sched.c 219.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
78
#include <asm/mutex.h>
L
Linus Torvalds 已提交
79

80
#include "sched_cpupri.h"
T
Tejun Heo 已提交
81
#include "workqueue_sched.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233 234 235 236 237 238
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
274 275
};

276
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
277

278
/* task_group_lock serializes the addition/removal of task groups */
279
static DEFINE_SPINLOCK(task_group_lock);
280

281 282
#ifdef CONFIG_FAIR_GROUP_SCHED

283 284
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

285
/*
286 287 288 289
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
290 291 292
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
293
#define MIN_SHARES	2
294
#define MAX_SHARES	(1UL << 18)
295

296 297 298
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
299
/* Default task group.
I
Ingo Molnar 已提交
300
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
301
 */
302
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
303

D
Dhaval Giani 已提交
304
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
316 317 318 319 320 321

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
322 323
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
324
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
325

P
Peter Zijlstra 已提交
326
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
327

328
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
329 330
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
331 332
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
333 334 335 336 337 338
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
339
	int on_list;
I
Ingo Molnar 已提交
340 341
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
342 343 344

#ifdef CONFIG_SMP
	/*
345
	 * the part of load.weight contributed by tasks
346
	 */
347
	unsigned long task_weight;
348

349 350 351 352 353 354 355
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
356

357 358 359 360 361 362 363
	/*
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
	 */
P
Peter Zijlstra 已提交
364 365
	u64 load_avg;
	u64 load_period;
366
	u64 load_stamp, load_last, load_unacc_exec_time;
367

P
Peter Zijlstra 已提交
368
	unsigned long load_contribution;
369
#endif
I
Ingo Molnar 已提交
370 371
#endif
};
L
Linus Torvalds 已提交
372

I
Ingo Molnar 已提交
373 374 375
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
376
	unsigned long rt_nr_running;
377
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
378 379
	struct {
		int curr; /* highest queued rt task prio */
380
#ifdef CONFIG_SMP
381
		int next; /* next highest */
382
#endif
383
	} highest_prio;
P
Peter Zijlstra 已提交
384
#endif
P
Peter Zijlstra 已提交
385
#ifdef CONFIG_SMP
386
	unsigned long rt_nr_migratory;
387
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
388
	int overloaded;
389
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
390
#endif
P
Peter Zijlstra 已提交
391
	int rt_throttled;
P
Peter Zijlstra 已提交
392
	u64 rt_time;
P
Peter Zijlstra 已提交
393
	u64 rt_runtime;
I
Ingo Molnar 已提交
394
	/* Nests inside the rq lock: */
395
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
396

397
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
398 399
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
400 401 402 403
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
404 405
};

G
Gregory Haskins 已提交
406 407 408 409
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
410 411
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
412 413 414 415 416 417
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
418 419
	cpumask_var_t span;
	cpumask_var_t online;
420

I
Ingo Molnar 已提交
421
	/*
422 423 424
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
425
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
426
	atomic_t rto_count;
427
	struct cpupri cpupri;
G
Gregory Haskins 已提交
428 429
};

430 431 432 433
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
434 435
static struct root_domain def_root_domain;

436
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
437

L
Linus Torvalds 已提交
438 439 440 441 442 443 444
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
445
struct rq {
446
	/* runqueue lock: */
447
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
448 449 450 451 452 453

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
454 455
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
456
	unsigned long last_load_update_tick;
457
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
458
	u64 nohz_stamp;
459
	unsigned char nohz_balance_kick;
460
#endif
461 462
	unsigned int skip_clock_update;

463 464
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
465 466 467 468
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
469 470
	struct rt_rq rt;

I
Ingo Molnar 已提交
471
#ifdef CONFIG_FAIR_GROUP_SCHED
472 473
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
474 475
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

487
	struct task_struct *curr, *idle, *stop;
488
	unsigned long next_balance;
L
Linus Torvalds 已提交
489
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
490

491
	u64 clock;
492
	u64 clock_task;
I
Ingo Molnar 已提交
493

L
Linus Torvalds 已提交
494 495 496
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
497
	struct root_domain *rd;
L
Linus Torvalds 已提交
498 499
	struct sched_domain *sd;

500 501
	unsigned long cpu_power;

502
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
503
	/* For active balancing */
504
	int post_schedule;
L
Linus Torvalds 已提交
505 506
	int active_balance;
	int push_cpu;
507
	struct cpu_stop_work active_balance_work;
508 509
	/* cpu of this runqueue: */
	int cpu;
510
	int online;
L
Linus Torvalds 已提交
511

512
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
513

514 515
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
516 517
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
518 519
#endif

520 521 522 523
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

524 525 526 527
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
528
#ifdef CONFIG_SCHED_HRTICK
529 530 531 532
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
533 534 535
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
536 537 538
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
539 540
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
541 542

	/* sys_sched_yield() stats */
543
	unsigned int yld_count;
L
Linus Torvalds 已提交
544 545

	/* schedule() stats */
546 547 548
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
549 550

	/* try_to_wake_up() stats */
551 552
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
553 554

	/* BKL stats */
555
	unsigned int bkl_count;
L
Linus Torvalds 已提交
556 557 558
#endif
};

559
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
560

561

562
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
563

564 565 566 567 568 569 570 571 572
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

573
#define rcu_dereference_check_sched_domain(p) \
574 575 576 577
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
578 579
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
581 582 583 584
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
585
#define for_each_domain(cpu, __sd) \
586
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
587 588 589 590 591

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
592
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
	return container_of(css, struct task_group, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

637
static u64 irq_time_cpu(int cpu);
638
static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
639

I
Ingo Molnar 已提交
640
inline void update_rq_clock(struct rq *rq)
641
{
642 643 644 645 646 647 648 649
	if (!rq->skip_clock_update) {
		int cpu = cpu_of(rq);
		u64 irq_time;

		rq->clock = sched_clock_cpu(cpu);
		irq_time = irq_time_cpu(cpu);
		if (rq->clock - irq_time > rq->clock_task)
			rq->clock_task = rq->clock - irq_time;
650 651

		sched_irq_time_avg_update(rq, irq_time);
652
	}
653 654
}

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
664 665
/**
 * runqueue_is_locked
666
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
667 668 669 670 671
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
672
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
673
{
674
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
675 676
}

I
Ingo Molnar 已提交
677 678 679
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
680 681 682 683

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
684
enum {
P
Peter Zijlstra 已提交
685
#include "sched_features.h"
I
Ingo Molnar 已提交
686 687
};

P
Peter Zijlstra 已提交
688 689 690 691 692
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
693
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
694 695 696 697 698 699 700 701 702
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

703
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
704 705 706 707 708 709
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
710
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
711 712 713 714
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
715 716 717
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
718
	}
L
Li Zefan 已提交
719
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
720

L
Li Zefan 已提交
721
	return 0;
P
Peter Zijlstra 已提交
722 723 724 725 726 727 728
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
729
	char *cmp;
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
740
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
741

I
Ingo Molnar 已提交
742
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
748
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
749 750 751 752 753 754 755 756 757 758 759
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

760
	*ppos += cnt;
P
Peter Zijlstra 已提交
761 762 763 764

	return cnt;
}

L
Li Zefan 已提交
765 766 767 768 769
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

770
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
771 772 773 774 775
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
790

791 792 793 794 795 796
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

797 798 799 800 801 802 803 804
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
805
/*
P
Peter Zijlstra 已提交
806
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
807 808
 * default: 1s
 */
P
Peter Zijlstra 已提交
809
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
810

811 812
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
813 814 815 816 817
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
826
	if (sysctl_sched_rt_runtime < 0)
827 828 829 830
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
831

L
Linus Torvalds 已提交
832
#ifndef prepare_arch_switch
833 834 835 836 837 838
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

839 840 841 842 843
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

844
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
845
static inline int task_running(struct rq *rq, struct task_struct *p)
846
{
847
	return task_current(rq, p);
848 849
}

850
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
851 852 853
{
}

854
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
855
{
856 857 858 859
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
860 861 862 863 864 865 866
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

867
	raw_spin_unlock_irq(&rq->lock);
868 869 870
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
871
static inline int task_running(struct rq *rq, struct task_struct *p)
872 873 874 875
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
876
	return task_current(rq, p);
877 878 879
#endif
}

880
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
881 882 883 884 885 886 887 888 889 890
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
891
	raw_spin_unlock_irq(&rq->lock);
892
#else
893
	raw_spin_unlock(&rq->lock);
894 895 896
#endif
}

897
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
898 899 900 901 902 903 904 905 906 907 908 909
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
910
#endif
911 912
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
913

914
/*
P
Peter Zijlstra 已提交
915 916
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
917 918 919
 */
static inline int task_is_waking(struct task_struct *p)
{
920
	return unlikely(p->state == TASK_WAKING);
921 922
}

923 924 925 926
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
927
static inline struct rq *__task_rq_lock(struct task_struct *p)
928 929
	__acquires(rq->lock)
{
930 931
	struct rq *rq;

932
	for (;;) {
933
		rq = task_rq(p);
934
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
935
		if (likely(rq == task_rq(p)))
936
			return rq;
937
		raw_spin_unlock(&rq->lock);
938 939 940
	}
}

L
Linus Torvalds 已提交
941 942
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
943
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
944 945
 * explicitly disabling preemption.
 */
946
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
947 948
	__acquires(rq->lock)
{
949
	struct rq *rq;
L
Linus Torvalds 已提交
950

951 952 953
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
954
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
955
		if (likely(rq == task_rq(p)))
956
			return rq;
957
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
958 959 960
	}
}

A
Alexey Dobriyan 已提交
961
static void __task_rq_unlock(struct rq *rq)
962 963
	__releases(rq->lock)
{
964
	raw_spin_unlock(&rq->lock);
965 966
}

967
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
968 969
	__releases(rq->lock)
{
970
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
971 972 973
}

/*
974
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
975
 */
A
Alexey Dobriyan 已提交
976
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
977 978
	__acquires(rq->lock)
{
979
	struct rq *rq;
L
Linus Torvalds 已提交
980 981 982

	local_irq_disable();
	rq = this_rq();
983
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
984 985 986 987

	return rq;
}

P
Peter Zijlstra 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1009
	if (!cpu_active(cpu_of(rq)))
1010
		return 0;
P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1030
	raw_spin_lock(&rq->lock);
1031
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1032
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1033
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1034 1035 1036 1037

	return HRTIMER_NORESTART;
}

1038
#ifdef CONFIG_SMP
1039 1040 1041 1042
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1043
{
1044
	struct rq *rq = arg;
1045

1046
	raw_spin_lock(&rq->lock);
1047 1048
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1049
	raw_spin_unlock(&rq->lock);
1050 1051
}

1052 1053 1054 1055 1056 1057
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1058
{
1059 1060
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1061

1062
	hrtimer_set_expires(timer, time);
1063 1064 1065 1066

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1067
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1068 1069
		rq->hrtick_csd_pending = 1;
	}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1084
		hrtick_clear(cpu_rq(cpu));
1085 1086 1087 1088 1089 1090
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1091
static __init void init_hrtick(void)
1092 1093 1094
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1095 1096 1097 1098 1099 1100 1101 1102
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1103
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1104
			HRTIMER_MODE_REL_PINNED, 0);
1105
}
1106

A
Andrew Morton 已提交
1107
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1108 1109
{
}
1110
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1111

1112
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1113
{
1114 1115
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1116

1117 1118 1119 1120
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1121

1122 1123
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1124
}
A
Andrew Morton 已提交
1125
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1126 1127 1128 1129 1130 1131 1132 1133
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1134 1135 1136
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1137
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1138

I
Ingo Molnar 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1152
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1153 1154 1155
{
	int cpu;

1156
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1157

1158
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1159 1160
		return;

1161
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1178
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1179 1180
		return;
	resched_task(cpu_curr(cpu));
1181
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1182
}
1183 1184

#ifdef CONFIG_NO_HZ
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1238
	set_tsk_need_resched(rq->idle);
1239 1240 1241 1242 1243 1244

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1245

1246
#endif /* CONFIG_NO_HZ */
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 1259 1260 1261 1262 1263
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1275
#else /* !CONFIG_SMP */
1276
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1277
{
1278
	assert_raw_spin_locked(&task_rq(p)->lock);
1279
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1280
}
1281 1282 1283 1284

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1285 1286 1287 1288

static void sched_avg_update(struct rq *rq)
{
}
1289
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1299 1300 1301
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1302
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1303

1304 1305 1306
/*
 * delta *= weight / lw
 */
1307
static unsigned long
1308 1309 1310 1311 1312
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1313 1314 1315 1316 1317 1318 1319
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1320 1321 1322 1323 1324

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1325
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1326
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1327 1328
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1329
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330

1331
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 1333
}

1334
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 1336
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 1342
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1343
	lw->inv_weight = 0;
1344 1345
}

P
Peter Zijlstra 已提交
1346 1347 1348 1349 1350 1351
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1352 1353 1354 1355
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1356
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1357 1358 1359 1360
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1361 1362
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1372 1373 1374
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1375 1376
 */
static const int prio_to_weight[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1385 1386
};

1387 1388 1389 1390 1391 1392 1393
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1394
static const u32 prio_to_wmult[40] = {
1395 1396 1397 1398 1399 1400 1401 1402
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1403
};
1404

1405 1406 1407 1408 1409 1410 1411 1412
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1413 1414
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415 1416
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1417 1418
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1419 1420
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1421 1422
#endif

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1433
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1434
typedef int (*tg_visitor)(struct task_group *, void *);
1435 1436 1437 1438 1439

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1440
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1441 1442
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1443
	int ret;
1444 1445 1446 1447

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1448 1449 1450
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1451 1452 1453 1454 1455 1456 1457
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1458 1459 1460
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1461 1462 1463 1464 1465

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1466
out_unlock:
1467
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1468 1469

	return ret;
1470 1471
}

P
Peter Zijlstra 已提交
1472 1473 1474
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1475
}
P
Peter Zijlstra 已提交
1476 1477 1478
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1518 1519
static unsigned long power_of(int cpu)
{
1520
	return cpu_rq(cpu)->cpu_power;
1521 1522
}

P
Peter Zijlstra 已提交
1523 1524 1525 1526 1527
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1528
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1529

1530 1531
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1532 1533
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1534 1535 1536 1537 1538

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1539 1540

/*
1541 1542 1543
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1544
 */
P
Peter Zijlstra 已提交
1545
static int tg_load_down(struct task_group *tg, void *data)
1546
{
1547
	unsigned long load;
P
Peter Zijlstra 已提交
1548
	long cpu = (long)data;
1549

1550 1551 1552 1553
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1554
		load *= tg->se[cpu]->load.weight;
1555 1556
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1557

1558
	tg->cfs_rq[cpu]->h_load = load;
1559

P
Peter Zijlstra 已提交
1560
	return 0;
1561 1562
}

P
Peter Zijlstra 已提交
1563
static void update_h_load(long cpu)
1564
{
P
Peter Zijlstra 已提交
1565
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1566 1567
}

1568 1569
#endif

1570 1571
#ifdef CONFIG_PREEMPT

1572 1573
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1574
/*
1575 1576 1577 1578 1579 1580
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1581
 */
1582 1583 1584 1585 1586
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1587
	raw_spin_unlock(&this_rq->lock);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1602 1603 1604 1605 1606 1607
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1608
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1609
		if (busiest < this_rq) {
1610 1611 1612 1613
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1614 1615
			ret = 1;
		} else
1616 1617
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1618 1619 1620 1621
	}
	return ret;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1631
		raw_spin_unlock(&this_rq->lock);
1632 1633 1634 1635 1636 1637
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1638 1639 1640
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1641
	raw_spin_unlock(&busiest->lock);
1642 1643
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1687 1688
#endif

1689
static void calc_load_account_idle(struct rq *this_rq);
1690
static void update_sysctl(void);
1691
static int get_update_sysctl_factor(void);
1692
static void update_cpu_load(struct rq *this_rq);
1693

P
Peter Zijlstra 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1707

1708
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1709

1710
#define sched_class_highest (&stop_sched_class)
1711 1712
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1713

1714 1715
#include "sched_stats.h"

1716
static void inc_nr_running(struct rq *rq)
1717 1718 1719 1720
{
	rq->nr_running++;
}

1721
static void dec_nr_running(struct rq *rq)
1722 1723 1724 1725
{
	rq->nr_running--;
}

1726 1727
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1728 1729 1730 1731 1732 1733 1734 1735
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1736

I
Ingo Molnar 已提交
1737 1738
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1739 1740
}

1741
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1742
{
1743
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1744
	sched_info_queued(p);
1745
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1746
	p->se.on_rq = 1;
1747 1748
}

1749
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1750
{
1751
	update_rq_clock(rq);
1752
	sched_info_dequeued(p);
1753
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1754
	p->se.on_rq = 0;
1755 1756
}

1757 1758 1759
/*
 * activate_task - move a task to the runqueue.
 */
1760
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1761 1762 1763 1764
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1765
	enqueue_task(rq, p, flags);
1766 1767 1768 1769 1770 1771
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1772
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1773 1774 1775 1776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1777
	dequeue_task(rq, p, flags);
1778 1779 1780
	dec_nr_running(rq);
}

1781 1782
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
 * or new value (or semi updated value on 32 bit) with a side effect of
 * accounting a slice of irq time to wrong task when irq is in progress
 * while we read rq->clock. That is a worthy compromise in place of having
 * locks on each irq in account_system_time.
 */
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1811 1812 1813 1814 1815 1816 1817 1818
static u64 irq_time_cpu(int cpu)
{
	if (!sched_clock_irqtime)
		return 0;

	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
	int cpu;
	u64 now, delta;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1831
	now = sched_clock_cpu(cpu);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	delta = now - per_cpu(irq_start_time, cpu);
	per_cpu(irq_start_time, cpu) = now;
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
		per_cpu(cpu_hardirq_time, cpu) += delta;
	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
		per_cpu(cpu_softirq_time, cpu) += delta;

	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1847
EXPORT_SYMBOL_GPL(account_system_vtime);
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857
static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
{
	if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
		u64 delta_irq = curr_irq_time - rq->prev_irq_time;
		rq->prev_irq_time = curr_irq_time;
		sched_rt_avg_update(rq, delta_irq);
	}
}

1858 1859 1860 1861 1862 1863 1864
#else

static u64 irq_time_cpu(int cpu)
{
	return 0;
}

1865 1866
static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }

1867 1868
#endif

1869 1870 1871
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1872
#include "sched_stoptask.c"
1873 1874 1875 1876
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1907
/*
I
Ingo Molnar 已提交
1908
 * __normal_prio - return the priority that is based on the static prio
1909 1910 1911
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1912
	return p->static_prio;
1913 1914
}

1915 1916 1917 1918 1919 1920 1921
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1922
static inline int normal_prio(struct task_struct *p)
1923 1924 1925
{
	int prio;

1926
	if (task_has_rt_policy(p))
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1940
static int effective_prio(struct task_struct *p)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1953 1954 1955 1956
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1957
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1958 1959 1960 1961
{
	return cpu_curr(task_cpu(p)) == p;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(rq->curr))
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1999
#ifdef CONFIG_SMP
2000 2001 2002
/*
 * Is this task likely cache-hot:
 */
2003
static int
2004 2005 2006 2007
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2008 2009 2010
	if (p->sched_class != &fair_sched_class)
		return 0;

2011 2012 2013
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2014 2015 2016
	/*
	 * Buddy candidates are cache hot:
	 */
2017
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2018 2019
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2020 2021
		return 1;

2022 2023 2024 2025 2026
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2027 2028 2029 2030 2031
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2032
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2033
{
2034 2035 2036 2037 2038
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2039 2040
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2041 2042
#endif

2043
	trace_sched_migrate_task(p, new_cpu);
2044

2045 2046 2047 2048
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2049 2050

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2051 2052
}

2053
struct migration_arg {
2054
	struct task_struct *task;
L
Linus Torvalds 已提交
2055
	int dest_cpu;
2056
};
L
Linus Torvalds 已提交
2057

2058 2059
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2060 2061 2062 2063
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2064
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2065 2066 2067
{
	/*
	 * If the task is not on a runqueue (and not running), then
2068
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2069
	 */
2070
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2076 2077 2078 2079 2080 2081 2082
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2089
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2090 2091
{
	unsigned long flags;
I
Ingo Molnar 已提交
2092
	int running, on_rq;
R
Roland McGrath 已提交
2093
	unsigned long ncsw;
2094
	struct rq *rq;
L
Linus Torvalds 已提交
2095

2096 2097 2098 2099 2100 2101 2102 2103
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2116 2117 2118
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2119
			cpu_relax();
R
Roland McGrath 已提交
2120
		}
2121

2122 2123 2124 2125 2126 2127
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2128
		trace_sched_wait_task(p);
2129 2130
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2131
		ncsw = 0;
2132
		if (!match_state || p->state == match_state)
2133
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2134
		task_rq_unlock(rq, &flags);
2135

R
Roland McGrath 已提交
2136 2137 2138 2139 2140 2141
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2152

2153 2154 2155 2156 2157
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2158
		 * So if it was still runnable (but just not actively
2159 2160 2161 2162 2163 2164 2165
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2166

2167 2168 2169 2170 2171 2172 2173
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2174 2175

	return ncsw;
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2191
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2201
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2202
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2203

T
Thomas Gleixner 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2225
#ifdef CONFIG_SMP
2226 2227 2228
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2245 2246 2247 2248 2249 2250 2251 2252 2253
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2254 2255 2256 2257 2258
	}

	return dest_cpu;
}

2259
/*
2260
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2261
 */
2262
static inline
2263
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2264
{
2265
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2278
		     !cpu_online(cpu)))
2279
		cpu = select_fallback_rq(task_cpu(p), p);
2280 2281

	return cpu;
2282
}
2283 2284 2285 2286 2287 2288

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2289 2290
#endif

T
Tejun Heo 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2330 2331 2332
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2333 2334 2335
}

/**
L
Linus Torvalds 已提交
2336
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2337
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2338
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2339
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2347 2348
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2349
 */
P
Peter Zijlstra 已提交
2350 2351
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2352
{
2353
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2354
	unsigned long flags;
2355
	unsigned long en_flags = ENQUEUE_WAKEUP;
2356
	struct rq *rq;
L
Linus Torvalds 已提交
2357

P
Peter Zijlstra 已提交
2358
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2359

2360
	smp_wmb();
2361
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2362
	if (!(p->state & state))
L
Linus Torvalds 已提交
2363 2364
		goto out;

I
Ingo Molnar 已提交
2365
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2366 2367 2368
		goto out_running;

	cpu = task_cpu(p);
2369
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2375 2376 2377
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2378 2379
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2380
	 */
2381 2382 2383 2384 2385 2386
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2387
	p->state = TASK_WAKING;
2388

2389
	if (p->sched_class->task_waking) {
2390
		p->sched_class->task_waking(rq, p);
2391 2392
		en_flags |= ENQUEUE_WAKING;
	}
2393

2394 2395
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2396
		set_task_cpu(p, cpu);
2397
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2398

2399 2400
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2401

2402 2403 2404 2405 2406 2407 2408
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2409
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2410

2411 2412 2413 2414 2415 2416 2417
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2418
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2419 2420 2421 2422 2423
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2424
#endif /* CONFIG_SCHEDSTATS */
2425

L
Linus Torvalds 已提交
2426 2427
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2428 2429
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2430 2431
	success = 1;
out_running:
T
Tejun Heo 已提交
2432
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2433 2434
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2435
	put_cpu();
L
Linus Torvalds 已提交
2436 2437 2438 2439

	return success;
}

T
Tejun Heo 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2482
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2483
{
2484
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2485 2486 2487
}
EXPORT_SYMBOL(wake_up_process);

2488
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493 2494 2495
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2496 2497 2498 2499 2500 2501 2502
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2503
	p->se.prev_sum_exec_runtime	= 0;
2504
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2505 2506

#ifdef CONFIG_SCHEDSTATS
2507
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2508
#endif
N
Nick Piggin 已提交
2509

P
Peter Zijlstra 已提交
2510
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2511
	p->se.on_rq = 0;
2512
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2513

2514 2515 2516
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2527
	/*
2528
	 * We mark the process as running here. This guarantees that
2529 2530 2531
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2532
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2533

2534 2535 2536 2537
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2538
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2539
			p->policy = SCHED_NORMAL;
2540 2541
			p->normal_prio = p->static_prio;
		}
2542

2543 2544
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2545
			p->normal_prio = p->static_prio;
2546 2547 2548
			set_load_weight(p);
		}

2549 2550 2551 2552 2553 2554
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2555

2556 2557 2558 2559 2560
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2561 2562
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2563

P
Peter Zijlstra 已提交
2564 2565 2566
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2567 2568 2569 2570 2571 2572 2573 2574
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2575
	set_task_cpu(p, cpu);
2576
	rcu_read_unlock();
2577

2578
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2579
	if (likely(sched_info_on()))
2580
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2581
#endif
2582
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2583 2584
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2585
#ifdef CONFIG_PREEMPT
2586
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2587
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2588
#endif
2589 2590
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2591
	put_cpu();
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2601
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2602 2603
{
	unsigned long flags;
I
Ingo Molnar 已提交
2604
	struct rq *rq;
2605
	int cpu __maybe_unused = get_cpu();
2606 2607

#ifdef CONFIG_SMP
2608 2609 2610
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2611 2612 2613 2614 2615
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2616 2617
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2618
	 */
2619
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2620
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2621

2622
	p->state = TASK_RUNNING;
2623 2624 2625 2626
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2627
	activate_task(rq, p, 0);
2628
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2629
	check_preempt_curr(rq, p, WF_FORK);
2630
#ifdef CONFIG_SMP
2631 2632
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2633
#endif
I
Ingo Molnar 已提交
2634
	task_rq_unlock(rq, &flags);
2635
	put_cpu();
L
Linus Torvalds 已提交
2636 2637
}

2638 2639 2640
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2641
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2642
 * @notifier: notifier struct to register
2643 2644 2645 2646 2647 2648 2649 2650 2651
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2652
 * @notifier: notifier struct to unregister
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2682
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2694
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2695

2696 2697 2698
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2699
 * @prev: the current task that is being switched out
2700 2701 2702 2703 2704 2705 2706 2707 2708
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2709 2710 2711
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2712
{
2713
	fire_sched_out_preempt_notifiers(prev, next);
2714 2715 2716 2717
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2718 2719
/**
 * finish_task_switch - clean up after a task-switch
2720
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2721 2722
 * @prev: the thread we just switched away from.
 *
2723 2724 2725 2726
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2727 2728
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2729
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2730 2731 2732
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2733
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2734 2735 2736
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2737
	long prev_state;
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2743
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2744 2745
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2746
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2747 2748 2749 2750 2751
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2752
	prev_state = prev->state;
2753
	finish_arch_switch(prev);
2754 2755 2756
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2757
	perf_event_task_sched_in(current);
2758 2759 2760
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2761
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2762

2763
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2764 2765
	if (mm)
		mmdrop(mm);
2766
	if (unlikely(prev_state == TASK_DEAD)) {
2767 2768 2769
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2770
		 */
2771
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2772
		put_task_struct(prev);
2773
	}
L
Linus Torvalds 已提交
2774 2775
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2791
		raw_spin_lock_irqsave(&rq->lock, flags);
2792 2793
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2794
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2795 2796 2797 2798 2799 2800

		rq->post_schedule = 0;
	}
}

#else
2801

2802 2803 2804 2805 2806 2807
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2808 2809
}

2810 2811
#endif

L
Linus Torvalds 已提交
2812 2813 2814 2815
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2816
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2817 2818
	__releases(rq->lock)
{
2819 2820
	struct rq *rq = this_rq();

2821
	finish_task_switch(rq, prev);
2822

2823 2824 2825 2826 2827
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2828

2829 2830 2831 2832
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2833
	if (current->set_child_tid)
2834
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2835 2836 2837 2838 2839 2840
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2841
static inline void
2842
context_switch(struct rq *rq, struct task_struct *prev,
2843
	       struct task_struct *next)
L
Linus Torvalds 已提交
2844
{
I
Ingo Molnar 已提交
2845
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2846

2847
	prepare_task_switch(rq, prev, next);
2848
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2849 2850
	mm = next->mm;
	oldmm = prev->active_mm;
2851 2852 2853 2854 2855
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2856
	arch_start_context_switch(prev);
2857

2858
	if (!mm) {
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863 2864
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2865
	if (!prev->mm) {
L
Linus Torvalds 已提交
2866 2867 2868
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2869 2870 2871 2872 2873 2874 2875
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2876
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2877
#endif
L
Linus Torvalds 已提交
2878 2879 2880 2881

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2882 2883 2884 2885 2886 2887 2888
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2906
}
L
Linus Torvalds 已提交
2907 2908

unsigned long nr_uninterruptible(void)
2909
{
L
Linus Torvalds 已提交
2910
	unsigned long i, sum = 0;
2911

2912
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2913
		sum += cpu_rq(i)->nr_uninterruptible;
2914 2915

	/*
L
Linus Torvalds 已提交
2916 2917
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2918
	 */
L
Linus Torvalds 已提交
2919 2920
	if (unlikely((long)sum < 0))
		sum = 0;
2921

L
Linus Torvalds 已提交
2922
	return sum;
2923 2924
}

L
Linus Torvalds 已提交
2925
unsigned long long nr_context_switches(void)
2926
{
2927 2928
	int i;
	unsigned long long sum = 0;
2929

2930
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2931
		sum += cpu_rq(i)->nr_switches;
2932

L
Linus Torvalds 已提交
2933 2934
	return sum;
}
2935

L
Linus Torvalds 已提交
2936 2937 2938
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2939

2940
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2941
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2942

L
Linus Torvalds 已提交
2943 2944
	return sum;
}
2945

2946
unsigned long nr_iowait_cpu(int cpu)
2947
{
2948
	struct rq *this = cpu_rq(cpu);
2949 2950
	return atomic_read(&this->nr_iowait);
}
2951

2952 2953 2954 2955 2956
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2957

2958

2959 2960 2961 2962 2963
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3033 3034
}

3035 3036
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3037
{
3038 3039 3040 3041
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3042 3043

/*
3044 3045
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3046
 */
3047
void calc_global_load(void)
3048
{
3049 3050
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3051

3052 3053
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3054

3055 3056
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3057

3058 3059 3060
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3061

3062 3063
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3064

3065
/*
3066 3067
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3068 3069 3070
 */
static void calc_load_account_active(struct rq *this_rq)
{
3071
	long delta;
3072

3073 3074
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3075

3076 3077 3078
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3079
		atomic_long_add(delta, &calc_load_tasks);
3080 3081

	this_rq->calc_load_update += LOAD_FREQ;
3082 3083
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3151
/*
I
Ingo Molnar 已提交
3152
 * Update rq->cpu_load[] statistics. This function is usually called every
3153 3154
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3155
 */
I
Ingo Molnar 已提交
3156
static void update_cpu_load(struct rq *this_rq)
3157
{
3158
	unsigned long this_load = this_rq->load.weight;
3159 3160
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3161
	int i, scale;
3162

I
Ingo Molnar 已提交
3163
	this_rq->nr_load_updates++;
3164

3165 3166 3167 3168 3169 3170 3171
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3172
	/* Update our load: */
3173 3174
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3175
		unsigned long old_load, new_load;
3176

I
Ingo Molnar 已提交
3177
		/* scale is effectively 1 << i now, and >> i divides by scale */
3178

I
Ingo Molnar 已提交
3179
		old_load = this_rq->cpu_load[i];
3180
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3181
		new_load = this_load;
I
Ingo Molnar 已提交
3182 3183 3184 3185 3186 3187
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3188 3189 3190
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3191
	}
3192 3193

	sched_avg_update(this_rq);
3194 3195 3196 3197 3198
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3199

3200
	calc_load_account_active(this_rq);
3201 3202
}

I
Ingo Molnar 已提交
3203
#ifdef CONFIG_SMP
3204

3205
/*
P
Peter Zijlstra 已提交
3206 3207
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3208
 */
P
Peter Zijlstra 已提交
3209
void sched_exec(void)
3210
{
P
Peter Zijlstra 已提交
3211
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3212
	unsigned long flags;
3213
	struct rq *rq;
3214
	int dest_cpu;
3215

L
Linus Torvalds 已提交
3216
	rq = task_rq_lock(p, &flags);
3217 3218 3219
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3220

3221
	/*
P
Peter Zijlstra 已提交
3222
	 * select_task_rq() can race against ->cpus_allowed
3223
	 */
3224
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3225
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3226
		struct migration_arg arg = { p, dest_cpu };
3227

L
Linus Torvalds 已提交
3228
		task_rq_unlock(rq, &flags);
3229
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3230 3231
		return;
	}
3232
unlock:
L
Linus Torvalds 已提交
3233 3234
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3235

L
Linus Torvalds 已提交
3236 3237 3238 3239 3240 3241 3242
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3243
 * Return any ns on the sched_clock that have not yet been accounted in
3244
 * @p in case that task is currently running.
3245 3246
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3247
 */
3248 3249 3250 3251 3252 3253
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3254
		ns = rq->clock_task - p->se.exec_start;
3255 3256 3257 3258 3259 3260 3261
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3262
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3263 3264
{
	unsigned long flags;
3265
	struct rq *rq;
3266
	u64 ns = 0;
3267

3268
	rq = task_rq_lock(p, &flags);
3269 3270
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3271

3272 3273
	return ns;
}
3274

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3292

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3312
	task_rq_unlock(rq, &flags);
3313

L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3321
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3322
 */
3323 3324
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3325 3326 3327 3328
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3329
	/* Add user time to process. */
L
Linus Torvalds 已提交
3330
	p->utime = cputime_add(p->utime, cputime);
3331
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3332
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3340 3341

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3342 3343
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3344 3345
}

3346 3347 3348 3349
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3350
 * @cputime_scaled: cputime scaled by cpu frequency
3351
 */
3352 3353
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3354 3355 3356 3357 3358 3359
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3360
	/* Add guest time to process. */
3361
	p->utime = cputime_add(p->utime, cputime);
3362
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3363
	account_group_user_time(p, cputime);
3364 3365
	p->gtime = cputime_add(p->gtime, cputime);

3366
	/* Add guest time to cpustat. */
3367 3368 3369 3370 3371 3372 3373
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3374 3375
}

L
Linus Torvalds 已提交
3376 3377 3378 3379 3380
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3381
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3382 3383
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3384
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3385 3386 3387 3388
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3389
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3390
		account_guest_time(p, cputime, cputime_scaled);
3391 3392
		return;
	}
3393

3394
	/* Add system time to process. */
L
Linus Torvalds 已提交
3395
	p->stime = cputime_add(p->stime, cputime);
3396
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3397
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
3403
	else if (in_serving_softirq())
L
Linus Torvalds 已提交
3404 3405
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3406 3407
		cpustat->system = cputime64_add(cpustat->system, tmp);

3408 3409
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3410 3411 3412 3413
	/* Account for system time used */
	acct_update_integrals(p);
}

3414
/*
L
Linus Torvalds 已提交
3415 3416
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3417
 */
3418
void account_steal_time(cputime_t cputime)
3419
{
3420 3421 3422 3423
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3424 3425
}

L
Linus Torvalds 已提交
3426
/*
3427 3428
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3429
 */
3430
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3431 3432
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3433
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3434
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3435

3436 3437 3438 3439
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3440 3441
}

3442 3443 3444 3445 3446 3447 3448 3449 3450
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3451
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3452 3453 3454
	struct rq *rq = this_rq();

	if (user_tick)
3455
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3456
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3457
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3458 3459
				    one_jiffy_scaled);
	else
3460
		account_idle_time(cputime_one_jiffy);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3480 3481
}

3482 3483
#endif

3484 3485 3486 3487
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3488
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3489
{
3490 3491
	*ut = p->utime;
	*st = p->stime;
3492 3493
}

3494
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3495
{
3496 3497 3498 3499 3500 3501
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3502 3503
}
#else
3504 3505

#ifndef nsecs_to_cputime
3506
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3507 3508
#endif

3509
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3510
{
3511
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3512 3513 3514 3515

	/*
	 * Use CFS's precise accounting:
	 */
3516
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3517 3518

	if (total) {
3519
		u64 temp = rtime;
3520

3521
		temp *= utime;
3522
		do_div(temp, total);
3523 3524 3525
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3526

3527 3528 3529
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3530
	p->prev_utime = max(p->prev_utime, utime);
3531
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3532

3533 3534
	*ut = p->prev_utime;
	*st = p->prev_stime;
3535 3536
}

3537 3538 3539 3540
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3541
{
3542 3543 3544
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3545

3546
	thread_group_cputime(p, &cputime);
3547

3548 3549
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3550

3551
	if (total) {
3552
		u64 temp = rtime;
3553

3554
		temp *= cputime.utime;
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3566 3567 3568
}
#endif

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3580
	struct task_struct *curr = rq->curr;
3581 3582

	sched_clock_tick();
I
Ingo Molnar 已提交
3583

3584
	raw_spin_lock(&rq->lock);
3585
	update_rq_clock(rq);
3586
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3587
	curr->sched_class->task_tick(rq, curr, 0);
3588
	raw_spin_unlock(&rq->lock);
3589

3590
	perf_event_task_tick();
3591

3592
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3593 3594
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3595
#endif
L
Linus Torvalds 已提交
3596 3597
}

3598
notrace unsigned long get_parent_ip(unsigned long addr)
3599 3600 3601 3602 3603 3604 3605 3606
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3607

3608 3609 3610
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3611
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3612
{
3613
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3614 3615 3616
	/*
	 * Underflow?
	 */
3617 3618
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3619
#endif
L
Linus Torvalds 已提交
3620
	preempt_count() += val;
3621
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3622 3623 3624
	/*
	 * Spinlock count overflowing soon?
	 */
3625 3626
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3627 3628 3629
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3630 3631 3632
}
EXPORT_SYMBOL(add_preempt_count);

3633
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3634
{
3635
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3636 3637 3638
	/*
	 * Underflow?
	 */
3639
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3640
		return;
L
Linus Torvalds 已提交
3641 3642 3643
	/*
	 * Is the spinlock portion underflowing?
	 */
3644 3645 3646
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3647
#endif
3648

3649 3650
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3651 3652 3653 3654 3655 3656 3657
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3658
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3659
 */
I
Ingo Molnar 已提交
3660
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3661
{
3662 3663
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3664 3665
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3666

I
Ingo Molnar 已提交
3667
	debug_show_held_locks(prev);
3668
	print_modules();
I
Ingo Molnar 已提交
3669 3670
	if (irqs_disabled())
		print_irqtrace_events(prev);
3671 3672 3673 3674 3675

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3676
}
L
Linus Torvalds 已提交
3677

I
Ingo Molnar 已提交
3678 3679 3680 3681 3682
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3683
	/*
I
Ingo Molnar 已提交
3684
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3685 3686 3687
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3688
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3689 3690
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3691 3692
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3693
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3694 3695
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3696 3697
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3698 3699
	}
#endif
I
Ingo Molnar 已提交
3700 3701
}

P
Peter Zijlstra 已提交
3702
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3703
{
3704 3705 3706
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3707
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3708 3709
}

I
Ingo Molnar 已提交
3710 3711 3712 3713
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3714
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3715
{
3716
	const struct sched_class *class;
I
Ingo Molnar 已提交
3717
	struct task_struct *p;
L
Linus Torvalds 已提交
3718 3719

	/*
I
Ingo Molnar 已提交
3720 3721
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3722
	 */
I
Ingo Molnar 已提交
3723
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3724
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3725 3726
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3727 3728
	}

3729
	for_each_class(class) {
3730
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3731 3732 3733
		if (p)
			return p;
	}
3734 3735

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3736
}
L
Linus Torvalds 已提交
3737

I
Ingo Molnar 已提交
3738 3739 3740
/*
 * schedule() is the main scheduler function.
 */
3741
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3742 3743
{
	struct task_struct *prev, *next;
3744
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3745
	struct rq *rq;
3746
	int cpu;
I
Ingo Molnar 已提交
3747

3748 3749
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3750 3751
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3752
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3753 3754 3755 3756 3757 3758
	prev = rq->curr;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3759

3760
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3761
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3762

3763
	raw_spin_lock_irq(&rq->lock);
3764
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3765

3766
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3767
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3768
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3769
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3784
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3785
		}
I
Ingo Molnar 已提交
3786
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3787 3788
	}

3789
	pre_schedule(rq, prev);
3790

I
Ingo Molnar 已提交
3791
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3792 3793
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3794
	put_prev_task(rq, prev);
3795
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3796 3797

	if (likely(prev != next)) {
3798
		sched_info_switch(prev, next);
3799
		perf_event_task_sched_out(prev, next);
3800

L
Linus Torvalds 已提交
3801 3802 3803 3804
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3805
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3806
		/*
3807 3808 3809 3810
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3811 3812 3813
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3814
	} else
3815
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3816

3817
	post_schedule(rq);
L
Linus Torvalds 已提交
3818

3819
	if (unlikely(reacquire_kernel_lock(prev)))
L
Linus Torvalds 已提交
3820
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3821

L
Linus Torvalds 已提交
3822
	preempt_enable_no_resched();
3823
	if (need_resched())
L
Linus Torvalds 已提交
3824 3825 3826 3827
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3828
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3848
		return 0;
3849 3850 3851 3852 3853 3854 3855 3856 3857
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3858
		return 0;
3859 3860 3861 3862 3863 3864

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3865
		return 0;
3866 3867 3868 3869 3870 3871 3872

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
3873 3874 3875 3876 3877 3878 3879 3880
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
3881
			break;
3882
		}
3883 3884 3885 3886 3887 3888 3889

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

3890
		arch_mutex_cpu_relax();
3891
	}
3892

3893 3894 3895 3896
	return 1;
}
#endif

L
Linus Torvalds 已提交
3897 3898
#ifdef CONFIG_PREEMPT
/*
3899
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3900
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3901 3902
 * occur there and call schedule directly.
 */
3903
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3904 3905
{
	struct thread_info *ti = current_thread_info();
3906

L
Linus Torvalds 已提交
3907 3908
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3909
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3910
	 */
N
Nick Piggin 已提交
3911
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3912 3913
		return;

3914
	do {
3915
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3916
		schedule();
3917
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3918

3919 3920 3921 3922 3923
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3924
	} while (need_resched());
L
Linus Torvalds 已提交
3925 3926 3927 3928
}
EXPORT_SYMBOL(preempt_schedule);

/*
3929
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935 3936
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3937

3938
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3939 3940
	BUG_ON(ti->preempt_count || !irqs_disabled());

3941 3942 3943 3944 3945 3946
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3947

3948 3949 3950 3951 3952
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3953
	} while (need_resched());
L
Linus Torvalds 已提交
3954 3955 3956 3957
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3958
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3959
			  void *key)
L
Linus Torvalds 已提交
3960
{
P
Peter Zijlstra 已提交
3961
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3962 3963 3964 3965
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3966 3967
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3968 3969 3970
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3971
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3972 3973
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3974
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3975
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3976
{
3977
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3978

3979
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3980 3981
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3982
		if (curr->func(curr, mode, wake_flags, key) &&
3983
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3993
 * @key: is directly passed to the wakeup function
3994 3995 3996
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3997
 */
3998
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3999
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4012
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4013 4014 4015
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4016
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4017

4018 4019 4020 4021 4022
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
4023
/**
4024
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4025 4026 4027
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4028
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4036 4037 4038
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4039
 */
4040 4041
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4042 4043
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4044
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4050
		wake_flags = 0;
L
Linus Torvalds 已提交
4051 4052

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4053
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4054 4055
	spin_unlock_irqrestore(&q->lock, flags);
}
4056 4057 4058 4059 4060 4061 4062 4063 4064
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4065 4066
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4067 4068 4069 4070 4071 4072 4073 4074
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4075 4076 4077
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4078
 */
4079
void complete(struct completion *x)
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4085
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4086 4087 4088 4089
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4090 4091 4092 4093 4094
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4095 4096 4097
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4098
 */
4099
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4105
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4106 4107 4108 4109
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4110 4111
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4112 4113 4114 4115
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4116
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4117
		do {
4118
			if (signal_pending_state(state, current)) {
4119 4120
				timeout = -ERESTARTSYS;
				break;
4121 4122
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4123 4124 4125
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4126
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4127
		__remove_wait_queue(&x->wait, &wait);
4128 4129
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4130 4131
	}
	x->done--;
4132
	return timeout ?: 1;
L
Linus Torvalds 已提交
4133 4134
}

4135 4136
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4137 4138 4139 4140
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4141
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4142
	spin_unlock_irq(&x->wait.lock);
4143 4144
	return timeout;
}
L
Linus Torvalds 已提交
4145

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4156
void __sched wait_for_completion(struct completion *x)
4157 4158
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4159
}
4160
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4161

4162 4163 4164 4165 4166 4167 4168 4169 4170
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4171
unsigned long __sched
4172
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4173
{
4174
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4175
}
4176
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4177

4178 4179 4180 4181 4182 4183 4184
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4185
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4186
{
4187 4188 4189 4190
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4191
}
4192
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4193

4194 4195 4196 4197 4198 4199 4200 4201
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4202
unsigned long __sched
4203 4204
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4205
{
4206
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4207
}
4208
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4209

4210 4211 4212 4213 4214 4215 4216
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4257
	unsigned long flags;
4258 4259
	int ret = 1;

4260
	spin_lock_irqsave(&x->wait.lock, flags);
4261 4262 4263 4264
	if (!x->done)
		ret = 0;
	else
		x->done--;
4265
	spin_unlock_irqrestore(&x->wait.lock, flags);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4280
	unsigned long flags;
4281 4282
	int ret = 1;

4283
	spin_lock_irqsave(&x->wait.lock, flags);
4284 4285
	if (!x->done)
		ret = 0;
4286
	spin_unlock_irqrestore(&x->wait.lock, flags);
4287 4288 4289 4290
	return ret;
}
EXPORT_SYMBOL(completion_done);

4291 4292
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4293
{
I
Ingo Molnar 已提交
4294 4295 4296 4297
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4298

4299
	__set_current_state(state);
L
Linus Torvalds 已提交
4300

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4315 4316 4317
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4318
long __sched
I
Ingo Molnar 已提交
4319
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4320
{
4321
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4322 4323 4324
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4325
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4326
{
4327
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4328 4329 4330
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4331
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4332
{
4333
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4334 4335 4336
}
EXPORT_SYMBOL(sleep_on_timeout);

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4349
void rt_mutex_setprio(struct task_struct *p, int prio)
4350 4351
{
	unsigned long flags;
4352
	int oldprio, on_rq, running;
4353
	struct rq *rq;
4354
	const struct sched_class *prev_class;
4355 4356 4357 4358 4359

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4360
	trace_sched_pi_setprio(p, prio);
4361
	oldprio = p->prio;
4362
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4363
	on_rq = p->se.on_rq;
4364
	running = task_current(rq, p);
4365
	if (on_rq)
4366
		dequeue_task(rq, p, 0);
4367 4368
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4369 4370 4371 4372 4373 4374

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4375 4376
	p->prio = prio;

4377 4378
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4379
	if (on_rq) {
4380
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4381 4382

		check_class_changed(rq, p, prev_class, oldprio, running);
4383 4384 4385 4386 4387 4388
	}
	task_rq_unlock(rq, &flags);
}

#endif

4389
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4390
{
I
Ingo Molnar 已提交
4391
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4392
	unsigned long flags;
4393
	struct rq *rq;
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4406
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4407
	 */
4408
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4409 4410 4411
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4412
	on_rq = p->se.on_rq;
4413
	if (on_rq)
4414
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4415 4416

	p->static_prio = NICE_TO_PRIO(nice);
4417
	set_load_weight(p);
4418 4419 4420
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4421

I
Ingo Molnar 已提交
4422
	if (on_rq) {
4423
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4424
		/*
4425 4426
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4427
		 */
4428
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4436 4437 4438 4439 4440
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4441
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4442
{
4443 4444
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4445

4446
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4447 4448 4449
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4459
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4460
{
4461
	long nice, retval;
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4468 4469
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4470 4471 4472
	if (increment > 40)
		increment = 40;

4473
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4479 4480 4481
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4500
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4509
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4510 4511 4512
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4513
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4528
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534 4535 4536
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4537
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4538
{
4539
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4540 4541 4542
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4543 4544
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4545
{
I
Ingo Molnar 已提交
4546
	BUG_ON(p->se.on_rq);
4547

L
Linus Torvalds 已提交
4548 4549
	p->policy = policy;
	p->rt_priority = prio;
4550 4551 4552
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4553 4554 4555 4556
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4557
	set_load_weight(p);
L
Linus Torvalds 已提交
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4576
static int __sched_setscheduler(struct task_struct *p, int policy,
4577
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4578
{
4579
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4580
	unsigned long flags;
4581
	const struct sched_class *prev_class;
4582
	struct rq *rq;
4583
	int reset_on_fork;
L
Linus Torvalds 已提交
4584

4585 4586
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4587 4588
recheck:
	/* double check policy once rq lock held */
4589 4590
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4591
		policy = oldpolicy = p->policy;
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4602 4603
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4604 4605
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4606 4607
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4608
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4609
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4610
		return -EINVAL;
4611
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4612 4613
		return -EINVAL;

4614 4615 4616
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4617
	if (user && !capable(CAP_SYS_NICE)) {
4618
		if (rt_policy(policy)) {
4619 4620
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4631 4632 4633 4634 4635 4636
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4637

4638
		/* can't change other user's priorities */
4639
		if (!check_same_owner(p))
4640
			return -EPERM;
4641 4642 4643 4644

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4645
	}
L
Linus Torvalds 已提交
4646

4647
	if (user) {
4648
		retval = security_task_setscheduler(p);
4649 4650 4651 4652
		if (retval)
			return retval;
	}

4653 4654 4655 4656
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4657
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4658 4659 4660 4661
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4662
	rq = __task_rq_lock(p);
4663

4664 4665 4666 4667 4668 4669 4670 4671 4672
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0) {
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4688 4689 4690
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4691
		__task_rq_unlock(rq);
4692
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4693 4694
		goto recheck;
	}
I
Ingo Molnar 已提交
4695
	on_rq = p->se.on_rq;
4696
	running = task_current(rq, p);
4697
	if (on_rq)
4698
		deactivate_task(rq, p, 0);
4699 4700
	if (running)
		p->sched_class->put_prev_task(rq, p);
4701

4702 4703
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4704
	oldprio = p->prio;
4705
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4706
	__setscheduler(rq, p, policy, param->sched_priority);
4707

4708 4709
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4710 4711
	if (on_rq) {
		activate_task(rq, p, 0);
4712 4713

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4714
	}
4715
	__task_rq_unlock(rq);
4716
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4717

4718 4719
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4720 4721
	return 0;
}
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4732
		       const struct sched_param *param)
4733 4734 4735
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4736 4737
EXPORT_SYMBOL_GPL(sched_setscheduler);

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4750
			       const struct sched_param *param)
4751 4752 4753 4754
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4755 4756
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4757 4758 4759
{
	struct sched_param lparam;
	struct task_struct *p;
4760
	int retval;
L
Linus Torvalds 已提交
4761 4762 4763 4764 4765

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4766 4767 4768

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4769
	p = find_process_by_pid(pid);
4770 4771 4772
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4773

L
Linus Torvalds 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4783 4784
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4785
{
4786 4787 4788 4789
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4798
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804 4805 4806
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4807
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4808
{
4809
	struct task_struct *p;
4810
	int retval;
L
Linus Torvalds 已提交
4811 4812

	if (pid < 0)
4813
		return -EINVAL;
L
Linus Torvalds 已提交
4814 4815

	retval = -ESRCH;
4816
	rcu_read_lock();
L
Linus Torvalds 已提交
4817 4818 4819 4820
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4821 4822
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4823
	}
4824
	rcu_read_unlock();
L
Linus Torvalds 已提交
4825 4826 4827 4828
	return retval;
}

/**
4829
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4830 4831 4832
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4833
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4834 4835
{
	struct sched_param lp;
4836
	struct task_struct *p;
4837
	int retval;
L
Linus Torvalds 已提交
4838 4839

	if (!param || pid < 0)
4840
		return -EINVAL;
L
Linus Torvalds 已提交
4841

4842
	rcu_read_lock();
L
Linus Torvalds 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4853
	rcu_read_unlock();
L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4863
	rcu_read_unlock();
L
Linus Torvalds 已提交
4864 4865 4866
	return retval;
}

4867
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4868
{
4869
	cpumask_var_t cpus_allowed, new_mask;
4870 4871
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4872

4873
	get_online_cpus();
4874
	rcu_read_lock();
L
Linus Torvalds 已提交
4875 4876 4877

	p = find_process_by_pid(pid);
	if (!p) {
4878
		rcu_read_unlock();
4879
		put_online_cpus();
L
Linus Torvalds 已提交
4880 4881 4882
		return -ESRCH;
	}

4883
	/* Prevent p going away */
L
Linus Torvalds 已提交
4884
	get_task_struct(p);
4885
	rcu_read_unlock();
L
Linus Torvalds 已提交
4886

4887 4888 4889 4890 4891 4892 4893 4894
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4895
	retval = -EPERM;
4896
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4897 4898
		goto out_unlock;

4899
	retval = security_task_setscheduler(p);
4900 4901 4902
	if (retval)
		goto out_unlock;

4903 4904
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4905
again:
4906
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4907

P
Paul Menage 已提交
4908
	if (!retval) {
4909 4910
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4911 4912 4913 4914 4915
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4916
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4917 4918 4919
			goto again;
		}
	}
L
Linus Torvalds 已提交
4920
out_unlock:
4921 4922 4923 4924
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4925
	put_task_struct(p);
4926
	put_online_cpus();
L
Linus Torvalds 已提交
4927 4928 4929 4930
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4931
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4932
{
4933 4934 4935 4936 4937
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943 4944 4945 4946
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4947 4948
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4949
{
4950
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4951 4952
	int retval;

4953 4954
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4955

4956 4957 4958 4959 4960
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4961 4962
}

4963
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4964
{
4965
	struct task_struct *p;
4966 4967
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4968 4969
	int retval;

4970
	get_online_cpus();
4971
	rcu_read_lock();
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976 4977

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4978 4979 4980 4981
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4982
	rq = task_rq_lock(p, &flags);
4983
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4984
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4985 4986

out_unlock:
4987
	rcu_read_unlock();
4988
	put_online_cpus();
L
Linus Torvalds 已提交
4989

4990
	return retval;
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4999 5000
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5001 5002
{
	int ret;
5003
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5004

A
Anton Blanchard 已提交
5005
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5006 5007
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5008 5009
		return -EINVAL;

5010 5011
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5012

5013 5014
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5015
		size_t retlen = min_t(size_t, len, cpumask_size());
5016 5017

		if (copy_to_user(user_mask_ptr, mask, retlen))
5018 5019
			ret = -EFAULT;
		else
5020
			ret = retlen;
5021 5022
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5023

5024
	return ret;
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5030 5031
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5032
 */
5033
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5034
{
5035
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5036

5037
	schedstat_inc(rq, yld_count);
5038
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5045
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5046
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5047 5048 5049 5050 5051 5052 5053
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5054 5055 5056 5057 5058
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5059
static void __cond_resched(void)
L
Linus Torvalds 已提交
5060
{
5061 5062 5063
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5064 5065
}

5066
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5067
{
P
Peter Zijlstra 已提交
5068
	if (should_resched()) {
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073
		__cond_resched();
		return 1;
	}
	return 0;
}
5074
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5075 5076

/*
5077
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5078 5079
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5080
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5081 5082 5083
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5084
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5085
{
P
Peter Zijlstra 已提交
5086
	int resched = should_resched();
J
Jan Kara 已提交
5087 5088
	int ret = 0;

5089 5090
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5091
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5092
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5093
		if (resched)
N
Nick Piggin 已提交
5094 5095 5096
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5097
		ret = 1;
L
Linus Torvalds 已提交
5098 5099
		spin_lock(lock);
	}
J
Jan Kara 已提交
5100
	return ret;
L
Linus Torvalds 已提交
5101
}
5102
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5103

5104
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5105 5106 5107
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5108
	if (should_resched()) {
5109
		local_bh_enable();
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5116
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5117 5118 5119 5120

/**
 * yield - yield the current processor to other threads.
 *
5121
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5132
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5133 5134 5135 5136
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5137
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5138

5139
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5140
	atomic_inc(&rq->nr_iowait);
5141
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5142
	schedule();
5143
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5144
	atomic_dec(&rq->nr_iowait);
5145
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5151
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5152 5153
	long ret;

5154
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5155
	atomic_inc(&rq->nr_iowait);
5156
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5157
	ret = schedule_timeout(timeout);
5158
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5159
	atomic_dec(&rq->nr_iowait);
5160
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5171
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5181
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5182
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5196
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5206
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5207
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5221
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5222
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5223
{
5224
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5225
	unsigned int time_slice;
5226 5227
	unsigned long flags;
	struct rq *rq;
5228
	int retval;
L
Linus Torvalds 已提交
5229 5230 5231
	struct timespec t;

	if (pid < 0)
5232
		return -EINVAL;
L
Linus Torvalds 已提交
5233 5234

	retval = -ESRCH;
5235
	rcu_read_lock();
L
Linus Torvalds 已提交
5236 5237 5238 5239 5240 5241 5242 5243
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5244 5245 5246
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5247

5248
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5249
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5250 5251
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5252

L
Linus Torvalds 已提交
5253
out_unlock:
5254
	rcu_read_unlock();
L
Linus Torvalds 已提交
5255 5256 5257
	return retval;
}

5258
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5259

5260
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5261 5262
{
	unsigned long free = 0;
5263
	unsigned state;
L
Linus Torvalds 已提交
5264 5265

	state = p->state ? __ffs(p->state) + 1 : 0;
5266
	printk(KERN_INFO "%-15.15s %c", p->comm,
5267
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5268
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5269
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5270
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5271
	else
P
Peter Zijlstra 已提交
5272
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5273 5274
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5275
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5276
	else
P
Peter Zijlstra 已提交
5277
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5278 5279
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5280
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5281
#endif
P
Peter Zijlstra 已提交
5282
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5283 5284
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5285

5286
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5287 5288
}

I
Ingo Molnar 已提交
5289
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5290
{
5291
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5292

5293
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5294 5295
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5296
#else
P
Peter Zijlstra 已提交
5297 5298
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5299 5300 5301 5302 5303 5304 5305 5306
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5307
		if (!state_filter || (p->state & state_filter))
5308
			sched_show_task(p);
L
Linus Torvalds 已提交
5309 5310
	} while_each_thread(g, p);

5311 5312
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5313 5314 5315
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5316
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5317 5318 5319
	/*
	 * Only show locks if all tasks are dumped:
	 */
5320
	if (!state_filter)
I
Ingo Molnar 已提交
5321
		debug_show_all_locks();
L
Linus Torvalds 已提交
5322 5323
}

I
Ingo Molnar 已提交
5324 5325
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5326
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5327 5328
}

5329 5330 5331 5332 5333 5334 5335 5336
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5337
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5338
{
5339
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5340 5341
	unsigned long flags;

5342
	raw_spin_lock_irqsave(&rq->lock, flags);
5343

I
Ingo Molnar 已提交
5344
	__sched_fork(idle);
5345
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5346 5347
	idle->se.exec_start = sched_clock();

5348
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5360
	__set_task_cpu(idle, cpu);
5361
	rcu_read_unlock();
L
Linus Torvalds 已提交
5362 5363

	rq->curr = rq->idle = idle;
5364 5365 5366
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5367
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5368 5369

	/* Set the preempt count _outside_ the spinlocks! */
5370 5371 5372
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5373
	task_thread_info(idle)->preempt_count = 0;
5374
#endif
I
Ingo Molnar 已提交
5375 5376 5377 5378
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5379
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384 5385 5386
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5387
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5388
 */
5389
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5390

I
Ingo Molnar 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5400
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5401
{
5402
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5417

5418 5419
	return factor;
}
I
Ingo Molnar 已提交
5420

5421 5422 5423
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5424

5425 5426 5427 5428 5429 5430 5431
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5432

5433 5434 5435
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5436 5437
}

L
Linus Torvalds 已提交
5438 5439 5440 5441
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5442 5443 5444 5445 5446 5447
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5448
 *    it and puts it into the right queue.
5449 5450
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455 5456 5457 5458
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5459
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5460 5461
 * call is not atomic; no spinlocks may be held.
 */
5462
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5463 5464
{
	unsigned long flags;
5465
	struct rq *rq;
5466
	unsigned int dest_cpu;
5467
	int ret = 0;
L
Linus Torvalds 已提交
5468

P
Peter Zijlstra 已提交
5469 5470 5471 5472 5473 5474 5475
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5476
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5477 5478 5479 5480
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5481

5482
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5483 5484 5485 5486
		ret = -EINVAL;
		goto out;
	}

5487
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5488
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5489 5490 5491 5492
		ret = -EINVAL;
		goto out;
	}

5493
	if (p->sched_class->set_cpus_allowed)
5494
		p->sched_class->set_cpus_allowed(p, new_mask);
5495
	else {
5496 5497
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5498 5499
	}

L
Linus Torvalds 已提交
5500
	/* Can the task run on the task's current CPU? If so, we're done */
5501
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5502 5503
		goto out;

5504
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5505
	if (migrate_task(p, rq)) {
5506
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5507 5508
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5509
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5515

L
Linus Torvalds 已提交
5516 5517
	return ret;
}
5518
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5519 5520

/*
I
Ingo Molnar 已提交
5521
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5522 5523 5524 5525 5526 5527
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5528 5529
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5530
 */
5531
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5532
{
5533
	struct rq *rq_dest, *rq_src;
5534
	int ret = 0;
L
Linus Torvalds 已提交
5535

5536
	if (unlikely(!cpu_active(dest_cpu)))
5537
		return ret;
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5545
		goto done;
L
Linus Torvalds 已提交
5546
	/* Affinity changed (again). */
5547
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5548
		goto fail;
L
Linus Torvalds 已提交
5549

5550 5551 5552 5553 5554
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5555
		deactivate_task(rq_src, p, 0);
5556
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5557
		activate_task(rq_dest, p, 0);
5558
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5559
	}
L
Linus Torvalds 已提交
5560
done:
5561
	ret = 1;
L
Linus Torvalds 已提交
5562
fail:
L
Linus Torvalds 已提交
5563
	double_rq_unlock(rq_src, rq_dest);
5564
	return ret;
L
Linus Torvalds 已提交
5565 5566 5567
}

/*
5568 5569 5570
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5571
 */
5572
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5573
{
5574
	struct migration_arg *arg = data;
5575

5576 5577 5578 5579
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5580
	local_irq_disable();
5581
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5582
	local_irq_enable();
L
Linus Torvalds 已提交
5583
	return 0;
5584 5585
}

L
Linus Torvalds 已提交
5586
#ifdef CONFIG_HOTPLUG_CPU
5587

5588
/*
5589 5590
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5591
 */
5592
void idle_task_exit(void)
L
Linus Torvalds 已提交
5593
{
5594
	struct mm_struct *mm = current->active_mm;
5595

5596
	BUG_ON(cpu_online(smp_processor_id()));
5597

5598 5599 5600
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5610
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5611
{
5612
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5618
/*
5619
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5620
 */
5621
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5622
{
5623 5624
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5625 5626
}

5627
/*
5628 5629 5630 5631 5632 5633
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5634
 */
5635
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5636
{
5637
	struct rq *rq = cpu_rq(dead_cpu);
5638 5639
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5640 5641

	/*
5642 5643 5644 5645 5646 5647 5648
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5649
	 */
5650
	rq->stop = NULL;
5651

I
Ingo Molnar 已提交
5652
	for ( ; ; ) {
5653 5654 5655 5656 5657
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5658
			break;
5659

5660
		next = pick_next_task(rq);
5661
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5662
		next->sched_class->put_prev_task(rq, next);
5663

5664 5665 5666 5667 5668 5669 5670
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5671
	}
5672

5673
	rq->stop = stop;
5674
}
5675

L
Linus Torvalds 已提交
5676 5677
#endif /* CONFIG_HOTPLUG_CPU */

5678 5679 5680
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5681 5682
	{
		.procname	= "sched_domain",
5683
		.mode		= 0555,
5684
	},
5685
	{}
5686 5687 5688
};

static struct ctl_table sd_ctl_root[] = {
5689 5690
	{
		.procname	= "kernel",
5691
		.mode		= 0555,
5692 5693
		.child		= sd_ctl_dir,
	},
5694
	{}
5695 5696 5697 5698 5699
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5700
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5701 5702 5703 5704

	return entry;
}

5705 5706
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5707
	struct ctl_table *entry;
5708

5709 5710 5711
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5712
	 * will always be set. In the lowest directory the names are
5713 5714 5715
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5716 5717
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5718 5719 5720
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5721 5722 5723 5724 5725

	kfree(*tablep);
	*tablep = NULL;
}

5726
static void
5727
set_table_entry(struct ctl_table *entry,
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5741
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5742

5743 5744 5745
	if (table == NULL)
		return NULL;

5746
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5747
		sizeof(long), 0644, proc_doulongvec_minmax);
5748
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5749
		sizeof(long), 0644, proc_doulongvec_minmax);
5750
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5751
		sizeof(int), 0644, proc_dointvec_minmax);
5752
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5753
		sizeof(int), 0644, proc_dointvec_minmax);
5754
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5755
		sizeof(int), 0644, proc_dointvec_minmax);
5756
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5757
		sizeof(int), 0644, proc_dointvec_minmax);
5758
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5759
		sizeof(int), 0644, proc_dointvec_minmax);
5760
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5761
		sizeof(int), 0644, proc_dointvec_minmax);
5762
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5763
		sizeof(int), 0644, proc_dointvec_minmax);
5764
	set_table_entry(&table[9], "cache_nice_tries",
5765 5766
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5767
	set_table_entry(&table[10], "flags", &sd->flags,
5768
		sizeof(int), 0644, proc_dointvec_minmax);
5769 5770 5771
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5772 5773 5774 5775

	return table;
}

5776
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5777 5778 5779 5780 5781 5782 5783 5784 5785
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5786 5787
	if (table == NULL)
		return NULL;
5788 5789 5790 5791 5792

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5793
		entry->mode = 0555;
5794 5795 5796 5797 5798 5799 5800 5801
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5802
static void register_sched_domain_sysctl(void)
5803
{
5804
	int i, cpu_num = num_possible_cpus();
5805 5806 5807
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5808 5809 5810
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5811 5812 5813
	if (entry == NULL)
		return;

5814
	for_each_possible_cpu(i) {
5815 5816
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5817
		entry->mode = 0555;
5818
		entry->child = sd_alloc_ctl_cpu_table(i);
5819
		entry++;
5820
	}
5821 5822

	WARN_ON(sd_sysctl_header);
5823 5824
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5825

5826
/* may be called multiple times per register */
5827 5828
static void unregister_sched_domain_sysctl(void)
{
5829 5830
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5831
	sd_sysctl_header = NULL;
5832 5833
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5834
}
5835
#else
5836 5837 5838 5839
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5840 5841 5842 5843
{
}
#endif

5844 5845 5846 5847 5848
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5849
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5869
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5870 5871 5872 5873
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5874 5875 5876 5877
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5878 5879
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5880
{
5881
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5882
	unsigned long flags;
5883
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5884

5885
	switch (action & ~CPU_TASKS_FROZEN) {
5886

L
Linus Torvalds 已提交
5887
	case CPU_UP_PREPARE:
5888
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5889
		break;
5890

L
Linus Torvalds 已提交
5891
	case CPU_ONLINE:
5892
		/* Update our root-domain */
5893
		raw_spin_lock_irqsave(&rq->lock, flags);
5894
		if (rq->rd) {
5895
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5896 5897

			set_rq_online(rq);
5898
		}
5899
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5900
		break;
5901

L
Linus Torvalds 已提交
5902
#ifdef CONFIG_HOTPLUG_CPU
5903
	case CPU_DYING:
G
Gregory Haskins 已提交
5904
		/* Update our root-domain */
5905
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5906
		if (rq->rd) {
5907
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5908
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5909
		}
5910 5911
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5912
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5913 5914 5915

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5916
		break;
L
Linus Torvalds 已提交
5917 5918 5919 5920 5921
#endif
	}
	return NOTIFY_OK;
}

5922 5923 5924
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5925
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5926
 */
5927
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5928
	.notifier_call = migration_call,
5929
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5930 5931
};

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5957
static int __init migration_init(void)
L
Linus Torvalds 已提交
5958 5959
{
	void *cpu = (void *)(long)smp_processor_id();
5960
	int err;
5961

5962
	/* Initialize migration for the boot CPU */
5963 5964
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5965 5966
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5967

5968 5969 5970 5971
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5972
	return 0;
L
Linus Torvalds 已提交
5973
}
5974
early_initcall(migration_init);
L
Linus Torvalds 已提交
5975 5976 5977
#endif

#ifdef CONFIG_SMP
5978

5979
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5980

5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5991
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5992
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5993
{
I
Ingo Molnar 已提交
5994
	struct sched_group *group = sd->groups;
5995
	char str[256];
L
Linus Torvalds 已提交
5996

R
Rusty Russell 已提交
5997
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5998
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5999 6000 6001 6002

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6003
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6004
		if (sd->parent)
P
Peter Zijlstra 已提交
6005 6006
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6007
		return -1;
N
Nick Piggin 已提交
6008 6009
	}

P
Peter Zijlstra 已提交
6010
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6011

6012
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6013 6014
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6015
	}
6016
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6017 6018
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6019
	}
L
Linus Torvalds 已提交
6020

I
Ingo Molnar 已提交
6021
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6022
	do {
I
Ingo Molnar 已提交
6023
		if (!group) {
P
Peter Zijlstra 已提交
6024 6025
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6026 6027 6028
			break;
		}

6029
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6030 6031 6032
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6033 6034
			break;
		}
L
Linus Torvalds 已提交
6035

6036
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6037 6038
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6039 6040
			break;
		}
L
Linus Torvalds 已提交
6041

6042
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6043 6044
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6045 6046
			break;
		}
L
Linus Torvalds 已提交
6047

6048
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6049

R
Rusty Russell 已提交
6050
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6051

P
Peter Zijlstra 已提交
6052
		printk(KERN_CONT " %s", str);
6053
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6054 6055
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6056
		}
L
Linus Torvalds 已提交
6057

I
Ingo Molnar 已提交
6058 6059
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6060
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6061

6062
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6063
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6064

6065 6066
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6067 6068
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6069 6070
	return 0;
}
L
Linus Torvalds 已提交
6071

I
Ingo Molnar 已提交
6072 6073
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6074
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6075
	int level = 0;
L
Linus Torvalds 已提交
6076

6077 6078 6079
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6080 6081 6082 6083
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6084

I
Ingo Molnar 已提交
6085 6086
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6087
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6088 6089 6090 6091
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6092
	for (;;) {
6093
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6094
			break;
L
Linus Torvalds 已提交
6095 6096
		level++;
		sd = sd->parent;
6097
		if (!sd)
I
Ingo Molnar 已提交
6098 6099
			break;
	}
6100
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6101
}
6102
#else /* !CONFIG_SCHED_DEBUG */
6103
# define sched_domain_debug(sd, cpu) do { } while (0)
6104
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6105

6106
static int sd_degenerate(struct sched_domain *sd)
6107
{
6108
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6109 6110 6111 6112 6113 6114
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6115 6116 6117
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6118 6119 6120 6121 6122
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6123
	if (sd->flags & (SD_WAKE_AFFINE))
6124 6125 6126 6127 6128
		return 0;

	return 1;
}

6129 6130
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6131 6132 6133 6134 6135 6136
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6137
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6138 6139 6140 6141 6142 6143 6144
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6145 6146 6147
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6148 6149
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6150 6151 6152 6153 6154 6155 6156
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6157 6158
static void free_rootdomain(struct root_domain *rd)
{
6159 6160
	synchronize_sched();

6161 6162
	cpupri_cleanup(&rd->cpupri);

6163 6164 6165 6166 6167 6168
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6169 6170
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6171
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6172 6173
	unsigned long flags;

6174
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6175 6176

	if (rq->rd) {
I
Ingo Molnar 已提交
6177
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6178

6179
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6180
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6181

6182
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6183

I
Ingo Molnar 已提交
6184 6185 6186 6187 6188 6189 6190
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6191 6192 6193 6194 6195
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6196
	cpumask_set_cpu(rq->cpu, rd->span);
6197
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6198
		set_rq_online(rq);
G
Gregory Haskins 已提交
6199

6200
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6201 6202 6203

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6204 6205
}

6206
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6207 6208 6209
{
	memset(rd, 0, sizeof(*rd));

6210
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6211
		goto out;
6212
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6213
		goto free_span;
6214
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6215
		goto free_online;
6216

6217
	if (cpupri_init(&rd->cpupri) != 0)
6218
		goto free_rto_mask;
6219
	return 0;
6220

6221 6222
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6223 6224 6225 6226
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6227
out:
6228
	return -ENOMEM;
G
Gregory Haskins 已提交
6229 6230 6231 6232
}

static void init_defrootdomain(void)
{
6233
	init_rootdomain(&def_root_domain);
6234

G
Gregory Haskins 已提交
6235 6236 6237
	atomic_set(&def_root_domain.refcount, 1);
}

6238
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6239 6240 6241 6242 6243 6244 6245
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6246
	if (init_rootdomain(rd) != 0) {
6247 6248 6249
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6250 6251 6252 6253

	return rd;
}

L
Linus Torvalds 已提交
6254
/*
I
Ingo Molnar 已提交
6255
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6256 6257
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6258 6259
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6260
{
6261
	struct rq *rq = cpu_rq(cpu);
6262 6263
	struct sched_domain *tmp;

6264 6265 6266
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6267
	/* Remove the sched domains which do not contribute to scheduling. */
6268
	for (tmp = sd; tmp; ) {
6269 6270 6271
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6272

6273
		if (sd_parent_degenerate(tmp, parent)) {
6274
			tmp->parent = parent->parent;
6275 6276
			if (parent->parent)
				parent->parent->child = tmp;
6277 6278
		} else
			tmp = tmp->parent;
6279 6280
	}

6281
	if (sd && sd_degenerate(sd)) {
6282
		sd = sd->parent;
6283 6284 6285
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6286 6287 6288

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6289
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6290
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6291 6292 6293
}

/* cpus with isolated domains */
6294
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6295 6296 6297 6298

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6299
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6300
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6301 6302 6303
	return 1;
}

I
Ingo Molnar 已提交
6304
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6305 6306

/*
6307 6308
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6309 6310
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6311 6312 6313 6314 6315
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6316
static void
6317 6318 6319
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6320
					struct sched_group **sg,
6321 6322
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6323 6324 6325 6326
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6327
	cpumask_clear(covered);
6328

6329
	for_each_cpu(i, span) {
6330
		struct sched_group *sg;
6331
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6332 6333
		int j;

6334
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6335 6336
			continue;

6337
		cpumask_clear(sched_group_cpus(sg));
6338
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6339

6340
		for_each_cpu(j, span) {
6341
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6342 6343
				continue;

6344
			cpumask_set_cpu(j, covered);
6345
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6356
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6357

6358
#ifdef CONFIG_NUMA
6359

6360 6361 6362 6363 6364
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6365
 * Find the next node to include in a given scheduling domain. Simply
6366 6367 6368 6369
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6370
static int find_next_best_node(int node, nodemask_t *used_nodes)
6371 6372 6373 6374 6375
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6376
	for (i = 0; i < nr_node_ids; i++) {
6377
		/* Start at @node */
6378
		n = (node + i) % nr_node_ids;
6379 6380 6381 6382 6383

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6384
		if (node_isset(n, *used_nodes))
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6396
	node_set(best_node, *used_nodes);
6397 6398 6399 6400 6401 6402
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6403
 * @span: resulting cpumask
6404
 *
I
Ingo Molnar 已提交
6405
 * Given a node, construct a good cpumask for its sched_domain to span. It
6406 6407 6408
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6409
static void sched_domain_node_span(int node, struct cpumask *span)
6410
{
6411
	nodemask_t used_nodes;
6412
	int i;
6413

6414
	cpumask_clear(span);
6415
	nodes_clear(used_nodes);
6416

6417
	cpumask_or(span, span, cpumask_of_node(node));
6418
	node_set(node, used_nodes);
6419 6420

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6421
		int next_node = find_next_best_node(node, &used_nodes);
6422

6423
		cpumask_or(span, span, cpumask_of_node(next_node));
6424 6425
	}
}
6426
#endif /* CONFIG_NUMA */
6427

6428
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6429

6430 6431
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6432 6433 6434
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6456
	cpumask_var_t		this_book_map;
6457 6458 6459 6460 6461 6462
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6463 6464 6465 6466 6467
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6468
	sa_this_book_map,
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6481
/*
6482
 * SMT sched-domains:
6483
 */
L
Linus Torvalds 已提交
6484
#ifdef CONFIG_SCHED_SMT
6485
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6486
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6487

I
Ingo Molnar 已提交
6488
static int
6489 6490
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6491
{
6492
	if (sg)
6493
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6494 6495
	return cpu;
}
6496
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6497

6498 6499 6500
/*
 * multi-core sched-domains:
 */
6501
#ifdef CONFIG_SCHED_MC
6502 6503
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6504

I
Ingo Molnar 已提交
6505
static int
6506 6507
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6508
{
6509
	int group;
6510
#ifdef CONFIG_SCHED_SMT
6511
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6512
	group = cpumask_first(mask);
6513 6514 6515
#else
	group = cpu;
#endif
6516
	if (sg)
6517
		*sg = &per_cpu(sched_group_core, group).sg;
6518
	return group;
6519
}
6520
#endif /* CONFIG_SCHED_MC */
6521

6522 6523 6524 6525 6526 6527 6528
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6529
static int
6530 6531
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6532
{
6533 6534 6535 6536 6537 6538 6539 6540
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6541
	if (sg)
6542 6543
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6544
}
6545
#endif /* CONFIG_SCHED_BOOK */
6546

6547 6548
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6549

I
Ingo Molnar 已提交
6550
static int
6551 6552
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6553
{
6554
	int group;
6555 6556 6557 6558
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6559
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6560
	group = cpumask_first(mask);
6561
#elif defined(CONFIG_SCHED_SMT)
6562
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6563
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6564
#else
6565
	group = cpu;
L
Linus Torvalds 已提交
6566
#endif
6567
	if (sg)
6568
		*sg = &per_cpu(sched_group_phys, group).sg;
6569
	return group;
L
Linus Torvalds 已提交
6570 6571 6572 6573
}

#ifdef CONFIG_NUMA
/*
6574 6575 6576
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6577
 */
6578
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6579
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6580

6581
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6582
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6583

6584 6585 6586
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6587
{
6588 6589
	int group;

6590
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6591
	group = cpumask_first(nodemask);
6592 6593

	if (sg)
6594
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6595
	return group;
L
Linus Torvalds 已提交
6596
}
6597

6598 6599 6600 6601 6602 6603 6604
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6605
	do {
6606
		for_each_cpu(j, sched_group_cpus(sg)) {
6607
			struct sched_domain *sd;
6608

6609
			sd = &per_cpu(phys_domains, j).sd;
6610
			if (j != group_first_cpu(sd->groups)) {
6611 6612 6613 6614 6615 6616
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6617

6618
			sg->cpu_power += sd->groups->cpu_power;
6619 6620 6621
		}
		sg = sg->next;
	} while (sg != group_head);
6622
}
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6644 6645
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6646 6647 6648 6649 6650 6651 6652 6653 6654
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6655
	sg->cpu_power = 0;
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6674 6675
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6676 6677
			return -ENOMEM;
		}
6678
		sg->cpu_power = 0;
6679 6680 6681 6682 6683 6684 6685 6686 6687
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6688
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6689

6690
#ifdef CONFIG_NUMA
6691
/* Free memory allocated for various sched_group structures */
6692 6693
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6694
{
6695
	int cpu, i;
6696

6697
	for_each_cpu(cpu, cpu_map) {
6698 6699 6700 6701 6702 6703
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6704
		for (i = 0; i < nr_node_ids; i++) {
6705 6706
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6707
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6708
			if (cpumask_empty(nodemask))
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6725
#else /* !CONFIG_NUMA */
6726 6727
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6728 6729
{
}
6730
#endif /* CONFIG_NUMA */
6731

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6746 6747
	long power;
	int weight;
6748 6749 6750

	WARN_ON(!sd || !sd->groups);

6751
	if (cpu != group_first_cpu(sd->groups))
6752 6753
		return;

6754 6755
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

6756 6757
	child = sd->child;

6758
	sd->groups->cpu_power = 0;
6759

6760 6761 6762 6763 6764
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6765 6766 6767
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6768
		 */
P
Peter Zijlstra 已提交
6769 6770
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6771
			power /= weight;
P
Peter Zijlstra 已提交
6772 6773
			power >>= SCHED_LOAD_SHIFT;
		}
6774
		sd->groups->cpu_power += power;
6775 6776 6777 6778
		return;
	}

	/*
6779
	 * Add cpu_power of each child group to this groups cpu_power.
6780 6781 6782
	 */
	group = child->groups;
	do {
6783
		sd->groups->cpu_power += group->cpu_power;
6784 6785 6786 6787
		group = group->next;
	} while (group != child->groups);
}

6788 6789 6790 6791 6792
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6793 6794 6795 6796 6797 6798
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6799
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6800

6801 6802 6803 6804 6805
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6806
	sd->level = SD_LV_##type;				\
6807
	SD_INIT_NAME(sd, type);					\
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6821 6822 6823
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6824

6825 6826 6827 6828
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6829 6830 6831 6832 6833 6834
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6853
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6854 6855
	} else {
		/* turn on idle balance on this domain */
6856
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6857 6858 6859
	}
}

6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
6873 6874
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
6875 6876 6877 6878 6879 6880 6881
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6882
#ifdef CONFIG_NUMA
6883 6884 6885 6886 6887 6888 6889
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6890
#endif
6891 6892 6893 6894
	case sa_none:
		break;
	}
}
6895

6896 6897 6898
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6899
#ifdef CONFIG_NUMA
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6910
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6911
		return sa_notcovered;
6912
	}
6913
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6914
#endif
6915 6916 6917 6918 6919 6920
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
6921
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
6922
		return sa_this_core_map;
6923 6924
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
6925 6926 6927 6928
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6929
		printk(KERN_WARNING "Cannot alloc root domain\n");
6930
		return sa_tmpmask;
G
Gregory Haskins 已提交
6931
	}
6932 6933
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6934

6935 6936 6937 6938
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6939
#ifdef CONFIG_NUMA
6940
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6941

6942 6943 6944 6945 6946
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6947
		set_domain_attribute(sd, attr);
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6962
#endif
6963 6964
	return sd;
}
L
Linus Torvalds 已提交
6965

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6981

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

6999 7000 7001 7002 7003
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7004
#ifdef CONFIG_SCHED_MC
7005 7006 7007 7008 7009 7010 7011
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7012
#endif
7013 7014
	return sd;
}
7015

7016 7017 7018 7019 7020
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7021
#ifdef CONFIG_SCHED_SMT
7022 7023 7024 7025 7026 7027 7028
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7029
#endif
7030 7031
	return sd;
}
L
Linus Torvalds 已提交
7032

7033 7034 7035 7036
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7037
#ifdef CONFIG_SCHED_SMT
7038 7039 7040 7041 7042 7043 7044 7045
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7046
#endif
7047
#ifdef CONFIG_SCHED_MC
7048 7049 7050 7051 7052 7053 7054
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7055 7056 7057 7058 7059 7060 7061 7062 7063
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7064
#endif
7065 7066 7067 7068 7069 7070 7071
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7072
#ifdef CONFIG_NUMA
7073 7074 7075 7076 7077
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7078 7079
	default:
		break;
7080
	}
7081
}
7082

7083 7084 7085 7086 7087 7088 7089 7090 7091
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7092
	struct sched_domain *sd;
7093
	int i;
7094
#ifdef CONFIG_NUMA
7095
	d.sd_allnodes = 0;
7096
#endif
7097

7098 7099 7100 7101
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7102

L
Linus Torvalds 已提交
7103
	/*
7104
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7105
	 */
7106
	for_each_cpu(i, cpu_map) {
7107 7108
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7109

7110
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7111
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7112
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7113
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7114
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7115
	}
7116

7117
	for_each_cpu(i, cpu_map) {
7118
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7119
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7120
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7121
	}
7122

L
Linus Torvalds 已提交
7123
	/* Set up physical groups */
7124 7125
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7126

L
Linus Torvalds 已提交
7127 7128
#ifdef CONFIG_NUMA
	/* Set up node groups */
7129 7130
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7131

7132 7133
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7134
			goto error;
L
Linus Torvalds 已提交
7135 7136 7137
#endif

	/* Calculate CPU power for physical packages and nodes */
7138
#ifdef CONFIG_SCHED_SMT
7139
	for_each_cpu(i, cpu_map) {
7140
		sd = &per_cpu(cpu_domains, i).sd;
7141
		init_sched_groups_power(i, sd);
7142
	}
L
Linus Torvalds 已提交
7143
#endif
7144
#ifdef CONFIG_SCHED_MC
7145
	for_each_cpu(i, cpu_map) {
7146
		sd = &per_cpu(core_domains, i).sd;
7147
		init_sched_groups_power(i, sd);
7148 7149
	}
#endif
7150 7151 7152 7153 7154 7155
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7156

7157
	for_each_cpu(i, cpu_map) {
7158
		sd = &per_cpu(phys_domains, i).sd;
7159
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7160 7161
	}

7162
#ifdef CONFIG_NUMA
7163
	for (i = 0; i < nr_node_ids; i++)
7164
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7165

7166
	if (d.sd_allnodes) {
7167
		struct sched_group *sg;
7168

7169
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7170
								d.tmpmask);
7171 7172
		init_numa_sched_groups_power(sg);
	}
7173 7174
#endif

L
Linus Torvalds 已提交
7175
	/* Attach the domains */
7176
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7177
#ifdef CONFIG_SCHED_SMT
7178
		sd = &per_cpu(cpu_domains, i).sd;
7179
#elif defined(CONFIG_SCHED_MC)
7180
		sd = &per_cpu(core_domains, i).sd;
7181 7182
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7183
#else
7184
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7185
#endif
7186
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7187
	}
7188

7189 7190 7191
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7192 7193

error:
7194 7195
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7196
}
P
Paul Jackson 已提交
7197

7198
static int build_sched_domains(const struct cpumask *cpu_map)
7199 7200 7201 7202
{
	return __build_sched_domains(cpu_map, NULL);
}

7203
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7204
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7205 7206
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7207 7208 7209

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7210 7211
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7212
 */
7213
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7214

7215 7216 7217 7218 7219 7220
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7221
{
7222
	return 0;
7223 7224
}

7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7250
/*
I
Ingo Molnar 已提交
7251
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7252 7253
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7254
 */
7255
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7256
{
7257 7258
	int err;

7259
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7260
	ndoms_cur = 1;
7261
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7262
	if (!doms_cur)
7263 7264
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7265
	dattr_cur = NULL;
7266
	err = build_sched_domains(doms_cur[0]);
7267
	register_sched_domain_sysctl();
7268 7269

	return err;
7270 7271
}

7272 7273
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7274
{
7275
	free_sched_groups(cpu_map, tmpmask);
7276
}
L
Linus Torvalds 已提交
7277

7278 7279 7280 7281
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7282
static void detach_destroy_domains(const struct cpumask *cpu_map)
7283
{
7284 7285
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7286 7287
	int i;

7288
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7289
		cpu_attach_domain(NULL, &def_root_domain, i);
7290
	synchronize_sched();
7291
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7292 7293
}

7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7310 7311
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7312
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7313 7314 7315
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7316
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7317 7318 7319
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7320 7321 7322
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7323 7324 7325 7326 7327 7328
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7329
 *
7330
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7331 7332
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7333
 *
P
Paul Jackson 已提交
7334 7335
 * Call with hotplug lock held
 */
7336
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7337
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7338
{
7339
	int i, j, n;
7340
	int new_topology;
P
Paul Jackson 已提交
7341

7342
	mutex_lock(&sched_domains_mutex);
7343

7344 7345 7346
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7347 7348 7349
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7350
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7351 7352 7353

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7354
		for (j = 0; j < n && !new_topology; j++) {
7355
			if (cpumask_equal(doms_cur[i], doms_new[j])
7356
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7357 7358 7359
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7360
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7361 7362 7363 7364
match1:
		;
	}

7365 7366
	if (doms_new == NULL) {
		ndoms_cur = 0;
7367
		doms_new = &fallback_doms;
7368
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7369
		WARN_ON_ONCE(dattr_new);
7370 7371
	}

P
Paul Jackson 已提交
7372 7373
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7374
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7375
			if (cpumask_equal(doms_new[i], doms_cur[j])
7376
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7377 7378 7379
				goto match2;
		}
		/* no match - add a new doms_new */
7380
		__build_sched_domains(doms_new[i],
7381
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7382 7383 7384 7385 7386
match2:
		;
	}

	/* Remember the new sched domains */
7387 7388
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7389
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7390
	doms_cur = doms_new;
7391
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7392
	ndoms_cur = ndoms_new;
7393 7394

	register_sched_domain_sysctl();
7395

7396
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7397 7398
}

7399
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7400
static void arch_reinit_sched_domains(void)
7401
{
7402
	get_online_cpus();
7403 7404 7405 7406

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7407
	rebuild_sched_domains();
7408
	put_online_cpus();
7409 7410 7411 7412
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7413
	unsigned int level = 0;
7414

7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7426 7427 7428
		return -EINVAL;

	if (smt)
7429
		sched_smt_power_savings = level;
7430
	else
7431
		sched_mc_power_savings = level;
7432

7433
	arch_reinit_sched_domains();
7434

7435
	return count;
7436 7437 7438
}

#ifdef CONFIG_SCHED_MC
7439
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7440
					   struct sysdev_class_attribute *attr,
7441
					   char *page)
7442 7443 7444
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7445
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7446
					    struct sysdev_class_attribute *attr,
7447
					    const char *buf, size_t count)
7448 7449 7450
{
	return sched_power_savings_store(buf, count, 0);
}
7451 7452 7453
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7454 7455 7456
#endif

#ifdef CONFIG_SCHED_SMT
7457
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7458
					    struct sysdev_class_attribute *attr,
7459
					    char *page)
7460 7461 7462
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7463
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7464
					     struct sysdev_class_attribute *attr,
7465
					     const char *buf, size_t count)
7466 7467 7468
{
	return sched_power_savings_store(buf, count, 1);
}
7469 7470
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7471 7472 7473
		   sched_smt_power_savings_store);
#endif

7474
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7490
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7491

L
Linus Torvalds 已提交
7492
/*
7493 7494 7495
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7496
 */
7497 7498
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7499
{
7500
	switch (action & ~CPU_TASKS_FROZEN) {
7501
	case CPU_ONLINE:
7502
	case CPU_DOWN_FAILED:
7503
		cpuset_update_active_cpus();
7504
		return NOTIFY_OK;
7505 7506 7507 7508
	default:
		return NOTIFY_DONE;
	}
}
7509

7510 7511
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7512 7513 7514 7515 7516
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7517 7518 7519 7520 7521 7522 7523
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7524
{
P
Peter Zijlstra 已提交
7525 7526
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7527 7528
	switch (action) {
	case CPU_DOWN_PREPARE:
7529
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7530
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7531 7532 7533
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7534
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7535
	case CPU_ONLINE:
7536
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7537
		enable_runtime(cpu_rq(cpu));
7538 7539
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7540 7541 7542 7543 7544 7545 7546
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7547 7548 7549
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7550
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7551

7552 7553 7554 7555 7556
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7557
	get_online_cpus();
7558
	mutex_lock(&sched_domains_mutex);
7559
	arch_init_sched_domains(cpu_active_mask);
7560 7561 7562
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7563
	mutex_unlock(&sched_domains_mutex);
7564
	put_online_cpus();
7565

7566 7567
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7568 7569 7570 7571

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7572
	init_hrtick();
7573 7574

	/* Move init over to a non-isolated CPU */
7575
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7576
		BUG();
I
Ingo Molnar 已提交
7577
	sched_init_granularity();
7578
	free_cpumask_var(non_isolated_cpus);
7579

7580
	init_sched_rt_class();
L
Linus Torvalds 已提交
7581 7582 7583 7584
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7585
	sched_init_granularity();
L
Linus Torvalds 已提交
7586 7587 7588
}
#endif /* CONFIG_SMP */

7589 7590
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7591 7592 7593 7594 7595 7596 7597
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7598
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7599 7600
{
	cfs_rq->tasks_timeline = RB_ROOT;
7601
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7602 7603 7604
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7605
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7606 7607
}

P
Peter Zijlstra 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7621
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7622
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7623
#ifdef CONFIG_SMP
7624
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7625 7626
#endif
#endif
P
Peter Zijlstra 已提交
7627 7628 7629
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7630
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7631 7632 7633 7634
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7635
	rt_rq->rt_runtime = 0;
7636
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7637

7638
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7639
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7640 7641
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7642 7643
}

P
Peter Zijlstra 已提交
7644
#ifdef CONFIG_FAIR_GROUP_SCHED
7645
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7646
				struct sched_entity *se, int cpu,
7647
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7648
{
7649
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7650 7651 7652 7653 7654
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7655 7656 7657 7658
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7659 7660 7661 7662 7663
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7664
	se->my_q = cfs_rq;
7665
	update_load_set(&se->load, 0);
7666
	se->parent = parent;
P
Peter Zijlstra 已提交
7667
}
7668
#endif
P
Peter Zijlstra 已提交
7669

7670
#ifdef CONFIG_RT_GROUP_SCHED
7671
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7672
		struct sched_rt_entity *rt_se, int cpu,
7673
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7674
{
7675 7676
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7677 7678 7679
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7680
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7681 7682

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7683 7684 7685
	if (!rt_se)
		return;

7686 7687 7688 7689 7690
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7691
	rt_se->my_q = rt_rq;
7692
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7693 7694 7695 7696
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7697 7698
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7699
	int i, j;
7700 7701 7702 7703 7704 7705 7706
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7707
#endif
7708
#ifdef CONFIG_CPUMASK_OFFSTACK
7709
	alloc_size += num_possible_cpus() * cpumask_size();
7710 7711
#endif
	if (alloc_size) {
7712
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7713 7714 7715 7716 7717 7718 7719

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7720

7721
#endif /* CONFIG_FAIR_GROUP_SCHED */
7722 7723 7724 7725 7726
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7727 7728
		ptr += nr_cpu_ids * sizeof(void **);

7729
#endif /* CONFIG_RT_GROUP_SCHED */
7730 7731 7732 7733 7734 7735
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7736
	}
I
Ingo Molnar 已提交
7737

G
Gregory Haskins 已提交
7738 7739 7740 7741
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7742 7743 7744 7745 7746 7747
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7748
#endif /* CONFIG_RT_GROUP_SCHED */
7749

D
Dhaval Giani 已提交
7750
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7751
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7752 7753
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7754
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7755

7756
	for_each_possible_cpu(i) {
7757
		struct rq *rq;
L
Linus Torvalds 已提交
7758 7759

		rq = cpu_rq(i);
7760
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7761
		rq->nr_running = 0;
7762 7763
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7764
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7765
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7766
#ifdef CONFIG_FAIR_GROUP_SCHED
7767
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7768
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7784
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7785 7786 7787 7788
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7789
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
7790
#endif
D
Dhaval Giani 已提交
7791 7792 7793
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7794
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7795
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7796
#ifdef CONFIG_CGROUP_SCHED
7797
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
D
Dhaval Giani 已提交
7798
#endif
I
Ingo Molnar 已提交
7799
#endif
L
Linus Torvalds 已提交
7800

I
Ingo Molnar 已提交
7801 7802
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7803 7804 7805

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7806
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7807
		rq->sd = NULL;
G
Gregory Haskins 已提交
7808
		rq->rd = NULL;
7809
		rq->cpu_power = SCHED_LOAD_SCALE;
7810
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7811
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7812
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7813
		rq->push_cpu = 0;
7814
		rq->cpu = i;
7815
		rq->online = 0;
7816 7817
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7818
		rq_attach_root(rq, &def_root_domain);
7819 7820 7821 7822
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
7823
#endif
P
Peter Zijlstra 已提交
7824
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7825 7826 7827
		atomic_set(&rq->nr_iowait, 0);
	}

7828
	set_load_weight(&init_task);
7829

7830 7831 7832 7833
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7834
#ifdef CONFIG_SMP
7835
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7836 7837
#endif

7838
#ifdef CONFIG_RT_MUTEXES
7839
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7840 7841
#endif

L
Linus Torvalds 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7855 7856 7857

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7858 7859 7860 7861
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7862

7863
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7864
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7865
#ifdef CONFIG_SMP
7866
#ifdef CONFIG_NO_HZ
7867 7868 7869 7870 7871
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7872
#endif
R
Rusty Russell 已提交
7873 7874 7875
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7876
#endif /* SMP */
7877

7878
	perf_event_init();
7879

7880
	scheduler_running = 1;
L
Linus Torvalds 已提交
7881 7882 7883
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7884 7885
static inline int preempt_count_equals(int preempt_offset)
{
7886
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7887 7888 7889 7890

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7891
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7892
{
7893
#ifdef in_atomic
L
Linus Torvalds 已提交
7894 7895
	static unsigned long prev_jiffy;	/* ratelimiting */

7896 7897
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7898 7899 7900 7901 7902
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7903 7904 7905 7906 7907 7908 7909
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7910 7911 7912 7913 7914

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7915 7916 7917 7918 7919 7920
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7921 7922 7923
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7924

7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7935 7936
void normalize_rt_tasks(void)
{
7937
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7938
	unsigned long flags;
7939
	struct rq *rq;
L
Linus Torvalds 已提交
7940

7941
	read_lock_irqsave(&tasklist_lock, flags);
7942
	do_each_thread(g, p) {
7943 7944 7945 7946 7947 7948
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7949 7950
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7951 7952 7953
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7954
#endif
I
Ingo Molnar 已提交
7955 7956 7957 7958 7959 7960 7961 7962

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7963
			continue;
I
Ingo Molnar 已提交
7964
		}
L
Linus Torvalds 已提交
7965

7966
		raw_spin_lock(&p->pi_lock);
7967
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7968

7969
		normalize_task(rq, p);
7970

7971
		__task_rq_unlock(rq);
7972
		raw_spin_unlock(&p->pi_lock);
7973 7974
	} while_each_thread(g, p);

7975
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7976 7977 7978
}

#endif /* CONFIG_MAGIC_SYSRQ */
7979

7980
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7981
/*
7982
 * These functions are only useful for the IA64 MCA handling, or kdb.
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7997
struct task_struct *curr_task(int cpu)
7998 7999 8000 8001
{
	return cpu_curr(cpu);
}

8002 8003 8004
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8005 8006 8007 8008 8009 8010
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8011 8012
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8013 8014 8015 8016 8017 8018 8019
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8020
void set_curr_task(int cpu, struct task_struct *p)
8021 8022 8023 8024 8025
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8026

8027 8028
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8043 8044
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8045 8046
{
	struct cfs_rq *cfs_rq;
8047
	struct sched_entity *se;
8048
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8049 8050
	int i;

8051
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8052 8053
	if (!tg->cfs_rq)
		goto err;
8054
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8055 8056
	if (!tg->se)
		goto err;
8057 8058

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8059 8060

	for_each_possible_cpu(i) {
8061
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8062

8063 8064
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8065 8066 8067
		if (!cfs_rq)
			goto err;

8068 8069
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8070
		if (!se)
8071
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8072

8073
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8074 8075 8076 8077
	}

	return 1;

P
Peter Zijlstra 已提交
8078
err_free_rq:
8079
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8080
err:
8081 8082 8083 8084 8085
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;
	int i;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[i]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8100
}
8101
#else /* !CONFG_FAIR_GROUP_SCHED */
8102 8103 8104 8105
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8106 8107
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8108 8109 8110 8111 8112 8113 8114
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8115
#endif /* CONFIG_FAIR_GROUP_SCHED */
8116 8117

#ifdef CONFIG_RT_GROUP_SCHED
8118 8119 8120 8121
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8122 8123
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8135 8136
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8137 8138
{
	struct rt_rq *rt_rq;
8139
	struct sched_rt_entity *rt_se;
8140 8141 8142
	struct rq *rq;
	int i;

8143
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8144 8145
	if (!tg->rt_rq)
		goto err;
8146
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8147 8148 8149
	if (!tg->rt_se)
		goto err;

8150 8151
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8152 8153 8154 8155

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8156 8157
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8158 8159
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8160

8161 8162
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8163
		if (!rt_se)
8164
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8165

8166
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8167 8168
	}

8169 8170
	return 1;

P
Peter Zijlstra 已提交
8171
err_free_rq:
8172
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8173
err:
8174 8175
	return 0;
}
8176
#else /* !CONFIG_RT_GROUP_SCHED */
8177 8178 8179 8180
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8181 8182
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8183 8184 8185
{
	return 1;
}
8186
#endif /* CONFIG_RT_GROUP_SCHED */
8187

D
Dhaval Giani 已提交
8188
#ifdef CONFIG_CGROUP_SCHED
8189 8190 8191 8192 8193 8194 8195 8196
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8197
struct task_group *sched_create_group(struct task_group *parent)
8198 8199 8200 8201 8202 8203 8204 8205
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8206
	if (!alloc_fair_sched_group(tg, parent))
8207 8208
		goto err;

8209
	if (!alloc_rt_sched_group(tg, parent))
8210 8211
		goto err;

8212
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8213
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8214 8215 8216 8217 8218

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8219
	list_add_rcu(&tg->siblings, &parent->children);
8220
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8221

8222
	return tg;
S
Srivatsa Vaddagiri 已提交
8223 8224

err:
P
Peter Zijlstra 已提交
8225
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8226 8227 8228
	return ERR_PTR(-ENOMEM);
}

8229
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8230
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8231 8232
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8233
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8234 8235
}

8236
/* Destroy runqueue etc associated with a task group */
8237
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8238
{
8239
	unsigned long flags;
8240
	int i;
S
Srivatsa Vaddagiri 已提交
8241

8242 8243
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8244
		unregister_fair_sched_group(tg, i);
8245 8246

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8247
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8248
	list_del_rcu(&tg->siblings);
8249
	spin_unlock_irqrestore(&task_group_lock, flags);
8250 8251

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8252
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8253 8254
}

8255
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8256 8257 8258
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8259 8260
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8261 8262 8263 8264 8265 8266 8267
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8268
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8269 8270
	on_rq = tsk->se.on_rq;

8271
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8272
		dequeue_task(rq, tsk, 0);
8273 8274
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8275

P
Peter Zijlstra 已提交
8276
#ifdef CONFIG_FAIR_GROUP_SCHED
8277 8278 8279
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8280
#endif
8281
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8282

8283 8284 8285
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8286
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8287 8288 8289

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8290
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8291

8292
#ifdef CONFIG_FAIR_GROUP_SCHED
8293 8294
static DEFINE_MUTEX(shares_mutex);

8295
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8296 8297
{
	int i;
8298
	unsigned long flags;
8299

8300 8301 8302 8303 8304 8305
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8306 8307
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8308 8309
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8310

8311
	mutex_lock(&shares_mutex);
8312
	if (tg->shares == shares)
8313
		goto done;
S
Srivatsa Vaddagiri 已提交
8314

8315
	tg->shares = shares;
8316
	for_each_possible_cpu(i) {
8317 8318 8319 8320 8321 8322 8323 8324 8325
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se), 0);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8326
	}
S
Srivatsa Vaddagiri 已提交
8327

8328
done:
8329
	mutex_unlock(&shares_mutex);
8330
	return 0;
S
Srivatsa Vaddagiri 已提交
8331 8332
}

8333 8334 8335 8336
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8337
#endif
8338

8339
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8340
/*
P
Peter Zijlstra 已提交
8341
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8342
 */
P
Peter Zijlstra 已提交
8343 8344 8345 8346 8347
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8348
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8349

P
Peter Zijlstra 已提交
8350
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8351 8352
}

P
Peter Zijlstra 已提交
8353 8354
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8355
{
P
Peter Zijlstra 已提交
8356
	struct task_struct *g, *p;
8357

P
Peter Zijlstra 已提交
8358 8359 8360 8361
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8362

P
Peter Zijlstra 已提交
8363 8364
	return 0;
}
8365

P
Peter Zijlstra 已提交
8366 8367 8368 8369 8370
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8371

P
Peter Zijlstra 已提交
8372 8373 8374 8375 8376 8377
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8378

P
Peter Zijlstra 已提交
8379 8380
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8381

P
Peter Zijlstra 已提交
8382 8383 8384
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8385 8386
	}

8387 8388 8389 8390 8391
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8392

8393 8394 8395
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8396 8397
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8398

P
Peter Zijlstra 已提交
8399
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8400

8401 8402 8403 8404 8405
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8406

8407 8408 8409
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8410 8411 8412
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8413

P
Peter Zijlstra 已提交
8414 8415 8416 8417
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8418

P
Peter Zijlstra 已提交
8419
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8420
	}
P
Peter Zijlstra 已提交
8421

P
Peter Zijlstra 已提交
8422 8423 8424 8425
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8426 8427
}

P
Peter Zijlstra 已提交
8428
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8429
{
P
Peter Zijlstra 已提交
8430 8431 8432 8433 8434 8435 8436
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8437 8438
}

8439 8440
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8441
{
P
Peter Zijlstra 已提交
8442
	int i, err = 0;
P
Peter Zijlstra 已提交
8443 8444

	mutex_lock(&rt_constraints_mutex);
8445
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8446 8447
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8448
		goto unlock;
P
Peter Zijlstra 已提交
8449

8450
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8451 8452
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8453 8454 8455 8456

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8457
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8458
		rt_rq->rt_runtime = rt_runtime;
8459
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8460
	}
8461
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8462
unlock:
8463
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8464 8465 8466
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8467 8468
}

8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8481 8482 8483 8484
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8485
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8486 8487
		return -1;

8488
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8489 8490 8491
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8492 8493 8494 8495 8496 8497 8498 8499

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8500 8501 8502
	if (rt_period == 0)
		return -EINVAL;

8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8517
	u64 runtime, period;
8518 8519
	int ret = 0;

8520 8521 8522
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8523 8524 8525 8526 8527 8528 8529 8530
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8531

8532
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8533
	read_lock(&tasklist_lock);
8534
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8535
	read_unlock(&tasklist_lock);
8536 8537 8538 8539
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8550
#else /* !CONFIG_RT_GROUP_SCHED */
8551 8552
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8553 8554 8555
	unsigned long flags;
	int i;

8556 8557 8558
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8559 8560 8561 8562 8563 8564 8565
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8566
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8567 8568 8569
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8570
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8571
		rt_rq->rt_runtime = global_rt_runtime();
8572
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8573
	}
8574
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8575

8576 8577
	return 0;
}
8578
#endif /* CONFIG_RT_GROUP_SCHED */
8579 8580

int sched_rt_handler(struct ctl_table *table, int write,
8581
		void __user *buffer, size_t *lenp,
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8592
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8609

8610
#ifdef CONFIG_CGROUP_SCHED
8611 8612

/* return corresponding task_group object of a cgroup */
8613
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8614
{
8615 8616
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8617 8618 8619
}

static struct cgroup_subsys_state *
8620
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8621
{
8622
	struct task_group *tg, *parent;
8623

8624
	if (!cgrp->parent) {
8625 8626 8627 8628
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8629 8630
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8631 8632 8633 8634 8635 8636
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8637 8638
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8639
{
8640
	struct task_group *tg = cgroup_tg(cgrp);
8641 8642 8643 8644

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8645
static int
8646
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8647
{
8648
#ifdef CONFIG_RT_GROUP_SCHED
8649
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8650 8651
		return -EINVAL;
#else
8652 8653 8654
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8655
#endif
8656 8657
	return 0;
}
8658

8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8678 8679 8680 8681
	return 0;
}

static void
8682
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8683 8684
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8685 8686
{
	sched_move_task(tsk);
8687 8688 8689 8690 8691 8692 8693 8694
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8695 8696
}

8697
#ifdef CONFIG_FAIR_GROUP_SCHED
8698
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8699
				u64 shareval)
8700
{
8701
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8702 8703
}

8704
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8705
{
8706
	struct task_group *tg = cgroup_tg(cgrp);
8707 8708 8709

	return (u64) tg->shares;
}
8710
#endif /* CONFIG_FAIR_GROUP_SCHED */
8711

8712
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8713
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8714
				s64 val)
P
Peter Zijlstra 已提交
8715
{
8716
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8717 8718
}

8719
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8720
{
8721
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8722
}
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8734
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8735

8736
static struct cftype cpu_files[] = {
8737
#ifdef CONFIG_FAIR_GROUP_SCHED
8738 8739
	{
		.name = "shares",
8740 8741
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8742
	},
8743 8744
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8745
	{
P
Peter Zijlstra 已提交
8746
		.name = "rt_runtime_us",
8747 8748
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8749
	},
8750 8751
	{
		.name = "rt_period_us",
8752 8753
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8754
	},
8755
#endif
8756 8757 8758 8759
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8760
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8761 8762 8763
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8764 8765 8766 8767 8768 8769 8770
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8771 8772 8773
	.early_init	= 1,
};

8774
#endif	/* CONFIG_CGROUP_SCHED */
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8785
/* track cpu usage of a group of tasks and its child groups */
8786 8787 8788
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8789
	u64 __percpu *cpuusage;
8790
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8791
	struct cpuacct *parent;
8792 8793 8794 8795 8796
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8797
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8798
{
8799
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8812
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8813 8814
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8815
	int i;
8816 8817

	if (!ca)
8818
		goto out;
8819 8820

	ca->cpuusage = alloc_percpu(u64);
8821 8822 8823 8824 8825 8826
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8827

8828 8829 8830
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8831
	return &ca->css;
8832 8833 8834 8835 8836 8837 8838 8839 8840

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8841 8842 8843
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8844
static void
8845
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8846
{
8847
	struct cpuacct *ca = cgroup_ca(cgrp);
8848
	int i;
8849

8850 8851
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8852 8853 8854 8855
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8856 8857
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8858
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8859 8860 8861 8862 8863 8864
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8865
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8866
	data = *cpuusage;
8867
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8868 8869 8870 8871 8872 8873 8874 8875 8876
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8877
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8878 8879 8880 8881 8882

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8883
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8884
	*cpuusage = val;
8885
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8886 8887 8888 8889 8890
#else
	*cpuusage = val;
#endif
}

8891
/* return total cpu usage (in nanoseconds) of a group */
8892
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8893
{
8894
	struct cpuacct *ca = cgroup_ca(cgrp);
8895 8896 8897
	u64 totalcpuusage = 0;
	int i;

8898 8899
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8900 8901 8902 8903

	return totalcpuusage;
}

8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8916 8917
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8918 8919 8920 8921 8922

out:
	return err;
}

8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8957 8958 8959
static struct cftype files[] = {
	{
		.name = "usage",
8960 8961
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8962
	},
8963 8964 8965 8966
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8967 8968 8969 8970
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8971 8972
};

8973
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8974
{
8975
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8986
	int cpu;
8987

L
Li Zefan 已提交
8988
	if (unlikely(!cpuacct_subsys.active))
8989 8990
		return;

8991
	cpu = task_cpu(tsk);
8992 8993 8994

	rcu_read_lock();

8995 8996
	ca = task_ca(tsk);

8997
	for (; ca; ca = ca->parent) {
8998
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8999 9000
		*cpuusage += cputime;
	}
9001 9002

	rcu_read_unlock();
9003 9004
}

9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9022 9023 9024 9025 9026 9027 9028
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9029
	int batch = CPUACCT_BATCH;
9030 9031 9032 9033 9034 9035 9036 9037

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9038
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9039 9040 9041 9042 9043
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9044 9045 9046 9047 9048 9049 9050 9051
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9052 9053 9054 9055 9056

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
9057
	barrier();
9058 9059 9060 9061 9062
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9063
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9064

9065
static int synchronize_sched_expedited_cpu_stop(void *data)
9066
{
9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9078
	smp_mb(); /* See above comment block. */
9079
	return 0;
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9094
	int snap, trycount = 0;
9095 9096

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9097
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9098
	get_online_cpus();
9099 9100
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9101
			     NULL) == -EAGAIN) {
9102 9103 9104 9105 9106 9107 9108
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9109
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9110 9111 9112 9113 9114
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9115
	atomic_inc(&synchronize_sched_expedited_count);
9116
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9117 9118 9119 9120 9121
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */