765 4766 4767 4768
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4769
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4770 4771
		while (!*n)
			n++;
4772
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4773 4774
	}
#endif
4775
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4776 4777 4778 4779 4780

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4781
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4782
{
4783
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4784

4785 4786 4787
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4788
#else
4789 4790
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4799
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4800
			show_task(p);
L
Linus Torvalds 已提交
4801 4802
	} while_each_thread(g, p);

4803 4804
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4805 4806 4807
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4808
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4809 4810 4811 4812 4813
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4814 4815
}

I
Ingo Molnar 已提交
4816 4817
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4818
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4819 4820
}

4821 4822 4823 4824 4825 4826 4827 4828
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4829
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4830
{
4831
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4832 4833
	unsigned long flags;

I
Ingo Molnar 已提交
4834 4835 4836
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4837
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4838
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4839
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4840 4841 4842

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4843 4844 4845
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4846 4847 4848 4849
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4850
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4851
#else
A
Al Viro 已提交
4852
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4853
#endif
I
Ingo Molnar 已提交
4854 4855 4856 4857
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4873
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4895
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4896
{
4897
	struct migration_req req;
L
Linus Torvalds 已提交
4898
	unsigned long flags;
4899
	struct rq *rq;
4900
	int ret = 0;
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4923

L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4936 4937
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4938
 */
4939
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4940
{
4941
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4942
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4943 4944

	if (unlikely(cpu_is_offline(dest_cpu)))
4945
		return ret;
L
Linus Torvalds 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4958
	on_rq = p->se.on_rq;
4959
	if (on_rq)
4960
		deactivate_task(rq_src, p, 0);
4961

L
Linus Torvalds 已提交
4962
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4963 4964 4965
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4966
	}
4967
	ret = 1;
L
Linus Torvalds 已提交
4968 4969
out:
	double_rq_unlock(rq_src, rq_dest);
4970
	return ret;
L
Linus Torvalds 已提交
4971 4972 4973 4974 4975 4976 4977
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4978
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4979 4980
{
	int cpu = (long)data;
4981
	struct rq *rq;
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4988
		struct migration_req *req;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5011
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5012 5013
		list_del_init(head->next);

N
Nick Piggin 已提交
5014 5015 5016
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5035 5036 5037 5038
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5039
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5040
{
5041
	unsigned long flags;
L
Linus Torvalds 已提交
5042
	cpumask_t mask;
5043 5044
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5045

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5062

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
	} while (!__migrate_task(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5083
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5084
{
5085
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5099
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5100 5101 5102

	write_lock_irq(&tasklist_lock);

5103 5104
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5105 5106
			continue;

5107 5108 5109
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5110 5111 5112 5113

	write_unlock_irq(&tasklist_lock);
}

A
Alexey Dobriyan 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5128 5129
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5130
 * It does so by boosting its priority to highest possible and adding it to
5131
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5132 5133 5134
 */
void sched_idle_next(void)
{
5135
	int this_cpu = smp_processor_id();
5136
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5137 5138 5139 5140
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5141
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5142

5143 5144 5145
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5146 5147 5148
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5149
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5150 5151

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5152
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5153 5154 5155 5156

	spin_unlock_irqrestore(&rq->lock, flags);
}

5157 5158
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5172
/* called under rq->lock with disabled interrupts */
5173
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5174
{
5175
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5176 5177

	/* Must be exiting, otherwise would be on tasklist. */
5178
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5179 5180

	/* Cannot have done final schedule yet: would have vanished. */
5181
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5182

5183
	get_task_struct(p);
L
Linus Torvalds 已提交
5184 5185 5186 5187 5188

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5189
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5190
	 */
5191
	spin_unlock(&rq->lock);
5192
	move_task_off_dead_cpu(dead_cpu, p);
5193
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5194

5195
	put_task_struct(p);
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5201
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5202
	struct task_struct *next;
5203

I
Ingo Molnar 已提交
5204 5205 5206
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5207
		update_rq_clock(rq);
5208
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5209 5210 5211
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5212

L
Linus Torvalds 已提交
5213 5214 5215 5216
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5217 5218 5219
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5220 5221
	{
		.procname	= "sched_domain",
5222
		.mode		= 0555,
5223
	},
5224 5225 5226 5227
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5228
	{
5229
		.ctl_name	= CTL_KERN,
5230
		.procname	= "kernel",
5231
		.mode		= 0555,
5232 5233
		.child		= sd_ctl_dir,
	},
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5249
set_table_entry(struct ctl_table *entry,
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5263
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5264

5265
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5266
		sizeof(long), 0644, proc_doulongvec_minmax);
5267
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5268
		sizeof(long), 0644, proc_doulongvec_minmax);
5269
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5270
		sizeof(int), 0644, proc_dointvec_minmax);
5271
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5272
		sizeof(int), 0644, proc_dointvec_minmax);
5273
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5274
		sizeof(int), 0644, proc_dointvec_minmax);
5275
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5276
		sizeof(int), 0644, proc_dointvec_minmax);
5277
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5278
		sizeof(int), 0644, proc_dointvec_minmax);
5279
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5280
		sizeof(int), 0644, proc_dointvec_minmax);
5281
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5282
		sizeof(int), 0644, proc_dointvec_minmax);
5283
	set_table_entry(&table[9], "cache_nice_tries",
5284 5285
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5286
	set_table_entry(&table[10], "flags", &sd->flags,
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5307
		entry->mode = 0555;
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5327
		entry->mode = 0555;
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5338 5339 5340 5341
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5342 5343
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5344 5345
{
	struct task_struct *p;
5346
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5347
	unsigned long flags;
5348
	struct rq *rq;
L
Linus Torvalds 已提交
5349 5350

	switch (action) {
5351 5352 5353 5354
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5355
	case CPU_UP_PREPARE:
5356
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5357
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5363
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5364 5365 5366
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5367

L
Linus Torvalds 已提交
5368
	case CPU_ONLINE:
5369
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5370 5371 5372
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5373

L
Linus Torvalds 已提交
5374 5375
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5376
	case CPU_UP_CANCELED_FROZEN:
5377 5378
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5379
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5380 5381
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5382 5383 5384
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5385

L
Linus Torvalds 已提交
5386
	case CPU_DEAD:
5387
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5394
		update_rq_clock(rq);
5395
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5396
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5397 5398
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5399 5400 5401 5402 5403 5404
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5405
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5406 5407 5408
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5409 5410
			struct migration_req *req;

L
Linus Torvalds 已提交
5411
			req = list_entry(rq->migration_queue.next,
5412
					 struct migration_req, list);
L
Linus Torvalds 已提交
5413 5414 5415 5416 5417 5418
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5419 5420 5421
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426 5427 5428
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5429
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5437
	int err;
5438 5439

	/* Start one for the boot CPU: */
5440 5441
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5442 5443
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5444

L
Linus Torvalds 已提交
5445 5446 5447 5448 5449
	return 0;
}
#endif

#ifdef CONFIG_SMP
5450 5451 5452 5453 5454

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5455
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5456 5457 5458 5459
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5460 5461 5462 5463 5464
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5484 5485
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5486 5487 5488 5489 5490 5491
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5492 5493
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5494
		if (!cpu_isset(cpu, group->cpumask))
5495 5496
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5509
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5510
				printk("\n");
5511 5512
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5513
				break;
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5519
				break;
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5525
				break;
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5538 5539
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5540 5541 5542

		level++;
		sd = sd->parent;
5543 5544
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5545

5546 5547 5548
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5549 5550 5551 5552

	} while (sd);
}
#else
5553
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5554 5555
#endif

5556
static int sd_degenerate(struct sched_domain *sd)
5557 5558 5559 5560 5561 5562 5563 5564
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5565 5566 5567
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5581 5582
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5601 5602 5603
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5604 5605 5606 5607 5608 5609 5610
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5611 5612 5613 5614
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5615
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5616
{
5617
	struct rq *rq = cpu_rq(cpu);
5618 5619 5620 5621 5622 5623 5624
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5625
		if (sd_parent_degenerate(tmp, parent)) {
5626
			tmp->parent = parent->parent;
5627 5628 5629
			if (parent->parent)
				parent->parent->child = tmp;
		}
5630 5631
	}

5632
	if (sd && sd_degenerate(sd)) {
5633
		sd = sd->parent;
5634 5635 5636
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5637 5638 5639

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5640
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5641 5642 5643
}

/* cpus with isolated domains */
5644
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5659
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5660 5661

/*
5662 5663 5664 5665
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5671
static void
5672 5673 5674
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5675 5676 5677 5678 5679 5680
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5681 5682
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5683 5684 5685 5686 5687 5688
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5689
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5690 5691

		for_each_cpu_mask(j, span) {
5692
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5707
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5708

5709
#ifdef CONFIG_NUMA
5710

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5763 5764
	cpumask_t span, nodemask;
	int i;
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5775

5776 5777 5778 5779 5780 5781 5782 5783
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5784
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5785

5786
/*
5787
 * SMT sched-domains:
5788
 */
L
Linus Torvalds 已提交
5789 5790
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5791
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5792

5793 5794
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5795
{
5796 5797
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5798 5799 5800 5801
	return cpu;
}
#endif

5802 5803 5804
/*
 * multi-core sched-domains:
 */
5805 5806
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5807
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5808 5809 5810
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5811 5812
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5813
{
5814
	int group;
5815 5816
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5817 5818 5819 5820
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5821 5822
}
#elif defined(CONFIG_SCHED_MC)
5823 5824
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5825
{
5826 5827
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5828 5829 5830 5831
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5832
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5833
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5834

5835 5836
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5837
{
5838
	int group;
5839
#ifdef CONFIG_SCHED_MC
5840
	cpumask_t mask = cpu_coregroup_map(cpu);
5841
	cpus_and(mask, mask, *cpu_map);
5842
	group = first_cpu(mask);
5843
#elif defined(CONFIG_SCHED_SMT)
5844 5845
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5846
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5847
#else
5848
	group = cpu;
L
Linus Torvalds 已提交
5849
#endif
5850 5851 5852
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5853 5854 5855 5856
}

#ifdef CONFIG_NUMA
/*
5857 5858 5859
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5860
 */
5861
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5862
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5863

5864
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5865
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5866

5867 5868
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5869
{
5870 5871 5872 5873 5874 5875 5876 5877 5878
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5879
}
5880

5881 5882 5883 5884 5885 5886 5887
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5888 5889 5890
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5891

5892 5893 5894 5895 5896 5897 5898 5899
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5900

5901 5902 5903 5904
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
5905
}
L
Linus Torvalds 已提交
5906 5907
#endif

5908
#ifdef CONFIG_NUMA
5909 5910 5911
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5912
	int cpu, i;
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5943 5944 5945 5946 5947
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5975 5976
	sd->groups->__cpu_power = 0;

5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5987
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5988 5989 5990 5991 5992 5993 5994 5995
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5996
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5997 5998 5999 6000
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6001
/*
6002 6003
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6004
 */
6005
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6006 6007
{
	int i;
6008 6009
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6010
	int sd_allnodes = 0;
6011 6012 6013 6014

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6015
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6016
					   GFP_KERNEL);
6017 6018
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6019
		return -ENOMEM;
6020 6021 6022
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6023 6024

	/*
6025
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6026
	 */
6027
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6028 6029 6030
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6031
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6032 6033

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6034 6035
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6036 6037 6038
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6039
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6040
			p = sd;
6041
			sd_allnodes = 1;
6042 6043 6044
		} else
			p = NULL;

L
Linus Torvalds 已提交
6045 6046
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6047 6048
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6049 6050
		if (p)
			p->child = sd;
6051
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056 6057 6058
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6059 6060
		if (p)
			p->child = sd;
6061
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6062

6063 6064 6065 6066 6067 6068 6069
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6070
		p->child = sd;
6071
		cpu_to_core_group(i, cpu_map, &sd->groups);
6072 6073
#endif

L
Linus Torvalds 已提交
6074 6075 6076 6077 6078
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6079
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6080
		sd->parent = p;
6081
		p->child = sd;
6082
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6083 6084 6085 6086 6087
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6088
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6089
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6090
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6091 6092 6093
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6094 6095
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6096 6097 6098
	}
#endif

6099 6100 6101 6102 6103 6104 6105
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6106 6107
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6108 6109 6110
	}
#endif

L
Linus Torvalds 已提交
6111 6112 6113 6114
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6115
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6116 6117 6118
		if (cpus_empty(nodemask))
			continue;

6119
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6120 6121 6122 6123
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6124
	if (sd_allnodes)
I
Ingo Molnar 已提交
6125 6126
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6127 6128 6129 6130 6131 6132 6133 6134 6135 6136

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6137 6138
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6139
			continue;
6140
		}
6141 6142 6143 6144

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6145
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6146 6147 6148 6149 6150
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6151 6152 6153
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6154

6155 6156 6157
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6158
		sg->__cpu_power = 0;
6159
		sg->cpumask = nodemask;
6160
		sg->next = sg;
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6179 6180
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6181 6182 6183
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6184
				goto error;
6185
			}
6186
			sg->__cpu_power = 0;
6187
			sg->cpumask = tmp;
6188
			sg->next = prev->next;
6189 6190 6191 6192 6193
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6194 6195 6196
#endif

	/* Calculate CPU power for physical packages and nodes */
6197
#ifdef CONFIG_SCHED_SMT
6198
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6199 6200
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6201
		init_sched_groups_power(i, sd);
6202
	}
L
Linus Torvalds 已提交
6203
#endif
6204
#ifdef CONFIG_SCHED_MC
6205
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6206 6207
		struct sched_domain *sd = &per_cpu(core_domains, i);

6208
		init_sched_groups_power(i, sd);
6209 6210
	}
#endif
6211

6212
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6213 6214
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6215
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6216 6217
	}

6218
#ifdef CONFIG_NUMA
6219 6220
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6221

6222 6223
	if (sd_allnodes) {
		struct sched_group *sg;
6224

6225
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6226 6227
		init_numa_sched_groups_power(sg);
	}
6228 6229
#endif

L
Linus Torvalds 已提交
6230
	/* Attach the domains */
6231
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6232 6233 6234
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6235 6236
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6237 6238 6239 6240 6241
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6242 6243 6244

	return 0;

6245
#ifdef CONFIG_NUMA
6246 6247 6248
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6249
#endif
L
Linus Torvalds 已提交
6250
}
6251 6252 6253
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6254
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6255 6256
{
	cpumask_t cpu_default_map;
6257
	int err;
L
Linus Torvalds 已提交
6258

6259 6260 6261 6262 6263 6264 6265
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6266 6267 6268
	err = build_sched_domains(&cpu_default_map);

	return err;
6269 6270 6271
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6272
{
6273
	free_sched_groups(cpu_map);
6274
}
L
Linus Torvalds 已提交
6275

6276 6277 6278 6279
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6280
static void detach_destroy_domains(const cpumask_t *cpu_map)
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6298
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6299 6300
{
	cpumask_t change_map;
6301
	int err = 0;
6302 6303 6304 6305 6306 6307 6308 6309

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6310 6311 6312 6313 6314
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6315 6316
}

6317
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6318
static int arch_reinit_sched_domains(void)
6319 6320 6321
{
	int err;

6322
	mutex_lock(&sched_hotcpu_mutex);
6323 6324
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6325
	mutex_unlock(&sched_hotcpu_mutex);
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6352 6353
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6354 6355 6356
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6357 6358
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6359 6360 6361 6362 6363 6364 6365
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6366 6367
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6368 6369 6370
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6391 6392
#endif

L
Linus Torvalds 已提交
6393 6394 6395
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6396
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401 6402 6403
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6404
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6405
	case CPU_DOWN_PREPARE:
6406
	case CPU_DOWN_PREPARE_FROZEN:
6407
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6408 6409 6410
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6411
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6412
	case CPU_DOWN_FAILED:
6413
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6414
	case CPU_ONLINE:
6415
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6416
	case CPU_DEAD:
6417
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6427
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6428 6429 6430 6431 6432 6433

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6434 6435
	cpumask_t non_isolated_cpus;

6436
	mutex_lock(&sched_hotcpu_mutex);
6437
	arch_init_sched_domains(&cpu_online_map);
6438
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6439 6440
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6441
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6442 6443
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6444

6445 6446
	init_sched_domain_sysctl();

6447 6448 6449
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6461

L
Linus Torvalds 已提交
6462 6463 6464 6465 6466
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6467
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6468 6469 6470 6471 6472
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6473
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6474 6475
}

L
Linus Torvalds 已提交
6476 6477
void __init sched_init(void)
{
6478
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6479 6480
	int i, j;

6481
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6482
		struct rt_prio_array *array;
6483
		struct rq *rq;
L
Linus Torvalds 已提交
6484 6485 6486

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6487
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6488
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6489 6490 6491 6492
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6493 6494 6495 6496 6497 6498 6499
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6500
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6501
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6502 6503
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6504 6505 6506
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6507
			se->load.weight = init_task_group_load;
6508
			se->load.inv_weight =
6509
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6510 6511
			se->parent = NULL;
		}
6512
		init_task_group.shares = init_task_group_load;
6513
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6514
#endif
L
Linus Torvalds 已提交
6515

I
Ingo Molnar 已提交
6516 6517
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6518
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6519
		rq->sd = NULL;
L
Linus Torvalds 已提交
6520
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6521
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6522
		rq->push_cpu = 0;
6523
		rq->cpu = i;
L
Linus Torvalds 已提交
6524 6525 6526 6527 6528
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6529 6530 6531 6532
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6533
		}
6534
		highest_cpu = i;
I
Ingo Molnar 已提交
6535 6536
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6537 6538
	}

6539
	set_load_weight(&init_task);
6540

6541 6542 6543 6544
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6545
#ifdef CONFIG_SMP
6546
	nr_cpu_ids = highest_cpu + 1;
6547 6548 6549
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6550 6551 6552 6553
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6567 6568 6569 6570
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6576
#ifdef in_atomic
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581 6582 6583
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6584
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6585 6586 6587
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6588
		debug_show_held_locks(current);
6589 6590
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6591 6592 6593 6594 6595 6596 6597 6598
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6613 6614
void normalize_rt_tasks(void)
{
6615
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6616
	unsigned long flags;
6617
	struct rq *rq;
L
Linus Torvalds 已提交
6618 6619

	read_lock_irq(&tasklist_lock);
6620
	do_each_thread(g, p) {
6621 6622 6623 6624 6625 6626
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6627 6628
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6629 6630 6631
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6632
#endif
I
Ingo Molnar 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6642
			continue;
I
Ingo Molnar 已提交
6643
		}
L
Linus Torvalds 已提交
6644

6645 6646
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6647

6648
		normalize_task(rq, p);
6649

6650 6651
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6652 6653
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6654 6655 6656 6657
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6676
struct task_struct *curr_task(int cpu)
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6696
void set_curr_task(int cpu, struct task_struct *p)
6697 6698 6699 6700 6701
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6702 6703 6704 6705

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6706
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6707
{
6708
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6709 6710
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6711
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6712 6713 6714 6715 6716 6717
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6718
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6719 6720
	if (!tg->cfs_rq)
		goto err;
6721
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6722 6723 6724 6725
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6726
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6753 6754 6755 6756 6757
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6758

6759
	tg->shares = NICE_0_LOAD;
6760
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6761

6762
	return tg;
S
Srivatsa Vaddagiri 已提交
6763 6764 6765

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6766
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6767
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6768
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6769 6770
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6771 6772 6773
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6774 6775 6776 6777

	return ERR_PTR(-ENOMEM);
}

6778 6779
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6780
{
6781
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6782
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6800
/* Destroy runqueue etc associated with a task group */
6801
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6802
{
6803 6804
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6805

6806 6807 6808 6809 6810 6811 6812 6813 6814
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6815 6816
}

6817
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6818 6819 6820
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6821 6822
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6838
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6839
		dequeue_task(rq, tsk, 0);
6840 6841 6842
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6843 6844 6845

	set_task_cfs_rq(tsk);

6846 6847 6848
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6849
		enqueue_task(rq, tsk, 0);
6850
	}
S
Srivatsa Vaddagiri 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6877
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6878 6879 6880
{
	int i;

6881
	spin_lock(&tg->lock);
6882
	if (tg->shares == shares)
6883
		goto done;
S
Srivatsa Vaddagiri 已提交
6884

6885
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6886
	for_each_possible_cpu(i)
6887
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6888

6889 6890
done:
	spin_unlock(&tg->lock);
6891
	return 0;
S
Srivatsa Vaddagiri 已提交
6892 6893
}

6894 6895 6896 6897 6898
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6899
#endif	/* CONFIG_FAIR_GROUP_SCHED */