sched.c 218.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 495 496
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
497 498
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
499 500 501 502
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
503 504
	struct rt_rq rt;

I
Ingo Molnar 已提交
505
#ifdef CONFIG_FAIR_GROUP_SCHED
506 507
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
508 509
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
510
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

521
	struct task_struct *curr, *idle;
522
	unsigned long next_balance;
L
Linus Torvalds 已提交
523
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
524

525
	u64 clock;
I
Ingo Molnar 已提交
526

L
Linus Torvalds 已提交
527 528 529
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
530
	struct root_domain *rd;
L
Linus Torvalds 已提交
531 532
	struct sched_domain *sd;

533
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
534
	/* For active balancing */
535
	int post_schedule;
L
Linus Torvalds 已提交
536 537
	int active_balance;
	int push_cpu;
538 539
	/* cpu of this runqueue: */
	int cpu;
540
	int online;
L
Linus Torvalds 已提交
541

542
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
543

544
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
545
	struct list_head migration_queue;
546 547 548

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
549 550
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
551 552
#endif

553 554 555 556
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
557
#ifdef CONFIG_SCHED_HRTICK
558 559 560 561
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
562 563 564
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
565 566 567
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
568 569
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
570 571

	/* sys_sched_yield() stats */
572
	unsigned int yld_count;
L
Linus Torvalds 已提交
573 574

	/* schedule() stats */
575 576 577
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
578 579

	/* try_to_wake_up() stats */
580 581
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
582 583

	/* BKL stats */
584
	unsigned int bkl_count;
L
Linus Torvalds 已提交
585 586 587
#endif
};

588
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
589

P
Peter Zijlstra 已提交
590 591
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
592
{
P
Peter Zijlstra 已提交
593
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
594 595
}

596 597 598 599 600 601 602 603 604
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
605 606
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
607
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
608 609 610 611
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
612 613
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
614 615 616 617 618

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
619
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
620

I
Ingo Molnar 已提交
621
inline void update_rq_clock(struct rq *rq)
622 623 624 625
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
626 627 628 629 630 631 632 633 634
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
635 636
/**
 * runqueue_is_locked
637
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
638 639 640 641 642
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
643
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
644
{
645
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
646 647
}

I
Ingo Molnar 已提交
648 649 650
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
651 652 653 654

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
655
enum {
P
Peter Zijlstra 已提交
656
#include "sched_features.h"
I
Ingo Molnar 已提交
657 658
};

P
Peter Zijlstra 已提交
659 660 661 662 663
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
664
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
665 666 667 668 669 670 671 672 673
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

674
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
675 676 677 678 679 680
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
681
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
682 683 684 685
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
686 687 688
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
689
	}
L
Li Zefan 已提交
690
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
691

L
Li Zefan 已提交
692
	return 0;
P
Peter Zijlstra 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
712
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

732
	*ppos += cnt;
P
Peter Zijlstra 已提交
733 734 735 736

	return cnt;
}

L
Li Zefan 已提交
737 738 739 740 741
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

742
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
743 744 745 746 747
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
762

763 764 765 766 767 768
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
769 770
/*
 * ratelimit for updating the group shares.
771
 * default: 0.25ms
P
Peter Zijlstra 已提交
772
 */
773
unsigned int sysctl_sched_shares_ratelimit = 250000;
774
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
775

776 777 778 779 780 781 782
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

783 784 785 786 787 788 789 790
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
791
/*
P
Peter Zijlstra 已提交
792
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
793 794
 * default: 1s
 */
P
Peter Zijlstra 已提交
795
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
796

797 798
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
799 800 801 802 803
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
804

805 806 807 808 809 810 811
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
812
	if (sysctl_sched_rt_runtime < 0)
813 814 815 816
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
817

L
Linus Torvalds 已提交
818
#ifndef prepare_arch_switch
819 820 821 822 823 824
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

825 826 827 828 829
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

830
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
831
static inline int task_running(struct rq *rq, struct task_struct *p)
832
{
833
	return task_current(rq, p);
834 835
}

836
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
837 838 839
{
}

840
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
841
{
842 843 844 845
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
846 847 848 849 850 851 852
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

853
	raw_spin_unlock_irq(&rq->lock);
854 855 856
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
857
static inline int task_running(struct rq *rq, struct task_struct *p)
858 859 860 861
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
862
	return task_current(rq, p);
863 864 865
#endif
}

866
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
867 868 869 870 871 872 873 874 875 876
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
877
	raw_spin_unlock_irq(&rq->lock);
878
#else
879
	raw_spin_unlock(&rq->lock);
880 881 882
#endif
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 885 886 887 888 889 890 891 892 893 894 895
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
896
#endif
897 898
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
899

900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

913 914 915 916
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
917
static inline struct rq *__task_rq_lock(struct task_struct *p)
918 919
	__acquires(rq->lock)
{
920 921
	struct rq *rq;

922
	for (;;) {
923 924 925
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
926
		raw_spin_lock(&rq->lock);
927
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
928
			return rq;
929
		raw_spin_unlock(&rq->lock);
930 931 932
	}
}

L
Linus Torvalds 已提交
933 934
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
935
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
936 937
 * explicitly disabling preemption.
 */
938
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
939 940
	__acquires(rq->lock)
{
941
	struct rq *rq;
L
Linus Torvalds 已提交
942

943
	for (;;) {
944 945
		while (task_is_waking(p))
			cpu_relax();
946 947
		local_irq_save(*flags);
		rq = task_rq(p);
948
		raw_spin_lock(&rq->lock);
949
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
950
			return rq;
951
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
952 953 954
	}
}

955 956 957 958 959
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
960
	raw_spin_unlock_wait(&rq->lock);
961 962
}

A
Alexey Dobriyan 已提交
963
static void __task_rq_unlock(struct rq *rq)
964 965
	__releases(rq->lock)
{
966
	raw_spin_unlock(&rq->lock);
967 968
}

969
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
973 974 975
}

/*
976
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
977
 */
A
Alexey Dobriyan 已提交
978
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
979 980
	__acquires(rq->lock)
{
981
	struct rq *rq;
L
Linus Torvalds 已提交
982 983 984

	local_irq_disable();
	rq = this_rq();
985
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
986 987 988 989

	return rq;
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1011
	if (!cpu_active(cpu_of(rq)))
1012
		return 0;
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1032
	raw_spin_lock(&rq->lock);
1033
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1034
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1036 1037 1038 1039

	return HRTIMER_NORESTART;
}

1040
#ifdef CONFIG_SMP
1041 1042 1043 1044
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1045
{
1046
	struct rq *rq = arg;
1047

1048
	raw_spin_lock(&rq->lock);
1049 1050
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1051
	raw_spin_unlock(&rq->lock);
1052 1053
}

1054 1055 1056 1057 1058 1059
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1060
{
1061 1062
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063

1064
	hrtimer_set_expires(timer, time);
1065 1066 1067 1068

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1069
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 1071
		rq->hrtick_csd_pending = 1;
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1086
		hrtick_clear(cpu_rq(cpu));
1087 1088 1089 1090 1091 1092
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1093
static __init void init_hrtick(void)
1094 1095 1096
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1097 1098 1099 1100 1101 1102 1103 1104
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1105
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106
			HRTIMER_MODE_REL_PINNED, 0);
1107
}
1108

A
Andrew Morton 已提交
1109
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1110 1111
{
}
1112
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1113

1114
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1115
{
1116 1117
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1118

1119 1120 1121 1122
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1123

1124 1125
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1126
}
A
Andrew Morton 已提交
1127
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1136 1137 1138
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1139
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140

I
Ingo Molnar 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1154
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1155 1156 1157
{
	int cpu;

1158
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1159

1160
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1161 1162
		return;

1163
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1180
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1181 1182
		return;
	resched_task(cpu_curr(cpu));
1183
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1184
}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1219
	set_tsk_need_resched(rq->idle);
1220 1221 1222 1223 1224 1225

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1226
#endif /* CONFIG_NO_HZ */
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1249
#else /* !CONFIG_SMP */
1250
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1251
{
1252
	assert_raw_spin_locked(&task_rq(p)->lock);
1253
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1254
}
1255 1256 1257 1258

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1259
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1260

1261 1262 1263 1264 1265 1266 1267 1268
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1269 1270 1271
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1272
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1273

1274 1275 1276
/*
 * delta *= weight / lw
 */
1277
static unsigned long
1278 1279 1280 1281 1282
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1283 1284 1285 1286 1287 1288 1289
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1290 1291 1292 1293 1294

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1295
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1296
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1297 1298
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1299
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1300

1301
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1302 1303
}

1304
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1305 1306
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1307
	lw->inv_weight = 0;
1308 1309
}

1310
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1311 1312
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1313
	lw->inv_weight = 0;
1314 1315
}

1316 1317 1318 1319
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1320
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1321 1322 1323 1324
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1325 1326
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1336 1337 1338
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1339 1340
 */
static const int prio_to_weight[40] = {
1341 1342 1343 1344 1345 1346 1347 1348
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1349 1350
};

1351 1352 1353 1354 1355 1356 1357
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1358
static const u32 prio_to_wmult[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1367
};
1368

1369 1370 1371 1372 1373 1374 1375 1376
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1377 1378
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1379 1380
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1381 1382
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383 1384
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1385 1386
#endif

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1397
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1398
typedef int (*tg_visitor)(struct task_group *, void *);
1399 1400 1401 1402 1403

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1404
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1405 1406
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1407
	int ret;
1408 1409 1410 1411

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1412 1413 1414
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1415 1416 1417 1418 1419 1420 1421
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1422 1423 1424
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1425 1426 1427 1428 1429

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1430
out_unlock:
1431
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1432 1433

	return ret;
1434 1435
}

P
Peter Zijlstra 已提交
1436 1437 1438
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1439
}
P
Peter Zijlstra 已提交
1440 1441 1442
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1502 1503 1504 1505 1506
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1507
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1508

1509 1510
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1511 1512
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1513 1514 1515 1516 1517

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1518

1519
static __read_mostly unsigned long *update_shares_data;
1520

1521 1522 1523 1524 1525
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1526 1527 1528
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1529
				    unsigned long *usd_rq_weight)
1530
{
1531
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1532
	int boost = 0;
1533

1534
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1535 1536 1537 1538
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1539

1540
	/*
P
Peter Zijlstra 已提交
1541 1542 1543
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1544
	 */
1545
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1546
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1547

1548 1549 1550 1551
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1552

1553
		raw_spin_lock_irqsave(&rq->lock, flags);
1554
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1555
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1556
		__set_se_shares(tg->se[cpu], shares);
1557
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1558
	}
1559
}
1560 1561

/*
1562 1563 1564
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1565
 */
P
Peter Zijlstra 已提交
1566
static int tg_shares_up(struct task_group *tg, void *data)
1567
{
1568
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1569
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1570
	struct sched_domain *sd = data;
1571
	unsigned long flags;
1572
	int i;
1573

1574 1575 1576 1577
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1578
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1579

1580
	for_each_cpu(i, sched_domain_span(sd)) {
1581
		weight = tg->cfs_rq[i]->load.weight;
1582
		usd_rq_weight[i] = weight;
1583

1584
		rq_weight += weight;
1585 1586 1587 1588 1589 1590 1591 1592
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1593
		sum_weight += weight;
1594
		shares += tg->cfs_rq[i]->shares;
1595 1596
	}

1597 1598 1599
	if (!rq_weight)
		rq_weight = sum_weight;

1600 1601 1602 1603 1604
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1605

1606
	for_each_cpu(i, sched_domain_span(sd))
1607
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1608 1609

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1610 1611

	return 0;
1612 1613 1614
}

/*
1615 1616 1617
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1618
 */
P
Peter Zijlstra 已提交
1619
static int tg_load_down(struct task_group *tg, void *data)
1620
{
1621
	unsigned long load;
P
Peter Zijlstra 已提交
1622
	long cpu = (long)data;
1623

1624 1625 1626 1627 1628 1629 1630
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1631

1632
	tg->cfs_rq[cpu]->h_load = load;
1633

P
Peter Zijlstra 已提交
1634
	return 0;
1635 1636
}

1637
static void update_shares(struct sched_domain *sd)
1638
{
1639 1640 1641 1642 1643 1644 1645 1646
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1647 1648 1649

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1650
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1651
	}
1652 1653
}

P
Peter Zijlstra 已提交
1654
static void update_h_load(long cpu)
1655
{
1656 1657 1658
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1659
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1660 1661 1662 1663
}

#else

1664
static inline void update_shares(struct sched_domain *sd)
1665 1666 1667
{
}

1668 1669
#endif

1670 1671
#ifdef CONFIG_PREEMPT

1672 1673
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1674
/*
1675 1676 1677 1678 1679 1680
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1681
 */
1682 1683 1684 1685 1686
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1687
	raw_spin_unlock(&this_rq->lock);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1702 1703 1704 1705 1706 1707
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1708
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1709
		if (busiest < this_rq) {
1710 1711 1712 1713
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1714 1715
			ret = 1;
		} else
1716 1717
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1718 1719 1720 1721
	}
	return ret;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1731
		raw_spin_unlock(&this_rq->lock);
1732 1733 1734 1735 1736 1737
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1738 1739 1740
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1741
	raw_spin_unlock(&busiest->lock);
1742 1743
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
	update_rq_clock(rq1);
	update_rq_clock(rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1789 1790
#endif

V
Vegard Nossum 已提交
1791
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1792 1793
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1794
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1795 1796 1797
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1798
#endif
1799

1800
static void calc_load_account_active(struct rq *this_rq);
1801
static void update_sysctl(void);
1802
static int get_update_sysctl_factor(void);
1803

P
Peter Zijlstra 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1817

1818
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1819 1820

#define sched_class_highest (&rt_sched_class)
1821 1822
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1823

1824 1825
#include "sched_stats.h"

1826
static void inc_nr_running(struct rq *rq)
1827 1828 1829 1830
{
	rq->nr_running++;
}

1831
static void dec_nr_running(struct rq *rq)
1832 1833 1834 1835
{
	rq->nr_running--;
}

1836 1837 1838
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1839 1840 1841 1842
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1843

I
Ingo Molnar 已提交
1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1852

I
Ingo Molnar 已提交
1853 1854
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1855 1856
}

1857 1858 1859 1860 1861 1862
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1863 1864
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1865
{
P
Peter Zijlstra 已提交
1866 1867 1868
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1869
	sched_info_queued(p);
1870
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1871
	p->se.on_rq = 1;
1872 1873
}

1874
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1875
{
P
Peter Zijlstra 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1885 1886
	}

1887
	sched_info_dequeued(p);
1888
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1889
	p->se.on_rq = 0;
1890 1891
}

1892 1893 1894 1895 1896 1897 1898 1899
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1900
	enqueue_task(rq, p, wakeup, false);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1923
/*
I
Ingo Molnar 已提交
1924
 * __normal_prio - return the priority that is based on the static prio
1925 1926 1927
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1928
	return p->static_prio;
1929 1930
}

1931 1932 1933 1934 1935 1936 1937
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1938
static inline int normal_prio(struct task_struct *p)
1939 1940 1941
{
	int prio;

1942
	if (task_has_rt_policy(p))
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1956
static int effective_prio(struct task_struct *p)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1969 1970 1971 1972
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1974 1975 1976 1977
{
	return cpu_curr(task_cpu(p)) == p;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1990
#ifdef CONFIG_SMP
1991 1992 1993
/*
 * Is this task likely cache-hot:
 */
1994
static int
1995 1996 1997 1998
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1999 2000 2001
	if (p->sched_class != &fair_sched_class)
		return 0;

2002 2003 2004
	/*
	 * Buddy candidates are cache hot:
	 */
2005
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2006 2007
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2008 2009
		return 1;

2010 2011 2012 2013 2014
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2015 2016 2017 2018 2019
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2020
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2021
{
2022 2023 2024 2025 2026
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2027 2028
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2029 2030
#endif

2031
	trace_sched_migrate_task(p, new_cpu);
2032

2033 2034 2035 2036
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2037 2038

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2039 2040
}

2041
struct migration_req {
L
Linus Torvalds 已提交
2042 2043
	struct list_head list;

2044
	struct task_struct *task;
L
Linus Torvalds 已提交
2045 2046 2047
	int dest_cpu;

	struct completion done;
2048
};
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2054
static int
2055
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2056
{
2057
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2058 2059 2060

	/*
	 * If the task is not on a runqueue (and not running), then
2061
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2062
	 */
2063
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2070

L
Linus Torvalds 已提交
2071 2072 2073
	return 1;
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2117 2118 2119
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2120 2121 2122 2123 2124 2125 2126
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2133
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2134 2135
{
	unsigned long flags;
I
Ingo Molnar 已提交
2136
	int running, on_rq;
R
Roland McGrath 已提交
2137
	unsigned long ncsw;
2138
	struct rq *rq;
L
Linus Torvalds 已提交
2139

2140 2141 2142 2143 2144 2145 2146 2147
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2160 2161 2162
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2163
			cpu_relax();
R
Roland McGrath 已提交
2164
		}
2165

2166 2167 2168 2169 2170 2171
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2172
		trace_sched_wait_task(rq, p);
2173 2174
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2175
		ncsw = 0;
2176
		if (!match_state || p->state == match_state)
2177
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2178
		task_rq_unlock(rq, &flags);
2179

R
Roland McGrath 已提交
2180 2181 2182 2183 2184 2185
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2196

2197 2198 2199 2200 2201
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2202
		 * So if it was still runnable (but just not actively
2203 2204 2205 2206 2207 2208 2209
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2210

2211 2212 2213 2214 2215 2216 2217
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2218 2219

	return ncsw;
L
Linus Torvalds 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2235
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2245
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2246
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2247

T
Thomas Gleixner 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2269
#ifdef CONFIG_SMP
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2307
/*
2308 2309 2310
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2311
 *
2312 2313
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2314
 */
2315 2316 2317
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2331
		     !cpu_online(cpu)))
2332
		cpu = select_fallback_rq(task_cpu(p), p);
2333 2334

	return cpu;
2335 2336 2337
}
#endif

L
Linus Torvalds 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2352 2353
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2354
{
2355
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2356
	unsigned long flags;
2357
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2358

2359
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2360
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2361

P
Peter Zijlstra 已提交
2362
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2363

2364
	smp_wmb();
2365
	rq = orig_rq = task_rq_lock(p, &flags);
2366
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2367
	if (!(p->state & state))
L
Linus Torvalds 已提交
2368 2369
		goto out;

I
Ingo Molnar 已提交
2370
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2371 2372 2373
		goto out_running;

	cpu = task_cpu(p);
2374
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2380 2381 2382
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2383 2384
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2385
	 */
2386 2387
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2388
	p->state = TASK_WAKING;
2389 2390 2391 2392

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2393
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2394

2395
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2396 2397 2398 2399 2400 2401
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2402
		set_task_cpu(p, cpu);
2403
	}
P
Peter Zijlstra 已提交
2404

2405 2406
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
2407
	update_rq_clock(rq);
2408

2409 2410 2411 2412 2413 2414 2415
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2416
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2417

2418 2419 2420 2421 2422 2423 2424
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2425
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2426 2427 2428 2429 2430
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2431
#endif /* CONFIG_SCHEDSTATS */
2432

L
Linus Torvalds 已提交
2433 2434
out_activate:
#endif /* CONFIG_SMP */
2435
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2436
	if (wake_flags & WF_SYNC)
2437 2438 2439 2440 2441 2442 2443
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2444
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2445 2446
	success = 1;

P
Peter Zijlstra 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2463
out_running:
2464
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2465
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2466

L
Linus Torvalds 已提交
2467
	p->state = TASK_RUNNING;
2468
#ifdef CONFIG_SMP
2469 2470
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2482
#endif
L
Linus Torvalds 已提交
2483 2484
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2485
	put_cpu();
L
Linus Torvalds 已提交
2486 2487 2488 2489

	return success;
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2501
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2502
{
2503
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2504 2505 2506
}
EXPORT_SYMBOL(wake_up_process);

2507
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520 2521
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2522
	p->se.prev_sum_exec_runtime	= 0;
2523
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2524 2525
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2526 2527
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2528 2529

#ifdef CONFIG_SCHEDSTATS
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2560
#endif
N
Nick Piggin 已提交
2561

P
Peter Zijlstra 已提交
2562
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2563
	p->se.on_rq = 0;
2564
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2565

2566 2567 2568
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2579 2580 2581 2582 2583 2584
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2585

2586 2587 2588 2589
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2590
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2591
			p->policy = SCHED_NORMAL;
2592 2593
			p->normal_prio = p->static_prio;
		}
2594

2595 2596
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2597
			p->normal_prio = p->static_prio;
2598 2599 2600
			set_load_weight(p);
		}

2601 2602 2603 2604 2605 2606
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2607

2608 2609 2610 2611 2612
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2613 2614
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2615

P
Peter Zijlstra 已提交
2616 2617 2618
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2619 2620
	set_task_cpu(p, cpu);

2621
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2622
	if (likely(sched_info_on()))
2623
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2624
#endif
2625
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2626 2627
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2628
#ifdef CONFIG_PREEMPT
2629
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2630
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2631
#endif
2632 2633
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2634
	put_cpu();
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2644
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2645 2646
{
	unsigned long flags;
I
Ingo Molnar 已提交
2647
	struct rq *rq;
2648
	int cpu = get_cpu();
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2663

2664 2665 2666 2667 2668 2669 2670
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2671 2672
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2673
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2674
	activate_task(rq, p, 0);
2675
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2676
	check_preempt_curr(rq, p, WF_FORK);
2677
#ifdef CONFIG_SMP
2678 2679
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2680
#endif
I
Ingo Molnar 已提交
2681
	task_rq_unlock(rq, &flags);
2682
	put_cpu();
L
Linus Torvalds 已提交
2683 2684
}

2685 2686 2687
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2688
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2689
 * @notifier: notifier struct to register
2690 2691 2692 2693 2694 2695 2696 2697 2698
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2699
 * @notifier: notifier struct to unregister
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2729
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2741
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2742

2743 2744 2745
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2746
 * @prev: the current task that is being switched out
2747 2748 2749 2750 2751 2752 2753 2754 2755
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2756 2757 2758
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2759
{
2760
	fire_sched_out_preempt_notifiers(prev, next);
2761 2762 2763 2764
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2765 2766
/**
 * finish_task_switch - clean up after a task-switch
2767
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2768 2769
 * @prev: the thread we just switched away from.
 *
2770 2771 2772 2773
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2774 2775
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2776
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2777 2778 2779
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2780
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2781 2782 2783
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2784
	long prev_state;
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2790
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2791 2792
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2793
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2799
	prev_state = prev->state;
2800
	finish_arch_switch(prev);
2801
	perf_event_task_sched_in(current, cpu_of(rq));
2802
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2803

2804
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2805 2806
	if (mm)
		mmdrop(mm);
2807
	if (unlikely(prev_state == TASK_DEAD)) {
2808 2809 2810
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2811
		 */
2812
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2813
		put_task_struct(prev);
2814
	}
L
Linus Torvalds 已提交
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2832
		raw_spin_lock_irqsave(&rq->lock, flags);
2833 2834
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2835
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2836 2837 2838 2839 2840 2841

		rq->post_schedule = 0;
	}
}

#else
2842

2843 2844 2845 2846 2847 2848
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2849 2850
}

2851 2852
#endif

L
Linus Torvalds 已提交
2853 2854 2855 2856
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2857
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2858 2859
	__releases(rq->lock)
{
2860 2861
	struct rq *rq = this_rq();

2862
	finish_task_switch(rq, prev);
2863

2864 2865 2866 2867 2868
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2869

2870 2871 2872 2873
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2874
	if (current->set_child_tid)
2875
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2882
static inline void
2883
context_switch(struct rq *rq, struct task_struct *prev,
2884
	       struct task_struct *next)
L
Linus Torvalds 已提交
2885
{
I
Ingo Molnar 已提交
2886
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2887

2888
	prepare_task_switch(rq, prev, next);
2889
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2890 2891
	mm = next->mm;
	oldmm = prev->active_mm;
2892 2893 2894 2895 2896
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2897
	arch_start_context_switch(prev);
2898

2899
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2906
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2907 2908 2909
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2910 2911 2912 2913 2914 2915 2916
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2917
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2918
#endif
L
Linus Torvalds 已提交
2919 2920 2921 2922

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2923 2924 2925 2926 2927 2928 2929
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2953
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2968 2969
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2970

2971
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2981
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2982 2983 2984 2985 2986
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


3000 3001 3002 3003 3004 3005
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3021 3022
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3023
{
3024 3025 3026 3027
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3040

3041 3042
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3066 3067
}

3068
/*
I
Ingo Molnar 已提交
3069 3070
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3071
 */
I
Ingo Molnar 已提交
3072
static void update_cpu_load(struct rq *this_rq)
3073
{
3074
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3087 3088 3089 3090 3091 3092 3093
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3094 3095
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3096 3097 3098 3099 3100

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3101 3102
}

I
Ingo Molnar 已提交
3103 3104
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3105
/*
P
Peter Zijlstra 已提交
3106 3107
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3108
 */
P
Peter Zijlstra 已提交
3109
void sched_exec(void)
L
Linus Torvalds 已提交
3110
{
P
Peter Zijlstra 已提交
3111
	struct task_struct *p = current;
3112
	struct migration_req req;
P
Peter Zijlstra 已提交
3113
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3114
	unsigned long flags;
3115
	struct rq *rq;
L
Linus Torvalds 已提交
3116

P
Peter Zijlstra 已提交
3117 3118 3119 3120 3121 3122 3123 3124
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
	}

L
Linus Torvalds 已提交
3125
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3126 3127 3128 3129 3130
	put_cpu();

	/*
	 * select_task_rq() can race against ->cpus_allowed
	 */
3131
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3132 3133 3134 3135
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
L
Linus Torvalds 已提交
3136 3137 3138 3139 3140

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3141

L
Linus Torvalds 已提交
3142 3143 3144 3145 3146
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3147

L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		return;
	}
	task_rq_unlock(rq, &flags);
}

#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3160
 * Return any ns on the sched_clock that have not yet been accounted in
3161
 * @p in case that task is currently running.
3162 3163
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3164
 */
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3179
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3180 3181
{
	unsigned long flags;
3182
	struct rq *rq;
3183
	u64 ns = 0;
3184

3185
	rq = task_rq_lock(p, &flags);
3186 3187
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3188

3189 3190
	return ns;
}
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3229
	task_rq_unlock(rq, &flags);
3230

L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236 3237
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3238
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3239
 */
3240 3241
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3242 3243 3244 3245
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3246
	/* Add user time to process. */
L
Linus Torvalds 已提交
3247
	p->utime = cputime_add(p->utime, cputime);
3248
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3249
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254 3255 3256

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3257 3258

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3259 3260
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3261 3262
}

3263 3264 3265 3266
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3267
 * @cputime_scaled: cputime scaled by cpu frequency
3268
 */
3269 3270
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3271 3272 3273 3274 3275 3276
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3277
	/* Add guest time to process. */
3278
	p->utime = cputime_add(p->utime, cputime);
3279
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3280
	account_group_user_time(p, cputime);
3281 3282
	p->gtime = cputime_add(p->gtime, cputime);

3283
	/* Add guest time to cpustat. */
3284 3285 3286 3287 3288 3289 3290
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3291 3292
}

L
Linus Torvalds 已提交
3293 3294 3295 3296 3297
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3298
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3299 3300
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3301
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3302 3303 3304 3305
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3306
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3307
		account_guest_time(p, cputime, cputime_scaled);
3308 3309
		return;
	}
3310

3311
	/* Add system time to process. */
L
Linus Torvalds 已提交
3312
	p->stime = cputime_add(p->stime, cputime);
3313
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3314
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3315 3316 3317 3318 3319 3320 3321 3322

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3323 3324
		cpustat->system = cputime64_add(cpustat->system, tmp);

3325 3326
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3327 3328 3329 3330
	/* Account for system time used */
	acct_update_integrals(p);
}

3331
/*
L
Linus Torvalds 已提交
3332 3333
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3334
 */
3335
void account_steal_time(cputime_t cputime)
3336
{
3337 3338 3339 3340
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3341 3342
}

L
Linus Torvalds 已提交
3343
/*
3344 3345
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3346
 */
3347
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3348 3349
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3351
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3352

3353 3354 3355 3356
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366 3367
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3368
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3369 3370 3371
	struct rq *rq = this_rq();

	if (user_tick)
3372
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3373
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3374
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3375 3376
				    one_jiffy_scaled);
	else
3377
		account_idle_time(cputime_one_jiffy);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3397 3398
}

3399 3400
#endif

3401 3402 3403 3404
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3405
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3406
{
3407 3408
	*ut = p->utime;
	*st = p->stime;
3409 3410
}

3411
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3412
{
3413 3414 3415 3416 3417 3418
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3419 3420
}
#else
3421 3422

#ifndef nsecs_to_cputime
3423
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3424 3425
#endif

3426
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3427
{
3428
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3429 3430 3431 3432

	/*
	 * Use CFS's precise accounting:
	 */
3433
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3434 3435

	if (total) {
3436 3437 3438
		u64 temp;

		temp = (u64)(rtime * utime);
3439
		do_div(temp, total);
3440 3441 3442
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3443

3444 3445 3446
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3447
	p->prev_utime = max(p->prev_utime, utime);
3448
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3449

3450 3451
	*ut = p->prev_utime;
	*st = p->prev_stime;
3452 3453
}

3454 3455 3456 3457
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3458
{
3459 3460 3461
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3462

3463
	thread_group_cputime(p, &cputime);
3464

3465 3466
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3467

3468 3469
	if (total) {
		u64 temp;
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3483 3484 3485
}
#endif

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3497
	struct task_struct *curr = rq->curr;
3498 3499

	sched_clock_tick();
I
Ingo Molnar 已提交
3500

3501
	raw_spin_lock(&rq->lock);
3502
	update_rq_clock(rq);
3503
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3504
	curr->sched_class->task_tick(rq, curr, 0);
3505
	raw_spin_unlock(&rq->lock);
3506

3507
	perf_event_task_tick(curr, cpu);
3508

3509
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3510 3511
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3512
#endif
L
Linus Torvalds 已提交
3513 3514
}

3515
notrace unsigned long get_parent_ip(unsigned long addr)
3516 3517 3518 3519 3520 3521 3522 3523
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3524

3525 3526 3527
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3528
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3529
{
3530
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3531 3532 3533
	/*
	 * Underflow?
	 */
3534 3535
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3536
#endif
L
Linus Torvalds 已提交
3537
	preempt_count() += val;
3538
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3539 3540 3541
	/*
	 * Spinlock count overflowing soon?
	 */
3542 3543
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3544 3545 3546
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3547 3548 3549
}
EXPORT_SYMBOL(add_preempt_count);

3550
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3551
{
3552
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3553 3554 3555
	/*
	 * Underflow?
	 */
3556
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3557
		return;
L
Linus Torvalds 已提交
3558 3559 3560
	/*
	 * Is the spinlock portion underflowing?
	 */
3561 3562 3563
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3564
#endif
3565

3566 3567
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572 3573 3574
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3575
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3576
 */
I
Ingo Molnar 已提交
3577
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3578
{
3579 3580
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3581 3582
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3583

I
Ingo Molnar 已提交
3584
	debug_show_held_locks(prev);
3585
	print_modules();
I
Ingo Molnar 已提交
3586 3587
	if (irqs_disabled())
		print_irqtrace_events(prev);
3588 3589 3590 3591 3592

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3593
}
L
Linus Torvalds 已提交
3594

I
Ingo Molnar 已提交
3595 3596 3597 3598 3599
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3600
	/*
I
Ingo Molnar 已提交
3601
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3602 3603 3604
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3605
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3606 3607
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3608 3609
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3610
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3611 3612
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3613 3614
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3615 3616
	}
#endif
I
Ingo Molnar 已提交
3617 3618
}

P
Peter Zijlstra 已提交
3619
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3620
{
P
Peter Zijlstra 已提交
3621 3622
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
3623

P
Peter Zijlstra 已提交
3624 3625
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
3636
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
3637
	}
P
Peter Zijlstra 已提交
3638
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3639 3640
}

I
Ingo Molnar 已提交
3641 3642 3643 3644
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3645
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3646
{
3647
	const struct sched_class *class;
I
Ingo Molnar 已提交
3648
	struct task_struct *p;
L
Linus Torvalds 已提交
3649 3650

	/*
I
Ingo Molnar 已提交
3651 3652
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3653
	 */
I
Ingo Molnar 已提交
3654
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3655
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3656 3657
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3658 3659
	}

I
Ingo Molnar 已提交
3660 3661
	class = sched_class_highest;
	for ( ; ; ) {
3662
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3672

I
Ingo Molnar 已提交
3673 3674 3675
/*
 * schedule() is the main scheduler function.
 */
3676
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3677 3678
{
	struct task_struct *prev, *next;
3679
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3680
	struct rq *rq;
3681
	int cpu;
I
Ingo Molnar 已提交
3682

3683 3684
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3685 3686
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3687
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3688 3689 3690 3691 3692 3693 3694
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3695

3696
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3697
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3698

3699
	raw_spin_lock_irq(&rq->lock);
3700
	update_rq_clock(rq);
3701
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3702 3703

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3704
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3705
			prev->state = TASK_RUNNING;
3706
		else
3707
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3708
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3709 3710
	}

3711
	pre_schedule(rq, prev);
3712

I
Ingo Molnar 已提交
3713
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3714 3715
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3716
	put_prev_task(rq, prev);
3717
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3718 3719

	if (likely(prev != next)) {
3720
		sched_info_switch(prev, next);
3721
		perf_event_task_sched_out(prev, next, cpu);
3722

L
Linus Torvalds 已提交
3723 3724 3725 3726
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3727
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3728 3729 3730 3731 3732 3733
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3734
	} else
3735
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3736

3737
	post_schedule(rq);
L
Linus Torvalds 已提交
3738

3739 3740 3741
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3742
		goto need_resched_nonpreemptible;
3743
	}
P
Peter Zijlstra 已提交
3744

L
Linus Torvalds 已提交
3745
	preempt_enable_no_resched();
3746
	if (need_resched())
L
Linus Torvalds 已提交
3747 3748 3749 3750
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3751
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3812 3813
#ifdef CONFIG_PREEMPT
/*
3814
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3815
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3821

L
Linus Torvalds 已提交
3822 3823
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3824
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3825
	 */
N
Nick Piggin 已提交
3826
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3827 3828
		return;

3829 3830 3831 3832
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3833

3834 3835 3836 3837 3838
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3839
	} while (need_resched());
L
Linus Torvalds 已提交
3840 3841 3842 3843
}
EXPORT_SYMBOL(preempt_schedule);

/*
3844
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849 3850 3851
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3852

3853
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3854 3855
	BUG_ON(ti->preempt_count || !irqs_disabled());

3856 3857 3858 3859 3860 3861
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3862

3863 3864 3865 3866 3867
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3868
	} while (need_resched());
L
Linus Torvalds 已提交
3869 3870 3871 3872
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3873
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3874
			  void *key)
L
Linus Torvalds 已提交
3875
{
P
Peter Zijlstra 已提交
3876
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3877 3878 3879 3880
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3881 3882
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3883 3884 3885
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3886
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3887 3888
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3889
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3890
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3891
{
3892
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3893

3894
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3895 3896
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3897
		if (curr->func(curr, mode, wake_flags, key) &&
3898
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3908
 * @key: is directly passed to the wakeup function
3909 3910 3911
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3912
 */
3913
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3914
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3927
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3928 3929 3930 3931
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3932 3933 3934 3935 3936
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3937
/**
3938
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3939 3940 3941
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3942
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3943 3944 3945 3946 3947 3948 3949
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3950 3951 3952
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3953
 */
3954 3955
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3956 3957
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3958
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3959 3960 3961 3962 3963

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3964
		wake_flags = 0;
L
Linus Torvalds 已提交
3965 3966

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3967
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3968 3969
	spin_unlock_irqrestore(&q->lock, flags);
}
3970 3971 3972 3973 3974 3975 3976 3977 3978
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3979 3980
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3981 3982 3983 3984 3985 3986 3987 3988
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3989 3990 3991
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3992
 */
3993
void complete(struct completion *x)
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3999
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4000 4001 4002 4003
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4004 4005 4006 4007 4008
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4009 4010 4011
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4012
 */
4013
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4019
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4020 4021 4022 4023
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4024 4025
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4033
			if (signal_pending_state(state, current)) {
4034 4035
				timeout = -ERESTARTSYS;
				break;
4036 4037
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4038 4039 4040
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4041
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4042
		__remove_wait_queue(&x->wait, &wait);
4043 4044
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4045 4046
	}
	x->done--;
4047
	return timeout ?: 1;
L
Linus Torvalds 已提交
4048 4049
}

4050 4051
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4052 4053 4054 4055
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4056
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4057
	spin_unlock_irq(&x->wait.lock);
4058 4059
	return timeout;
}
L
Linus Torvalds 已提交
4060

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4071
void __sched wait_for_completion(struct completion *x)
4072 4073
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4074
}
4075
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4076

4077 4078 4079 4080 4081 4082 4083 4084 4085
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4086
unsigned long __sched
4087
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4088
{
4089
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4090
}
4091
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4092

4093 4094 4095 4096 4097 4098 4099
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4100
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4101
{
4102 4103 4104 4105
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4106
}
4107
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4108

4109 4110 4111 4112 4113 4114 4115 4116
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4117
unsigned long __sched
4118 4119
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4120
{
4121
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4122
}
4123
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4124

4125 4126 4127 4128 4129 4130 4131
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4155
	unsigned long flags;
4156 4157
	int ret = 1;

4158
	spin_lock_irqsave(&x->wait.lock, flags);
4159 4160 4161 4162
	if (!x->done)
		ret = 0;
	else
		x->done--;
4163
	spin_unlock_irqrestore(&x->wait.lock, flags);
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4178
	unsigned long flags;
4179 4180
	int ret = 1;

4181
	spin_lock_irqsave(&x->wait.lock, flags);
4182 4183
	if (!x->done)
		ret = 0;
4184
	spin_unlock_irqrestore(&x->wait.lock, flags);
4185 4186 4187 4188
	return ret;
}
EXPORT_SYMBOL(completion_done);

4189 4190
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4191
{
I
Ingo Molnar 已提交
4192 4193 4194 4195
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4196

4197
	__set_current_state(state);
L
Linus Torvalds 已提交
4198

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4213 4214 4215
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4216
long __sched
I
Ingo Molnar 已提交
4217
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4218
{
4219
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4220 4221 4222
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4223
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4224
{
4225
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4226 4227 4228
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4229
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4230
{
4231
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4232 4233 4234
}
EXPORT_SYMBOL(sleep_on_timeout);

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4247
void rt_mutex_setprio(struct task_struct *p, int prio)
4248 4249
{
	unsigned long flags;
4250
	int oldprio, on_rq, running;
4251
	struct rq *rq;
4252
	const struct sched_class *prev_class = p->sched_class;
4253 4254 4255 4256

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4257
	update_rq_clock(rq);
4258

4259
	oldprio = p->prio;
I
Ingo Molnar 已提交
4260
	on_rq = p->se.on_rq;
4261
	running = task_current(rq, p);
4262
	if (on_rq)
4263
		dequeue_task(rq, p, 0);
4264 4265
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4266 4267 4268 4269 4270 4271

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4272 4273
	p->prio = prio;

4274 4275
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4276
	if (on_rq) {
4277
		enqueue_task(rq, p, 0, oldprio < prio);
4278 4279

		check_class_changed(rq, p, prev_class, oldprio, running);
4280 4281 4282 4283 4284 4285
	}
	task_rq_unlock(rq, &flags);
}

#endif

4286
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4287
{
I
Ingo Molnar 已提交
4288
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4289
	unsigned long flags;
4290
	struct rq *rq;
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295 4296 4297 4298

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4299
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4300 4301 4302 4303
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4304
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4305
	 */
4306
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4307 4308 4309
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4310
	on_rq = p->se.on_rq;
4311
	if (on_rq)
4312
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4313 4314

	p->static_prio = NICE_TO_PRIO(nice);
4315
	set_load_weight(p);
4316 4317 4318
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4319

I
Ingo Molnar 已提交
4320
	if (on_rq) {
4321
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4322
		/*
4323 4324
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4325
		 */
4326
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4334 4335 4336 4337 4338
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4339
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4340
{
4341 4342
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4343

M
Matt Mackall 已提交
4344 4345 4346 4347
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4357
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4358
{
4359
	long nice, retval;
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4366 4367
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4368 4369 4370
	if (increment > 40)
		increment = 40;

4371
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4377 4378 4379
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4398
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405 4406
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4407
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4408 4409 4410
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4411
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4426
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4435
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4436
{
4437
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4438 4439 4440
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4441 4442
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4443
{
I
Ingo Molnar 已提交
4444
	BUG_ON(p->se.on_rq);
4445

L
Linus Torvalds 已提交
4446 4447
	p->policy = policy;
	p->rt_priority = prio;
4448 4449 4450
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4451 4452 4453 4454
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4455
	set_load_weight(p);
L
Linus Torvalds 已提交
4456 4457
}

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4474 4475
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4476
{
4477
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4478
	unsigned long flags;
4479
	const struct sched_class *prev_class = p->sched_class;
4480
	struct rq *rq;
4481
	int reset_on_fork;
L
Linus Torvalds 已提交
4482

4483 4484
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4485 4486
recheck:
	/* double check policy once rq lock held */
4487 4488
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4489
		policy = oldpolicy = p->policy;
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4500 4501
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4502 4503
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4504 4505
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4506
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4507
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4508
		return -EINVAL;
4509
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4510 4511
		return -EINVAL;

4512 4513 4514
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4515
	if (user && !capable(CAP_SYS_NICE)) {
4516
		if (rt_policy(policy)) {
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4533 4534 4535 4536 4537 4538
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4539

4540
		/* can't change other user's priorities */
4541
		if (!check_same_owner(p))
4542
			return -EPERM;
4543 4544 4545 4546

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4547
	}
L
Linus Torvalds 已提交
4548

4549
	if (user) {
4550
#ifdef CONFIG_RT_GROUP_SCHED
4551 4552 4553 4554
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4555 4556
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4557
			return -EPERM;
4558 4559
#endif

4560 4561 4562 4563 4564
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4565 4566 4567 4568
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4569
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4570 4571 4572 4573
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4574
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4575 4576 4577
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4578
		__task_rq_unlock(rq);
4579
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4580 4581
		goto recheck;
	}
I
Ingo Molnar 已提交
4582
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4583
	on_rq = p->se.on_rq;
4584
	running = task_current(rq, p);
4585
	if (on_rq)
4586
		deactivate_task(rq, p, 0);
4587 4588
	if (running)
		p->sched_class->put_prev_task(rq, p);
4589

4590 4591
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4592
	oldprio = p->prio;
I
Ingo Molnar 已提交
4593
	__setscheduler(rq, p, policy, param->sched_priority);
4594

4595 4596
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4597 4598
	if (on_rq) {
		activate_task(rq, p, 0);
4599 4600

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4601
	}
4602
	__task_rq_unlock(rq);
4603
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4604

4605 4606
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4607 4608
	return 0;
}
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4623 4624
EXPORT_SYMBOL_GPL(sched_setscheduler);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4642 4643
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4644 4645 4646
{
	struct sched_param lparam;
	struct task_struct *p;
4647
	int retval;
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4653 4654 4655

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4656
	p = find_process_by_pid(pid);
4657 4658 4659
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4660

L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4670 4671
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4672
{
4673 4674 4675 4676
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683 4684
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4685
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4694
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4695
{
4696
	struct task_struct *p;
4697
	int retval;
L
Linus Torvalds 已提交
4698 4699

	if (pid < 0)
4700
		return -EINVAL;
L
Linus Torvalds 已提交
4701 4702

	retval = -ESRCH;
4703
	rcu_read_lock();
L
Linus Torvalds 已提交
4704 4705 4706 4707
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4708 4709
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4710
	}
4711
	rcu_read_unlock();
L
Linus Torvalds 已提交
4712 4713 4714 4715
	return retval;
}

/**
4716
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4717 4718 4719
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4720
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4721 4722
{
	struct sched_param lp;
4723
	struct task_struct *p;
4724
	int retval;
L
Linus Torvalds 已提交
4725 4726

	if (!param || pid < 0)
4727
		return -EINVAL;
L
Linus Torvalds 已提交
4728

4729
	rcu_read_lock();
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4740
	rcu_read_unlock();
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4750
	rcu_read_unlock();
L
Linus Torvalds 已提交
4751 4752 4753
	return retval;
}

4754
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4755
{
4756
	cpumask_var_t cpus_allowed, new_mask;
4757 4758
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4759

4760
	get_online_cpus();
4761
	rcu_read_lock();
L
Linus Torvalds 已提交
4762 4763 4764

	p = find_process_by_pid(pid);
	if (!p) {
4765
		rcu_read_unlock();
4766
		put_online_cpus();
L
Linus Torvalds 已提交
4767 4768 4769
		return -ESRCH;
	}

4770
	/* Prevent p going away */
L
Linus Torvalds 已提交
4771
	get_task_struct(p);
4772
	rcu_read_unlock();
L
Linus Torvalds 已提交
4773

4774 4775 4776 4777 4778 4779 4780 4781
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4782
	retval = -EPERM;
4783
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4784 4785
		goto out_unlock;

4786 4787 4788 4789
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4790 4791
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4792
 again:
4793
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4794

P
Paul Menage 已提交
4795
	if (!retval) {
4796 4797
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4798 4799 4800 4801 4802
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4803
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4804 4805 4806
			goto again;
		}
	}
L
Linus Torvalds 已提交
4807
out_unlock:
4808 4809 4810 4811
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4812
	put_task_struct(p);
4813
	put_online_cpus();
L
Linus Torvalds 已提交
4814 4815 4816 4817
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4818
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4819
{
4820 4821 4822 4823 4824
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4834 4835
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4836
{
4837
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4838 4839
	int retval;

4840 4841
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4842

4843 4844 4845 4846 4847
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4848 4849
}

4850
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4851
{
4852
	struct task_struct *p;
4853 4854
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4855 4856
	int retval;

4857
	get_online_cpus();
4858
	rcu_read_lock();
L
Linus Torvalds 已提交
4859 4860 4861 4862 4863 4864

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4865 4866 4867 4868
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4869
	rq = task_rq_lock(p, &flags);
4870
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4871
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4872 4873

out_unlock:
4874
	rcu_read_unlock();
4875
	put_online_cpus();
L
Linus Torvalds 已提交
4876

4877
	return retval;
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884 4885
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4886 4887
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4888 4889
{
	int ret;
4890
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4891

4892
	if (len < cpumask_size())
L
Linus Torvalds 已提交
4893 4894
		return -EINVAL;

4895 4896
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4897

4898 4899 4900 4901 4902 4903 4904 4905
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4906

4907
	return ret;
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4913 4914
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4915
 */
4916
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4917
{
4918
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4919

4920
	schedstat_inc(rq, yld_count);
4921
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4922 4923 4924 4925 4926 4927

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4928
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4929
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4937 4938 4939 4940 4941
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4942
static void __cond_resched(void)
L
Linus Torvalds 已提交
4943
{
4944 4945 4946
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4947 4948
}

4949
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4950
{
P
Peter Zijlstra 已提交
4951
	if (should_resched()) {
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956
		__cond_resched();
		return 1;
	}
	return 0;
}
4957
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4958 4959

/*
4960
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4961 4962
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4963
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4964 4965 4966
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4967
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4968
{
P
Peter Zijlstra 已提交
4969
	int resched = should_resched();
J
Jan Kara 已提交
4970 4971
	int ret = 0;

4972 4973
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4974
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4975
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4976
		if (resched)
N
Nick Piggin 已提交
4977 4978 4979
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4980
		ret = 1;
L
Linus Torvalds 已提交
4981 4982
		spin_lock(lock);
	}
J
Jan Kara 已提交
4983
	return ret;
L
Linus Torvalds 已提交
4984
}
4985
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4986

4987
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4988 4989 4990
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4991
	if (should_resched()) {
4992
		local_bh_enable();
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4999
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5000 5001 5002 5003

/**
 * yield - yield the current processor to other threads.
 *
5004
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5015
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5016 5017 5018 5019
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5020
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5021

5022
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5023
	atomic_inc(&rq->nr_iowait);
5024
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5025
	schedule();
5026
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5027
	atomic_dec(&rq->nr_iowait);
5028
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5029 5030 5031 5032 5033
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5034
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5035 5036
	long ret;

5037
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5038
	atomic_inc(&rq->nr_iowait);
5039
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5040
	ret = schedule_timeout(timeout);
5041
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5042
	atomic_dec(&rq->nr_iowait);
5043
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5054
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5064
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5065
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5079
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5089
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5090
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5104
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5105
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5106
{
5107
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5108
	unsigned int time_slice;
5109 5110
	unsigned long flags;
	struct rq *rq;
5111
	int retval;
L
Linus Torvalds 已提交
5112 5113 5114
	struct timespec t;

	if (pid < 0)
5115
		return -EINVAL;
L
Linus Torvalds 已提交
5116 5117

	retval = -ESRCH;
5118
	rcu_read_lock();
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5127 5128 5129
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5130

5131
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5132
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5133 5134
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5135

L
Linus Torvalds 已提交
5136
out_unlock:
5137
	rcu_read_unlock();
L
Linus Torvalds 已提交
5138 5139 5140
	return retval;
}

5141
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5142

5143
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5144 5145
{
	unsigned long free = 0;
5146
	unsigned state;
L
Linus Torvalds 已提交
5147 5148

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5149
	printk(KERN_INFO "%-13.13s %c", p->comm,
5150
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5151
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5152
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5153
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5154
	else
P
Peter Zijlstra 已提交
5155
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5156 5157
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5158
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5159
	else
P
Peter Zijlstra 已提交
5160
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5161 5162
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5163
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5164
#endif
P
Peter Zijlstra 已提交
5165
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5166 5167
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5168

5169
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5170 5171
}

I
Ingo Molnar 已提交
5172
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5173
{
5174
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5175

5176
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5177 5178
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5179
#else
P
Peter Zijlstra 已提交
5180 5181
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5190
		if (!state_filter || (p->state & state_filter))
5191
			sched_show_task(p);
L
Linus Torvalds 已提交
5192 5193
	} while_each_thread(g, p);

5194 5195
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5196 5197 5198
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5199
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5200 5201 5202
	/*
	 * Only show locks if all tasks are dumped:
	 */
5203
	if (!state_filter)
I
Ingo Molnar 已提交
5204
		debug_show_all_locks();
L
Linus Torvalds 已提交
5205 5206
}

I
Ingo Molnar 已提交
5207 5208
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5209
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5210 5211
}

5212 5213 5214 5215 5216 5217 5218 5219
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5220
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5221
{
5222
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5223 5224
	unsigned long flags;

5225
	raw_spin_lock_irqsave(&rq->lock, flags);
5226

I
Ingo Molnar 已提交
5227
	__sched_fork(idle);
5228
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5229 5230
	idle->se.exec_start = sched_clock();

5231
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5232
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5233 5234

	rq->curr = rq->idle = idle;
5235 5236 5237
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5238
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5239 5240

	/* Set the preempt count _outside_ the spinlocks! */
5241 5242 5243
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5244
	task_thread_info(idle)->preempt_count = 0;
5245
#endif
I
Ingo Molnar 已提交
5246 5247 5248 5249
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5250
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5251 5252 5253 5254 5255 5256 5257
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5258
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5259
 */
5260
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5261

I
Ingo Molnar 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5271
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5272
{
5273
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5288

5289 5290
	return factor;
}
I
Ingo Molnar 已提交
5291

5292 5293 5294
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5295

5296 5297 5298 5299 5300 5301 5302 5303
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5304

5305 5306 5307
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5308 5309
}

L
Linus Torvalds 已提交
5310 5311 5312 5313
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5314
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5333
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5334 5335
 * call is not atomic; no spinlocks may be held.
 */
5336
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5337
{
5338
	struct migration_req req;
L
Linus Torvalds 已提交
5339
	unsigned long flags;
5340
	struct rq *rq;
5341
	int ret = 0;
L
Linus Torvalds 已提交
5342 5343

	rq = task_rq_lock(p, &flags);
5344

5345
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5346 5347 5348 5349
		ret = -EINVAL;
		goto out;
	}

5350
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5351
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5352 5353 5354 5355
		ret = -EINVAL;
		goto out;
	}

5356
	if (p->sched_class->set_cpus_allowed)
5357
		p->sched_class->set_cpus_allowed(p, new_mask);
5358
	else {
5359 5360
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5361 5362
	}

L
Linus Torvalds 已提交
5363
	/* Can the task run on the task's current CPU? If so, we're done */
5364
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5365 5366
		goto out;

5367
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5368
		/* Need help from migration thread: drop lock and wait. */
5369 5370 5371
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5372 5373
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5374
		put_task_struct(mt);
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5381

L
Linus Torvalds 已提交
5382 5383
	return ret;
}
5384
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5385 5386

/*
I
Ingo Molnar 已提交
5387
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5394 5395
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5396
 */
5397
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5398
{
5399
	struct rq *rq_dest, *rq_src;
5400
	int ret = 0;
L
Linus Torvalds 已提交
5401

5402
	if (unlikely(!cpu_active(dest_cpu)))
5403
		return ret;
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5411
		goto done;
L
Linus Torvalds 已提交
5412
	/* Affinity changed (again). */
5413
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5414
		goto fail;
L
Linus Torvalds 已提交
5415

5416 5417 5418 5419 5420
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5421
		deactivate_task(rq_src, p, 0);
5422
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5423
		activate_task(rq_dest, p, 0);
5424
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5425
	}
L
Linus Torvalds 已提交
5426
done:
5427
	ret = 1;
L
Linus Torvalds 已提交
5428
fail:
L
Linus Torvalds 已提交
5429
	double_rq_unlock(rq_src, rq_dest);
5430
	return ret;
L
Linus Torvalds 已提交
5431 5432
}

5433 5434 5435 5436 5437
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5438 5439 5440 5441 5442
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5443
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5444
{
5445
	int badcpu;
L
Linus Torvalds 已提交
5446
	int cpu = (long)data;
5447
	struct rq *rq;
L
Linus Torvalds 已提交
5448 5449 5450 5451 5452 5453

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5454
		struct migration_req *req;
L
Linus Torvalds 已提交
5455 5456
		struct list_head *head;

5457
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5458 5459

		if (cpu_is_offline(cpu)) {
5460
			raw_spin_unlock_irq(&rq->lock);
5461
			break;
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5472
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5473 5474 5475 5476
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5477
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5478 5479
		list_del_init(head->next);

5480
		if (req->task != NULL) {
5481
			raw_spin_unlock(&rq->lock);
5482 5483 5484
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5485
			raw_spin_unlock(&rq->lock);
5486 5487
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5488
			raw_spin_unlock(&rq->lock);
5489 5490
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5491
		local_irq_enable();
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5512
/*
5513
 * Figure out where task on dead CPU should go, use force if necessary.
5514
 */
5515
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5516
{
5517
	int dest_cpu;
5518 5519

again:
5520
	dest_cpu = select_fallback_rq(dead_cpu, p);
5521 5522 5523 5524

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5534
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5535
{
5536
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5550
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5551

5552
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5553

5554 5555
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5556 5557
			continue;

5558 5559 5560
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5561

5562
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5563 5564
}

I
Ingo Molnar 已提交
5565 5566
/*
 * Schedules idle task to be the next runnable task on current CPU.
5567 5568
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5569 5570 5571
 */
void sched_idle_next(void)
{
5572
	int this_cpu = smp_processor_id();
5573
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5574 5575 5576 5577
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5578
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5579

5580 5581 5582
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5583
	 */
5584
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5585

I
Ingo Molnar 已提交
5586
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5587

5588 5589
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5590

5591
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5592 5593
}

5594 5595
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5609
/* called under rq->lock with disabled interrupts */
5610
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5611
{
5612
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5613 5614

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5615
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5616 5617

	/* Cannot have done final schedule yet: would have vanished. */
5618
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5619

5620
	get_task_struct(p);
L
Linus Torvalds 已提交
5621 5622 5623

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5624
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5625 5626
	 * fine.
	 */
5627
	raw_spin_unlock_irq(&rq->lock);
5628
	move_task_off_dead_cpu(dead_cpu, p);
5629
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5630

5631
	put_task_struct(p);
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5637
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5638
	struct task_struct *next;
5639

I
Ingo Molnar 已提交
5640 5641 5642
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5643
		update_rq_clock(rq);
5644
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5645 5646
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5647
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5648
		migrate_dead(dead_cpu, next);
5649

L
Linus Torvalds 已提交
5650 5651
	}
}
5652 5653 5654 5655 5656 5657 5658

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5659
	rq->calc_load_active = 0;
5660
}
L
Linus Torvalds 已提交
5661 5662
#endif /* CONFIG_HOTPLUG_CPU */

5663 5664 5665
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5666 5667
	{
		.procname	= "sched_domain",
5668
		.mode		= 0555,
5669
	},
5670
	{}
5671 5672 5673
};

static struct ctl_table sd_ctl_root[] = {
5674 5675
	{
		.procname	= "kernel",
5676
		.mode		= 0555,
5677 5678
		.child		= sd_ctl_dir,
	},
5679
	{}
5680 5681 5682 5683 5684
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5685
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5686 5687 5688 5689

	return entry;
}

5690 5691
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5692
	struct ctl_table *entry;
5693

5694 5695 5696
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5697
	 * will always be set. In the lowest directory the names are
5698 5699 5700
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5701 5702
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5703 5704 5705
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5706 5707 5708 5709 5710

	kfree(*tablep);
	*tablep = NULL;
}

5711
static void
5712
set_table_entry(struct ctl_table *entry,
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5726
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5727

5728 5729 5730
	if (table == NULL)
		return NULL;

5731
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5732
		sizeof(long), 0644, proc_doulongvec_minmax);
5733
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5734
		sizeof(long), 0644, proc_doulongvec_minmax);
5735
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5736
		sizeof(int), 0644, proc_dointvec_minmax);
5737
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5738
		sizeof(int), 0644, proc_dointvec_minmax);
5739
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5740
		sizeof(int), 0644, proc_dointvec_minmax);
5741
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5742
		sizeof(int), 0644, proc_dointvec_minmax);
5743
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5744
		sizeof(int), 0644, proc_dointvec_minmax);
5745
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5746
		sizeof(int), 0644, proc_dointvec_minmax);
5747
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5748
		sizeof(int), 0644, proc_dointvec_minmax);
5749
	set_table_entry(&table[9], "cache_nice_tries",
5750 5751
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5752
	set_table_entry(&table[10], "flags", &sd->flags,
5753
		sizeof(int), 0644, proc_dointvec_minmax);
5754 5755 5756
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5757 5758 5759 5760

	return table;
}

5761
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5762 5763 5764 5765 5766 5767 5768 5769 5770
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5771 5772
	if (table == NULL)
		return NULL;
5773 5774 5775 5776 5777

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5778
		entry->mode = 0555;
5779 5780 5781 5782 5783 5784 5785 5786
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5787
static void register_sched_domain_sysctl(void)
5788
{
5789
	int i, cpu_num = num_possible_cpus();
5790 5791 5792
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5793 5794 5795
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5796 5797 5798
	if (entry == NULL)
		return;

5799
	for_each_possible_cpu(i) {
5800 5801
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5802
		entry->mode = 0555;
5803
		entry->child = sd_alloc_ctl_cpu_table(i);
5804
		entry++;
5805
	}
5806 5807

	WARN_ON(sd_sysctl_header);
5808 5809
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5810

5811
/* may be called multiple times per register */
5812 5813
static void unregister_sched_domain_sysctl(void)
{
5814 5815
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5816
	sd_sysctl_header = NULL;
5817 5818
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5819
}
5820
#else
5821 5822 5823 5824
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5825 5826 5827 5828
{
}
#endif

5829 5830 5831 5832 5833
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5834
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5854
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5855 5856 5857 5858
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5859 5860 5861 5862
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5863 5864
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5865 5866
{
	struct task_struct *p;
5867
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5868
	unsigned long flags;
5869
	struct rq *rq;
L
Linus Torvalds 已提交
5870 5871

	switch (action) {
5872

L
Linus Torvalds 已提交
5873
	case CPU_UP_PREPARE:
5874
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5875
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5876 5877 5878 5879 5880
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5881
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5882
		task_rq_unlock(rq, &flags);
5883
		get_task_struct(p);
L
Linus Torvalds 已提交
5884
		cpu_rq(cpu)->migration_thread = p;
5885
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5886
		break;
5887

L
Linus Torvalds 已提交
5888
	case CPU_ONLINE:
5889
	case CPU_ONLINE_FROZEN:
5890
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5891
		wake_up_process(cpu_rq(cpu)->migration_thread);
5892 5893 5894

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5895
		raw_spin_lock_irqsave(&rq->lock, flags);
5896
		if (rq->rd) {
5897
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5898 5899

			set_rq_online(rq);
5900
		}
5901
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5902
		break;
5903

L
Linus Torvalds 已提交
5904 5905
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5906
	case CPU_UP_CANCELED_FROZEN:
5907 5908
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5909
		/* Unbind it from offline cpu so it can run. Fall thru. */
5910
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5911
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5912
		kthread_stop(cpu_rq(cpu)->migration_thread);
5913
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5914 5915
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5916

L
Linus Torvalds 已提交
5917
	case CPU_DEAD:
5918
	case CPU_DEAD_FROZEN:
5919
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5920 5921 5922
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5923
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5924 5925
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5926
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5927
		update_rq_clock(rq);
5928
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5929 5930
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5931
		migrate_dead_tasks(cpu);
5932
		raw_spin_unlock_irq(&rq->lock);
5933
		cpuset_unlock();
L
Linus Torvalds 已提交
5934 5935
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5936
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5937 5938 5939 5940 5941
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5942
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5943
		while (!list_empty(&rq->migration_queue)) {
5944 5945
			struct migration_req *req;

L
Linus Torvalds 已提交
5946
			req = list_entry(rq->migration_queue.next,
5947
					 struct migration_req, list);
L
Linus Torvalds 已提交
5948
			list_del_init(&req->list);
5949
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5950
			complete(&req->done);
5951
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5952
		}
5953
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5954
		break;
G
Gregory Haskins 已提交
5955

5956 5957
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5958 5959
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5960
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5961
		if (rq->rd) {
5962
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5963
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5964
		}
5965
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5966
		break;
L
Linus Torvalds 已提交
5967 5968 5969 5970 5971
#endif
	}
	return NOTIFY_OK;
}

5972 5973 5974
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5975
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5976
 */
5977
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5978 5979 5980 5981
	.notifier_call = migration_call,
	.priority = 10
};

5982
static int __init migration_init(void)
L
Linus Torvalds 已提交
5983 5984
{
	void *cpu = (void *)(long)smp_processor_id();
5985
	int err;
5986 5987

	/* Start one for the boot CPU: */
5988 5989
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5990 5991
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5992

5993
	return 0;
L
Linus Torvalds 已提交
5994
}
5995
early_initcall(migration_init);
L
Linus Torvalds 已提交
5996 5997 5998
#endif

#ifdef CONFIG_SMP
5999

6000
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6001

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6012
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6013
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6014
{
I
Ingo Molnar 已提交
6015
	struct sched_group *group = sd->groups;
6016
	char str[256];
L
Linus Torvalds 已提交
6017

R
Rusty Russell 已提交
6018
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6019
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6020 6021 6022 6023

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6024
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6025
		if (sd->parent)
P
Peter Zijlstra 已提交
6026 6027
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6028
		return -1;
N
Nick Piggin 已提交
6029 6030
	}

P
Peter Zijlstra 已提交
6031
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6032

6033
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6034 6035
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6036
	}
6037
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6038 6039
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6040
	}
L
Linus Torvalds 已提交
6041

I
Ingo Molnar 已提交
6042
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6043
	do {
I
Ingo Molnar 已提交
6044
		if (!group) {
P
Peter Zijlstra 已提交
6045 6046
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6047 6048 6049
			break;
		}

6050
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6051 6052 6053
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6054 6055
			break;
		}
L
Linus Torvalds 已提交
6056

6057
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6058 6059
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6060 6061
			break;
		}
L
Linus Torvalds 已提交
6062

6063
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6064 6065
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6066 6067
			break;
		}
L
Linus Torvalds 已提交
6068

6069
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6070

R
Rusty Russell 已提交
6071
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6072

P
Peter Zijlstra 已提交
6073
		printk(KERN_CONT " %s", str);
6074
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6075 6076
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6077
		}
L
Linus Torvalds 已提交
6078

I
Ingo Molnar 已提交
6079 6080
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6081
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6082

6083
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6084
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6085

6086 6087
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6088 6089
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6090 6091
	return 0;
}
L
Linus Torvalds 已提交
6092

I
Ingo Molnar 已提交
6093 6094
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6095
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6096
	int level = 0;
L
Linus Torvalds 已提交
6097

6098 6099 6100
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6101 6102 6103 6104
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6105

I
Ingo Molnar 已提交
6106 6107
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6108
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6109 6110 6111 6112
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6113
	for (;;) {
6114
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6115
			break;
L
Linus Torvalds 已提交
6116 6117
		level++;
		sd = sd->parent;
6118
		if (!sd)
I
Ingo Molnar 已提交
6119 6120
			break;
	}
6121
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6122
}
6123
#else /* !CONFIG_SCHED_DEBUG */
6124
# define sched_domain_debug(sd, cpu) do { } while (0)
6125
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6126

6127
static int sd_degenerate(struct sched_domain *sd)
6128
{
6129
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6130 6131 6132 6133 6134 6135
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6136 6137 6138
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6139 6140 6141 6142 6143
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6144
	if (sd->flags & (SD_WAKE_AFFINE))
6145 6146 6147 6148 6149
		return 0;

	return 1;
}

6150 6151
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6152 6153 6154 6155 6156 6157
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6158
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6159 6160 6161 6162 6163 6164 6165
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6166 6167 6168
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6169 6170
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6171 6172 6173 6174 6175 6176 6177
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6178 6179
static void free_rootdomain(struct root_domain *rd)
{
6180 6181
	synchronize_sched();

6182 6183
	cpupri_cleanup(&rd->cpupri);

6184 6185 6186 6187 6188 6189
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6190 6191
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6192
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6193 6194
	unsigned long flags;

6195
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6196 6197

	if (rq->rd) {
I
Ingo Molnar 已提交
6198
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6199

6200
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6201
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6202

6203
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6204

I
Ingo Molnar 已提交
6205 6206 6207 6208 6209 6210 6211
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6212 6213 6214 6215 6216
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6217
	cpumask_set_cpu(rq->cpu, rd->span);
6218
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6219
		set_rq_online(rq);
G
Gregory Haskins 已提交
6220

6221
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6222 6223 6224

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6225 6226
}

L
Li Zefan 已提交
6227
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6228
{
6229 6230
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6231 6232
	memset(rd, 0, sizeof(*rd));

6233 6234
	if (bootmem)
		gfp = GFP_NOWAIT;
6235

6236
	if (!alloc_cpumask_var(&rd->span, gfp))
6237
		goto out;
6238
	if (!alloc_cpumask_var(&rd->online, gfp))
6239
		goto free_span;
6240
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6241
		goto free_online;
6242

P
Pekka Enberg 已提交
6243
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6244
		goto free_rto_mask;
6245
	return 0;
6246

6247 6248
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6249 6250 6251 6252
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6253
out:
6254
	return -ENOMEM;
G
Gregory Haskins 已提交
6255 6256 6257 6258
}

static void init_defrootdomain(void)
{
6259 6260
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6261 6262 6263
	atomic_set(&def_root_domain.refcount, 1);
}

6264
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6265 6266 6267 6268 6269 6270 6271
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6272 6273 6274 6275
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6276 6277 6278 6279

	return rd;
}

L
Linus Torvalds 已提交
6280
/*
I
Ingo Molnar 已提交
6281
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6282 6283
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6284 6285
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6286
{
6287
	struct rq *rq = cpu_rq(cpu);
6288 6289 6290
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6291
	for (tmp = sd; tmp; ) {
6292 6293 6294
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6295

6296
		if (sd_parent_degenerate(tmp, parent)) {
6297
			tmp->parent = parent->parent;
6298 6299
			if (parent->parent)
				parent->parent->child = tmp;
6300 6301
		} else
			tmp = tmp->parent;
6302 6303
	}

6304
	if (sd && sd_degenerate(sd)) {
6305
		sd = sd->parent;
6306 6307 6308
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6309 6310 6311

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6312
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6313
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6314 6315 6316
}

/* cpus with isolated domains */
6317
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6318 6319 6320 6321

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6322
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6323
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6324 6325 6326
	return 1;
}

I
Ingo Molnar 已提交
6327
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6328 6329

/*
6330 6331
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6332 6333
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6334 6335 6336 6337 6338
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6339
static void
6340 6341 6342
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6343
					struct sched_group **sg,
6344 6345
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6346 6347 6348 6349
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6350
	cpumask_clear(covered);
6351

6352
	for_each_cpu(i, span) {
6353
		struct sched_group *sg;
6354
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6355 6356
		int j;

6357
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6358 6359
			continue;

6360
		cpumask_clear(sched_group_cpus(sg));
6361
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6362

6363
		for_each_cpu(j, span) {
6364
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6365 6366
				continue;

6367
			cpumask_set_cpu(j, covered);
6368
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6379
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6380

6381
#ifdef CONFIG_NUMA
6382

6383 6384 6385 6386 6387
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6388
 * Find the next node to include in a given scheduling domain. Simply
6389 6390 6391 6392
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6393
static int find_next_best_node(int node, nodemask_t *used_nodes)
6394 6395 6396 6397 6398
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6399
	for (i = 0; i < nr_node_ids; i++) {
6400
		/* Start at @node */
6401
		n = (node + i) % nr_node_ids;
6402 6403 6404 6405 6406

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6407
		if (node_isset(n, *used_nodes))
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6419
	node_set(best_node, *used_nodes);
6420 6421 6422 6423 6424 6425
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6426
 * @span: resulting cpumask
6427
 *
I
Ingo Molnar 已提交
6428
 * Given a node, construct a good cpumask for its sched_domain to span. It
6429 6430 6431
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6432
static void sched_domain_node_span(int node, struct cpumask *span)
6433
{
6434
	nodemask_t used_nodes;
6435
	int i;
6436

6437
	cpumask_clear(span);
6438
	nodes_clear(used_nodes);
6439

6440
	cpumask_or(span, span, cpumask_of_node(node));
6441
	node_set(node, used_nodes);
6442 6443

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6444
		int next_node = find_next_best_node(node, &used_nodes);
6445

6446
		cpumask_or(span, span, cpumask_of_node(next_node));
6447 6448
	}
}
6449
#endif /* CONFIG_NUMA */
6450

6451
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6452

6453 6454
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6455 6456 6457
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6502
/*
6503
 * SMT sched-domains:
6504
 */
L
Linus Torvalds 已提交
6505
#ifdef CONFIG_SCHED_SMT
6506
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6507
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6508

I
Ingo Molnar 已提交
6509
static int
6510 6511
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6512
{
6513
	if (sg)
6514
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6515 6516
	return cpu;
}
6517
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6518

6519 6520 6521
/*
 * multi-core sched-domains:
 */
6522
#ifdef CONFIG_SCHED_MC
6523 6524
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6525
#endif /* CONFIG_SCHED_MC */
6526 6527

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6528
static int
6529 6530
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6531
{
6532
	int group;
6533

6534
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6535
	group = cpumask_first(mask);
6536
	if (sg)
6537
		*sg = &per_cpu(sched_group_core, group).sg;
6538
	return group;
6539 6540
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6541
static int
6542 6543
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6544
{
6545
	if (sg)
6546
		*sg = &per_cpu(sched_group_core, cpu).sg;
6547 6548 6549 6550
	return cpu;
}
#endif

6551 6552
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6553

I
Ingo Molnar 已提交
6554
static int
6555 6556
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6557
{
6558
	int group;
6559
#ifdef CONFIG_SCHED_MC
6560
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6561
	group = cpumask_first(mask);
6562
#elif defined(CONFIG_SCHED_SMT)
6563
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6564
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6565
#else
6566
	group = cpu;
L
Linus Torvalds 已提交
6567
#endif
6568
	if (sg)
6569
		*sg = &per_cpu(sched_group_phys, group).sg;
6570
	return group;
L
Linus Torvalds 已提交
6571 6572 6573 6574
}

#ifdef CONFIG_NUMA
/*
6575 6576 6577
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6578
 */
6579
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6580
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6581

6582
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6583
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6584

6585 6586 6587
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6588
{
6589 6590
	int group;

6591
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6592
	group = cpumask_first(nodemask);
6593 6594

	if (sg)
6595
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6596
	return group;
L
Linus Torvalds 已提交
6597
}
6598

6599 6600 6601 6602 6603 6604 6605
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6606
	do {
6607
		for_each_cpu(j, sched_group_cpus(sg)) {
6608
			struct sched_domain *sd;
6609

6610
			sd = &per_cpu(phys_domains, j).sd;
6611
			if (j != group_first_cpu(sd->groups)) {
6612 6613 6614 6615 6616 6617
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6618

6619
			sg->cpu_power += sd->groups->cpu_power;
6620 6621 6622
		}
		sg = sg->next;
	} while (sg != group_head);
6623
}
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6645 6646
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6647 6648 6649 6650 6651 6652 6653 6654 6655
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6656
	sg->cpu_power = 0;
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6675 6676
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6677 6678
			return -ENOMEM;
		}
6679
		sg->cpu_power = 0;
6680 6681 6682 6683 6684 6685 6686 6687 6688
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6689
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6690

6691
#ifdef CONFIG_NUMA
6692
/* Free memory allocated for various sched_group structures */
6693 6694
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6695
{
6696
	int cpu, i;
6697

6698
	for_each_cpu(cpu, cpu_map) {
6699 6700 6701 6702 6703 6704
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6705
		for (i = 0; i < nr_node_ids; i++) {
6706 6707
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6708
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6709
			if (cpumask_empty(nodemask))
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6726
#else /* !CONFIG_NUMA */
6727 6728
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6729 6730
{
}
6731
#endif /* CONFIG_NUMA */
6732

6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6747 6748
	long power;
	int weight;
6749 6750 6751

	WARN_ON(!sd || !sd->groups);

6752
	if (cpu != group_first_cpu(sd->groups))
6753 6754 6755 6756
		return;

	child = sd->child;

6757
	sd->groups->cpu_power = 0;
6758

6759 6760 6761 6762 6763
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6764 6765 6766
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6767
		 */
P
Peter Zijlstra 已提交
6768 6769
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6770
			power /= weight;
P
Peter Zijlstra 已提交
6771 6772
			power >>= SCHED_LOAD_SHIFT;
		}
6773
		sd->groups->cpu_power += power;
6774 6775 6776 6777
		return;
	}

	/*
6778
	 * Add cpu_power of each child group to this groups cpu_power.
6779 6780 6781
	 */
	group = child->groups;
	do {
6782
		sd->groups->cpu_power += group->cpu_power;
6783 6784 6785 6786
		group = group->next;
	} while (group != child->groups);
}

6787 6788 6789 6790 6791
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6792 6793 6794 6795 6796 6797
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6798
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6799

6800 6801 6802 6803 6804
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6805
	sd->level = SD_LV_##type;				\
6806
	SD_INIT_NAME(sd, type);					\
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6821 6822 6823 6824
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6825 6826 6827 6828 6829 6830
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6849
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6850 6851
	} else {
		/* turn on idle balance on this domain */
6852
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6853 6854 6855
	}
}

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6876
#ifdef CONFIG_NUMA
6877 6878 6879 6880 6881 6882 6883
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6884
#endif
6885 6886 6887 6888
	case sa_none:
		break;
	}
}
6889

6890 6891 6892
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6893
#ifdef CONFIG_NUMA
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6904
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6905
		return sa_notcovered;
6906
	}
6907
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6908
#endif
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6921
		printk(KERN_WARNING "Cannot alloc root domain\n");
6922
		return sa_tmpmask;
G
Gregory Haskins 已提交
6923
	}
6924 6925
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6926

6927 6928 6929 6930
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6931
#ifdef CONFIG_NUMA
6932
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6933

6934 6935 6936 6937 6938
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6939
		set_domain_attribute(sd, attr);
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6954
#endif
6955 6956
	return sd;
}
L
Linus Torvalds 已提交
6957

6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6973

6974 6975 6976 6977 6978
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6979
#ifdef CONFIG_SCHED_MC
6980 6981 6982 6983 6984 6985 6986
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6987
#endif
6988 6989
	return sd;
}
6990

6991 6992 6993 6994 6995
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6996
#ifdef CONFIG_SCHED_SMT
6997 6998 6999 7000 7001 7002 7003
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7004
#endif
7005 7006
	return sd;
}
L
Linus Torvalds 已提交
7007

7008 7009 7010 7011
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7012
#ifdef CONFIG_SCHED_SMT
7013 7014 7015 7016 7017 7018 7019 7020
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7021
#endif
7022
#ifdef CONFIG_SCHED_MC
7023 7024 7025 7026 7027 7028 7029
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7030
#endif
7031 7032 7033 7034 7035 7036 7037
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7038
#ifdef CONFIG_NUMA
7039 7040 7041 7042 7043
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7044 7045
	default:
		break;
7046
	}
7047
}
7048

7049 7050 7051 7052 7053 7054 7055 7056 7057
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7058
	struct sched_domain *sd;
7059
	int i;
7060
#ifdef CONFIG_NUMA
7061
	d.sd_allnodes = 0;
7062
#endif
7063

7064 7065 7066 7067
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7068

L
Linus Torvalds 已提交
7069
	/*
7070
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7071
	 */
7072
	for_each_cpu(i, cpu_map) {
7073 7074
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7075

7076
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7077
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7078
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7079
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7080
	}
7081

7082
	for_each_cpu(i, cpu_map) {
7083
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7084
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7085
	}
7086

L
Linus Torvalds 已提交
7087
	/* Set up physical groups */
7088 7089
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7090

L
Linus Torvalds 已提交
7091 7092
#ifdef CONFIG_NUMA
	/* Set up node groups */
7093 7094
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7095

7096 7097
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7098
			goto error;
L
Linus Torvalds 已提交
7099 7100 7101
#endif

	/* Calculate CPU power for physical packages and nodes */
7102
#ifdef CONFIG_SCHED_SMT
7103
	for_each_cpu(i, cpu_map) {
7104
		sd = &per_cpu(cpu_domains, i).sd;
7105
		init_sched_groups_power(i, sd);
7106
	}
L
Linus Torvalds 已提交
7107
#endif
7108
#ifdef CONFIG_SCHED_MC
7109
	for_each_cpu(i, cpu_map) {
7110
		sd = &per_cpu(core_domains, i).sd;
7111
		init_sched_groups_power(i, sd);
7112 7113
	}
#endif
7114

7115
	for_each_cpu(i, cpu_map) {
7116
		sd = &per_cpu(phys_domains, i).sd;
7117
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7118 7119
	}

7120
#ifdef CONFIG_NUMA
7121
	for (i = 0; i < nr_node_ids; i++)
7122
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7123

7124
	if (d.sd_allnodes) {
7125
		struct sched_group *sg;
7126

7127
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7128
								d.tmpmask);
7129 7130
		init_numa_sched_groups_power(sg);
	}
7131 7132
#endif

L
Linus Torvalds 已提交
7133
	/* Attach the domains */
7134
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7135
#ifdef CONFIG_SCHED_SMT
7136
		sd = &per_cpu(cpu_domains, i).sd;
7137
#elif defined(CONFIG_SCHED_MC)
7138
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7139
#else
7140
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7141
#endif
7142
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7143
	}
7144

7145 7146 7147
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7148 7149

error:
7150 7151
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7152
}
P
Paul Jackson 已提交
7153

7154
static int build_sched_domains(const struct cpumask *cpu_map)
7155 7156 7157 7158
{
	return __build_sched_domains(cpu_map, NULL);
}

7159
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7160
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7161 7162
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7163 7164 7165

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7166 7167
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7168
 */
7169
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7170

7171 7172 7173 7174 7175 7176
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7177
{
7178
	return 0;
7179 7180
}

7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7206
/*
I
Ingo Molnar 已提交
7207
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7208 7209
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7210
 */
7211
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7212
{
7213 7214
	int err;

7215
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7216
	ndoms_cur = 1;
7217
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7218
	if (!doms_cur)
7219 7220
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7221
	dattr_cur = NULL;
7222
	err = build_sched_domains(doms_cur[0]);
7223
	register_sched_domain_sysctl();
7224 7225

	return err;
7226 7227
}

7228 7229
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7230
{
7231
	free_sched_groups(cpu_map, tmpmask);
7232
}
L
Linus Torvalds 已提交
7233

7234 7235 7236 7237
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7238
static void detach_destroy_domains(const struct cpumask *cpu_map)
7239
{
7240 7241
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7242 7243
	int i;

7244
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7245
		cpu_attach_domain(NULL, &def_root_domain, i);
7246
	synchronize_sched();
7247
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7248 7249
}

7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7266 7267
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7268
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7269 7270 7271
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7272
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7273 7274 7275
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7276 7277 7278
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7279 7280 7281 7282 7283 7284
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7285
 *
7286
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7287 7288
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7289
 *
P
Paul Jackson 已提交
7290 7291
 * Call with hotplug lock held
 */
7292
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7293
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7294
{
7295
	int i, j, n;
7296
	int new_topology;
P
Paul Jackson 已提交
7297

7298
	mutex_lock(&sched_domains_mutex);
7299

7300 7301 7302
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7303 7304 7305
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7306
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7307 7308 7309

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7310
		for (j = 0; j < n && !new_topology; j++) {
7311
			if (cpumask_equal(doms_cur[i], doms_new[j])
7312
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7313 7314 7315
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7316
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7317 7318 7319 7320
match1:
		;
	}

7321 7322
	if (doms_new == NULL) {
		ndoms_cur = 0;
7323
		doms_new = &fallback_doms;
7324
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7325
		WARN_ON_ONCE(dattr_new);
7326 7327
	}

P
Paul Jackson 已提交
7328 7329
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7330
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7331
			if (cpumask_equal(doms_new[i], doms_cur[j])
7332
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7333 7334 7335
				goto match2;
		}
		/* no match - add a new doms_new */
7336
		__build_sched_domains(doms_new[i],
7337
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7338 7339 7340 7341 7342
match2:
		;
	}

	/* Remember the new sched domains */
7343 7344
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7345
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7346
	doms_cur = doms_new;
7347
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7348
	ndoms_cur = ndoms_new;
7349 7350

	register_sched_domain_sysctl();
7351

7352
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7353 7354
}

7355
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7356
static void arch_reinit_sched_domains(void)
7357
{
7358
	get_online_cpus();
7359 7360 7361 7362

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7363
	rebuild_sched_domains();
7364
	put_online_cpus();
7365 7366 7367 7368
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7369
	unsigned int level = 0;
7370

7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7382 7383 7384
		return -EINVAL;

	if (smt)
7385
		sched_smt_power_savings = level;
7386
	else
7387
		sched_mc_power_savings = level;
7388

7389
	arch_reinit_sched_domains();
7390

7391
	return count;
7392 7393 7394
}

#ifdef CONFIG_SCHED_MC
7395 7396
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7397 7398 7399
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7400
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7401
					    const char *buf, size_t count)
7402 7403 7404
{
	return sched_power_savings_store(buf, count, 0);
}
7405 7406 7407
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7408 7409 7410
#endif

#ifdef CONFIG_SCHED_SMT
7411 7412
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7413 7414 7415
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7416
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7417
					     const char *buf, size_t count)
7418 7419 7420
{
	return sched_power_savings_store(buf, count, 1);
}
7421 7422
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7423 7424 7425
		   sched_smt_power_savings_store);
#endif

7426
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7442
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7443

7444
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7445
/*
7446 7447
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7448 7449 7450
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7451 7452 7453 7454
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7455 7456 7457 7458
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7459
		partition_sched_domains(1, NULL, NULL);
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7470
{
P
Peter Zijlstra 已提交
7471 7472
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7473 7474
	switch (action) {
	case CPU_DOWN_PREPARE:
7475
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7476
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7477 7478 7479
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7480
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7481
	case CPU_ONLINE:
7482
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7483
		enable_runtime(cpu_rq(cpu));
7484 7485
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7486 7487 7488 7489 7490 7491 7492
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7493 7494 7495
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7496
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7497

7498 7499 7500 7501 7502
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7503
	get_online_cpus();
7504
	mutex_lock(&sched_domains_mutex);
7505
	arch_init_sched_domains(cpu_active_mask);
7506 7507 7508
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7509
	mutex_unlock(&sched_domains_mutex);
7510
	put_online_cpus();
7511 7512

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7513 7514
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7515 7516 7517 7518 7519
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7520
	init_hrtick();
7521 7522

	/* Move init over to a non-isolated CPU */
7523
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7524
		BUG();
I
Ingo Molnar 已提交
7525
	sched_init_granularity();
7526
	free_cpumask_var(non_isolated_cpus);
7527

7528
	init_sched_rt_class();
L
Linus Torvalds 已提交
7529 7530 7531 7532
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7533
	sched_init_granularity();
L
Linus Torvalds 已提交
7534 7535 7536
}
#endif /* CONFIG_SMP */

7537 7538
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7539 7540 7541 7542 7543 7544 7545
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7546
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7547 7548
{
	cfs_rq->tasks_timeline = RB_ROOT;
7549
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7550 7551 7552
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7553
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7554 7555
}

P
Peter Zijlstra 已提交
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7569
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7570
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7571
#ifdef CONFIG_SMP
7572
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7573 7574
#endif
#endif
P
Peter Zijlstra 已提交
7575 7576 7577
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7578
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7579 7580 7581 7582
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7583
	rt_rq->rt_runtime = 0;
7584
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7585

7586
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7587
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7588 7589
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7590 7591
}

P
Peter Zijlstra 已提交
7592
#ifdef CONFIG_FAIR_GROUP_SCHED
7593 7594 7595
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7596
{
7597
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7598 7599 7600 7601 7602 7603 7604
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7605 7606 7607 7608
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7609 7610 7611 7612 7613
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7614 7615
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7616
	se->load.inv_weight = 0;
7617
	se->parent = parent;
P
Peter Zijlstra 已提交
7618
}
7619
#endif
P
Peter Zijlstra 已提交
7620

7621
#ifdef CONFIG_RT_GROUP_SCHED
7622 7623 7624
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7625
{
7626 7627
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7628 7629 7630
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7631
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7632 7633 7634 7635
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7636 7637 7638
	if (!rt_se)
		return;

7639 7640 7641 7642 7643
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7644
	rt_se->my_q = rt_rq;
7645
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7646 7647 7648 7649
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7650 7651
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7652
	int i, j;
7653 7654 7655 7656 7657 7658 7659
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7660
#endif
7661
#ifdef CONFIG_CPUMASK_OFFSTACK
7662
	alloc_size += num_possible_cpus() * cpumask_size();
7663 7664
#endif
	if (alloc_size) {
7665
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7666 7667 7668 7669 7670 7671 7672

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7673

7674
#endif /* CONFIG_FAIR_GROUP_SCHED */
7675 7676 7677 7678 7679
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7680 7681
		ptr += nr_cpu_ids * sizeof(void **);

7682
#endif /* CONFIG_RT_GROUP_SCHED */
7683 7684 7685 7686 7687 7688
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7689
	}
I
Ingo Molnar 已提交
7690

G
Gregory Haskins 已提交
7691 7692 7693 7694
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7695 7696 7697 7698 7699 7700
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7701
#endif /* CONFIG_RT_GROUP_SCHED */
7702

D
Dhaval Giani 已提交
7703
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7704
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7705 7706
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7707
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7708

7709 7710 7711 7712
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7713
	for_each_possible_cpu(i) {
7714
		struct rq *rq;
L
Linus Torvalds 已提交
7715 7716

		rq = cpu_rq(i);
7717
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7718
		rq->nr_running = 0;
7719 7720
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7721
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7722
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7723
#ifdef CONFIG_FAIR_GROUP_SCHED
7724
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7725
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7741
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7742 7743 7744 7745
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7746
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7747
#endif
D
Dhaval Giani 已提交
7748 7749 7750
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7751
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7752
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7753
#ifdef CONFIG_CGROUP_SCHED
7754
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7755
#endif
I
Ingo Molnar 已提交
7756
#endif
L
Linus Torvalds 已提交
7757

I
Ingo Molnar 已提交
7758 7759
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7760
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7761
		rq->sd = NULL;
G
Gregory Haskins 已提交
7762
		rq->rd = NULL;
7763
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7764
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7765
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7766
		rq->push_cpu = 0;
7767
		rq->cpu = i;
7768
		rq->online = 0;
L
Linus Torvalds 已提交
7769
		rq->migration_thread = NULL;
7770 7771
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7772
		INIT_LIST_HEAD(&rq->migration_queue);
7773
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7774
#endif
P
Peter Zijlstra 已提交
7775
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7776 7777 7778
		atomic_set(&rq->nr_iowait, 0);
	}

7779
	set_load_weight(&init_task);
7780

7781 7782 7783 7784
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7785
#ifdef CONFIG_SMP
7786
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7787 7788
#endif

7789
#ifdef CONFIG_RT_MUTEXES
7790
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7791 7792
#endif

L
Linus Torvalds 已提交
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7806 7807 7808

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7809 7810 7811 7812
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7813

7814
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7815
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7816
#ifdef CONFIG_SMP
7817
#ifdef CONFIG_NO_HZ
7818
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7819
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7820
#endif
R
Rusty Russell 已提交
7821 7822 7823
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7824
#endif /* SMP */
7825

7826
	perf_event_init();
7827

7828
	scheduler_running = 1;
L
Linus Torvalds 已提交
7829 7830 7831
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7832 7833
static inline int preempt_count_equals(int preempt_offset)
{
7834
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7835 7836 7837 7838

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7839
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7840
{
7841
#ifdef in_atomic
L
Linus Torvalds 已提交
7842 7843
	static unsigned long prev_jiffy;	/* ratelimiting */

7844 7845
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7846 7847 7848 7849 7850
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7851 7852 7853 7854 7855 7856 7857
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7858 7859 7860 7861 7862

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7863 7864 7865 7866 7867 7868
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7869 7870 7871
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7872

7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7884 7885
void normalize_rt_tasks(void)
{
7886
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7887
	unsigned long flags;
7888
	struct rq *rq;
L
Linus Torvalds 已提交
7889

7890
	read_lock_irqsave(&tasklist_lock, flags);
7891
	do_each_thread(g, p) {
7892 7893 7894 7895 7896 7897
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7898 7899
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7900 7901 7902
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7903
#endif
I
Ingo Molnar 已提交
7904 7905 7906 7907 7908 7909 7910 7911

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7912
			continue;
I
Ingo Molnar 已提交
7913
		}
L
Linus Torvalds 已提交
7914

7915
		raw_spin_lock(&p->pi_lock);
7916
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7917

7918
		normalize_task(rq, p);
7919

7920
		__task_rq_unlock(rq);
7921
		raw_spin_unlock(&p->pi_lock);
7922 7923
	} while_each_thread(g, p);

7924
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7925 7926 7927
}

#endif /* CONFIG_MAGIC_SYSRQ */
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7946
struct task_struct *curr_task(int cpu)
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7957 7958
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7959 7960 7961 7962 7963 7964 7965
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7966
void set_curr_task(int cpu, struct task_struct *p)
7967 7968 7969 7970 7971
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7972

7973 7974
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7989 7990
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7991 7992
{
	struct cfs_rq *cfs_rq;
7993
	struct sched_entity *se;
7994
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7995 7996
	int i;

7997
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7998 7999
	if (!tg->cfs_rq)
		goto err;
8000
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8001 8002
	if (!tg->se)
		goto err;
8003 8004

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8005 8006

	for_each_possible_cpu(i) {
8007
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8008

8009 8010
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8011 8012 8013
		if (!cfs_rq)
			goto err;

8014 8015
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8016
		if (!se)
8017
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8018

8019
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8020 8021 8022 8023
	}

	return 1;

8024 8025
 err_free_rq:
	kfree(cfs_rq);
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8040
#else /* !CONFG_FAIR_GROUP_SCHED */
8041 8042 8043 8044
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8045 8046
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8058
#endif /* CONFIG_FAIR_GROUP_SCHED */
8059 8060

