sched.c 169.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
I
Ingo Molnar 已提交
269
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
270 271 272 273 274 275

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
276 277
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278
	unsigned char idle_at_tick;
279 280 281
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
282
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
283 284 285 286 287 288
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
289
#endif
I
Ingo Molnar 已提交
290
	struct rt_rq  rt;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

300
	struct task_struct *curr, *idle;
301
	unsigned long next_balance;
L
Linus Torvalds 已提交
302
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
303 304 305 306 307

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
308 309
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
310
	u64 tick_timestamp;
I
Ingo Molnar 已提交
311

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
320
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
321

322
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
334
	unsigned long yld_count;
L
Linus Torvalds 已提交
335 336 337

	/* schedule() stats */
	unsigned long sched_switch;
338
	unsigned long sched_count;
L
Linus Torvalds 已提交
339 340 341
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
342
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
343
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
344 345

	/* BKL stats */
346
	unsigned long bkl_count;
L
Linus Torvalds 已提交
347
#endif
348
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
349 350
};

351
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
353

I
Ingo Molnar 已提交
354 355 356 357 358
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

359 360 361 362 363 364 365 366 367
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
368
/*
I
Ingo Molnar 已提交
369 370
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
371
 */
I
Ingo Molnar 已提交
372
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
373 374 375 376 377 378
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
379 380 381
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
392 393 394 395 396
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
407
}
I
Ingo Molnar 已提交
408

I
Ingo Molnar 已提交
409 410 411 412
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
413 414
}

N
Nick Piggin 已提交
415 416
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
418 419 420 421
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
422 423
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
424 425 426 427 428 429

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
445
	SCHED_FEAT_TREE_AVG             = 4,
446
	SCHED_FEAT_APPROX_AVG           = 8,
447
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
448
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
449 450 451 452
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
453
		SCHED_FEAT_START_DEBIT		*1 |
454
		SCHED_FEAT_TREE_AVG		*0 |
455
		SCHED_FEAT_APPROX_AVG		*0 |
456 457
		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
		SCHED_FEAT_PREEMPT_RESTRICT	*1;
I
Ingo Molnar 已提交
458 459 460

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

461 462 463 464 465 466 467 468
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
469
	struct rq *rq;
470

471
	local_irq_save(flags);
I
Ingo Molnar 已提交
472 473 474
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
475
	local_irq_restore(flags);
476 477 478

	return now;
}
P
Paul E. McKenney 已提交
479
EXPORT_SYMBOL_GPL(cpu_clock);
480

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565 566 567 568 569
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
570 571 572 573
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
574 575 576 577 578
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
579
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
580 581
	__acquires(rq->lock)
{
582
	struct rq *rq;
L
Linus Torvalds 已提交
583

584 585 586 587 588 589
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
590 591 592 593
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
594
static void __task_rq_unlock(struct rq *rq)
595 596 597 598 599
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

600
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
601 602 603 604 605 606
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
607
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
608
 */
A
Alexey Dobriyan 已提交
609
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
610 611
	__acquires(rq->lock)
{
612
	struct rq *rq;
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

621
/*
622
 * We are going deep-idle (irqs are disabled):
623
 */
624
void sched_clock_idle_sleep_event(void)
625
{
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
642

643 644 645 646 647 648 649 650 651 652 653
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
654
}
655
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

709 710 711 712 713 714 715 716
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
717 718 719
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
720
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
721

722
static unsigned long
723 724 725 726 727 728
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
729
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730 731 732 733 734

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
735
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
736
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
737 738
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
739
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740

741
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 743 744 745 746 747 748 749
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

750
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 752 753 754
{
	lw->weight += inc;
}

755
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 757 758 759
{
	lw->weight -= dec;
}

760 761 762 763 764 765 766 767 768
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
769 770 771 772 773 774 775 776 777 778 779
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 781 782
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
783 784
 */
static const int prio_to_weight[40] = {
785 786 787 788 789 790 791 792
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
793 794
};

795 796 797 798 799 800 801
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
802
static const u32 prio_to_wmult[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
811
};
812

I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
830
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
831 832 833

#include "sched_stats.h"
#include "sched_idletask.c"
834 835
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
836 837 838 839 840 841
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

842 843 844 845
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
846
 * total load (rq->load.weight) on the runqueue, while
847 848 849 850 851 852 853
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
854
 * This function is called /before/ updating rq->load
855 856
 * and when switching tasks.
 */
857
static inline void inc_load(struct rq *rq, const struct task_struct *p)
858
{
859
	update_load_add(&rq->load, p->se.load.weight);
860 861
}

862
static inline void dec_load(struct rq *rq, const struct task_struct *p)
863
{
864
	update_load_sub(&rq->load, p->se.load.weight);
865 866
}

867
static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 869
{
	rq->nr_running++;
870
	inc_load(rq, p);
871 872
}

873
static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running--;
876
	dec_load(rq, p);
877 878
}

879 880 881
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
882 883 884 885
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
886

I
Ingo Molnar 已提交
887 888 889 890 891 892 893 894
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
895

I
Ingo Molnar 已提交
896 897
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 899
}

900
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901
{
I
Ingo Molnar 已提交
902
	sched_info_queued(p);
903
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
904
	p->se.on_rq = 1;
905 906
}

907
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908
{
909
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 0;
911 912
}

913
/*
I
Ingo Molnar 已提交
914
 * __normal_prio - return the priority that is based on the static prio
915 916 917
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
918
	return p->static_prio;
919 920
}

921 922 923 924 925 926 927
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
928
static inline int normal_prio(struct task_struct *p)
929 930 931
{
	int prio;

932
	if (task_has_rt_policy(p))
933 934 935 936 937 938 939 940 941 942 943 944 945
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
946
static int effective_prio(struct task_struct *p)
947 948 949 950 951 952 953 954 955 956 957 958
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
959
/*
I
Ingo Molnar 已提交
960
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
961
 */
I
Ingo Molnar 已提交
962
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
963
{
I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
966

967
	enqueue_task(rq, p, wakeup);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
995
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1003
	set_task_cfs_rq(p);
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

I
Ingo Molnar 已提交
1008
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1009
{
I
Ingo Molnar 已提交
1010 1011
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1012 1013
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1014
	u64 clock_offset;
I
Ingo Molnar 已提交
1015 1016

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1017 1018 1019 1020

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1021 1022 1023 1024
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1025
#endif
1026 1027
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1028 1029

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1030 1031
}

1032
struct migration_req {
L
Linus Torvalds 已提交
1033 1034
	struct list_head list;

1035
	struct task_struct *task;
L
Linus Torvalds 已提交
1036 1037 1038
	int dest_cpu;

	struct completion done;
1039
};
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1045
static int
1046
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1047
{
1048
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1049 1050 1051 1052 1053

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1054
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1055 1056 1057 1058 1059 1060 1061 1062
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1063

L
Linus Torvalds 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1076
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1077 1078
{
	unsigned long flags;
I
Ingo Molnar 已提交
1079
	int running, on_rq;
1080
	struct rq *rq;
L
Linus Torvalds 已提交
1081

1082 1083 1084 1085 1086 1087 1088 1089
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1139

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1162
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1174 1175
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1176 1177 1178 1179
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1180
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1181
{
1182
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1183
	unsigned long total = weighted_cpuload(cpu);
1184

1185
	if (type == 0)
I
Ingo Molnar 已提交
1186
		return total;
1187

I
Ingo Molnar 已提交
1188
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1189 1190 1191
}

/*
1192 1193
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1194
 */
A
Alexey Dobriyan 已提交
1195
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1196
{
1197
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1198
	unsigned long total = weighted_cpuload(cpu);
1199

N
Nick Piggin 已提交
1200
	if (type == 0)
I
Ingo Molnar 已提交
1201
		return total;
1202

I
Ingo Molnar 已提交
1203
	return max(rq->cpu_load[type-1], total);
1204 1205 1206 1207 1208 1209 1210
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1211
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1212
	unsigned long total = weighted_cpuload(cpu);
1213 1214
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1215
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1216 1217
}

N
Nick Piggin 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1235 1236
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1237
			continue;
1238

N
Nick Piggin 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1255 1256
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1265
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1273
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1274
 */
I
Ingo Molnar 已提交
1275 1276
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1277
{
1278
	cpumask_t tmp;
N
Nick Piggin 已提交
1279 1280 1281 1282
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1283 1284 1285 1286
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1287
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1313

1314
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1315 1316 1317
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1318 1319
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1320 1321
		if (tmp->flags & flag)
			sd = tmp;
1322
	}
N
Nick Piggin 已提交
1323 1324 1325 1326

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1327 1328 1329 1330 1331 1332
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1333 1334 1335

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1336 1337 1338 1339
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1340

1341
		new_cpu = find_idlest_cpu(group, t, cpu);
1342 1343 1344 1345 1346
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1347

1348
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1375
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1391 1392 1393 1394
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1395
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1396 1397 1398 1399
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1400
		} else {
N
Nick Piggin 已提交
1401
			break;
I
Ingo Molnar 已提交
1402
		}
L
Linus Torvalds 已提交
1403 1404 1405 1406
	}
	return cpu;
}
#else
1407
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1427
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1428 1429 1430 1431
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1432
	struct rq *rq;
L
Linus Torvalds 已提交
1433
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1434
	struct sched_domain *sd, *this_sd = NULL;
1435
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1444
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1454 1455
	new_cpu = cpu;

1456
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1457 1458
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1459 1460 1461 1462 1463 1464 1465 1466
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1467 1468 1469
		}
	}

N
Nick Piggin 已提交
1470
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1471 1472 1473
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1474
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1475
	 */
N
Nick Piggin 已提交
1476 1477 1478
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1479

1480 1481
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1482 1483
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1484

N
Nick Piggin 已提交
1485 1486
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1487 1488
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1489 1490 1491
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1492

L
Linus Torvalds 已提交
1493
			/*
1494 1495 1496
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1497
			 */
1498
			if (sync)
I
Ingo Molnar 已提交
1499
				tl -= current->se.load.weight;
1500 1501

			if ((tl <= load &&
1502
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1503
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1537
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544 1545
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1546
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1547
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1556 1557
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1568
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1575
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1583 1584 1585 1586 1587 1588 1589
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1590
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1591 1592 1593

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1594 1595 1596 1597 1598 1599
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1600
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1601
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1602
#endif
N
Nick Piggin 已提交
1603

I
Ingo Molnar 已提交
1604 1605
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1606

1607 1608 1609 1610
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1632
	set_task_cpu(p, cpu);
1633 1634 1635 1636 1637

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1638 1639
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1640

1641
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1642
	if (likely(sched_info_on()))
1643
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1644
#endif
1645
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1646 1647
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1648
#ifdef CONFIG_PREEMPT
1649
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1650
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1651
#endif
N
Nick Piggin 已提交
1652
	put_cpu();
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1662
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1663 1664
{
	unsigned long flags;
I
Ingo Molnar 已提交
1665
	struct rq *rq;
L
Linus Torvalds 已提交
1666 1667

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1668
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1669
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1670 1671 1672

	p->prio = effective_prio(p);

1673
	if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
I
Ingo Molnar 已提交
1674
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1675 1676
	} else {
		/*
I
Ingo Molnar 已提交
1677 1678
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1679
		 */
1680
		p->sched_class->task_new(rq, p);
1681
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1682
	}
I
Ingo Molnar 已提交
1683 1684
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1685 1686
}

1687 1688 1689
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1690 1691
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1692 1693 1694 1695 1696 1697 1698 1699 1700
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1701
 * @notifier: notifier struct to unregister
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1745 1746 1747
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1748
 * @prev: the current task that is being switched out
1749 1750 1751 1752 1753 1754 1755 1756 1757
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1758 1759 1760
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1761
{
1762
	fire_sched_out_preempt_notifiers(prev, next);
1763 1764 1765 1766
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1767 1768
/**
 * finish_task_switch - clean up after a task-switch
1769
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1770 1771
 * @prev: the thread we just switched away from.
 *
1772 1773 1774 1775
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780 1781
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1782
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1783 1784 1785
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1786
	long prev_state;
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1792
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1793 1794
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1795
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1801
	prev_state = prev->state;
1802 1803
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1804
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1805 1806
	if (mm)
		mmdrop(mm);
1807
	if (unlikely(prev_state == TASK_DEAD)) {
1808 1809 1810
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1811
		 */
1812
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1813
		put_task_struct(prev);
1814
	}
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1821
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1822 1823
	__releases(rq->lock)
{
1824 1825
	struct rq *rq = this_rq();

1826 1827 1828 1829 1830
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1839
static inline void
1840
context_switch(struct rq *rq, struct task_struct *prev,
1841
	       struct task_struct *next)
L
Linus Torvalds 已提交
1842
{
I
Ingo Molnar 已提交
1843
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1844

1845
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1846 1847
	mm = next->mm;
	oldmm = prev->active_mm;
1848 1849 1850 1851 1852 1853 1854
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1855
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1862
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1863 1864 1865
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1866 1867 1868 1869 1870 1871 1872
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1873
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1874
#endif
L
Linus Torvalds 已提交
1875 1876 1877 1878

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1879 1880 1881 1882 1883 1884 1885
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1924 1925
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1926

1927
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1937
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1958
/*
I
Ingo Molnar 已提交
1959 1960
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1961
 */
I
Ingo Molnar 已提交
1962
static void update_cpu_load(struct rq *this_rq)
1963
{
1964
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1977 1978 1979 1980 1981 1982 1983
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1984 1985
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1986 1987
}

I
Ingo Molnar 已提交
1988 1989
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1996
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1997 1998 1999
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2000
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2001 2002 2003 2004
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2005
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2013 2014
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021 2022
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2023
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2037
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2038 2039 2040 2041
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2042 2043 2044 2045 2046
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2047
	if (unlikely(!spin_trylock(&busiest->lock))) {
2048
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2063
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2064
{
2065
	struct migration_req req;
L
Linus Torvalds 已提交
2066
	unsigned long flags;
2067
	struct rq *rq;
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2078

L
Linus Torvalds 已提交
2079 2080 2081 2082 2083
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2084

L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2092 2093
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2094 2095 2096 2097
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2098
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2099
	put_cpu();
N
Nick Piggin 已提交
2100 2101
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2108 2109
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2110
{
2111
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2112
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2113
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2114 2115 2116 2117
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2118
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2124
static
2125
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2126
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2127
		     int *all_pinned)
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2137 2138 2139 2140
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2141 2142 2143 2144

	return 1;
}

I
Ingo Molnar 已提交
2145
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2147
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2148
		      int *all_pinned, unsigned long *load_moved,
2149
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2150
{
I
Ingo Molnar 已提交
2151 2152 2153
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2154

2155
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2156 2157
		goto out;

2158 2159
	pinned = 1;

L
Linus Torvalds 已提交
2160
	/*
I
Ingo Molnar 已提交
2161
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2162
	 */
I
Ingo Molnar 已提交
2163 2164 2165
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2166
		goto out;
2167 2168 2169 2170 2171
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2172 2173
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2174
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2175 2176 2177
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2178 2179
	}

I
Ingo Molnar 已提交
2180
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2181
	pulled++;
I
Ingo Molnar 已提交
2182
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2183

2184 2185 2186 2187 2188
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2189 2190
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2191 2192
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2201 2202 2203

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2204
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2205 2206 2207
	return pulled;
}

I
Ingo Molnar 已提交
2208
/*
P
Peter Williams 已提交
2209 2210 2211
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2212 2213 2214 2215
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2216
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2217 2218 2219
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2220
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2221
	unsigned long total_load_moved = 0;
2222
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2223 2224

	do {
P
Peter Williams 已提交
2225 2226 2227
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2228
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2229
		class = class->next;
P
Peter Williams 已提交
2230
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2231

P
Peter Williams 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2245
	const struct sched_class *class;
2246
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2247 2248 2249

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2250 2251
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2252 2253 2254
			return 1;

	return 0;
I
Ingo Molnar 已提交
2255 2256
}

L
Linus Torvalds 已提交
2257 2258
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2259 2260
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2261 2262 2263
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2264 2265
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2266 2267 2268
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2269
	unsigned long max_pull;
2270 2271
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2272
	int load_idx;
2273 2274 2275 2276 2277 2278
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2279 2280

	max_load = this_load = total_load = total_pwr = 0;
2281 2282
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2283
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2284
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2285
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2286 2287 2288
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2289 2290

	do {
2291
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2292 2293
		int local_group;
		int i;
2294
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2295
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2296 2297 2298

		local_group = cpu_isset(this_cpu, group->cpumask);

2299 2300 2301
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2302
		/* Tally up the load of all CPUs in the group */
2303
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2304 2305

		for_each_cpu_mask(i, group->cpumask) {
2306 2307 2308 2309 2310 2311
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2312

2313
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2314 2315
				*sd_idle = 0;

L
Linus Torvalds 已提交
2316
			/* Bias balancing toward cpus of our domain */
2317 2318 2319 2320 2321 2322
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2323
				load = target_load(i, load_idx);
2324
			} else
N
Nick Piggin 已提交
2325
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2326 2327

			avg_load += load;
2328
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2329
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2330 2331
		}

2332 2333 2334
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2335 2336
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2337
		 */
2338 2339
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2340 2341 2342 2343
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2344
		total_load += avg_load;
2345
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2346 2347

		/* Adjust by relative CPU power of the group */
2348 2349
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2350

2351
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2352

L
Linus Torvalds 已提交
2353 2354 2355
		if (local_group) {
			this_load = avg_load;
			this = group;
2356 2357 2358
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2359
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2360 2361
			max_load = avg_load;
			busiest = group;
2362 2363
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2364
		}
2365 2366 2367 2368 2369 2370

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2371 2372 2373
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2374 2375 2376 2377 2378 2379 2380 2381 2382

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2383
		/*
2384 2385
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2386 2387
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2388
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2389
			goto group_next;
2390

I
Ingo Molnar 已提交
2391
		/*
2392
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2393 2394 2395 2396 2397
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2398 2399
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2400 2401
			group_min = group;
			min_nr_running = sum_nr_running;
2402 2403
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2404
		}
2405

I
Ingo Molnar 已提交
2406
		/*
2407
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2419
		}
2420 2421
group_next:
#endif
L
Linus Torvalds 已提交
2422 2423 2424
		group = group->next;
	} while (group != sd->groups);

2425
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2434
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2458 2459

	/* Don't want to pull so many tasks that a group would go idle */
2460
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2461

L
Linus Torvalds 已提交
2462
	/* How much load to actually move to equalise the imbalance */
2463 2464
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2465 2466
			/ SCHED_LOAD_SCALE;

2467 2468 2469 2470 2471 2472
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2473
	if (*imbalance < busiest_load_per_task) {
2474
		unsigned long tmp, pwr_now, pwr_move;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2486

I
Ingo Molnar 已提交
2487 2488
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2489
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2499 2500 2501 2502
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2503 2504 2505
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2506 2507
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2508
		if (max_load > tmp)
2509
			pwr_move += busiest->__cpu_power *
2510
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2511 2512

		/* Amount of load we'd add */
2513
		if (max_load * busiest->__cpu_power <
2514
				busiest_load_per_task * SCHED_LOAD_SCALE)
2515 2516
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2517
		else
2518 2519 2520 2521
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2522 2523 2524
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2525 2526
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531
	}

	return busiest;

out_balanced:
2532
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2533
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2534
		goto ret;
L
Linus Torvalds 已提交
2535

2536 2537 2538 2539 2540
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2541
ret:
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2549
static struct rq *
I
Ingo Molnar 已提交
2550
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2551
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2552
{
2553
	struct rq *busiest = NULL, *rq;
2554
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2555 2556 2557
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2558
		unsigned long wl;
2559 2560 2561 2562

		if (!cpu_isset(i, *cpus))
			continue;

2563
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2564
		wl = weighted_cpuload(i);
2565

I
Ingo Molnar 已提交
2566
		if (rq->nr_running == 1 && wl > imbalance)
2567
			continue;
L
Linus Torvalds 已提交
2568

I
Ingo Molnar 已提交
2569 2570
		if (wl > max_load) {
			max_load = wl;
2571
			busiest = rq;
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577
		}
	}

	return busiest;
}

2578 2579 2580 2581 2582 2583
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2584 2585 2586 2587
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2588
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2589
			struct sched_domain *sd, enum cpu_idle_type idle,
2590
			int *balance)
L
Linus Torvalds 已提交
2591
{
P
Peter Williams 已提交
2592
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2593 2594
	struct sched_group *group;
	unsigned long imbalance;
2595
	struct rq *busiest;
2596
	cpumask_t cpus = CPU_MASK_ALL;
2597
	unsigned long flags;
N
Nick Piggin 已提交
2598

2599 2600 2601
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2602
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2603
	 * portraying it as CPU_NOT_IDLE.
2604
	 */
I
Ingo Molnar 已提交
2605
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2606
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2607
		sd_idle = 1;
L
Linus Torvalds 已提交
2608

2609
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2610

2611 2612
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2613 2614
				   &cpus, balance);

2615
	if (*balance == 0)
2616 2617
		goto out_balanced;

L
Linus Torvalds 已提交
2618 2619 2620 2621 2622
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2623
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2629
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2630 2631 2632

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2633
	ld_moved = 0;
L
Linus Torvalds 已提交
2634 2635 2636 2637
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2638
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2639 2640
		 * correctly treated as an imbalance.
		 */
2641
		local_irq_save(flags);
N
Nick Piggin 已提交
2642
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2643
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2644
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2645
		double_rq_unlock(this_rq, busiest);
2646
		local_irq_restore(flags);
2647

2648 2649 2650
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2651
		if (ld_moved && this_cpu != smp_processor_id())
2652 2653
			resched_cpu(this_cpu);

2654
		/* All tasks on this runqueue were pinned by CPU affinity */
2655 2656 2657 2658
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2659
			goto out_balanced;
2660
		}
L
Linus Torvalds 已提交
2661
	}
2662

P
Peter Williams 已提交
2663
	if (!ld_moved) {
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2669
			spin_lock_irqsave(&busiest->lock, flags);
2670 2671 2672 2673 2674

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2675
				spin_unlock_irqrestore(&busiest->lock, flags);
2676 2677 2678 2679
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2680 2681 2682
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2683
				active_balance = 1;
L
Linus Torvalds 已提交
2684
			}
2685
			spin_unlock_irqrestore(&busiest->lock, flags);
2686
			if (active_balance)
L
Linus Torvalds 已提交
2687 2688 2689 2690 2691 2692
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2693
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2694
		}
2695
	} else
L
Linus Torvalds 已提交
2696 2697
		sd->nr_balance_failed = 0;

2698
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2699 2700
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2701 2702 2703 2704 2705 2706 2707 2708 2709
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2710 2711
	}

P
Peter Williams 已提交
2712
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2713
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2714
		return -1;
P
Peter Williams 已提交
2715
	return ld_moved;
L
Linus Torvalds 已提交
2716 2717 2718 2719

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2720
	sd->nr_balance_failed = 0;
2721 2722

out_one_pinned:
L
Linus Torvalds 已提交
2723
	/* tune up the balancing interval */
2724 2725
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2726 2727
		sd->balance_interval *= 2;

2728
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2729
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2730
		return -1;
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2738
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2739 2740
 * this_rq is locked.
 */
2741
static int
2742
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2743 2744
{
	struct sched_group *group;
2745
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2746
	unsigned long imbalance;
P
Peter Williams 已提交
2747
	int ld_moved = 0;
N
Nick Piggin 已提交
2748
	int sd_idle = 0;
2749
	int all_pinned = 0;
2750
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2751

2752 2753 2754 2755
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2756
	 * portraying it as CPU_NOT_IDLE.
2757 2758 2759
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2760
		sd_idle = 1;
L
Linus Torvalds 已提交
2761

2762
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2763
redo:
I
Ingo Molnar 已提交
2764
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2765
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2766
	if (!group) {
I
Ingo Molnar 已提交
2767
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2768
		goto out_balanced;
L
Linus Torvalds 已提交
2769 2770
	}

I
Ingo Molnar 已提交
2771
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2772
				&cpus);
N
Nick Piggin 已提交
2773
	if (!busiest) {
I
Ingo Molnar 已提交
2774
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2775
		goto out_balanced;
L
Linus Torvalds 已提交
2776 2777
	}

N
Nick Piggin 已提交
2778 2779
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2780
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2781

P
Peter Williams 已提交
2782
	ld_moved = 0;
2783 2784 2785
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2786 2787
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2788
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2789 2790
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2791
		spin_unlock(&busiest->lock);
2792

2793
		if (unlikely(all_pinned)) {
2794 2795 2796 2797
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2798 2799
	}

P
Peter Williams 已提交
2800
	if (!ld_moved) {
I
Ingo Molnar 已提交
2801
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2802 2803
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2804 2805
			return -1;
	} else
2806
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2807

P
Peter Williams 已提交
2808
	return ld_moved;
2809 2810

out_balanced:
I
Ingo Molnar 已提交
2811
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2812
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2813
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2814
		return -1;
2815
	sd->nr_balance_failed = 0;
2816

2817
	return 0;
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2824
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2825 2826
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2827 2828
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2829 2830

	for_each_domain(this_cpu, sd) {
2831 2832 2833 2834 2835 2836
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2837
			/* If we've pulled tasks over stop searching: */
2838
			pulled_task = load_balance_newidle(this_cpu,
2839 2840 2841 2842 2843 2844 2845
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2846
	}
I
Ingo Molnar 已提交
2847
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2848 2849 2850 2851 2852
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2853
	}
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2864
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2865
{
2866
	int target_cpu = busiest_rq->push_cpu;
2867 2868
	struct sched_domain *sd;
	struct rq *target_rq;
2869

2870
	/* Is there any task to move? */
2871 2872 2873 2874
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2875 2876

	/*
2877 2878 2879
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2880
	 */
2881
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2882

2883 2884
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2885 2886
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2887 2888

	/* Search for an sd spanning us and the target CPU. */
2889
	for_each_domain(target_cpu, sd) {
2890
		if ((sd->flags & SD_LOAD_BALANCE) &&
2891
		    cpu_isset(busiest_cpu, sd->span))
2892
				break;
2893
	}
2894

2895
	if (likely(sd)) {
2896
		schedstat_inc(sd, alb_count);
2897

P
Peter Williams 已提交
2898 2899
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2900 2901 2902 2903
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2904
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2916
/*
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2927
 *
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2984 2985 2986 2987 2988
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
2989
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
2990
{
2991 2992
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2993 2994
	unsigned long interval;
	struct sched_domain *sd;
2995
	/* Earliest time when we have to do rebalance again */
2996
	unsigned long next_balance = jiffies + 60*HZ;
2997
	int update_next_balance = 0;
L
Linus Torvalds 已提交
2998

2999
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3000 3001 3002 3003
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3004
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3011 3012 3013
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3014

3015 3016 3017 3018 3019
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3020
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3021
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3022 3023
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3024 3025 3026
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3027
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3028
			}
3029
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3030
		}
3031 3032 3033
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3034
		if (time_after(next_balance, sd->last_balance + interval)) {
3035
			next_balance = sd->last_balance + interval;
3036 3037
			update_next_balance = 1;
		}
3038 3039 3040 3041 3042 3043 3044 3045

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3046
	}
3047 3048 3049 3050 3051 3052 3053 3054

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3055 3056 3057 3058 3059 3060 3061 3062 3063
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3064 3065 3066 3067
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3068

I
Ingo Molnar 已提交
3069
	rebalance_domains(this_cpu, idle);
3070 3071 3072 3073 3074 3075 3076

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3077 3078
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3079 3080 3081 3082
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3083
		cpu_clear(this_cpu, cpus);
3084 3085 3086 3087 3088 3089 3090 3091 3092
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3093
			rebalance_domains(balance_cpu, CPU_IDLE);
3094 3095

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3096 3097
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3110
static inline void trigger_load_balance(struct rq *rq, int cpu)
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3162
}
I
Ingo Molnar 已提交
3163 3164 3165

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3166 3167 3168
/*
 * on UP we do not need to balance between CPUs:
 */
3169
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3170 3171
{
}
I
Ingo Molnar 已提交
3172 3173 3174 3175 3176 3177

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3178
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3179 3180 3181 3182 3183 3184
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3185 3186 3187 3188 3189 3190 3191
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3192 3193
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3194
 */
3195
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3196 3197
{
	unsigned long flags;
3198 3199
	u64 ns, delta_exec;
	struct rq *rq;
3200

3201 3202 3203
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3204 3205
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3206 3207 3208 3209
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3210

L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3275
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3298
	struct task_struct *curr = rq->curr;
3299
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3300 3301

	spin_lock(&rq->lock);
3302
	__update_rq_clock(rq);
3303 3304 3305 3306 3307 3308
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3309
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3310 3311 3312
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3313

3314
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3315 3316
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3317
#endif
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3327 3328
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3329 3330 3331 3332
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3333 3334
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3343 3344
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3345 3346 3347
	/*
	 * Is the spinlock portion underflowing?
	 */
3348 3349 3350 3351
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3359
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3360
 */
I
Ingo Molnar 已提交
3361
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3362
{
I
Ingo Molnar 已提交
3363 3364 3365 3366 3367 3368 3369
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3370

I
Ingo Molnar 已提交
3371 3372 3373 3374 3375
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3376 3377 3378 3379 3380
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3381 3382 3383
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3384 3385
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3386
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3387 3388
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3389 3390
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3391 3392
	}
#endif
I
Ingo Molnar 已提交
3393 3394 3395 3396 3397 3398
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3399
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3400
{
3401
	const struct sched_class *class;
I
Ingo Molnar 已提交
3402
	struct task_struct *p;
L
Linus Torvalds 已提交
3403 3404

	/*
I
Ingo Molnar 已提交
3405 3406
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3407
	 */
I
Ingo Molnar 已提交
3408
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3409
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3410 3411
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3412 3413
	}

I
Ingo Molnar 已提交
3414 3415
	class = sched_class_highest;
	for ( ; ; ) {
3416
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3426

I
Ingo Molnar 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3449

3450 3451 3452 3453
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3454
	__update_rq_clock(rq);
3455 3456
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3457 3458 3459

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3460
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3461
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3462
		} else {
3463
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3464
		}
I
Ingo Molnar 已提交
3465
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3466 3467
	}

I
Ingo Molnar 已提交
3468
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3469 3470
		idle_balance(cpu, rq);

3471
	prev->sched_class->put_prev_task(rq, prev);
3472
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3473 3474

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3475

L
Linus Torvalds 已提交
3476 3477 3478 3479 3480
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3481
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3482 3483 3484
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3485 3486 3487
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3488
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3489
	}
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494 3495 3496 3497
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3498
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3514 3515
		return;

3516 3517 3518 3519 3520 3521 3522 3523
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3524
#ifdef CONFIG_PREEMPT_BKL
3525 3526
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3527
#endif
3528
		schedule();
L
Linus Torvalds 已提交
3529
#ifdef CONFIG_PREEMPT_BKL
3530
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3531
#endif
3532
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3533

3534 3535 3536 3537 3538 3539
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3540 3541 3542 3543
}
EXPORT_SYMBOL(preempt_schedule);

/*
3544
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3556
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3557 3558
	BUG_ON(ti->preempt_count || !irqs_disabled());

3559 3560 3561 3562 3563 3564 3565 3566
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3567
#ifdef CONFIG_PREEMPT_BKL
3568 3569
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3570
#endif
3571 3572 3573
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3574
#ifdef CONFIG_PREEMPT_BKL
3575
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3576
#endif
3577
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3578

3579 3580 3581 3582 3583 3584
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3585 3586 3587 3588
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3589 3590
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3591
{
3592
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3608
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3609

3610
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611 3612
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3613
		if (curr->func(curr, mode, sync, key) &&
3614
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3625 3626
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3627
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3646
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3658 3659
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3703

L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3822 3823 3824 3825 3826
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3827
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3828
}
L
Linus Torvalds 已提交
3829

I
Ingo Molnar 已提交
3830 3831 3832 3833 3834 3835 3836
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3837

I
Ingo Molnar 已提交
3838
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3839
{
I
Ingo Molnar 已提交
3840 3841 3842 3843
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3844 3845 3846

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3847
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3848
	schedule();
I
Ingo Molnar 已提交
3849
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3850 3851 3852
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3853
long __sched
I
Ingo Molnar 已提交
3854
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3855
{
I
Ingo Molnar 已提交
3856 3857 3858 3859
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3860 3861 3862

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3863
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3864
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3865
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3871
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3872
{
I
Ingo Molnar 已提交
3873 3874 3875 3876
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3877 3878 3879

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3880
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3881
	schedule();
I
Ingo Molnar 已提交
3882
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3883 3884 3885
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3886
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3887
{
I
Ingo Molnar 已提交
3888 3889 3890 3891
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3892 3893 3894

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3895
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3896
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3897
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3915
void rt_mutex_setprio(struct task_struct *p, int prio)
3916 3917
{
	unsigned long flags;
3918
	int oldprio, on_rq, running;
3919
	struct rq *rq;
3920 3921 3922 3923

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3924
	update_rq_clock(rq);
3925

3926
	oldprio = p->prio;
I
Ingo Molnar 已提交
3927
	on_rq = p->se.on_rq;
3928 3929
	running = task_running(rq, p);
	if (on_rq) {
3930
		dequeue_task(rq, p, 0);
3931 3932 3933
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3934 3935 3936 3937 3938 3939

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3940 3941
	p->prio = prio;

I
Ingo Molnar 已提交
3942
	if (on_rq) {
3943 3944
		if (running)
			p->sched_class->set_curr_task(rq);
3945
		enqueue_task(rq, p, 0);
3946 3947
		/*
		 * Reschedule if we are currently running on this runqueue and
3948 3949
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3950
		 */
3951
		if (running) {
3952 3953
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3954 3955 3956
		} else {
			check_preempt_curr(rq, p);
		}
3957 3958 3959 3960 3961 3962
	}
	task_rq_unlock(rq, &flags);
}

#endif

3963
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3964
{
I
Ingo Molnar 已提交
3965
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3966
	unsigned long flags;
3967
	struct rq *rq;
L
Linus Torvalds 已提交
3968 3969 3970 3971 3972 3973 3974 3975

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3976
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3977 3978 3979 3980
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3981
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3982
	 */
3983
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3984 3985 3986
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3987 3988
	on_rq = p->se.on_rq;
	if (on_rq) {
3989
		dequeue_task(rq, p, 0);
3990
		dec_load(rq, p);
3991
	}
L
Linus Torvalds 已提交
3992 3993

	p->static_prio = NICE_TO_PRIO(nice);
3994
	set_load_weight(p);
3995 3996 3997
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3998

I
Ingo Molnar 已提交
3999
	if (on_rq) {
4000
		enqueue_task(rq, p, 0);
4001
		inc_load(rq, p);
L
Linus Torvalds 已提交
4002
		/*
4003 4004
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4005
		 */
4006
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4007 4008 4009 4010 4011 4012 4013
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4014 4015 4016 4017 4018
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4019
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4020
{
4021 4022
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4023

M
Matt Mackall 已提交
4024 4025 4026 4027
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4039
	long nice, retval;
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4046 4047
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4057 4058 4059
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4078
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083 4084 4085 4086
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4087
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4106
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4115
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4116 4117 4118 4119 4120
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4121 4122
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4123
{
I
Ingo Molnar 已提交
4124
	BUG_ON(p->se.on_rq);
4125

L
Linus Torvalds 已提交
4126
	p->policy = policy;
I
Ingo Molnar 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4139
	p->rt_priority = prio;
4140 4141 4142
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4143
	set_load_weight(p);
L
Linus Torvalds 已提交
4144 4145 4146
}

/**
4147
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4148 4149 4150
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4151
 *
4152
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4153
 */
I
Ingo Molnar 已提交
4154 4155
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4156
{
4157
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4158
	unsigned long flags;
4159
	struct rq *rq;
L
Linus Torvalds 已提交
4160

4161 4162
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4163 4164 4165 4166 4167
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4168 4169
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4170
		return -EINVAL;
L
Linus Torvalds 已提交
4171 4172
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4173 4174
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4175 4176
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4177
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4178
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4179
		return -EINVAL;
4180
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4181 4182
		return -EINVAL;

4183 4184 4185 4186
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4187
		if (rt_policy(policy)) {
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4204 4205 4206 4207 4208 4209
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4210

4211 4212 4213 4214 4215
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4216 4217 4218 4219

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4220 4221 4222 4223 4224
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4225 4226 4227 4228
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4229
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4230 4231 4232
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4233 4234
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4235 4236
		goto recheck;
	}
I
Ingo Molnar 已提交
4237
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4238
	on_rq = p->se.on_rq;
4239 4240
	running = task_running(rq, p);
	if (on_rq) {
4241
		deactivate_task(rq, p, 0);
4242 4243 4244
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4245

L
Linus Torvalds 已提交
4246
	oldprio = p->prio;
I
Ingo Molnar 已提交
4247
	__setscheduler(rq, p, policy, param->sched_priority);
4248

I
Ingo Molnar 已提交
4249
	if (on_rq) {
4250 4251
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4252
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4253 4254
		/*
		 * Reschedule if we are currently running on this runqueue and
4255 4256
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4257
		 */
4258
		if (running) {
4259 4260
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4261 4262 4263
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4264
	}
4265 4266 4267
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4268 4269
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4270 4271 4272 4273
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4274 4275
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4276 4277 4278
{
	struct sched_param lparam;
	struct task_struct *p;
4279
	int retval;
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4285 4286 4287

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4288
	p = find_process_by_pid(pid);
4289 4290 4291
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4292

L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4305 4306 4307 4308
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4328
	struct task_struct *p;
4329
	int retval;
L
Linus Torvalds 已提交
4330 4331

	if (pid < 0)
4332
		return -EINVAL;
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4354
	struct task_struct *p;
4355
	int retval;
L
Linus Torvalds 已提交
4356 4357

	if (!param || pid < 0)
4358
		return -EINVAL;
L
Linus Torvalds 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4388 4389
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4390

4391
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4397
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4414 4415 4416 4417
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4424
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4465
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4466 4467 4468
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4469
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4470 4471
EXPORT_SYMBOL(cpu_online_map);

4472
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4473
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4474 4475 4476 4477
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4478
	struct task_struct *p;
L
Linus Torvalds 已提交
4479 4480
	int retval;

4481
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4489 4490 4491 4492
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4493
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4494 4495 4496

out_unlock:
	read_unlock(&tasklist_lock);
4497
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4498

4499
	return retval;
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4530 4531
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4532 4533 4534
 */
asmlinkage long sys_sched_yield(void)
{
4535
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4536

4537
	schedstat_inc(rq, yld_count);
4538
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4539 4540 4541 4542 4543 4544

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4545
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4546 4547 4548 4549 4550 4551 4552 4553
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4554
static void __cond_resched(void)
L
Linus Torvalds 已提交
4555
{
4556 4557 4558
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4559 4560 4561 4562 4563
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4573 4574
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4590
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4591
{
J
Jan Kara 已提交
4592 4593
	int ret = 0;

L
Linus Torvalds 已提交
4594 4595 4596
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4597
		ret = 1;
L
Linus Torvalds 已提交
4598 4599
		spin_lock(lock);
	}
4600
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4601
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4602 4603 4604
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4605
		ret = 1;
L
Linus Torvalds 已提交
4606 4607
		spin_lock(lock);
	}
J
Jan Kara 已提交
4608
	return ret;
L
Linus Torvalds 已提交
4609 4610 4611 4612 4613 4614 4615
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4616
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4617
		local_bh_enable();
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4629
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4648
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4649

4650
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4651 4652 4653
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4654
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4660
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4661 4662
	long ret;

4663
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4664 4665 4666
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4667
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4688
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4689
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4713
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4714
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4731
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4732
	unsigned int time_slice;
4733
	int retval;
L
Linus Torvalds 已提交
4734 4735 4736
	struct timespec t;

	if (pid < 0)
4737
		return -EINVAL;
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4762
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4763
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4764 4765
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4766

L
Linus Torvalds 已提交
4767 4768 4769 4770 4771
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4772
static const char stat_nam[] = "RSDTtZX";
4773 4774

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4775 4776
{
	unsigned long free = 0;
4777
	unsigned state;
L
Linus Torvalds 已提交
4778 4779

	state = p->state ? __ffs(p->state) + 1 : 0;
4780 4781
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4782
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4783
	if (state == TASK_RUNNING)
4784
		printk(" running  ");
L
Linus Torvalds 已提交
4785
	else
4786
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4787 4788
#else
	if (state == TASK_RUNNING)
4789
		printk("  running task    ");
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4795
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4796 4797
		while (!*n)
			n++;
4798
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4799 4800
	}
#endif
4801
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4802 4803 4804 4805 4806

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4807
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4808
{
4809
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4810

4811 4812 4813
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4814
#else
4815 4816
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4817 4818 4819 4820 4821 4822 4823 4824
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4825
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4826
			show_task(p);
L
Linus Torvalds 已提交
4827 4828
	} while_each_thread(g, p);

4829 4830
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4831 4832 4833
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4834
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4835 4836 4837 4838 4839
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4840 4841
}

I
Ingo Molnar 已提交
4842 4843
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4844
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4845 4846
}

4847 4848 4849 4850 4851 4852 4853 4854
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4855
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4856
{
4857
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4858 4859
	unsigned long flags;

I
Ingo Molnar 已提交
4860 4861 4862
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4863
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4864
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4865
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4866 4867 4868

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4869 4870 4871
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4872 4873 4874 4875
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4876
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4877
#else
A
Al Viro 已提交
4878
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4879
#endif
I
Ingo Molnar 已提交
4880 4881 4882 4883
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4899
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4921
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4922
{
4923
	struct migration_req req;
L
Linus Torvalds 已提交
4924
	unsigned long flags;
4925
	struct rq *rq;
4926
	int ret = 0;
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4949

L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4962 4963
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4964
 */
4965
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4966
{
4967
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4968
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4969 4970

	if (unlikely(cpu_is_offline(dest_cpu)))
4971
		return ret;
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4984
	on_rq = p->se.on_rq;
4985
	if (on_rq)
4986
		deactivate_task(rq_src, p, 0);
4987

L
Linus Torvalds 已提交
4988
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4989 4990 4991
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4992
	}
4993
	ret = 1;
L
Linus Torvalds 已提交
4994 4995
out:
	double_rq_unlock(rq_src, rq_dest);
4996
	return ret;
L
Linus Torvalds 已提交
4997 4998 4999 5000 5001 5002 5003
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5004
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5005 5006
{
	int cpu = (long)data;
5007
	struct rq *rq;
L
Linus Torvalds 已提交
5008 5009 5010 5011 5012 5013

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5014
		struct migration_req *req;
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5037
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5038 5039
		list_del_init(head->next);

N
Nick Piggin 已提交
5040 5041 5042
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5061 5062 5063 5064
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5065
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5066
{
5067
	unsigned long flags;
L
Linus Torvalds 已提交
5068
	cpumask_t mask;
5069 5070
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5071

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5088

5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
	} while (!__migrate_task(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5109
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5110
{
5111
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5125
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5126 5127 5128

	write_lock_irq(&tasklist_lock);

5129 5130
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5131 5132
			continue;

5133 5134 5135
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5136 5137 5138 5139

	write_unlock_irq(&tasklist_lock);
}

A
Alexey Dobriyan 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5154 5155
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5156
 * It does so by boosting its priority to highest possible and adding it to
5157
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5158 5159 5160
 */
void sched_idle_next(void)
{
5161
	int this_cpu = smp_processor_id();
5162
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5163 5164 5165 5166
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5167
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5168

5169 5170 5171
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5172 5173 5174
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5175
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5176 5177

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5178
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5179 5180 5181 5182

	spin_unlock_irqrestore(&rq->lock, flags);
}

5183 5184
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5198
/* called under rq->lock with disabled interrupts */
5199
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5200
{
5201
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5202 5203

	/* Must be exiting, otherwise would be on tasklist. */
5204
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5205 5206

	/* Cannot have done final schedule yet: would have vanished. */
5207
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5208

5209
	get_task_struct(p);
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5215
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5216
	 */
5217
	spin_unlock(&rq->lock);
5218
	move_task_off_dead_cpu(dead_cpu, p);
5219
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5220

5221
	put_task_struct(p);
L
Linus Torvalds 已提交
5222 5223 5224 5225 5226
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5227
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5228
	struct task_struct *next;
5229

I
Ingo Molnar 已提交
5230 5231 5232
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5233
		update_rq_clock(rq);
5234
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5235 5236 5237
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5238

L
Linus Torvalds 已提交
5239 5240 5241 5242
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5243 5244 5245
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5246 5247
	{
		.procname	= "sched_domain",
5248
		.mode		= 0555,
5249
	},
5250 5251 5252 5253
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5254
	{
5255
		.ctl_name	= CTL_KERN,
5256
		.procname	= "kernel",
5257
		.mode		= 0555,
5258 5259
		.child		= sd_ctl_dir,
	},
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5275
set_table_entry(struct ctl_table *entry,
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5289
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5290

5291
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5292
		sizeof(long), 0644, proc_doulongvec_minmax);
5293
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5294
		sizeof(long), 0644, proc_doulongvec_minmax);
5295
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5296
		sizeof(int), 0644, proc_dointvec_minmax);
5297
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5298
		sizeof(int), 0644, proc_dointvec_minmax);
5299
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5300
		sizeof(int), 0644, proc_dointvec_minmax);
5301
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5302
		sizeof(int), 0644, proc_dointvec_minmax);
5303
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5304
		sizeof(int), 0644, proc_dointvec_minmax);
5305
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5306
		sizeof(int), 0644, proc_dointvec_minmax);
5307
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5308
		sizeof(int), 0644, proc_dointvec_minmax);
5309
	set_table_entry(&table[9], "cache_nice_tries",
5310 5311
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5312
	set_table_entry(&table[10], "flags", &sd->flags,
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5333
		entry->mode = 0555;
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5353
		entry->mode = 0555;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5364 5365 5366 5367
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5368 5369
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5370 5371
{
	struct task_struct *p;
5372
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5373
	unsigned long flags;
5374
	struct rq *rq;
L
Linus Torvalds 已提交
5375 5376

	switch (action) {
5377 5378 5379 5380
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5381
	case CPU_UP_PREPARE:
5382
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5383
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5389
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5390 5391 5392
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5393

L
Linus Torvalds 已提交
5394
	case CPU_ONLINE:
5395
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5396 5397 5398
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5399

L
Linus Torvalds 已提交
5400 5401
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5402
	case CPU_UP_CANCELED_FROZEN:
5403 5404
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5405
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5406 5407
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5408 5409 5410
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5411

L
Linus Torvalds 已提交
5412
	case CPU_DEAD:
5413
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5420
		update_rq_clock(rq);
5421
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5422
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5423 5424
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5431
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5432 5433 5434
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5435 5436
			struct migration_req *req;

L
Linus Torvalds 已提交
5437
			req = list_entry(rq->migration_queue.next,
5438
					 struct migration_req, list);
L
Linus Torvalds 已提交
5439 5440 5441 5442 5443 5444
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5445 5446 5447
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5448 5449 5450 5451 5452 5453 5454
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5455
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460 5461 5462
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5463
	int err;
5464 5465

	/* Start one for the boot CPU: */
5466 5467
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5468 5469
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5470

L
Linus Torvalds 已提交
5471 5472 5473 5474 5475
	return 0;
}
#endif

#ifdef CONFIG_SMP
5476 5477 5478 5479 5480

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5481
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5482 5483 5484 5485
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5486 5487 5488 5489 5490
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5510 5511
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5518 5519
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5520
		if (!cpu_isset(cpu, group->cpumask))
5521 5522
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5535
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5536
				printk("\n");
5537 5538
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5539
				break;
L
Linus Torvalds 已提交
5540 5541 5542 5543 5544
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5545
				break;
L
Linus Torvalds 已提交
5546 5547 5548 5549 5550
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5551
				break;
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5564 5565
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5566 5567 5568

		level++;
		sd = sd->parent;
5569 5570
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5571

5572 5573 5574
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5575 5576 5577 5578

	} while (sd);
}
#else
5579
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5580 5581
#endif

5582
static int sd_degenerate(struct sched_domain *sd)
5583 5584 5585 5586 5587 5588 5589 5590
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5591 5592 5593
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5607 5608
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5627 5628 5629
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5630 5631 5632 5633 5634 5635 5636
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5637 5638 5639 5640
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5641
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5642
{
5643
	struct rq *rq = cpu_rq(cpu);
5644 5645 5646 5647 5648 5649 5650
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5651
		if (sd_parent_degenerate(tmp, parent)) {
5652
			tmp->parent = parent->parent;
5653 5654 5655
			if (parent->parent)
				parent->parent->child = tmp;
		}
5656 5657
	}

5658
	if (sd && sd_degenerate(sd)) {
5659
		sd = sd->parent;
5660 5661 5662
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5663 5664 5665

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5666
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5667 5668 5669
}

/* cpus with isolated domains */
5670
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5685
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5686 5687

/*
5688 5689 5690 5691
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5697
static void
5698 5699 5700
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5701 5702 5703 5704 5705 5706
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5707 5708
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5715
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5716 5717

		for_each_cpu_mask(j, span) {
5718
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5733
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5734

5735
#ifdef CONFIG_NUMA
5736

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5789 5790
	cpumask_t span, nodemask;
	int i;
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5801

5802 5803 5804 5805 5806 5807 5808 5809
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5810
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5811

5812
/*
5813
 * SMT sched-domains:
5814
 */
L
Linus Torvalds 已提交
5815 5816
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5817
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5818

5819 5820
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5821
{
5822 5823
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5824 5825 5826 5827
	return cpu;
}
#endif

5828 5829 5830
/*
 * multi-core sched-domains:
 */
5831 5832
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5833
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5834 5835 5836
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5837 5838
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5839
{
5840
	int group;
5841 5842
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5843 5844 5845 5846
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5847 5848
}
#elif defined(CONFIG_SCHED_MC)
5849 5850
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5851
{
5852 5853
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5854 5855 5856 5857
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5858
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5859
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5860

5861 5862
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5863
{
5864
	int group;
5865
#ifdef CONFIG_SCHED_MC
5866
	cpumask_t mask = cpu_coregroup_map(cpu);
5867
	cpus_and(mask, mask, *cpu_map);
5868
	group = first_cpu(mask);
5869
#elif defined(CONFIG_SCHED_SMT)
5870 5871
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5872
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5873
#else
5874
	group = cpu;
L
Linus Torvalds 已提交
5875
#endif
5876 5877 5878
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5879 5880 5881 5882
}

#ifdef CONFIG_NUMA
/*
5883 5884 5885
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5886
 */
5887
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5888
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5889

5890
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5891
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5892

5893 5894
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5895
{
5896 5897 5898 5899 5900 5901 5902 5903 5904
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5905
}
5906

5907 5908 5909 5910 5911 5912 5913
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5914 5915 5916
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5917

5918 5919 5920 5921 5922 5923 5924 5925
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5926

5927 5928 5929 5930
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
5931
}
L
Linus Torvalds 已提交
5932 5933
#endif

5934
#ifdef CONFIG_NUMA
5935 5936 5937
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5938
	int cpu, i;
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5969 5970 5971 5972 5973
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5974

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6001 6002
	sd->groups->__cpu_power = 0;

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6013
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6014 6015 6016 6017 6018 6019 6020 6021
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6022
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6023 6024 6025 6026
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6027
/*
6028 6029
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6030
 */
6031
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6032 6033
{
	int i;
6034 6035
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6036
	int sd_allnodes = 0;
6037 6038 6039 6040

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6041
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6042
					   GFP_KERNEL);
6043 6044
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6045
		return -ENOMEM;
6046 6047 6048
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6049 6050

	/*
6051
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6052
	 */
6053
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6054 6055 6056
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6057
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6058 6059

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6060 6061
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6062 6063 6064
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6065
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6066
			p = sd;
6067
			sd_allnodes = 1;
6068 6069 6070
		} else
			p = NULL;

L
Linus Torvalds 已提交
6071 6072
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6073 6074
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6075 6076
		if (p)
			p->child = sd;
6077
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6078 6079 6080 6081 6082 6083 6084
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6085 6086
		if (p)
			p->child = sd;
6087
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6088

6089 6090 6091 6092 6093 6094 6095
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6096
		p->child = sd;
6097
		cpu_to_core_group(i, cpu_map, &sd->groups);
6098 6099
#endif

L
Linus Torvalds 已提交
6100 6101 6102 6103 6104
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6105
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6106
		sd->parent = p;
6107
		p->child = sd;
6108
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6114
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6115
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6116
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6117 6118 6119
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6120 6121
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6122 6123 6124
	}
#endif

6125 6126 6127 6128 6129 6130 6131
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6132 6133
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6134 6135 6136
	}
#endif

L
Linus Torvalds 已提交
6137 6138 6139 6140
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6141
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6142 6143 6144
		if (cpus_empty(nodemask))
			continue;

6145
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6146 6147 6148 6149
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6150
	if (sd_allnodes)
I
Ingo Molnar 已提交
6151 6152
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6163 6164
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6165
			continue;
6166
		}
6167 6168 6169 6170

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6171
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6172 6173 6174 6175 6176
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6177 6178 6179
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6180

6181 6182 6183
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6184
		sg->__cpu_power = 0;
6185
		sg->cpumask = nodemask;
6186
		sg->next = sg;
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6205 6206
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6207 6208 6209
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6210
				goto error;
6211
			}
6212
			sg->__cpu_power = 0;
6213
			sg->cpumask = tmp;
6214
			sg->next = prev->next;
6215 6216 6217 6218 6219
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6220 6221 6222
#endif

	/* Calculate CPU power for physical packages and nodes */
6223
#ifdef CONFIG_SCHED_SMT
6224
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6225 6226
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6227
		init_sched_groups_power(i, sd);
6228
	}
L
Linus Torvalds 已提交
6229
#endif
6230
#ifdef CONFIG_SCHED_MC
6231
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6232 6233
		struct sched_domain *sd = &per_cpu(core_domains, i);

6234
		init_sched_groups_power(i, sd);
6235 6236
	}
#endif
6237

6238
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6239 6240
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6241
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6242 6243
	}

6244
#ifdef CONFIG_NUMA
6245 6246
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6247

6248 6249
	if (sd_allnodes) {
		struct sched_group *sg;
6250

6251
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6252 6253
		init_numa_sched_groups_power(sg);
	}
6254 6255
#endif

L
Linus Torvalds 已提交
6256
	/* Attach the domains */
6257
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6258 6259 6260
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6261 6262
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6268 6269 6270

	return 0;

6271
#ifdef CONFIG_NUMA
6272 6273 6274
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6275
#endif
L
Linus Torvalds 已提交
6276
}
6277 6278 6279
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6280
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6281 6282
{
	cpumask_t cpu_default_map;
6283
	int err;
L
Linus Torvalds 已提交
6284

6285 6286 6287 6288 6289 6290 6291
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6292 6293 6294
	err = build_sched_domains(&cpu_default_map);

	return err;
6295 6296 6297
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6298
{
6299
	free_sched_groups(cpu_map);
6300
}
L
Linus Torvalds 已提交
6301

6302 6303 6304 6305
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6306
static void detach_destroy_domains(const cpumask_t *cpu_map)
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6324
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6325 6326
{
	cpumask_t change_map;
6327
	int err = 0;
6328 6329 6330 6331 6332 6333 6334 6335

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6336 6337 6338 6339 6340
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6341 6342
}

6343
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6344
static int arch_reinit_sched_domains(void)
6345 6346 6347
{
	int err;

6348
	mutex_lock(&sched_hotcpu_mutex);
6349 6350
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6351
	mutex_unlock(&sched_hotcpu_mutex);
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6378 6379
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6380 6381 6382
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6383 6384
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6385 6386 6387 6388 6389 6390 6391
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6392 6393
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6394 6395 6396
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6417 6418
#endif

L
Linus Torvalds 已提交
6419 6420 6421
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6422
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6423 6424 6425 6426 6427 6428 6429
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6430
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6431
	case CPU_DOWN_PREPARE:
6432
	case CPU_DOWN_PREPARE_FROZEN:
6433
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6434 6435 6436
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6437
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6438
	case CPU_DOWN_FAILED:
6439
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6440
	case CPU_ONLINE:
6441
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6442
	case CPU_DEAD:
6443
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6444 6445 6446 6447 6448 6449 6450 6451 6452
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6453
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6460 6461
	cpumask_t non_isolated_cpus;

6462
	mutex_lock(&sched_hotcpu_mutex);
6463
	arch_init_sched_domains(&cpu_online_map);
6464
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6465 6466
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6467
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6468 6469
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6470

6471 6472
	init_sched_domain_sysctl();

6473 6474 6475
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6487

L
Linus Torvalds 已提交
6488 6489 6490 6491 6492
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6493
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6494 6495 6496 6497 6498
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6499
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6500 6501
}

L
Linus Torvalds 已提交
6502 6503
void __init sched_init(void)
{
6504
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6505 6506
	int i, j;

6507
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6508
		struct rt_prio_array *array;
6509
		struct rq *rq;
L
Linus Torvalds 已提交
6510 6511 6512

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6513
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6514
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6515 6516 6517 6518
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6519 6520 6521 6522 6523 6524 6525
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6526
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6527
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6528 6529
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6530 6531 6532
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6533
			se->load.weight = init_task_group_load;
6534
			se->load.inv_weight =
6535
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6536 6537
			se->parent = NULL;
		}
6538
		init_task_group.shares = init_task_group_load;
6539
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6540
#endif
L
Linus Torvalds 已提交
6541

I
Ingo Molnar 已提交
6542 6543
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6544
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6545
		rq->sd = NULL;
L
Linus Torvalds 已提交
6546
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6547
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6548
		rq->push_cpu = 0;
6549
		rq->cpu = i;
L
Linus Torvalds 已提交
6550 6551 6552 6553 6554
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6555 6556 6557 6558
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6559
		}
6560
		highest_cpu = i;
I
Ingo Molnar 已提交
6561 6562
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6563 6564
	}

6565
	set_load_weight(&init_task);
6566

6567 6568 6569 6570
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6571
#ifdef CONFIG_SMP
6572
	nr_cpu_ids = highest_cpu + 1;
6573 6574 6575
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6576 6577 6578 6579
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6593 6594 6595 6596
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6602
#ifdef in_atomic
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607 6608 6609
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6610
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6611 6612 6613
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6614
		debug_show_held_locks(current);
6615 6616
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6627
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6628
	unsigned long flags;
6629
	struct rq *rq;
I
Ingo Molnar 已提交
6630
	int on_rq;
L
Linus Torvalds 已提交
6631 6632

	read_lock_irq(&tasklist_lock);
6633
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6634 6635
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6636 6637 6638
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6639
#endif
I
Ingo Molnar 已提交
6640 6641 6642 6643 6644 6645 6646 6647 6648
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6649
			continue;
I
Ingo Molnar 已提交
6650
		}
L
Linus Torvalds 已提交
6651

6652 6653
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6654 6655 6656 6657 6658 6659 6660
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6661

I
Ingo Molnar 已提交
6662
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6663
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6664 6665
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6666 6667
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6668
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6669 6670
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6671 6672 6673
#ifdef CONFIG_SMP
 out_unlock:
#endif
6674 6675
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6676 6677
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6678 6679 6680 6681
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6700
struct task_struct *curr_task(int cpu)
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6720
void set_curr_task(int cpu, struct task_struct *p)
6721 6722 6723 6724 6725
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6726 6727 6728 6729

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6730
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6731
{
6732
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6733 6734
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6735
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6736 6737 6738 6739 6740 6741
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6742
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6743 6744
	if (!tg->cfs_rq)
		goto err;
6745
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6746 6747 6748 6749
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6750
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6777 6778 6779 6780 6781
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6782

6783
	tg->shares = NICE_0_LOAD;
6784
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6785

6786
	return tg;
S
Srivatsa Vaddagiri 已提交
6787 6788 6789

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6790
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6791
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6792
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6793 6794
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6795 6796 6797
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6798 6799 6800 6801

	return ERR_PTR(-ENOMEM);
}

6802 6803
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6804
{
6805
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6806
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6824
/* Destroy runqueue etc associated with a task group */
6825
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6826
{
6827 6828
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6829

6830 6831 6832 6833 6834 6835 6836 6837 6838
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6839 6840
}

6841
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6842 6843 6844
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6845 6846
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6862
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6863
		dequeue_task(rq, tsk, 0);
6864 6865 6866
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6867 6868 6869

	set_task_cfs_rq(tsk);

6870 6871 6872
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6873
		enqueue_task(rq, tsk, 0);
6874
	}
S
Srivatsa Vaddagiri 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6901
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6902 6903 6904
{
	int i;

6905
	spin_lock(&tg->lock);
6906
	if (tg->shares == shares)
6907
		goto done;
S
Srivatsa Vaddagiri 已提交
6908

6909
	/* return -EINVAL if the new value is not sane */
S
Srivatsa Vaddagiri 已提交
6910

6911
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6912
	for_each_possible_cpu(i)
6913
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6914

6915 6916
done:
	spin_unlock(&tg->lock);
6917
	return 0;
S
Srivatsa Vaddagiri 已提交
6918 6919
}

6920 6921 6922 6923 6924
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6925
#endif	/* CONFIG_FAIR_GROUP_SCHED */