sched.c 180.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
161 162
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
163 164 165 166 167 168 169 170 171

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
172
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
173 174

#define SCALE_PRIO(x, prio) \
175
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
176

177
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
178
{
179 180
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
181
	else
182
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
183
}
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

206 207 208 209 210 211 212 213 214
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

215
static inline unsigned int task_timeslice(struct task_struct *p)
216 217 218 219
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
220 221 222 223 224 225
/*
 * These are the runqueue data structures:
 */

struct prio_array {
	unsigned int nr_active;
226
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
237
struct rq {
L
Linus Torvalds 已提交
238 239 240 241 242 243 244
	spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
245
	unsigned long raw_weighted_load;
L
Linus Torvalds 已提交
246
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
247
	unsigned long cpu_load[3];
248
	unsigned char idle_at_tick;
249 250 251
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263
#endif
	unsigned long long nr_switches;

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
264 265
	/* Cached timestamp set by update_cpu_clock() */
	unsigned long long most_recent_timestamp;
266
	struct task_struct *curr, *idle;
267
	unsigned long next_balance;
L
Linus Torvalds 已提交
268
	struct mm_struct *prev_mm;
269
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278
	int best_expired_prio;
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
279
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
280

281
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
304
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
305 306
};

307
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
308
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
309

310 311 312 313 314 315 316 317 318
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
319 320
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
321
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
322 323 324 325
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
326 327
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
328 329 330 331 332 333 334

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
335 336 337 338 339 340 341
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
342
static inline int task_running(struct rq *rq, struct task_struct *p)
343 344 345 346
{
	return rq->curr == p;
}

347
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
348 349 350
{
}

351
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
352
{
353 354 355 356
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
357 358 359 360 361 362 363
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

364 365 366 367
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
368
static inline int task_running(struct rq *rq, struct task_struct *p)
369 370 371 372 373 374 375 376
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

377
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

394
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
395 396 397 398 399 400 401 402 403 404 405 406
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
407
#endif
408 409
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
410

411 412 413 414
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
415
static inline struct rq *__task_rq_lock(struct task_struct *p)
416 417
	__acquires(rq->lock)
{
418
	struct rq *rq;
419 420 421 422 423 424 425 426 427 428 429

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
430 431 432 433 434
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
435
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
436 437
	__acquires(rq->lock)
{
438
	struct rq *rq;
L
Linus Torvalds 已提交
439 440 441 442 443 444 445 446 447 448 449 450

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

451
static inline void __task_rq_unlock(struct rq *rq)
452 453 454 455 456
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

457
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
458 459 460 461 462 463 464 465 466 467
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

#ifdef CONFIG_SCHEDSTATS
/*
 * bump this up when changing the output format or the meaning of an existing
 * format, so that tools can adapt (or abort)
 */
468
#define SCHEDSTAT_VERSION 14
L
Linus Torvalds 已提交
469 470 471 472 473 474 475 476

static int show_schedstat(struct seq_file *seq, void *v)
{
	int cpu;

	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
	seq_printf(seq, "timestamp %lu\n", jiffies);
	for_each_online_cpu(cpu) {
477
		struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
#ifdef CONFIG_SMP
		struct sched_domain *sd;
		int dcnt = 0;
#endif

		/* runqueue-specific stats */
		seq_printf(seq,
		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
		    cpu, rq->yld_both_empty,
		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
		    rq->ttwu_cnt, rq->ttwu_local,
		    rq->rq_sched_info.cpu_time,
		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);

		seq_printf(seq, "\n");

#ifdef CONFIG_SMP
		/* domain-specific stats */
N
Nick Piggin 已提交
497
		preempt_disable();
L
Linus Torvalds 已提交
498 499 500 501 502 503 504 505
		for_each_domain(cpu, sd) {
			enum idle_type itype;
			char mask_str[NR_CPUS];

			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
					itype++) {
506 507
				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
						"%lu",
L
Linus Torvalds 已提交
508 509 510 511 512 513 514
				    sd->lb_cnt[itype],
				    sd->lb_balanced[itype],
				    sd->lb_failed[itype],
				    sd->lb_imbalance[itype],
				    sd->lb_gained[itype],
				    sd->lb_hot_gained[itype],
				    sd->lb_nobusyq[itype],
515
				    sd->lb_nobusyg[itype]);
L
Linus Torvalds 已提交
516
			}
517 518
			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
			    " %lu %lu %lu\n",
L
Linus Torvalds 已提交
519
			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
520 521
			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
522 523
			    sd->ttwu_wake_remote, sd->ttwu_move_affine,
			    sd->ttwu_move_balance);
L
Linus Torvalds 已提交
524
		}
N
Nick Piggin 已提交
525
		preempt_enable();
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
#endif
	}
	return 0;
}

static int schedstat_open(struct inode *inode, struct file *file)
{
	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
	char *buf = kmalloc(size, GFP_KERNEL);
	struct seq_file *m;
	int res;

	if (!buf)
		return -ENOMEM;
	res = single_open(file, show_schedstat, NULL);
	if (!res) {
		m = file->private_data;
		m->buf = buf;
		m->size = size;
	} else
		kfree(buf);
	return res;
}

550
const struct file_operations proc_schedstat_operations = {
L
Linus Torvalds 已提交
551 552 553 554 555 556
	.open    = schedstat_open,
	.read    = seq_read,
	.llseek  = seq_lseek,
	.release = single_release,
};

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq) {
		rq->rq_sched_info.run_delay += delta_jiffies;
		rq->rq_sched_info.pcnt++;
	}
}

/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq)
		rq->rq_sched_info.cpu_time += delta_jiffies;
}
L
Linus Torvalds 已提交
578 579 580
# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
#else /* !CONFIG_SCHEDSTATS */
581 582 583 584 585 586
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{}
L
Linus Torvalds 已提交
587 588 589 590 591
# define schedstat_inc(rq, field)	do { } while (0)
# define schedstat_add(rq, field, amt)	do { } while (0)
#endif

/*
592
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
593
 */
594
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
595 596
	__acquires(rq->lock)
{
597
	struct rq *rq;
L
Linus Torvalds 已提交
598 599 600 601 602 603 604 605

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

606
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
L
Linus Torvalds 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * Called when a process is dequeued from the active array and given
 * the cpu.  We should note that with the exception of interactive
 * tasks, the expired queue will become the active queue after the active
 * queue is empty, without explicitly dequeuing and requeuing tasks in the
 * expired queue.  (Interactive tasks may be requeued directly to the
 * active queue, thus delaying tasks in the expired queue from running;
 * see scheduler_tick()).
 *
 * This function is only called from sched_info_arrive(), rather than
 * dequeue_task(). Even though a task may be queued and dequeued multiple
 * times as it is shuffled about, we're really interested in knowing how
 * long it was from the *first* time it was queued to the time that it
 * finally hit a cpu.
 */
622
static inline void sched_info_dequeued(struct task_struct *t)
L
Linus Torvalds 已提交
623 624 625 626 627 628 629 630 631
{
	t->sched_info.last_queued = 0;
}

/*
 * Called when a task finally hits the cpu.  We can now calculate how
 * long it was waiting to run.  We also note when it began so that we
 * can keep stats on how long its timeslice is.
 */
632
static void sched_info_arrive(struct task_struct *t)
L
Linus Torvalds 已提交
633
{
634
	unsigned long now = jiffies, delta_jiffies = 0;
L
Linus Torvalds 已提交
635 636

	if (t->sched_info.last_queued)
637
		delta_jiffies = now - t->sched_info.last_queued;
L
Linus Torvalds 已提交
638
	sched_info_dequeued(t);
639
	t->sched_info.run_delay += delta_jiffies;
L
Linus Torvalds 已提交
640 641 642
	t->sched_info.last_arrival = now;
	t->sched_info.pcnt++;

643
	rq_sched_info_arrive(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
}

/*
 * Called when a process is queued into either the active or expired
 * array.  The time is noted and later used to determine how long we
 * had to wait for us to reach the cpu.  Since the expired queue will
 * become the active queue after active queue is empty, without dequeuing
 * and requeuing any tasks, we are interested in queuing to either. It
 * is unusual but not impossible for tasks to be dequeued and immediately
 * requeued in the same or another array: this can happen in sched_yield(),
 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 * to runqueue.
 *
 * This function is only called from enqueue_task(), but also only updates
 * the timestamp if it is already not set.  It's assumed that
 * sched_info_dequeued() will clear that stamp when appropriate.
 */
661
static inline void sched_info_queued(struct task_struct *t)
L
Linus Torvalds 已提交
662
{
663 664 665
	if (unlikely(sched_info_on()))
		if (!t->sched_info.last_queued)
			t->sched_info.last_queued = jiffies;
L
Linus Torvalds 已提交
666 667 668 669 670 671
}

/*
 * Called when a process ceases being the active-running process, either
 * voluntarily or involuntarily.  Now we can calculate how long we ran.
 */
672
static inline void sched_info_depart(struct task_struct *t)
L
Linus Torvalds 已提交
673
{
674
	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
L
Linus Torvalds 已提交
675

676 677
	t->sched_info.cpu_time += delta_jiffies;
	rq_sched_info_depart(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
678 679 680 681 682 683 684
}

/*
 * Called when tasks are switched involuntarily due, typically, to expiring
 * their time slice.  (This may also be called when switching to or from
 * the idle task.)  We are only called when prev != next.
 */
685
static inline void
686
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
L
Linus Torvalds 已提交
687
{
688
	struct rq *rq = task_rq(prev);
L
Linus Torvalds 已提交
689 690 691 692 693 694 695 696 697 698 699 700

	/*
	 * prev now departs the cpu.  It's not interesting to record
	 * stats about how efficient we were at scheduling the idle
	 * process, however.
	 */
	if (prev != rq->idle)
		sched_info_depart(prev);

	if (next != rq->idle)
		sched_info_arrive(next);
}
701 702 703 704 705 706
static inline void
sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
	if (unlikely(sched_info_on()))
		__sched_info_switch(prev, next);
}
L
Linus Torvalds 已提交
707 708 709
#else
#define sched_info_queued(t)		do { } while (0)
#define sched_info_switch(t, next)	do { } while (0)
710
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
L
Linus Torvalds 已提交
711 712 713 714

/*
 * Adding/removing a task to/from a priority array:
 */
715
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
716 717 718 719 720 721 722
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

723
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
724 725 726 727 728 729 730 731 732 733 734 735
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
736
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
737 738 739 740
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

741 742
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
743 744 745 746 747 748 749 750
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
751
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759 760 761 762 763
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
764

765
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

801
static void set_load_weight(struct task_struct *p)
802
{
803
	if (has_rt_policy(p)) {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

819
static inline void
820
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
821 822 823 824
{
	rq->raw_weighted_load += p->load_weight;
}

825
static inline void
826
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
827 828 829 830
{
	rq->raw_weighted_load -= p->load_weight;
}

831
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
832 833 834 835 836
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

837
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
838 839 840 841 842
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

843 844 845 846 847 848 849
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
850
static inline int normal_prio(struct task_struct *p)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
868
static int effective_prio(struct task_struct *p)
869 870 871 872 873 874 875 876 877 878 879 880
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
881 882 883
/*
 * __activate_task - move a task to the runqueue.
 */
884
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
885
{
886
	struct prio_array *target = rq->active;
887

888
	if (batch_task(p))
889 890
		target = rq->expired;
	enqueue_task(p, target);
891
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
892 893 894 895 896
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
897
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
898 899
{
	enqueue_task_head(p, rq->active);
900
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
901 902
}

903 904 905 906
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
907
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
908 909
{
	/* Caller must always ensure 'now >= p->timestamp' */
910
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
911

912
	if (batch_task(p))
913
		sleep_time = 0;
L
Linus Torvalds 已提交
914 915 916

	if (likely(sleep_time > 0)) {
		/*
917 918 919
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
920
		 */
921
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
939 940 941 942 943 944
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
945
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
946
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
947 948
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
949 950 951
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
966 967
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
968 969
	}

970
	return effective_prio(p);
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
979
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
980 981 982
{
	unsigned long long now;

983 984 985
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
986 987 988 989
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
990
		struct rq *this_rq = this_rq();
991 992
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
993 994 995
	}
#endif

I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

1007
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
1013
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020 1021
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
1022
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
1028
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
1029 1030 1031
		}
	}
	p->timestamp = now;
1032
out:
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1039
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
1040
{
1041
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
1054 1055 1056 1057 1058

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1059
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1060
{
1061
	int cpu;
L
Linus Torvalds 已提交
1062 1063 1064

	assert_spin_locked(&task_rq(p)->lock);

1065 1066 1067 1068
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
1069

1070 1071 1072 1073
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

1074
	/* NEED_RESCHED must be visible before we test polling */
1075
	smp_mb();
1076
	if (!tsk_is_polling(p))
1077
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
1078
}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
L
Linus Torvalds 已提交
1090
#else
1091
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1092
{
1093
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
1094 1095 1096 1097 1098 1099 1100 1101
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1102
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1103 1104 1105 1106
{
	return cpu_curr(task_cpu(p)) == p;
}

1107 1108 1109 1110 1111 1112
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
1113
#ifdef CONFIG_SMP
1114
struct migration_req {
L
Linus Torvalds 已提交
1115 1116
	struct list_head list;

1117
	struct task_struct *task;
L
Linus Torvalds 已提交
1118 1119 1120
	int dest_cpu;

	struct completion done;
1121
};
L
Linus Torvalds 已提交
1122 1123 1124 1125 1126

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1127
static int
1128
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1129
{
1130
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1145

L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1158
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1159 1160
{
	unsigned long flags;
1161
	struct rq *rq;
L
Linus Torvalds 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	int preempted;

repeat:
	rq = task_rq_lock(p, &flags);
	/* Must be off runqueue entirely, not preempted. */
	if (unlikely(p->array || task_running(rq, p))) {
		/* If it's preempted, we yield.  It could be a while. */
		preempted = !task_running(rq, p);
		task_rq_unlock(rq, &flags);
		cpu_relax();
		if (preempted)
			yield();
		goto repeat;
	}
	task_rq_unlock(rq, &flags);
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1192
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1204 1205
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1206 1207 1208 1209
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1210
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1211
{
1212
	struct rq *rq = cpu_rq(cpu);
1213

1214
	if (type == 0)
1215
		return rq->raw_weighted_load;
1216

1217
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1218 1219 1220
}

/*
1221 1222
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1223
 */
N
Nick Piggin 已提交
1224
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1225
{
1226
	struct rq *rq = cpu_rq(cpu);
1227

N
Nick Piggin 已提交
1228
	if (type == 0)
1229
		return rq->raw_weighted_load;
1230

1231 1232 1233 1234 1235 1236 1237 1238
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1239
	struct rq *rq = cpu_rq(cpu);
1240 1241
	unsigned long n = rq->nr_running;

1242
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1262 1263 1264 1265
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1282 1283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1292
nextgroup:
N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1302
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1303
 */
I
Ingo Molnar 已提交
1304 1305
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1306
{
1307
	cpumask_t tmp;
N
Nick Piggin 已提交
1308 1309 1310 1311
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1312 1313 1314 1315
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1316
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1342

1343
	for_each_domain(cpu, tmp) {
1344 1345 1346 1347 1348
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1349 1350
		if (tmp->flags & flag)
			sd = tmp;
1351
	}
N
Nick Piggin 已提交
1352 1353 1354 1355

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1356 1357 1358 1359 1360 1361
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1362 1363 1364

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1365 1366 1367 1368
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1369

1370
		new_cpu = find_idlest_cpu(group, t, cpu);
1371 1372 1373 1374 1375
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1376

1377
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1404
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1420 1421 1422 1423
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1424
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1430 1431
		else
			break;
L
Linus Torvalds 已提交
1432 1433 1434 1435
	}
	return cpu;
}
#else
1436
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1456
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1457 1458 1459 1460
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1461
	struct rq *rq;
L
Linus Torvalds 已提交
1462
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1463
	struct sched_domain *sd, *this_sd = NULL;
1464
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1483 1484
	new_cpu = cpu;

L
Linus Torvalds 已提交
1485 1486 1487
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1488 1489 1490 1491 1492 1493 1494 1495
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1496 1497 1498
		}
	}

N
Nick Piggin 已提交
1499
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1500 1501 1502
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1503
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1504
	 */
N
Nick Piggin 已提交
1505 1506 1507
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1508

1509 1510
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1511 1512
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1513

N
Nick Piggin 已提交
1514 1515
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1516 1517
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1518 1519 1520
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1521

L
Linus Torvalds 已提交
1522
			/*
1523 1524 1525
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1526
			 */
1527
			if (sync)
1528
				tl -= current->load_weight;
1529 1530

			if ((tl <= load &&
1531 1532
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1581
		p->sleep_type = SLEEP_NONINTERACTIVE;
1582
	} else
L
Linus Torvalds 已提交
1583

I
Ingo Molnar 已提交
1584 1585
	/*
	 * Tasks that have marked their sleep as noninteractive get
1586 1587
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1588
	 */
1589 1590 1591 1592 1593
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1616
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1623
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1624 1625 1626 1627
{
	return try_to_wake_up(p, state, 0);
}

1628
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1629 1630 1631 1632
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1633
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1634
{
N
Nick Piggin 已提交
1635 1636 1637 1638 1639 1640 1641
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1649 1650 1651 1652 1653 1654

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1655 1656
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1657 1658 1659
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1660
#endif
1661
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1662 1663
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1664
#ifdef CONFIG_PREEMPT
1665
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1666
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1689
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1690 1691 1692
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1702
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1703
{
1704
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1705 1706 1707 1708
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1709
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1710
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1711
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1735
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1736 1737 1738
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1739
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1759 1760
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

/*
 * Potentially available exiting-child timeslices are
 * retrieved here - this way the parent does not get
 * penalized for creating too many threads.
 *
 * (this cannot be used to 'generate' timeslices
 * artificially, because any timeslice recovered here
 * was given away by the parent in the first place.)
 */
1786
void fastcall sched_exit(struct task_struct *p)
L
Linus Torvalds 已提交
1787 1788
{
	unsigned long flags;
1789
	struct rq *rq;
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795

	/*
	 * If the child was a (relative-) CPU hog then decrease
	 * the sleep_avg of the parent as well.
	 */
	rq = task_rq_lock(p->parent, &flags);
1796
	if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		p->parent->time_slice += p->time_slice;
		if (unlikely(p->parent->time_slice > task_timeslice(p)))
			p->parent->time_slice = task_timeslice(p);
	}
	if (p->sleep_avg < p->parent->sleep_avg)
		p->parent->sleep_avg = p->parent->sleep_avg /
		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
		(EXIT_WEIGHT + 1);
	task_rq_unlock(rq, &flags);
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1820
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1821 1822 1823 1824 1825
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1826 1827
/**
 * finish_task_switch - clean up after a task-switch
1828
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1829 1830
 * @prev: the thread we just switched away from.
 *
1831 1832 1833 1834
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1841
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1842 1843 1844
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1845
	long prev_state;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1851
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1852 1853
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1854
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1860
	prev_state = prev->state;
1861 1862
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1863 1864
	if (mm)
		mmdrop(mm);
1865
	if (unlikely(prev_state == TASK_DEAD)) {
1866 1867 1868 1869 1870
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1871
		put_task_struct(prev);
1872
	}
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1879
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1880 1881
	__releases(rq->lock)
{
1882 1883
	struct rq *rq = this_rq();

1884 1885 1886 1887 1888
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893 1894 1895 1896
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1897
static inline struct task_struct *
1898
context_switch(struct rq *rq, struct task_struct *prev,
1899
	       struct task_struct *next)
L
Linus Torvalds 已提交
1900 1901 1902 1903
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1904 1905 1906 1907 1908 1909 1910
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1911
	if (!mm) {
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1918
	if (!prev->mm) {
L
Linus Torvalds 已提交
1919 1920 1921 1922
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1923 1924 1925 1926 1927 1928 1929
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1930
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1931
#endif
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1960
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1975 1976
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1977

1978
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1988
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
2009 2010
#ifdef CONFIG_SMP

2011 2012 2013 2014 2015 2016 2017 2018 2019
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2026
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2027 2028 2029
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2030
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2031 2032 2033 2034
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2035
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2051
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2065
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2066 2067 2068 2069
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2070 2071 2072 2073 2074
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2075
	if (unlikely(!spin_trylock(&busiest->lock))) {
2076
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2091
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2092
{
2093
	struct migration_req req;
L
Linus Torvalds 已提交
2094
	unsigned long flags;
2095
	struct rq *rq;
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2106

L
Linus Torvalds 已提交
2107 2108 2109 2110 2111
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2112

L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2120 2121
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2122 2123 2124 2125
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2126
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2127
	put_cpu();
N
Nick Piggin 已提交
2128 2129
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2136 2137 2138
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2139 2140
{
	dequeue_task(p, src_array);
2141
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2142
	set_task_cpu(p, this_cpu);
2143
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2144
	enqueue_task(p, this_array);
2145 2146
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2158
static
2159
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2160 2161
		     struct sched_domain *sd, enum idle_type idle,
		     int *all_pinned)
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2171 2172 2173 2174
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2175 2176 2177

	/*
	 * Aggressive migration if:
2178
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2179 2180 2181
	 * 2) too many balance attempts have failed.
	 */

2182 2183 2184 2185 2186
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2187
		return 1;
2188
	}
L
Linus Torvalds 已提交
2189

2190
	if (task_hot(p, rq->most_recent_timestamp, sd))
2191
		return 0;
L
Linus Torvalds 已提交
2192 2193 2194
	return 1;
}

2195
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2196

L
Linus Torvalds 已提交
2197
/*
2198 2199 2200
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2201 2202 2203
 *
 * Called with both runqueues locked.
 */
2204
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2205 2206 2207
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum idle_type idle,
		      int *all_pinned)
L
Linus Torvalds 已提交
2208
{
2209 2210
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2211
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2212
	struct list_head *head, *curr;
2213
	struct task_struct *tmp;
2214
	long rem_load_move;
L
Linus Torvalds 已提交
2215

2216
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2217 2218
		goto out;

2219
	rem_load_move = max_load_move;
2220
	pinned = 1;
2221
	this_best_prio = rq_best_prio(this_rq);
2222
	best_prio = rq_best_prio(busiest);
2223 2224 2225
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2226
	 * of those with prio==best_prio we know it won't be moved
2227 2228 2229
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2230
	best_prio_seen = best_prio == busiest->curr->prio;
2231

L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2266
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2267 2268 2269

	curr = curr->prev;

2270 2271 2272 2273 2274
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2275 2276
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2277
		skip_for_load = !best_prio_seen && idx == best_prio;
2278
	if (skip_for_load ||
2279
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2280 2281

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2290
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2291

2292 2293 2294 2295 2296
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2297 2298
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2311 2312 2313

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2319 2320
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2321 2322 2323
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
2324
		   unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2325
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2326 2327 2328
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2329
	unsigned long max_pull;
2330 2331
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2332
	int load_idx;
2333 2334 2335 2336 2337 2338
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2339 2340

	max_load = this_load = total_load = total_pwr = 0;
2341 2342
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
N
Nick Piggin 已提交
2343 2344 2345 2346 2347 2348
	if (idle == NOT_IDLE)
		load_idx = sd->busy_idx;
	else if (idle == NEWLY_IDLE)
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2349 2350

	do {
2351
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2352 2353
		int local_group;
		int i;
2354
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2355
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2356 2357 2358

		local_group = cpu_isset(this_cpu, group->cpumask);

2359 2360 2361
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2362
		/* Tally up the load of all CPUs in the group */
2363
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2364 2365

		for_each_cpu_mask(i, group->cpumask) {
2366 2367 2368 2369 2370 2371
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2372

N
Nick Piggin 已提交
2373 2374 2375
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2376
			/* Bias balancing toward cpus of our domain */
2377 2378 2379 2380 2381 2382
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2383
				load = target_load(i, load_idx);
2384
			} else
N
Nick Piggin 已提交
2385
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2386 2387

			avg_load += load;
2388 2389
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2390 2391
		}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2402
		total_load += avg_load;
2403
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2404 2405

		/* Adjust by relative CPU power of the group */
2406 2407
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2408

2409
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2410

L
Linus Torvalds 已提交
2411 2412 2413
		if (local_group) {
			this_load = avg_load;
			this = group;
2414 2415 2416
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2417
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2418 2419
			max_load = avg_load;
			busiest = group;
2420 2421
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2422
		}
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2468
 		if (sum_nr_running <= group_capacity - 1) {
2469 2470 2471 2472 2473 2474 2475
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2476
		}
2477 2478
group_next:
#endif
L
Linus Torvalds 已提交
2479 2480 2481
		group = group->next;
	} while (group != sd->groups);

2482
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489 2490
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2491
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2515 2516

	/* Don't want to pull so many tasks that a group would go idle */
2517
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2518

L
Linus Torvalds 已提交
2519
	/* How much load to actually move to equalise the imbalance */
2520 2521
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2522 2523
			/ SCHED_LOAD_SCALE;

2524 2525 2526 2527 2528 2529 2530
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2531
		unsigned long tmp, pwr_now, pwr_move;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2543

2544 2545
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2555 2556 2557 2558
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2559 2560 2561
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2562 2563
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2564
		if (max_load > tmp)
2565
			pwr_move += busiest->__cpu_power *
2566
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2567 2568

		/* Amount of load we'd add */
2569
		if (max_load * busiest->__cpu_power <
2570
				busiest_load_per_task * SCHED_LOAD_SCALE)
2571 2572
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2573
		else
2574 2575 2576 2577
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2584
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589
	}

	return busiest;

out_balanced:
2590 2591 2592
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		goto ret;
L
Linus Torvalds 已提交
2593

2594 2595 2596 2597 2598
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2599
ret:
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604 2605 2606
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2607
static struct rq *
2608
find_busiest_queue(struct sched_group *group, enum idle_type idle,
2609
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2610
{
2611
	struct rq *busiest = NULL, *rq;
2612
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2613 2614 2615
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2616 2617 2618 2619

		if (!cpu_isset(i, *cpus))
			continue;

2620
		rq = cpu_rq(i);
2621

2622
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2623
			continue;
L
Linus Torvalds 已提交
2624

2625 2626 2627
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2628 2629 2630 2631 2632 2633
		}
	}

	return busiest;
}

2634 2635 2636 2637 2638 2639
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2640 2641 2642 2643 2644
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2645 2646 2647 2648
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2649
static int load_balance(int this_cpu, struct rq *this_rq,
2650 2651
			struct sched_domain *sd, enum idle_type idle,
			int *balance)
L
Linus Torvalds 已提交
2652
{
2653
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2654 2655
	struct sched_group *group;
	unsigned long imbalance;
2656
	struct rq *busiest;
2657
	cpumask_t cpus = CPU_MASK_ALL;
2658
	unsigned long flags;
N
Nick Piggin 已提交
2659

2660 2661 2662 2663 2664 2665
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
2666
	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2667
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2668
		sd_idle = 1;
L
Linus Torvalds 已提交
2669 2670 2671

	schedstat_inc(sd, lb_cnt[idle]);

2672 2673
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2674 2675
				   &cpus, balance);

2676
	if (*balance == 0)
2677 2678
		goto out_balanced;

L
Linus Torvalds 已提交
2679 2680 2681 2682 2683
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2684
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2685 2686 2687 2688 2689
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2690
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2702
		local_irq_save(flags);
N
Nick Piggin 已提交
2703
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2704
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2705 2706
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2707
		double_rq_unlock(this_rq, busiest);
2708
		local_irq_restore(flags);
2709

2710 2711 2712 2713 2714 2715
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2716
		/* All tasks on this runqueue were pinned by CPU affinity */
2717 2718 2719 2720
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2721
			goto out_balanced;
2722
		}
L
Linus Torvalds 已提交
2723
	}
2724

L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2731
			spin_lock_irqsave(&busiest->lock, flags);
2732 2733 2734 2735 2736

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2737
				spin_unlock_irqrestore(&busiest->lock, flags);
2738 2739 2740 2741
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2742 2743 2744
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2745
				active_balance = 1;
L
Linus Torvalds 已提交
2746
			}
2747
			spin_unlock_irqrestore(&busiest->lock, flags);
2748
			if (active_balance)
L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2755
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2756
		}
2757
	} else
L
Linus Torvalds 已提交
2758 2759
		sd->nr_balance_failed = 0;

2760
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2761 2762
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2763 2764 2765 2766 2767 2768 2769 2770 2771
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2772 2773
	}

2774
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2775
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2776
		return -1;
L
Linus Torvalds 已提交
2777 2778 2779 2780 2781
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2782
	sd->nr_balance_failed = 0;
2783 2784

out_one_pinned:
L
Linus Torvalds 已提交
2785
	/* tune up the balancing interval */
2786 2787
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2788 2789
		sd->balance_interval *= 2;

2790
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2791
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2792
		return -1;
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 * this_rq is locked.
 */
2803
static int
2804
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2805 2806
{
	struct sched_group *group;
2807
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2808 2809
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2810
	int sd_idle = 0;
2811
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2812

2813 2814 2815 2816 2817 2818 2819 2820
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2821
		sd_idle = 1;
L
Linus Torvalds 已提交
2822 2823

	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2824 2825
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2826
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2827 2828
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2829
		goto out_balanced;
L
Linus Torvalds 已提交
2830 2831
	}

2832 2833
	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
				&cpus);
N
Nick Piggin 已提交
2834
	if (!busiest) {
L
Linus Torvalds 已提交
2835
		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2836
		goto out_balanced;
L
Linus Torvalds 已提交
2837 2838
	}

N
Nick Piggin 已提交
2839 2840
	BUG_ON(busiest == this_rq);

L
Linus Torvalds 已提交
2841
	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2842 2843 2844 2845 2846 2847

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2848
					minus_1_or_zero(busiest->nr_running),
2849
					imbalance, sd, NEWLY_IDLE, NULL);
2850
		spin_unlock(&busiest->lock);
2851 2852 2853 2854 2855 2856

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2857 2858
	}

N
Nick Piggin 已提交
2859
	if (!nr_moved) {
L
Linus Torvalds 已提交
2860
		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2861 2862
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2863 2864
			return -1;
	} else
2865
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2866 2867

	return nr_moved;
2868 2869 2870

out_balanced:
	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2871
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2872
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2873
		return -1;
2874
	sd->nr_balance_failed = 0;
2875

2876
	return 0;
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2883
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2884 2885
{
	struct sched_domain *sd;
2886 2887
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2888 2889 2890

	for_each_domain(this_cpu, sd) {
		if (sd->flags & SD_BALANCE_NEWIDLE) {
2891
			/* If we've pulled tasks over stop searching: */
2892 2893 2894 2895 2896 2897 2898
			pulled_task = load_balance_newidle(this_cpu,
							this_rq, sd);
			if (time_after(next_balance,
				  sd->last_balance + sd->balance_interval))
				next_balance = sd->last_balance
						+ sd->balance_interval;
			if (pulled_task)
L
Linus Torvalds 已提交
2899 2900 2901
				break;
		}
	}
2902 2903 2904 2905 2906 2907
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2918
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2919
{
2920
	int target_cpu = busiest_rq->push_cpu;
2921 2922
	struct sched_domain *sd;
	struct rq *target_rq;
2923

2924
	/* Is there any task to move? */
2925 2926 2927 2928
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2929 2930

	/*
2931 2932 2933
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2934
	 */
2935
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2936

2937 2938 2939 2940
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2941
	for_each_domain(target_cpu, sd) {
2942
		if ((sd->flags & SD_LOAD_BALANCE) &&
2943
		    cpu_isset(busiest_cpu, sd->span))
2944
				break;
2945
	}
2946

2947 2948
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2949

2950 2951 2952 2953 2954 2955 2956
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2957
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2958 2959
}

2960
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2961
{
2962
	unsigned long this_load;
2963
	unsigned int i, scale;
L
Linus Torvalds 已提交
2964

2965
	this_load = this_rq->raw_weighted_load;
2966 2967

	/* Update our load: */
2968
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2969 2970
		unsigned long old_load, new_load;

2971 2972
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2973
		old_load = this_rq->cpu_load[i];
2974
		new_load = this_load;
N
Nick Piggin 已提交
2975 2976 2977 2978 2979 2980 2981
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2982
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2983
	}
2984 2985
}

2986 2987 2988 2989 2990 2991 2992 2993 2994
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2995
/*
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3006
 *
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3063 3064 3065 3066 3067
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
3068
static inline void rebalance_domains(int cpu, enum idle_type idle)
3069
{
3070 3071
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3072 3073
	unsigned long interval;
	struct sched_domain *sd;
3074
	/* Earliest time when we have to do rebalance again */
3075
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3076

3077
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != SCHED_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

3090 3091 3092 3093 3094
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3095
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3096
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3097 3098
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3099 3100 3101
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
L
Linus Torvalds 已提交
3102 3103
				idle = NOT_IDLE;
			}
3104
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3105
		}
3106 3107 3108
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3109 3110
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3111 3112 3113 3114 3115 3116 3117 3118

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3119
	}
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
	enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

			rebalance_domains(balance_cpu, SCHED_IDLE);

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3228 3229 3230 3231 3232
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3233
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
3246
static inline void
3247
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
3248
{
3249 3250
	p->sched_time += now - p->last_ran;
	p->last_ran = rq->most_recent_timestamp = now;
L
Linus Torvalds 已提交
3251 3252 3253 3254 3255 3256
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
3257
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
3258 3259 3260
{
	unsigned long long ns;
	unsigned long flags;
3261

L
Linus Torvalds 已提交
3262
	local_irq_save(flags);
3263
	ns = p->sched_time + sched_clock() - p->last_ran;
L
Linus Torvalds 已提交
3264
	local_irq_restore(flags);
3265

L
Linus Torvalds 已提交
3266 3267 3268
	return ns;
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3279
static inline int expired_starving(struct rq *rq)
3280 3281 3282 3283 3284 3285 3286 3287 3288
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3289

L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3321
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3351
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3363
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3364 3365
{
	if (p->array != rq->active) {
3366
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3367
		set_tsk_need_resched(p);
3368
		return;
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3402
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3450
	int idle_at_tick = idle_cpu(cpu);
3451 3452 3453 3454
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

3455
	if (!idle_at_tick)
3456
		task_running_tick(rq, p);
3457
#ifdef CONFIG_SMP
3458
	update_load(rq);
3459
	rq->idle_at_tick = idle_at_tick;
3460
	trigger_load_balance(cpu);
3461
#endif
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3471 3472
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3473 3474 3475 3476
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3477 3478
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3479 3480 3481 3482 3483 3484 3485 3486
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3487 3488
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3489 3490 3491
	/*
	 * Is the spinlock portion underflowing?
	 */
3492 3493 3494 3495
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3502 3503 3504 3505 3506 3507
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3508 3509 3510 3511 3512
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3513
	struct task_struct *prev, *next;
3514
	struct prio_array *array;
L
Linus Torvalds 已提交
3515 3516 3517
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3518
	int cpu, idx, new_prio;
3519
	long *switch_count;
3520
	struct rq *rq;
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3527 3528 3529 3530
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3531
		debug_show_held_locks(current);
3532 3533
		if (irqs_disabled())
			print_irqtrace_events(current);
3534
		dump_stack();
L
Linus Torvalds 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3556
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3557
		run_time = now - prev->timestamp;
3558
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3609
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3610

3611
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3612
		unsigned long long delta = now - next->timestamp;
3613
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3614 3615
			delta = 0;

3616
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3617 3618 3619
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3620 3621 3622 3623 3624 3625
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3626
		}
L
Linus Torvalds 已提交
3627
	}
3628
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3629 3630 3631 3632
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3633
	prefetch_stack(next);
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3646
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3647 3648 3649 3650
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3651
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3652 3653
		prev = context_switch(rq, prev, next);
		barrier();
3654 3655 3656 3657 3658 3659
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3674
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3689
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3717
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3729
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3759 3760
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3761
{
3762
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3781 3782 3783
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3784
		if (curr->func(curr, mode, sync, key) &&
3785
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3795
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3796 3797
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3798
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3817
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3829 3830
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3874

L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4021 4022
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4075
void rt_mutex_setprio(struct task_struct *p, int prio)
4076
{
4077
	struct prio_array *array;
4078
	unsigned long flags;
4079
	struct rq *rq;
4080
	int oldprio;
4081 4082 4083 4084 4085

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4086
	oldprio = p->prio;
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
4102 4103
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4104
		 */
4105 4106 4107 4108
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
4109 4110 4111 4112 4113 4114 4115
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

4116
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4117
{
4118
	struct prio_array *array;
4119
	int old_prio, delta;
L
Linus Torvalds 已提交
4120
	unsigned long flags;
4121
	struct rq *rq;
L
Linus Torvalds 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
4134
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
4135
	 */
4136
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
4137 4138 4139 4140
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
4141
	if (array) {
L
Linus Torvalds 已提交
4142
		dequeue_task(p, array);
4143 4144
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
4145 4146

	p->static_prio = NICE_TO_PRIO(nice);
4147
	set_load_weight(p);
4148 4149 4150
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4151 4152 4153

	if (array) {
		enqueue_task(p, array);
4154
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
4155
		/*
4156 4157
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4158
		 */
4159
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4167 4168 4169 4170 4171
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4172
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4173
{
4174 4175
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4176

M
Matt Mackall 已提交
4177 4178 4179 4180
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4192
	long nice, retval;
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4199 4200
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4210 4211 4212
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4231
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236 4237 4238 4239
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4240
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4259
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4268
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4277

L
Linus Torvalds 已提交
4278 4279
	p->policy = policy;
	p->rt_priority = prio;
4280 4281 4282 4283 4284 4285 4286 4287
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4288
	set_load_weight(p);
L
Linus Torvalds 已提交
4289 4290 4291
}

/**
4292
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4293 4294 4295
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4296
 *
4297
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4298
 */
I
Ingo Molnar 已提交
4299 4300
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4301
{
4302
	int retval, oldprio, oldpolicy = -1;
4303
	struct prio_array *array;
L
Linus Torvalds 已提交
4304
	unsigned long flags;
4305
	struct rq *rq;
L
Linus Torvalds 已提交
4306

4307 4308
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4314 4315
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4316 4317
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4318 4319
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4320 4321
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4322
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4323
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4324
		return -EINVAL;
4325
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4326 4327
		return -EINVAL;

4328 4329 4330 4331
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4350

4351 4352 4353 4354 4355
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4356 4357 4358 4359

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4360 4361 4362 4363 4364
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4365 4366 4367 4368
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4369
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4370 4371 4372
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4373 4374
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4386 4387
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4388
		 */
4389 4390 4391 4392
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4393 4394
			resched_task(rq->curr);
	}
4395 4396 4397
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4398 4399
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4400 4401 4402 4403
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4404 4405
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4406 4407 4408
{
	struct sched_param lparam;
	struct task_struct *p;
4409
	int retval;
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4415 4416 4417

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4418
	p = find_process_by_pid(pid);
4419 4420 4421
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4422

L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4435 4436 4437 4438
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4458
	struct task_struct *p;
L
Linus Torvalds 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4486
	struct task_struct *p;
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4521 4522
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4523

4524
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4530
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4547 4548 4549 4550
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4557
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4598
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4599 4600 4601
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4602
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4603 4604
EXPORT_SYMBOL(cpu_online_map);

4605
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4606
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4607 4608 4609 4610
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4611
	struct task_struct *p;
L
Linus Torvalds 已提交
4612 4613
	int retval;

4614
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4622 4623 4624 4625
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4626
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4627 4628 4629

out_unlock:
	read_unlock(&tasklist_lock);
4630
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4665
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4671 4672
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4685
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4706
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4707 4708 4709 4710 4711 4712 4713 4714
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4715
static void __cond_resched(void)
L
Linus Torvalds 已提交
4716
{
4717 4718 4719
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4720 4721 4722 4723 4724
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4734 4735
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4751
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4752
{
J
Jan Kara 已提交
4753 4754
	int ret = 0;

L
Linus Torvalds 已提交
4755 4756 4757
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4758
		ret = 1;
L
Linus Torvalds 已提交
4759 4760
		spin_lock(lock);
	}
4761
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4762
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4763 4764 4765
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4766
		ret = 1;
L
Linus Torvalds 已提交
4767 4768
		spin_lock(lock);
	}
J
Jan Kara 已提交
4769
	return ret;
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4777
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4778 4779 4780
		raw_local_irq_disable();
		_local_bh_enable();
		raw_local_irq_enable();
L
Linus Torvalds 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4792
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4811
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4812

4813
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4814 4815 4816
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4817
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4823
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4824 4825
	long ret;

4826
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4827 4828 4829
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4830
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4851
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4875
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4892
	struct task_struct *p;
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4909
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4920
static const char stat_nam[] = "RSDTtZX";
4921 4922

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4923 4924
{
	unsigned long free = 0;
4925
	unsigned state;
L
Linus Torvalds 已提交
4926 4927

	state = p->state ? __ffs(p->state) + 1 : 0;
4928 4929
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4943
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4944 4945
		while (!*n)
			n++;
4946
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4947 4948
	}
#endif
4949
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4959
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4960
{
4961
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4962 4963 4964

#if (BITS_PER_LONG == 32)
	printk("\n"
4965 4966
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4967 4968
#else
	printk("\n"
4969 4970
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4971 4972 4973 4974 4975 4976 4977 4978
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4979
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4980
			show_task(p);
L
Linus Torvalds 已提交
4981 4982
	} while_each_thread(g, p);

4983 4984
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4985
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4986 4987 4988 4989 4990
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4991 4992
}

4993 4994 4995 4996 4997 4998 4999 5000
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5001
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5002
{
5003
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5004 5005
	unsigned long flags;

5006
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
5007 5008
	idle->sleep_avg = 0;
	idle->array = NULL;
5009
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014 5015
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5016 5017 5018
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5019 5020 5021 5022
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5023
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5024
#else
A
Al Viro 已提交
5025
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5042
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5064
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5065
{
5066
	struct migration_req req;
L
Linus Torvalds 已提交
5067
	unsigned long flags;
5068
	struct rq *rq;
5069
	int ret = 0;
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5092

L
Linus Torvalds 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5105 5106
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5107
 */
5108
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5109
{
5110
	struct rq *rq_dest, *rq_src;
5111
	int ret = 0;
L
Linus Torvalds 已提交
5112 5113

	if (unlikely(cpu_is_offline(dest_cpu)))
5114
		return ret;
L
Linus Torvalds 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
5135 5136
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
5137
		deactivate_task(p, rq_src);
5138
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5139 5140 5141
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5142
	ret = 1;
L
Linus Torvalds 已提交
5143 5144
out:
	double_rq_unlock(rq_src, rq_dest);
5145
	return ret;
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5153
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5154 5155
{
	int cpu = (long)data;
5156
	struct rq *rq;
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5163
		struct migration_req *req;
L
Linus Torvalds 已提交
5164 5165
		struct list_head *head;

5166
		try_to_freeze();
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5188
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5189 5190
		list_del_init(head->next);

N
Nick Piggin 已提交
5191 5192 5193
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5212 5213 5214 5215
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5216
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5217
{
5218
	unsigned long flags;
L
Linus Torvalds 已提交
5219
	cpumask_t mask;
5220 5221
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5222

5223
restart:
L
Linus Torvalds 已提交
5224 5225
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5226
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5227 5228 5229 5230
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5231
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5232 5233 5234

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5235 5236 5237
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5238
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5245
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5246 5247
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5248
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5249
	}
5250
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5251
		goto restart;
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5261
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5262
{
5263
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5277
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5278 5279 5280

	write_lock_irq(&tasklist_lock);

5281 5282
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5283 5284
			continue;

5285 5286 5287
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5288 5289 5290 5291 5292 5293

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5294
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5295 5296 5297
 */
void sched_idle_next(void)
{
5298
	int this_cpu = smp_processor_id();
5299
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5300 5301 5302 5303
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5304
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5305

5306 5307 5308
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5309 5310 5311 5312
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5313 5314

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5320 5321
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5335
/* called under rq->lock with disabled interrupts */
5336
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5337
{
5338
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5339 5340

	/* Must be exiting, otherwise would be on tasklist. */
5341
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5342 5343

	/* Cannot have done final schedule yet: would have vanished. */
5344
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5345

5346
	get_task_struct(p);
L
Linus Torvalds 已提交
5347 5348 5349 5350 5351

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5352
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5353
	 */
5354
	spin_unlock(&rq->lock);
5355
	move_task_off_dead_cpu(dead_cpu, p);
5356
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5357

5358
	put_task_struct(p);
L
Linus Torvalds 已提交
5359 5360 5361 5362 5363
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5364
	struct rq *rq = cpu_rq(dead_cpu);
5365
	unsigned int arr, i;
L
Linus Torvalds 已提交
5366 5367 5368 5369

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5370

L
Linus Torvalds 已提交
5371
			while (!list_empty(list))
5372 5373
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5383 5384
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5385 5386
{
	struct task_struct *p;
5387
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5388
	unsigned long flags;
5389
	struct rq *rq;
L
Linus Torvalds 已提交
5390 5391

	switch (action) {
5392 5393 5394 5395
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5396
	case CPU_UP_PREPARE:
5397
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5409

L
Linus Torvalds 已提交
5410
	case CPU_ONLINE:
5411
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5412 5413 5414
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5415

L
Linus Torvalds 已提交
5416 5417
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5418
	case CPU_UP_CANCELED_FROZEN:
5419 5420
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5421
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5422 5423
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5424 5425 5426
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5427

L
Linus Torvalds 已提交
5428
	case CPU_DEAD:
5429
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5445
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5446 5447 5448
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5449 5450
			struct migration_req *req;

L
Linus Torvalds 已提交
5451
			req = list_entry(rq->migration_queue.next,
5452
					 struct migration_req, list);
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5459 5460 5461
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467 5468
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5469
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5470 5471 5472 5473 5474 5475 5476
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5477
	int err;
5478 5479

	/* Start one for the boot CPU: */
5480 5481
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5482 5483
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5484

L
Linus Torvalds 已提交
5485 5486 5487 5488 5489
	return 0;
}
#endif

#ifdef CONFIG_SMP
5490 5491 5492 5493 5494

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5495
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5501 5502 5503 5504 5505
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5525 5526
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531 5532
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5533 5534
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5535
		if (!cpu_isset(cpu, group->cpumask))
5536 5537
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5550
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5551
				printk("\n");
5552 5553
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5576 5577
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5578 5579 5580

		level++;
		sd = sd->parent;
5581 5582
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5583

5584 5585 5586
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5587 5588 5589 5590

	} while (sd);
}
#else
5591
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5592 5593
#endif

5594
static int sd_degenerate(struct sched_domain *sd)
5595 5596 5597 5598 5599 5600 5601 5602
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5603 5604 5605
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5619 5620
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5639 5640 5641
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5642 5643 5644 5645 5646 5647 5648
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5649 5650 5651 5652
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5653
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5654
{
5655
	struct rq *rq = cpu_rq(cpu);
5656 5657 5658 5659 5660 5661 5662
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5663
		if (sd_parent_degenerate(tmp, parent)) {
5664
			tmp->parent = parent->parent;
5665 5666 5667
			if (parent->parent)
				parent->parent->child = tmp;
		}
5668 5669
	}

5670
	if (sd && sd_degenerate(sd)) {
5671
		sd = sd->parent;
5672 5673 5674
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5675 5676 5677

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5678
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5679 5680 5681
}

/* cpus with isolated domains */
5682
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5700 5701 5702 5703
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5709
static void
5710 5711 5712
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5719 5720
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5721 5722 5723 5724 5725 5726
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5727
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5728 5729

		for_each_cpu_mask(j, span) {
5730
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5745
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5746

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
/*
 * Self-tuning task migration cost measurement between source and target CPUs.
 *
 * This is done by measuring the cost of manipulating buffers of varying
 * sizes. For a given buffer-size here are the steps that are taken:
 *
 * 1) the source CPU reads+dirties a shared buffer
 * 2) the target CPU reads+dirties the same shared buffer
 *
 * We measure how long they take, in the following 4 scenarios:
 *
 *  - source: CPU1, target: CPU2 | cost1
 *  - source: CPU2, target: CPU1 | cost2
 *  - source: CPU1, target: CPU1 | cost3
 *  - source: CPU2, target: CPU2 | cost4
 *
 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
 * the cost of migration.
 *
 * We then start off from a small buffer-size and iterate up to larger
 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
 * doing a maximum search for the cost. (The maximum cost for a migration
 * normally occurs when the working set size is around the effective cache
 * size.)
 */
#define SEARCH_SCOPE		2
#define MIN_CACHE_SIZE		(64*1024U)
#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
5775
#define ITERATIONS		1
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
#define SIZE_THRESH		130
#define COST_THRESH		130

/*
 * The migration cost is a function of 'domain distance'. Domain
 * distance is the number of steps a CPU has to iterate down its
 * domain tree to share a domain with the other CPU. The farther
 * two CPUs are from each other, the larger the distance gets.
 *
 * Note that we use the distance only to cache measurement results,
 * the distance value is not used numerically otherwise. When two
 * CPUs have the same distance it is assumed that the migration
 * cost is the same. (this is a simplification but quite practical)
 */
#define MAX_DOMAIN_DISTANCE 32

static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
/*
 * Architectures may override the migration cost and thus avoid
 * boot-time calibration. Unit is nanoseconds. Mostly useful for
 * virtualized hardware:
 */
#ifdef CONFIG_DEFAULT_MIGRATION_COST
			CONFIG_DEFAULT_MIGRATION_COST
#else
			-1LL
#endif
};
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

/*
 * Allow override of migration cost - in units of microseconds.
 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
 */
static int __init migration_cost_setup(char *str)
{
	int ints[MAX_DOMAIN_DISTANCE+1], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);

	printk("#ints: %d\n", ints[0]);
	for (i = 1; i <= ints[0]; i++) {
		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
	}
	return 1;
}

__setup ("migration_cost=", migration_cost_setup);

/*
 * Global multiplier (divisor) for migration-cutoff values,
 * in percentiles. E.g. use a value of 150 to get 1.5 times
 * longer cache-hot cutoff times.
 *
 * (We scale it from 100 to 128 to long long handling easier.)
 */

#define MIGRATION_FACTOR_SCALE 128

static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;

static int __init setup_migration_factor(char *str)
{
	get_option(&str, &migration_factor);
	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
	return 1;
}

__setup("migration_factor=", setup_migration_factor);

/*
 * Estimated distance of two CPUs, measured via the number of domains
 * we have to pass for the two CPUs to be in the same span:
 */
static unsigned long domain_distance(int cpu1, int cpu2)
{
	unsigned long distance = 0;
	struct sched_domain *sd;

	for_each_domain(cpu1, sd) {
		WARN_ON(!cpu_isset(cpu1, sd->span));
		if (cpu_isset(cpu2, sd->span))
			return distance;
		distance++;
	}
	if (distance >= MAX_DOMAIN_DISTANCE) {
		WARN_ON(1);
		distance = MAX_DOMAIN_DISTANCE-1;
	}

	return distance;
}

static unsigned int migration_debug;

static int __init setup_migration_debug(char *str)
{
	get_option(&str, &migration_debug);
	return 1;
}

__setup("migration_debug=", setup_migration_debug);

/*
 * Maximum cache-size that the scheduler should try to measure.
 * Architectures with larger caches should tune this up during
 * bootup. Gets used in the domain-setup code (i.e. during SMP
 * bootup).
 */
unsigned int max_cache_size;

static int __init setup_max_cache_size(char *str)
{
	get_option(&str, &max_cache_size);
	return 1;
}

__setup("max_cache_size=", setup_max_cache_size);

/*
 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
 * is the operation that is timed, so we try to generate unpredictable
 * cachemisses that still end up filling the L2 cache:
 */
static void touch_cache(void *__cache, unsigned long __size)
{
5904 5905 5906
	unsigned long size = __size / sizeof(long);
	unsigned long chunk1 = size / 3;
	unsigned long chunk2 = 2 * size / 3;
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	unsigned long *cache = __cache;
	int i;

	for (i = 0; i < size/6; i += 8) {
		switch (i % 6) {
			case 0: cache[i]++;
			case 1: cache[size-1-i]++;
			case 2: cache[chunk1-i]++;
			case 3: cache[chunk1+i]++;
			case 4: cache[chunk2-i]++;
			case 5: cache[chunk2+i]++;
		}
	}
}

/*
 * Measure the cache-cost of one task migration. Returns in units of nsec.
 */
5925 5926
static unsigned long long
measure_one(void *cache, unsigned long size, int source, int target)
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
{
	cpumask_t mask, saved_mask;
	unsigned long long t0, t1, t2, t3, cost;

	saved_mask = current->cpus_allowed;

	/*
	 * Flush source caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	/*
	 * Migrate to the source CPU:
	 */
	mask = cpumask_of_cpu(source);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != source);

	/*
	 * Dirty the working set:
	 */
	t0 = sched_clock();
	touch_cache(cache, size);
	t1 = sched_clock();

	/*
	 * Migrate to the target CPU, dirty the L2 cache and access
	 * the shared buffer. (which represents the working set
	 * of a migrated task.)
	 */
	mask = cpumask_of_cpu(target);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != target);

	t2 = sched_clock();
	touch_cache(cache, size);
	t3 = sched_clock();

	cost = t1-t0 + t3-t2;

	if (migration_debug >= 2)
		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
			source, target, t1-t0, t1-t0, t3-t2, cost);
	/*
	 * Flush target caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	set_cpus_allowed(current, saved_mask);

	return cost;
}

/*
 * Measure a series of task migrations and return the average
 * result. Since this code runs early during bootup the system
 * is 'undisturbed' and the average latency makes sense.
 *
 * The algorithm in essence auto-detects the relevant cache-size,
 * so it will properly detect different cachesizes for different
 * cache-hierarchies, depending on how the CPUs are connected.
 *
 * Architectures can prime the upper limit of the search range via
 * max_cache_size, otherwise the search range defaults to 20MB...64K.
 */
static unsigned long long
measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
{
	unsigned long long cost1, cost2;
	int i;

	/*
	 * Measure the migration cost of 'size' bytes, over an
	 * average of 10 runs:
	 *
	 * (We perturb the cache size by a small (0..4k)
	 *  value to compensate size/alignment related artifacts.
	 *  We also subtract the cost of the operation done on
	 *  the same CPU.)
	 */
	cost1 = 0;

	/*
	 * dry run, to make sure we start off cache-cold on cpu1,
	 * and to get any vmalloc pagefaults in advance:
	 */
	measure_one(cache, size, cpu1, cpu2);
	for (i = 0; i < ITERATIONS; i++)
6015
		cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
6016 6017 6018

	measure_one(cache, size, cpu2, cpu1);
	for (i = 0; i < ITERATIONS; i++)
6019
		cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
6020 6021 6022 6023 6024 6025 6026 6027 6028

	/*
	 * (We measure the non-migrating [cached] cost on both
	 *  cpu1 and cpu2, to handle CPUs with different speeds)
	 */
	cost2 = 0;

	measure_one(cache, size, cpu1, cpu1);
	for (i = 0; i < ITERATIONS; i++)
6029
		cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
6030 6031 6032

	measure_one(cache, size, cpu2, cpu2);
	for (i = 0; i < ITERATIONS; i++)
6033
		cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
6034 6035 6036 6037

	/*
	 * Get the per-iteration migration cost:
	 */
6038 6039
	do_div(cost1, 2 * ITERATIONS);
	do_div(cost2, 2 * ITERATIONS);
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076

	return cost1 - cost2;
}

static unsigned long long measure_migration_cost(int cpu1, int cpu2)
{
	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
	unsigned int max_size, size, size_found = 0;
	long long cost = 0, prev_cost;
	void *cache;

	/*
	 * Search from max_cache_size*5 down to 64K - the real relevant
	 * cachesize has to lie somewhere inbetween.
	 */
	if (max_cache_size) {
		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
	} else {
		/*
		 * Since we have no estimation about the relevant
		 * search range
		 */
		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
		size = MIN_CACHE_SIZE;
	}

	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
		return 0;
	}

	/*
	 * Allocate the working set:
	 */
	cache = vmalloc(max_size);
	if (!cache) {
6077
		printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6078
		return 1000000; /* return 1 msec on very small boxen */
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
	}

	while (size <= max_size) {
		prev_cost = cost;
		cost = measure_cost(cpu1, cpu2, cache, size);

		/*
		 * Update the max:
		 */
		if (cost > 0) {
			if (max_cost < cost) {
				max_cost = cost;
				size_found = size;
			}
		}
		/*
		 * Calculate average fluctuation, we use this to prevent
		 * noise from triggering an early break out of the loop:
		 */
		fluct = abs(cost - prev_cost);
		avg_fluct = (avg_fluct + fluct)/2;

		if (migration_debug)
6102 6103
			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
				"(%8Ld %8Ld)\n",
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
				cpu1, cpu2, size,
				(long)cost / 1000000,
				((long)cost / 100000) % 10,
				(long)max_cost / 1000000,
				((long)max_cost / 100000) % 10,
				domain_distance(cpu1, cpu2),
				cost, avg_fluct);

		/*
		 * If we iterated at least 20% past the previous maximum,
		 * and the cost has dropped by more than 20% already,
		 * (taking fluctuations into account) then we assume to
		 * have found the maximum and break out of the loop early:
		 */
		if (size_found && (size*100 > size_found*SIZE_THRESH))
			if (cost+avg_fluct <= 0 ||
				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {

				if (migration_debug)
					printk("-> found max.\n");
				break;
			}
		/*
6127
		 * Increase the cachesize in 10% steps:
6128
		 */
6129
		size = size * 10 / 9;
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
	}

	if (migration_debug)
		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
			cpu1, cpu2, size_found, max_cost);

	vfree(cache);

	/*
	 * A task is considered 'cache cold' if at least 2 times
	 * the worst-case cost of migration has passed.
	 *
	 * (this limit is only listened to if the load-balancing
	 * situation is 'nice' - if there is a large imbalance we
	 * ignore it for the sake of CPU utilization and
	 * processing fairness.)
	 */
	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
}

static void calibrate_migration_costs(const cpumask_t *cpu_map)
{
	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
	unsigned long j0, j1, distance, max_distance = 0;
	struct sched_domain *sd;

	j0 = jiffies;

	/*
	 * First pass - calculate the cacheflush times:
	 */
	for_each_cpu_mask(cpu1, *cpu_map) {
		for_each_cpu_mask(cpu2, *cpu_map) {
			if (cpu1 == cpu2)
				continue;
			distance = domain_distance(cpu1, cpu2);
			max_distance = max(max_distance, distance);
			/*
			 * No result cached yet?
			 */
			if (migration_cost[distance] == -1LL)
				migration_cost[distance] =
					measure_migration_cost(cpu1, cpu2);
		}
	}
	/*
	 * Second pass - update the sched domain hierarchy with
	 * the new cache-hot-time estimations:
	 */
	for_each_cpu_mask(cpu, *cpu_map) {
		distance = 0;
		for_each_domain(cpu, sd) {
			sd->cache_hot_time = migration_cost[distance];
			distance++;
		}
	}
	/*
	 * Print the matrix:
	 */
	if (migration_debug)
		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
			max_cache_size,
#ifdef CONFIG_X86
			cpu_khz/1000
#else
			-1
#endif
		);
6198 6199 6200 6201 6202 6203
	if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
		printk("migration_cost=");
		for (distance = 0; distance <= max_distance; distance++) {
			if (distance)
				printk(",");
			printk("%ld", (long)migration_cost[distance] / 1000);
6204
		}
6205
		printk("\n");
6206 6207 6208
	}
	j1 = jiffies;
	if (migration_debug)
6209
		printk("migration: %ld seconds\n", (j1-j0) / HZ);
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223

	/*
	 * Move back to the original CPU. NUMA-Q gets confused
	 * if we migrate to another quad during bootup.
	 */
	if (raw_smp_processor_id() != orig_cpu) {
		cpumask_t mask = cpumask_of_cpu(orig_cpu),
			saved_mask = current->cpus_allowed;

		set_cpus_allowed(current, mask);
		set_cpus_allowed(current, saved_mask);
	}
}

6224
#ifdef CONFIG_NUMA
6225

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6278 6279
	cpumask_t span, nodemask;
	int i;
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6290

6291 6292 6293 6294 6295 6296 6297 6298
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6299
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6300

6301
/*
6302
 * SMT sched-domains:
6303
 */
L
Linus Torvalds 已提交
6304 6305
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6306
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6307

6308 6309
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6310
{
6311 6312
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6313 6314 6315 6316
	return cpu;
}
#endif

6317 6318 6319
/*
 * multi-core sched-domains:
 */
6320 6321
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6322
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6323 6324 6325
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6326 6327
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6328
{
6329
	int group;
6330 6331
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6332 6333 6334 6335
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6336 6337
}
#elif defined(CONFIG_SCHED_MC)
6338 6339
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6340
{
6341 6342
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6343 6344 6345 6346
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6347
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6348
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6349

6350 6351
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6352
{
6353
	int group;
6354
#ifdef CONFIG_SCHED_MC
6355
	cpumask_t mask = cpu_coregroup_map(cpu);
6356
	cpus_and(mask, mask, *cpu_map);
6357
	group = first_cpu(mask);
6358
#elif defined(CONFIG_SCHED_SMT)
6359 6360
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6361
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6362
#else
6363
	group = cpu;
L
Linus Torvalds 已提交
6364
#endif
6365 6366 6367
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6368 6369 6370 6371
}

#ifdef CONFIG_NUMA
/*
6372 6373 6374
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6375
 */
6376
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6377
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6378

6379
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6380
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6381

6382 6383
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6384
{
6385 6386 6387 6388 6389 6390 6391 6392 6393
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6394
}
6395

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

6416
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6417 6418 6419 6420 6421
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
6422 6423
#endif

6424
#ifdef CONFIG_NUMA
6425 6426 6427
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6428
	int cpu, i;
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6459 6460 6461 6462 6463
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6464

6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6491 6492
	sd->groups->__cpu_power = 0;

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6503
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6504 6505 6506 6507 6508 6509 6510 6511
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6512
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6513 6514 6515 6516
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6517
/*
6518 6519
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6520
 */
6521
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6522 6523
{
	int i;
6524
	struct sched_domain *sd;
6525 6526
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6527
	int sd_allnodes = 0;
6528 6529 6530 6531

	/*
	 * Allocate the per-node list of sched groups
	 */
6532
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6533
					   GFP_KERNEL);
6534 6535
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6536
		return -ENOMEM;
6537 6538 6539
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6540 6541

	/*
6542
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6543
	 */
6544
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6545 6546 6547
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6548
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6549 6550

#ifdef CONFIG_NUMA
6551
		if (cpus_weight(*cpu_map)
6552 6553 6554 6555
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6556
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6557
			p = sd;
6558
			sd_allnodes = 1;
6559 6560 6561
		} else
			p = NULL;

L
Linus Torvalds 已提交
6562 6563
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6564 6565
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6566 6567
		if (p)
			p->child = sd;
6568
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6569 6570 6571 6572 6573 6574 6575
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6576 6577
		if (p)
			p->child = sd;
6578
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6579

6580 6581 6582 6583 6584 6585 6586
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6587
		p->child = sd;
6588
		cpu_to_core_group(i, cpu_map, &sd->groups);
6589 6590
#endif

L
Linus Torvalds 已提交
6591 6592 6593 6594 6595
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6596
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6597
		sd->parent = p;
6598
		p->child = sd;
6599
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6600 6601 6602 6603 6604
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6605
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6606
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6607
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6608 6609 6610
		if (i != first_cpu(this_sibling_map))
			continue;

6611
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6612 6613 6614
	}
#endif

6615 6616 6617 6618 6619 6620 6621
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6622
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6623 6624 6625 6626
	}
#endif


L
Linus Torvalds 已提交
6627 6628 6629 6630
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6631
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6632 6633 6634
		if (cpus_empty(nodemask))
			continue;

6635
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6636 6637 6638 6639
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6640 6641
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6652 6653
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6654
			continue;
6655
		}
6656 6657 6658 6659

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6660
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6661 6662 6663 6664 6665
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6666 6667 6668 6669 6670 6671
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6672
		sg->__cpu_power = 0;
6673
		sg->cpumask = nodemask;
6674
		sg->next = sg;
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6693 6694
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6695 6696 6697
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6698
				goto error;
6699
			}
6700
			sg->__cpu_power = 0;
6701
			sg->cpumask = tmp;
6702
			sg->next = prev->next;
6703 6704 6705 6706 6707
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6708 6709 6710
#endif

	/* Calculate CPU power for physical packages and nodes */
6711
#ifdef CONFIG_SCHED_SMT
6712
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6713
		sd = &per_cpu(cpu_domains, i);
6714
		init_sched_groups_power(i, sd);
6715
	}
L
Linus Torvalds 已提交
6716
#endif
6717
#ifdef CONFIG_SCHED_MC
6718
	for_each_cpu_mask(i, *cpu_map) {
6719
		sd = &per_cpu(core_domains, i);
6720
		init_sched_groups_power(i, sd);
6721 6722
	}
#endif
6723

6724
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6725
		sd = &per_cpu(phys_domains, i);
6726
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6727 6728
	}

6729
#ifdef CONFIG_NUMA
6730 6731
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6732

6733 6734
	if (sd_allnodes) {
		struct sched_group *sg;
6735

6736
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6737 6738
		init_numa_sched_groups_power(sg);
	}
6739 6740
#endif

L
Linus Torvalds 已提交
6741
	/* Attach the domains */
6742
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6743 6744 6745
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6746 6747
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6748 6749 6750 6751 6752
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6753 6754 6755 6756
	/*
	 * Tune cache-hot values:
	 */
	calibrate_migration_costs(cpu_map);
6757 6758 6759

	return 0;

6760
#ifdef CONFIG_NUMA
6761 6762 6763
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6764
#endif
L
Linus Torvalds 已提交
6765
}
6766 6767 6768
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6769
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6770 6771
{
	cpumask_t cpu_default_map;
6772
	int err;
L
Linus Torvalds 已提交
6773

6774 6775 6776 6777 6778 6779 6780
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6781 6782 6783
	err = build_sched_domains(&cpu_default_map);

	return err;
6784 6785 6786
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6787
{
6788
	free_sched_groups(cpu_map);
6789
}
L
Linus Torvalds 已提交
6790

6791 6792 6793 6794
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6795
static void detach_destroy_domains(const cpumask_t *cpu_map)
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6813
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6814 6815
{
	cpumask_t change_map;
6816
	int err = 0;
6817 6818 6819 6820 6821 6822 6823 6824

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6825 6826 6827 6828 6829
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6830 6831
}

6832 6833 6834 6835 6836
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6837
	mutex_lock(&sched_hotcpu_mutex);
6838 6839
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6840
	mutex_unlock(&sched_hotcpu_mutex);
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6865

6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6885 6886
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6899 6900
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6901 6902 6903 6904 6905 6906 6907
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6908 6909 6910
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6911
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6912 6913 6914 6915 6916 6917 6918
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6919
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6920
	case CPU_DOWN_PREPARE:
6921
	case CPU_DOWN_PREPARE_FROZEN:
6922
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6923 6924 6925
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6926
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6927
	case CPU_DOWN_FAILED:
6928
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6929
	case CPU_ONLINE:
6930
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6931
	case CPU_DEAD:
6932
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6942
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6943 6944 6945 6946 6947 6948

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6949 6950
	cpumask_t non_isolated_cpus;

6951
	mutex_lock(&sched_hotcpu_mutex);
6952
	arch_init_sched_domains(&cpu_online_map);
6953
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6954 6955
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6956
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6957 6958
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6959 6960 6961 6962

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6974

L
Linus Torvalds 已提交
6975 6976 6977 6978 6979 6980 6981 6982
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6983
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6984

6985
	for_each_possible_cpu(i) {
6986 6987
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6988 6989 6990

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6991
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6992
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6993 6994 6995 6996 6997
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6998
		rq->sd = NULL;
N
Nick Piggin 已提交
6999 7000
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7001 7002
		rq->active_balance = 0;
		rq->push_cpu = 0;
7003
		rq->cpu = i;
L
Linus Torvalds 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
7018
		highest_cpu = i;
L
Linus Torvalds 已提交
7019 7020
	}

7021
	set_load_weight(&init_task);
7022

7023
#ifdef CONFIG_SMP
7024
	nr_cpu_ids = highest_cpu + 1;
7025 7026 7027
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7028 7029 7030 7031
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7050
#ifdef in_atomic
L
Linus Torvalds 已提交
7051 7052 7053 7054 7055 7056 7057
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7058
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7059 7060 7061
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7062
		debug_show_held_locks(current);
7063 7064
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
7075
	struct prio_array *array;
L
Linus Torvalds 已提交
7076 7077
	struct task_struct *p;
	unsigned long flags;
7078
	struct rq *rq;
L
Linus Torvalds 已提交
7079 7080

	read_lock_irq(&tasklist_lock);
7081
	for_each_process(p) {
L
Linus Torvalds 已提交
7082 7083 7084
		if (!rt_task(p))
			continue;

7085 7086
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

7097 7098
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
7099 7100 7101 7102 7103
	}
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7122
struct task_struct *curr_task(int cpu)
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7142
void set_curr_task(int cpu, struct task_struct *p)
7143 7144 7145 7146 7147
{
	cpu_curr(cpu) = p;
}

#endif