#ifdef CONFIG_RT_GROUP_SCHED
8061 8062 8063 8064
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8065 8066
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8078 8079
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8080 8081
{
	struct rt_rq *rt_rq;
8082
	struct sched_rt_entity *rt_se;
8083 8084 8085
	struct rq *rq;
	int i;

8086
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8087 8088
	if (!tg->rt_rq)
		goto err;
8089
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8090 8091 8092
	if (!tg->rt_se)
		goto err;

8093 8094
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8095 8096 8097 8098

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8099 8100
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8101 8102
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8103

8104 8105
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8106
		if (!rt_se)
8107
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8108

8109
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8110 8111
	}

8112 8113
	return 1;

8114 8115
 err_free_rq:
	kfree(rt_rq);
8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8130
#else /* !CONFIG_RT_GROUP_SCHED */
8131 8132 8133 8134
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8135 8136
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8148
#endif /* CONFIG_RT_GROUP_SCHED */
8149

D
Dhaval Giani 已提交
8150
#ifdef CONFIG_CGROUP_SCHED
8151 8152 8153 8154 8155 8156 8157 8158
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8159
struct task_group *sched_create_group(struct task_group *parent)
8160 8161 8162 8163 8164 8165 8166 8167 8168
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8169
	if (!alloc_fair_sched_group(tg, parent))
8170 8171
		goto err;

8172
	if (!alloc_rt_sched_group(tg, parent))
8173 8174
		goto err;

8175
	spin_lock_irqsave(&task_group_lock, flags);
8176
	for_each_possible_cpu(i) {
8177 8178
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8179
	}
P
Peter Zijlstra 已提交
8180
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8181 8182 8183 8184 8185

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8186
	list_add_rcu(&tg->siblings, &parent->children);
8187
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8188

8189
	return tg;
S
Srivatsa Vaddagiri 已提交
8190 8191

err:
P
Peter Zijlstra 已提交
8192
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8193 8194 8195
	return ERR_PTR(-ENOMEM);
}

8196
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8197
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8198 8199
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8200
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8201 8202
}

8203
/* Destroy runqueue etc associated with a task group */
8204
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8205
{
8206
	unsigned long flags;
8207
	int i;
S
Srivatsa Vaddagiri 已提交
8208

8209
	spin_lock_irqsave(&task_group_lock, flags);
8210
	for_each_possible_cpu(i) {
8211 8212
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8213
	}
P
Peter Zijlstra 已提交
8214
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8215
	list_del_rcu(&tg->siblings);
8216
	spin_unlock_irqrestore(&task_group_lock, flags);
8217 8218

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8219
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8220 8221
}

8222
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8223 8224 8225
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8226 8227
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8228 8229 8230 8231 8232 8233 8234 8235 8236
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8237
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8238 8239
	on_rq = tsk->se.on_rq;

8240
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8241
		dequeue_task(rq, tsk, 0);
8242 8243
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8244

P
Peter Zijlstra 已提交
8245
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8246

P
Peter Zijlstra 已提交
8247 8248
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8249
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8250 8251
#endif

8252 8253 8254
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8255
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8256 8257 8258

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8259
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8260

8261
#ifdef CONFIG_FAIR_GROUP_SCHED
8262
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8263 8264 8265 8266 8267
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8268
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8269 8270 8271
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8272
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8273

8274
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8275
		enqueue_entity(cfs_rq, se, 0);
8276
}
8277

8278 8279 8280 8281 8282 8283
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8284
	raw_spin_lock_irqsave(&rq->lock, flags);
8285
	__set_se_shares(se, shares);
8286
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8287 8288
}

8289 8290
static DEFINE_MUTEX(shares_mutex);

8291
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8292 8293
{
	int i;
8294
	unsigned long flags;
8295

8296 8297 8298 8299 8300 8301
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8302 8303
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8304 8305
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8306

8307
	mutex_lock(&shares_mutex);
8308
	if (tg->shares == shares)
8309
		goto done;
S
Srivatsa Vaddagiri 已提交
8310

8311
	spin_lock_irqsave(&task_group_lock, flags);
8312 8313
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8314
	list_del_rcu(&tg->siblings);
8315
	spin_unlock_irqrestore(&task_group_lock, flags);
8316 8317 8318 8319 8320 8321 8322 8323

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8324
	tg->shares = shares;
8325 8326 8327 8328 8329
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8330
		set_se_shares(tg->se[i], shares);
8331
	}
S
Srivatsa Vaddagiri 已提交
8332

8333 8334 8335 8336
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8337
	spin_lock_irqsave(&task_group_lock, flags);
8338 8339
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8340
	list_add_rcu(&tg->siblings, &tg->parent->children);
8341
	spin_unlock_irqrestore(&task_group_lock, flags);
8342
done:
8343
	mutex_unlock(&shares_mutex);
8344
	return 0;
S
Srivatsa Vaddagiri 已提交
8345 8346
}

8347 8348 8349 8350
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8351
#endif
8352

8353
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8354
/*
P
Peter Zijlstra 已提交
8355
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8356
 */
P
Peter Zijlstra 已提交
8357 8358 8359 8360 8361
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8362
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8363

P
Peter Zijlstra 已提交
8364
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8365 8366
}

P
Peter Zijlstra 已提交
8367 8368
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8369
{
P
Peter Zijlstra 已提交
8370
	struct task_struct *g, *p;
8371

P
Peter Zijlstra 已提交
8372 8373 8374 8375
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8376

P
Peter Zijlstra 已提交
8377 8378
	return 0;
}
8379

P
Peter Zijlstra 已提交
8380 8381 8382 8383 8384
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8385

P
Peter Zijlstra 已提交
8386 8387 8388 8389 8390 8391
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8392

P
Peter Zijlstra 已提交
8393 8394
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8395

P
Peter Zijlstra 已提交
8396 8397 8398
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8399 8400
	}

8401 8402 8403 8404 8405
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8406

8407 8408 8409
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8410 8411
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8412

P
Peter Zijlstra 已提交
8413
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8414

8415 8416 8417 8418 8419
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8420

8421 8422 8423
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8424 8425 8426
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8427

P
Peter Zijlstra 已提交
8428 8429 8430 8431
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8432

P
Peter Zijlstra 已提交
8433
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8434
	}
P
Peter Zijlstra 已提交
8435

P
Peter Zijlstra 已提交
8436 8437 8438 8439
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8440 8441
}

P
Peter Zijlstra 已提交
8442
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8443
{
P
Peter Zijlstra 已提交
8444 8445 8446 8447 8448 8449 8450
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8451 8452
}

8453 8454
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8455
{
P
Peter Zijlstra 已提交
8456
	int i, err = 0;
P
Peter Zijlstra 已提交
8457 8458

	mutex_lock(&rt_constraints_mutex);
8459
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8460 8461
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8462
		goto unlock;
P
Peter Zijlstra 已提交
8463

8464
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8465 8466
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8467 8468 8469 8470

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8471
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8472
		rt_rq->rt_runtime = rt_runtime;
8473
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8474
	}
8475
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8476
 unlock:
8477
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8478 8479 8480
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8481 8482
}

8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8495 8496 8497 8498
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8499
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8500 8501
		return -1;

8502
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8503 8504 8505
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8506 8507 8508 8509 8510 8511 8512 8513

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8514 8515 8516
	if (rt_period == 0)
		return -EINVAL;

8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8531
	u64 runtime, period;
8532 8533
	int ret = 0;

8534 8535 8536
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8537 8538 8539 8540 8541 8542 8543 8544
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8545

8546
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8547
	read_lock(&tasklist_lock);
8548
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8549
	read_unlock(&tasklist_lock);
8550 8551 8552 8553
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8564
#else /* !CONFIG_RT_GROUP_SCHED */
8565 8566
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8567 8568 8569
	unsigned long flags;
	int i;

8570 8571 8572
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8573 8574 8575 8576 8577 8578 8579
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8580
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8581 8582 8583
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8584
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8585
		rt_rq->rt_runtime = global_rt_runtime();
8586
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8587
	}
8588
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8589

8590 8591
	return 0;
}
8592
#endif /* CONFIG_RT_GROUP_SCHED */
8593 8594

int sched_rt_handler(struct ctl_table *table, int write,
8595
		void __user *buffer, size_t *lenp,
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8606
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8623

8624
#ifdef CONFIG_CGROUP_SCHED
8625 8626

/* return corresponding task_group object of a cgroup */
8627
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8628
{
8629 8630
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8631 8632 8633
}

static struct cgroup_subsys_state *
8634
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8635
{
8636
	struct task_group *tg, *parent;
8637

8638
	if (!cgrp->parent) {
8639 8640 8641 8642
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8643 8644
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8645 8646 8647 8648 8649 8650
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8651 8652
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8653
{
8654
	struct task_group *tg = cgroup_tg(cgrp);
8655 8656 8657 8658

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8659
static int
8660
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8661
{
8662
#ifdef CONFIG_RT_GROUP_SCHED
8663
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8664 8665
		return -EINVAL;
#else
8666 8667 8668
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8669
#endif
8670 8671
	return 0;
}
8672

8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8692 8693 8694 8695
	return 0;
}

static void
8696
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8697 8698
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8699 8700
{
	sched_move_task(tsk);
8701 8702 8703 8704 8705 8706 8707 8708
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8709 8710
}

8711
#ifdef CONFIG_FAIR_GROUP_SCHED
8712
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8713
				u64 shareval)
8714
{
8715
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8716 8717
}

8718
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8719
{
8720
	struct task_group *tg = cgroup_tg(cgrp);
8721 8722 8723

	return (u64) tg->shares;
}
8724
#endif /* CONFIG_FAIR_GROUP_SCHED */
8725

8726
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8727
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8728
				s64 val)
P
Peter Zijlstra 已提交
8729
{
8730
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8731 8732
}

8733
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8734
{
8735
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8736
}
8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8748
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8749

8750
static struct cftype cpu_files[] = {
8751
#ifdef CONFIG_FAIR_GROUP_SCHED
8752 8753
	{
		.name = "shares",
8754 8755
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8756
	},
8757 8758
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8759
	{
P
Peter Zijlstra 已提交
8760
		.name = "rt_runtime_us",
8761 8762
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8763
	},
8764 8765
	{
		.name = "rt_period_us",
8766 8767
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8768
	},
8769
#endif
8770 8771 8772 8773
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8774
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8775 8776 8777
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8778 8779 8780 8781 8782 8783 8784
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8785 8786 8787
	.early_init	= 1,
};

8788
#endif	/* CONFIG_CGROUP_SCHED */
8789 8790 8791 8792 8793 8794 8795 8796 8797 8798

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8799
/* track cpu usage of a group of tasks and its child groups */
8800 8801 8802 8803
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
8804
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8805
	struct cpuacct *parent;
8806 8807 8808 8809 8810
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8811
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8812
{
8813
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8826
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8827 8828
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8829
	int i;
8830 8831

	if (!ca)
8832
		goto out;
8833 8834

	ca->cpuusage = alloc_percpu(u64);
8835 8836 8837 8838 8839 8840
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8841

8842 8843 8844
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8845
	return &ca->css;
8846 8847 8848 8849 8850 8851 8852 8853 8854

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8855 8856 8857
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8858
static void
8859
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8860
{
8861
	struct cpuacct *ca = cgroup_ca(cgrp);
8862
	int i;
8863

8864 8865
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8866 8867 8868 8869
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8870 8871
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8872
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8873 8874 8875 8876 8877 8878
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8879
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8880
	data = *cpuusage;
8881
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8882 8883 8884 8885 8886 8887 8888 8889 8890
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8891
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8892 8893 8894 8895 8896

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8897
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8898
	*cpuusage = val;
8899
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8900 8901 8902 8903 8904
#else
	*cpuusage = val;
#endif
}

8905
/* return total cpu usage (in nanoseconds) of a group */
8906
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8907
{
8908
	struct cpuacct *ca = cgroup_ca(cgrp);
8909 8910 8911
	u64 totalcpuusage = 0;
	int i;

8912 8913
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8914 8915 8916 8917

	return totalcpuusage;
}

8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8930 8931
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8932 8933 8934 8935 8936

out:
	return err;
}

8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8971 8972 8973
static struct cftype files[] = {
	{
		.name = "usage",
8974 8975
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8976
	},
8977 8978 8979 8980
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8981 8982 8983 8984
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8985 8986
};

8987
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8988
{
8989
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9000
	int cpu;
9001

L
Li Zefan 已提交
9002
	if (unlikely(!cpuacct_subsys.active))
9003 9004
		return;

9005
	cpu = task_cpu(tsk);
9006 9007 9008

	rcu_read_lock();

9009 9010
	ca = task_ca(tsk);

9011
	for (; ca; ca = ca->parent) {
9012
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9013 9014
		*cpuusage += cputime;
	}
9015 9016

	rcu_read_unlock();
9017 9018
}

9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9036 9037 9038 9039 9040 9041 9042
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9043
	int batch = CPUACCT_BATCH;
9044 9045 9046 9047 9048 9049 9050 9051

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9052
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9053 9054 9055 9056 9057
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9058 9059 9060 9061 9062 9063 9064 9065
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9151
		raw_spin_lock_irqsave(&rq->lock, flags);
9152
		list_add(&req->list, &rq->migration_queue);
9153
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9154 9155 9156 9157 9158 9159 9160
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9161
		raw_spin_lock_irqsave(&rq->lock, flags);
9162 9163 9164
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9165
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9166 9167
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9168
	synchronize_sched_expedited_count++;
9169 9170 9171 9172 9173 9174 9175 9176
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */