sched.c 217.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
500 501 502 503
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
504 505
	struct rt_rq rt;

I
Ingo Molnar 已提交
506
#ifdef CONFIG_FAIR_GROUP_SCHED
507 508
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
509 510
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
511
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
512 513 514 515 516 517 518 519 520 521
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

522
	struct task_struct *curr, *idle;
523
	unsigned long next_balance;
L
Linus Torvalds 已提交
524
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
525

526
	u64 clock;
I
Ingo Molnar 已提交
527

L
Linus Torvalds 已提交
528 529 530
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
531
	struct root_domain *rd;
L
Linus Torvalds 已提交
532 533
	struct sched_domain *sd;

534
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
535
	/* For active balancing */
536
	int post_schedule;
L
Linus Torvalds 已提交
537 538
	int active_balance;
	int push_cpu;
539 540
	/* cpu of this runqueue: */
	int cpu;
541
	int online;
L
Linus Torvalds 已提交
542

543
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
544

545
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
546
	struct list_head migration_queue;
547 548 549

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
550 551
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
552 553
#endif

554 555 556 557
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
558
#ifdef CONFIG_SCHED_HRTICK
559 560 561 562
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
563 564 565
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
566 567 568
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
569 570
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
571 572

	/* sys_sched_yield() stats */
573
	unsigned int yld_count;
L
Linus Torvalds 已提交
574 575

	/* schedule() stats */
576 577 578
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
579 580

	/* try_to_wake_up() stats */
581 582
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
583 584

	/* BKL stats */
585
	unsigned int bkl_count;
L
Linus Torvalds 已提交
586 587 588
#endif
};

589
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
590

P
Peter Zijlstra 已提交
591 592
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
593
{
P
Peter Zijlstra 已提交
594
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
595 596
}

597 598 599 600 601 602 603 604 605
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

606
#define rcu_dereference_check_sched_domain(p) \
607 608 609 610
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
611 612
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
614 615 616 617
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
618
#define for_each_domain(cpu, __sd) \
619
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
620 621 622 623 624

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
625
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
626

I
Ingo Molnar 已提交
627
inline void update_rq_clock(struct rq *rq)
628 629 630 631
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
632 633 634 635 636 637 638 639 640
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
641 642
/**
 * runqueue_is_locked
643
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
644 645 646 647 648
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
649
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
650
{
651
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
652 653
}

I
Ingo Molnar 已提交
654 655 656
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
657 658 659 660

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
661
enum {
P
Peter Zijlstra 已提交
662
#include "sched_features.h"
I
Ingo Molnar 已提交
663 664
};

P
Peter Zijlstra 已提交
665 666 667 668 669
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
670
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

680
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
681 682 683 684 685 686
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
687
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
688 689 690 691
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
692 693 694
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
695
	}
L
Li Zefan 已提交
696
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
697

L
Li Zefan 已提交
698
	return 0;
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
718
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

738
	*ppos += cnt;
P
Peter Zijlstra 已提交
739 740 741 742

	return cnt;
}

L
Li Zefan 已提交
743 744 745 746 747
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

748
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
749 750 751 752 753
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
768

769 770 771 772 773 774
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
775 776
/*
 * ratelimit for updating the group shares.
777
 * default: 0.25ms
P
Peter Zijlstra 已提交
778
 */
779
unsigned int sysctl_sched_shares_ratelimit = 250000;
780
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
781

782 783 784 785 786 787 788
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

789 790 791 792 793 794 795 796
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
797
/*
P
Peter Zijlstra 已提交
798
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
799 800
 * default: 1s
 */
P
Peter Zijlstra 已提交
801
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
802

803 804
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
805 806 807 808 809
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
810

811 812 813 814 815 816 817
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
818
	if (sysctl_sched_rt_runtime < 0)
819 820 821 822
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
823

L
Linus Torvalds 已提交
824
#ifndef prepare_arch_switch
825 826 827 828 829 830
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

831 832 833 834 835
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

836
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
837
static inline int task_running(struct rq *rq, struct task_struct *p)
838
{
839
	return task_current(rq, p);
840 841
}

842
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 844 845
{
}

846
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847
{
848 849 850 851
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
852 853 854 855 856 857 858
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

859
	raw_spin_unlock_irq(&rq->lock);
860 861 862
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
863
static inline int task_running(struct rq *rq, struct task_struct *p)
864 865 866 867
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
868
	return task_current(rq, p);
869 870 871
#endif
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883
	raw_spin_unlock_irq(&rq->lock);
884
#else
885
	raw_spin_unlock(&rq->lock);
886 887 888
#endif
}

889
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 891 892 893 894 895 896 897 898 899 900 901
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
902
#endif
903 904
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
905

906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

919 920 921 922
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
923
static inline struct rq *__task_rq_lock(struct task_struct *p)
924 925
	__acquires(rq->lock)
{
926 927
	struct rq *rq;

928
	for (;;) {
929 930 931
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
932
		raw_spin_lock(&rq->lock);
933
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
934
			return rq;
935
		raw_spin_unlock(&rq->lock);
936 937 938
	}
}

L
Linus Torvalds 已提交
939 940
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
941
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
942 943
 * explicitly disabling preemption.
 */
944
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
945 946
	__acquires(rq->lock)
{
947
	struct rq *rq;
L
Linus Torvalds 已提交
948

949
	for (;;) {
950 951
		while (task_is_waking(p))
			cpu_relax();
952 953
		local_irq_save(*flags);
		rq = task_rq(p);
954
		raw_spin_lock(&rq->lock);
955
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
956
			return rq;
957
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
958 959 960
	}
}

961 962 963 964 965
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966
	raw_spin_unlock_wait(&rq->lock);
967 968
}

A
Alexey Dobriyan 已提交
969
static void __task_rq_unlock(struct rq *rq)
970 971
	__releases(rq->lock)
{
972
	raw_spin_unlock(&rq->lock);
973 974
}

975
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
976 977
	__releases(rq->lock)
{
978
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
979 980 981
}

/*
982
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
983
 */
A
Alexey Dobriyan 已提交
984
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988 989 990

	local_irq_disable();
	rq = this_rq();
991
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
992 993 994 995

	return rq;
}

P
Peter Zijlstra 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1017
	if (!cpu_active(cpu_of(rq)))
1018
		return 0;
P
Peter Zijlstra 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1038
	raw_spin_lock(&rq->lock);
1039
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1040
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1042 1043 1044 1045

	return HRTIMER_NORESTART;
}

1046
#ifdef CONFIG_SMP
1047 1048 1049 1050
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1051
{
1052
	struct rq *rq = arg;
1053

1054
	raw_spin_lock(&rq->lock);
1055 1056
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1057
	raw_spin_unlock(&rq->lock);
1058 1059
}

1060 1061 1062 1063 1064 1065
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1066
{
1067 1068
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069

1070
	hrtimer_set_expires(timer, time);
1071 1072 1073 1074

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1075
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 1077
		rq->hrtick_csd_pending = 1;
	}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1092
		hrtick_clear(cpu_rq(cpu));
1093 1094 1095 1096 1097 1098
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1099
static __init void init_hrtick(void)
1100 1101 1102
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1103 1104 1105 1106 1107 1108 1109 1110
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1111
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112
			HRTIMER_MODE_REL_PINNED, 0);
1113
}
1114

A
Andrew Morton 已提交
1115
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1116 1117
{
}
1118
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1119

1120
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1121
{
1122 1123
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1124

1125 1126 1127 1128
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1129

1130 1131
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1132
}
A
Andrew Morton 已提交
1133
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140 1141
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1142 1143 1144
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1145
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1146

I
Ingo Molnar 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1160
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1161 1162 1163
{
	int cpu;

1164
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1165

1166
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1167 1168
		return;

1169
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1186
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1187 1188
		return;
	resched_task(cpu_curr(cpu));
1189
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1190
}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1225
	set_tsk_need_resched(rq->idle);
1226 1227 1228 1229 1230 1231

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1243
#endif /* CONFIG_NO_HZ */
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1266
#else /* !CONFIG_SMP */
1267
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1268
{
1269
	assert_raw_spin_locked(&task_rq(p)->lock);
1270
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1271
}
1272 1273 1274 1275

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1276
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1277

1278 1279 1280 1281 1282 1283 1284 1285
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1286 1287 1288
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1289
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1290

1291 1292 1293
/*
 * delta *= weight / lw
 */
1294
static unsigned long
1295 1296 1297 1298 1299
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1300 1301 1302 1303 1304 1305 1306
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1307 1308 1309 1310 1311

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1312
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1313
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1314 1315
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1316
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1317

1318
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1319 1320
}

1321
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1322 1323
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1324
	lw->inv_weight = 0;
1325 1326
}

1327
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1328 1329
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1330
	lw->inv_weight = 0;
1331 1332
}

1333 1334 1335 1336
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1337
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1338 1339 1340 1341
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1342 1343
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1353 1354 1355
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1356 1357
 */
static const int prio_to_weight[40] = {
1358 1359 1360 1361 1362 1363 1364 1365
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1366 1367
};

1368 1369 1370 1371 1372 1373 1374
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1375
static const u32 prio_to_wmult[40] = {
1376 1377 1378 1379 1380 1381 1382 1383
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1384
};
1385

1386 1387 1388 1389 1390 1391 1392 1393
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1394 1395
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396 1397
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1398 1399
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 1401
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1402 1403
#endif

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1414
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1415
typedef int (*tg_visitor)(struct task_group *, void *);
1416 1417 1418 1419 1420

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1421
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1422 1423
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1424
	int ret;
1425 1426 1427 1428

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1429 1430 1431
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1432 1433 1434 1435 1436 1437 1438
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1447
out_unlock:
1448
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1449 1450

	return ret;
1451 1452
}

P
Peter Zijlstra 已提交
1453 1454 1455
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1456
}
P
Peter Zijlstra 已提交
1457 1458 1459
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1499 1500
static struct sched_group *group_of(int cpu)
{
1501
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1519 1520 1521 1522 1523
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1524
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1525

1526 1527
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1528 1529
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1530 1531 1532 1533 1534

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1535

1536
static __read_mostly unsigned long *update_shares_data;
1537

1538 1539 1540 1541 1542
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1543 1544 1545
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1546
				    unsigned long *usd_rq_weight)
1547
{
1548
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1549
	int boost = 0;
1550

1551
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1552 1553 1554 1555
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1556

1557
	/*
P
Peter Zijlstra 已提交
1558 1559 1560
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1561
	 */
1562
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1563
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1564

1565 1566 1567 1568
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1569

1570
		raw_spin_lock_irqsave(&rq->lock, flags);
1571
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1572
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1573
		__set_se_shares(tg->se[cpu], shares);
1574
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1575
	}
1576
}
1577 1578

/*
1579 1580 1581
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1582
 */
P
Peter Zijlstra 已提交
1583
static int tg_shares_up(struct task_group *tg, void *data)
1584
{
1585
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1586
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1587
	struct sched_domain *sd = data;
1588
	unsigned long flags;
1589
	int i;
1590

1591 1592 1593 1594
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1595
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1596

1597
	for_each_cpu(i, sched_domain_span(sd)) {
1598
		weight = tg->cfs_rq[i]->load.weight;
1599
		usd_rq_weight[i] = weight;
1600

1601
		rq_weight += weight;
1602 1603 1604 1605 1606 1607 1608 1609
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1610
		sum_weight += weight;
1611
		shares += tg->cfs_rq[i]->shares;
1612 1613
	}

1614 1615 1616
	if (!rq_weight)
		rq_weight = sum_weight;

1617 1618 1619 1620 1621
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1622

1623
	for_each_cpu(i, sched_domain_span(sd))
1624
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1625 1626

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1627 1628

	return 0;
1629 1630 1631
}

/*
1632 1633 1634
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1635
 */
P
Peter Zijlstra 已提交
1636
static int tg_load_down(struct task_group *tg, void *data)
1637
{
1638
	unsigned long load;
P
Peter Zijlstra 已提交
1639
	long cpu = (long)data;
1640

1641 1642 1643 1644 1645 1646 1647
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1648

1649
	tg->cfs_rq[cpu]->h_load = load;
1650

P
Peter Zijlstra 已提交
1651
	return 0;
1652 1653
}

1654
static void update_shares(struct sched_domain *sd)
1655
{
1656 1657 1658 1659 1660 1661 1662 1663
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1664 1665 1666

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1667
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1668
	}
1669 1670
}

P
Peter Zijlstra 已提交
1671
static void update_h_load(long cpu)
1672
{
1673 1674 1675
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1676
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1677 1678 1679 1680
}

#else

1681
static inline void update_shares(struct sched_domain *sd)
1682 1683 1684
{
}

1685 1686
#endif

1687 1688
#ifdef CONFIG_PREEMPT

1689 1690
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1691
/*
1692 1693 1694 1695 1696 1697
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1698
 */
1699 1700 1701 1702 1703
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1704
	raw_spin_unlock(&this_rq->lock);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1719 1720 1721 1722 1723 1724
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1725
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1726
		if (busiest < this_rq) {
1727 1728 1729 1730
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1731 1732
			ret = 1;
		} else
1733 1734
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1735 1736 1737 1738
	}
	return ret;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1748
		raw_spin_unlock(&this_rq->lock);
1749 1750 1751 1752 1753 1754
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1755 1756 1757
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1758
	raw_spin_unlock(&busiest->lock);
1759 1760
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
	update_rq_clock(rq1);
	update_rq_clock(rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1806 1807
#endif

V
Vegard Nossum 已提交
1808
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1809 1810
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1811
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1812 1813 1814
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1815
#endif
1816

1817
static void calc_load_account_active(struct rq *this_rq);
1818
static void update_sysctl(void);
1819
static int get_update_sysctl_factor(void);
1820

P
Peter Zijlstra 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1834

1835
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1836 1837

#define sched_class_highest (&rt_sched_class)
1838 1839
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1840

1841 1842
#include "sched_stats.h"

1843
static void inc_nr_running(struct rq *rq)
1844 1845 1846 1847
{
	rq->nr_running++;
}

1848
static void dec_nr_running(struct rq *rq)
1849 1850 1851 1852
{
	rq->nr_running--;
}

1853 1854 1855
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1856 1857 1858 1859
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1860

I
Ingo Molnar 已提交
1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1869

I
Ingo Molnar 已提交
1870 1871
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 1873
}

1874 1875 1876 1877 1878 1879
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1880 1881
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882
{
I
Ingo Molnar 已提交
1883
	sched_info_queued(p);
1884
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1885
	p->se.on_rq = 1;
1886 1887
}

1888
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1889
{
1890
	sched_info_dequeued(p);
1891
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1892
	p->se.on_rq = 0;
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1903
	enqueue_task(rq, p, wakeup, false);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1926
/*
I
Ingo Molnar 已提交
1927
 * __normal_prio - return the priority that is based on the static prio
1928 1929 1930
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1931
	return p->static_prio;
1932 1933
}

1934 1935 1936 1937 1938 1939 1940
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1941
static inline int normal_prio(struct task_struct *p)
1942 1943 1944
{
	int prio;

1945
	if (task_has_rt_policy(p))
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1959
static int effective_prio(struct task_struct *p)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1972 1973 1974 1975
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1976
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1977 1978 1979 1980
{
	return cpu_curr(task_cpu(p)) == p;
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1993
#ifdef CONFIG_SMP
1994 1995 1996
/*
 * Is this task likely cache-hot:
 */
1997
static int
1998 1999 2000 2001
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2002 2003 2004
	if (p->sched_class != &fair_sched_class)
		return 0;

2005 2006 2007
	/*
	 * Buddy candidates are cache hot:
	 */
2008
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2009 2010
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2011 2012
		return 1;

2013 2014 2015 2016 2017
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2018 2019 2020 2021 2022
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2023
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2024
{
2025 2026 2027 2028 2029
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2030 2031
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2032 2033
#endif

2034
	trace_sched_migrate_task(p, new_cpu);
2035

2036 2037 2038 2039
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2040 2041

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2042 2043
}

2044
struct migration_req {
L
Linus Torvalds 已提交
2045 2046
	struct list_head list;

2047
	struct task_struct *task;
L
Linus Torvalds 已提交
2048 2049 2050
	int dest_cpu;

	struct completion done;
2051
};
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2057
static int
2058
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2059
{
2060
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2061 2062 2063

	/*
	 * If the task is not on a runqueue (and not running), then
2064
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2065
	 */
2066
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2073

L
Linus Torvalds 已提交
2074 2075 2076
	return 1;
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2120 2121 2122
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2123 2124 2125 2126 2127 2128 2129
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2136
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2137 2138
{
	unsigned long flags;
I
Ingo Molnar 已提交
2139
	int running, on_rq;
R
Roland McGrath 已提交
2140
	unsigned long ncsw;
2141
	struct rq *rq;
L
Linus Torvalds 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2163 2164 2165
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2166
			cpu_relax();
R
Roland McGrath 已提交
2167
		}
2168

2169 2170 2171 2172 2173 2174
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2175
		trace_sched_wait_task(rq, p);
2176 2177
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2178
		ncsw = 0;
2179
		if (!match_state || p->state == match_state)
2180
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2181
		task_rq_unlock(rq, &flags);
2182

R
Roland McGrath 已提交
2183 2184 2185 2186 2187 2188
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2199

2200 2201 2202 2203 2204
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2205
		 * So if it was still runnable (but just not actively
2206 2207 2208 2209 2210 2211 2212
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2213

2214 2215 2216 2217 2218 2219 2220
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2221 2222

	return ncsw;
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2238
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2248
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2249
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2250

T
Thomas Gleixner 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2272
#ifdef CONFIG_SMP
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2310
/*
2311 2312 2313
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2314
 *
2315 2316
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2317
 */
2318 2319 2320
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2334
		     !cpu_online(cpu)))
2335
		cpu = select_fallback_rq(task_cpu(p), p);
2336 2337

	return cpu;
2338 2339 2340
}
#endif

L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2355 2356
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2357
{
2358
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2359
	unsigned long flags;
2360
	struct rq *rq;
L
Linus Torvalds 已提交
2361

2362
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2363
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2364

P
Peter Zijlstra 已提交
2365
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2366

2367
	smp_wmb();
2368
	rq = task_rq_lock(p, &flags);
2369
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2370
	if (!(p->state & state))
L
Linus Torvalds 已提交
2371 2372
		goto out;

I
Ingo Molnar 已提交
2373
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2374 2375 2376
		goto out_running;

	cpu = task_cpu(p);
2377
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2383 2384 2385
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2386 2387
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2388
	 */
2389 2390
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2391
	p->state = TASK_WAKING;
2392 2393 2394 2395

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2396
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2397

2398
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2399 2400 2401 2402 2403 2404
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2405
		set_task_cpu(p, cpu);
2406
	}
P
Peter Zijlstra 已提交
2407

2408 2409
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
2410
	update_rq_clock(rq);
2411

2412 2413 2414 2415 2416 2417 2418
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2419
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2420

2421 2422 2423 2424 2425 2426 2427
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2428
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2429 2430 2431 2432 2433
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2434
#endif /* CONFIG_SCHEDSTATS */
2435

L
Linus Torvalds 已提交
2436 2437
out_activate:
#endif /* CONFIG_SMP */
2438
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2439
	if (wake_flags & WF_SYNC)
2440
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441
	if (orig_cpu != cpu)
2442
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2443
	if (cpu == this_cpu)
2444
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2445
	else
2446
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2447
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2448 2449 2450
	success = 1;

out_running:
2451
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2452
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2453

L
Linus Torvalds 已提交
2454
	p->state = TASK_RUNNING;
2455
#ifdef CONFIG_SMP
2456 2457
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2469
#endif
L
Linus Torvalds 已提交
2470 2471
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2472
	put_cpu();
L
Linus Torvalds 已提交
2473 2474 2475 2476

	return success;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2488
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2489
{
2490
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2491 2492 2493
}
EXPORT_SYMBOL(wake_up_process);

2494
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2502 2503 2504 2505 2506 2507 2508
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2509
	p->se.prev_sum_exec_runtime	= 0;
2510
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2511 2512

#ifdef CONFIG_SCHEDSTATS
2513
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2514
#endif
N
Nick Piggin 已提交
2515

P
Peter Zijlstra 已提交
2516
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2517
	p->se.on_rq = 0;
2518
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2519

2520 2521 2522
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2533 2534 2535 2536 2537 2538
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2539

2540 2541 2542 2543
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2544
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2545
			p->policy = SCHED_NORMAL;
2546 2547
			p->normal_prio = p->static_prio;
		}
2548

2549 2550
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2551
			p->normal_prio = p->static_prio;
2552 2553 2554
			set_load_weight(p);
		}

2555 2556 2557 2558 2559 2560
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2561

2562 2563 2564 2565 2566
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2567 2568
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2569

P
Peter Zijlstra 已提交
2570 2571 2572
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2573 2574
	set_task_cpu(p, cpu);

2575
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2576
	if (likely(sched_info_on()))
2577
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2578
#endif
2579
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2580 2581
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2582
#ifdef CONFIG_PREEMPT
2583
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2584
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2585
#endif
2586 2587
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2588
	put_cpu();
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2598
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2599 2600
{
	unsigned long flags;
I
Ingo Molnar 已提交
2601
	struct rq *rq;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2617

2618 2619 2620 2621 2622 2623 2624
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2625 2626
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2627
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2628
	activate_task(rq, p, 0);
2629
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2630
	check_preempt_curr(rq, p, WF_FORK);
2631
#ifdef CONFIG_SMP
2632 2633
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2634
#endif
I
Ingo Molnar 已提交
2635
	task_rq_unlock(rq, &flags);
2636
	put_cpu();
L
Linus Torvalds 已提交
2637 2638
}

2639 2640 2641
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2642
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2643
 * @notifier: notifier struct to register
2644 2645 2646 2647 2648 2649 2650 2651 2652
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2653
 * @notifier: notifier struct to unregister
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2683
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2695
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2696

2697 2698 2699
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2700
 * @prev: the current task that is being switched out
2701 2702 2703 2704 2705 2706 2707 2708 2709
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2710 2711 2712
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2713
{
2714
	fire_sched_out_preempt_notifiers(prev, next);
2715 2716 2717 2718
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2719 2720
/**
 * finish_task_switch - clean up after a task-switch
2721
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2722 2723
 * @prev: the thread we just switched away from.
 *
2724 2725 2726 2727
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2728 2729
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2730
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2731 2732 2733
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2734
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2735 2736 2737
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2738
	long prev_state;
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2744
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2745 2746
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2747
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2753
	prev_state = prev->state;
2754
	finish_arch_switch(prev);
2755 2756 2757
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2758
	perf_event_task_sched_in(current);
2759 2760 2761
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2762
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2763

2764
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2765 2766
	if (mm)
		mmdrop(mm);
2767
	if (unlikely(prev_state == TASK_DEAD)) {
2768 2769 2770
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2771
		 */
2772
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2773
		put_task_struct(prev);
2774
	}
L
Linus Torvalds 已提交
2775 2776
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2792
		raw_spin_lock_irqsave(&rq->lock, flags);
2793 2794
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2795
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2796 2797 2798 2799 2800 2801

		rq->post_schedule = 0;
	}
}

#else
2802

2803 2804 2805 2806 2807 2808
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2809 2810
}

2811 2812
#endif

L
Linus Torvalds 已提交
2813 2814 2815 2816
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2817
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2818 2819
	__releases(rq->lock)
{
2820 2821
	struct rq *rq = this_rq();

2822
	finish_task_switch(rq, prev);
2823

2824 2825 2826 2827 2828
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2829

2830 2831 2832 2833
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2834
	if (current->set_child_tid)
2835
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2842
static inline void
2843
context_switch(struct rq *rq, struct task_struct *prev,
2844
	       struct task_struct *next)
L
Linus Torvalds 已提交
2845
{
I
Ingo Molnar 已提交
2846
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2847

2848
	prepare_task_switch(rq, prev, next);
2849
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2850 2851
	mm = next->mm;
	oldmm = prev->active_mm;
2852 2853 2854 2855 2856
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2857
	arch_start_context_switch(prev);
2858

2859
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2866
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2867 2868 2869
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2870 2871 2872 2873 2874 2875 2876
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2877
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2878
#endif
L
Linus Torvalds 已提交
2879 2880 2881 2882

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2883 2884 2885 2886 2887 2888 2889
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2907
}
L
Linus Torvalds 已提交
2908 2909

unsigned long nr_uninterruptible(void)
2910
{
L
Linus Torvalds 已提交
2911
	unsigned long i, sum = 0;
2912

2913
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2914
		sum += cpu_rq(i)->nr_uninterruptible;
2915 2916

	/*
L
Linus Torvalds 已提交
2917 2918
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2919
	 */
L
Linus Torvalds 已提交
2920 2921
	if (unlikely((long)sum < 0))
		sum = 0;
2922

L
Linus Torvalds 已提交
2923
	return sum;
2924 2925
}

L
Linus Torvalds 已提交
2926
unsigned long long nr_context_switches(void)
2927
{
2928 2929
	int i;
	unsigned long long sum = 0;
2930

2931
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2932
		sum += cpu_rq(i)->nr_switches;
2933

L
Linus Torvalds 已提交
2934 2935
	return sum;
}
2936

L
Linus Torvalds 已提交
2937 2938 2939
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2940

2941
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2942
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2943

L
Linus Torvalds 已提交
2944 2945
	return sum;
}
2946

2947 2948 2949 2950 2951
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2952

2953 2954 2955 2956 2957
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2958

2959

2960 2961 2962 2963 2964
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2979 2980
}

2981 2982
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2983
{
2984 2985 2986 2987
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2988 2989

/*
2990 2991
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2992
 */
2993
void calc_global_load(void)
2994
{
2995 2996
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2997

2998 2999
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3000

3001 3002
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3003

3004 3005 3006
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3007

3008 3009
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3010

3011 3012 3013 3014 3015 3016
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3017

3018 3019
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3020

3021 3022 3023 3024
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3025
	}
3026 3027 3028
}

/*
I
Ingo Molnar 已提交
3029 3030
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3031
 */
I
Ingo Molnar 已提交
3032
static void update_cpu_load(struct rq *this_rq)
3033
{
3034
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3035
	int i, scale;
3036

I
Ingo Molnar 已提交
3037
	this_rq->nr_load_updates++;
3038

I
Ingo Molnar 已提交
3039 3040 3041
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3042

I
Ingo Molnar 已提交
3043
		/* scale is effectively 1 << i now, and >> i divides by scale */
3044

I
Ingo Molnar 已提交
3045 3046
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3047 3048 3049 3050 3051 3052 3053
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3054 3055
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3056

3057 3058 3059
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3060 3061 3062
	}
}

I
Ingo Molnar 已提交
3063
#ifdef CONFIG_SMP
3064

3065
/*
P
Peter Zijlstra 已提交
3066 3067
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3068
 */
P
Peter Zijlstra 已提交
3069
void sched_exec(void)
3070
{
P
Peter Zijlstra 已提交
3071
	struct task_struct *p = current;
3072
	struct migration_req req;
P
Peter Zijlstra 已提交
3073
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3074
	unsigned long flags;
3075
	struct rq *rq;
3076

P
Peter Zijlstra 已提交
3077 3078 3079 3080 3081 3082
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3083 3084
	}

L
Linus Torvalds 已提交
3085
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3086 3087
	put_cpu();

3088
	/*
P
Peter Zijlstra 已提交
3089
	 * select_task_rq() can race against ->cpus_allowed
3090
	 */
3091
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3092 3093 3094
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3095 3096
	}

L
Linus Torvalds 已提交
3097 3098 3099 3100
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3101

L
Linus Torvalds 已提交
3102 3103 3104 3105 3106
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3107

L
Linus Torvalds 已提交
3108 3109 3110 3111
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3112

L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118 3119
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3120
 * Return any ns on the sched_clock that have not yet been accounted in
3121
 * @p in case that task is currently running.
3122 3123
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3124
 */
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3139
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3140 3141
{
	unsigned long flags;
3142
	struct rq *rq;
3143
	u64 ns = 0;
3144

3145
	rq = task_rq_lock(p, &flags);
3146 3147
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3148

3149 3150
	return ns;
}
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3189
	task_rq_unlock(rq, &flags);
3190

L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196 3197
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3198
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3199
 */
3200 3201
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3202 3203 3204 3205
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3206
	/* Add user time to process. */
L
Linus Torvalds 已提交
3207
	p->utime = cputime_add(p->utime, cputime);
3208
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3209
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3210 3211 3212 3213 3214 3215 3216

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3217 3218

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3219 3220
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3221 3222
}

3223 3224 3225 3226
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3227
 * @cputime_scaled: cputime scaled by cpu frequency
3228
 */
3229 3230
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3231 3232 3233 3234 3235 3236
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3237
	/* Add guest time to process. */
3238
	p->utime = cputime_add(p->utime, cputime);
3239
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3240
	account_group_user_time(p, cputime);
3241 3242
	p->gtime = cputime_add(p->gtime, cputime);

3243
	/* Add guest time to cpustat. */
3244 3245 3246 3247 3248 3249 3250
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3251 3252
}

L
Linus Torvalds 已提交
3253 3254 3255 3256 3257
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3258
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3259 3260
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3261
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3262 3263 3264 3265
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3266
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3267
		account_guest_time(p, cputime, cputime_scaled);
3268 3269
		return;
	}
3270

3271
	/* Add system time to process. */
L
Linus Torvalds 已提交
3272
	p->stime = cputime_add(p->stime, cputime);
3273
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3274
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280 3281 3282

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3283 3284
		cpustat->system = cputime64_add(cpustat->system, tmp);

3285 3286
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3287 3288 3289 3290
	/* Account for system time used */
	acct_update_integrals(p);
}

3291
/*
L
Linus Torvalds 已提交
3292 3293
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3294
 */
3295
void account_steal_time(cputime_t cputime)
3296
{
3297 3298 3299 3300
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3301 3302
}

L
Linus Torvalds 已提交
3303
/*
3304 3305
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3306
 */
3307
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3308 3309
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3310
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3311
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3312

3313 3314 3315 3316
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3317 3318
}

3319 3320 3321 3322 3323 3324 3325 3326 3327
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3328
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3329 3330 3331
	struct rq *rq = this_rq();

	if (user_tick)
3332
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3333
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3334
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3335 3336
				    one_jiffy_scaled);
	else
3337
		account_idle_time(cputime_one_jiffy);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3357 3358
}

3359 3360
#endif

3361 3362 3363 3364
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3365
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3366
{
3367 3368
	*ut = p->utime;
	*st = p->stime;
3369 3370
}

3371
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3372
{
3373 3374 3375 3376 3377 3378
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3379 3380
}
#else
3381 3382

#ifndef nsecs_to_cputime
3383
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3384 3385
#endif

3386
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3387
{
3388
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3389 3390 3391 3392

	/*
	 * Use CFS's precise accounting:
	 */
3393
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3394 3395

	if (total) {
3396 3397 3398
		u64 temp;

		temp = (u64)(rtime * utime);
3399
		do_div(temp, total);
3400 3401 3402
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3403

3404 3405 3406
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3407
	p->prev_utime = max(p->prev_utime, utime);
3408
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3409

3410 3411
	*ut = p->prev_utime;
	*st = p->prev_stime;
3412 3413
}

3414 3415 3416 3417
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3418
{
3419 3420 3421
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3422

3423
	thread_group_cputime(p, &cputime);
3424

3425 3426
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3427

3428 3429
	if (total) {
		u64 temp;
3430

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3443 3444 3445
}
#endif

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3457
	struct task_struct *curr = rq->curr;
3458 3459

	sched_clock_tick();
I
Ingo Molnar 已提交
3460

3461
	raw_spin_lock(&rq->lock);
3462
	update_rq_clock(rq);
3463
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3464
	curr->sched_class->task_tick(rq, curr, 0);
3465
	raw_spin_unlock(&rq->lock);
3466

3467
	perf_event_task_tick(curr);
3468

3469
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3470 3471
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3472
#endif
L
Linus Torvalds 已提交
3473 3474
}

3475
notrace unsigned long get_parent_ip(unsigned long addr)
3476 3477 3478 3479 3480 3481 3482 3483
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3484

3485 3486 3487
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3488
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3489
{
3490
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3491 3492 3493
	/*
	 * Underflow?
	 */
3494 3495
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3496
#endif
L
Linus Torvalds 已提交
3497
	preempt_count() += val;
3498
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3499 3500 3501
	/*
	 * Spinlock count overflowing soon?
	 */
3502 3503
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3504 3505 3506
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3507 3508 3509
}
EXPORT_SYMBOL(add_preempt_count);

3510
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3511
{
3512
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3513 3514 3515
	/*
	 * Underflow?
	 */
3516
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3517
		return;
L
Linus Torvalds 已提交
3518 3519 3520
	/*
	 * Is the spinlock portion underflowing?
	 */
3521 3522 3523
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3524
#endif
3525

3526 3527
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3528 3529 3530 3531 3532 3533 3534
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3535
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3536
 */
I
Ingo Molnar 已提交
3537
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3538
{
3539 3540
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3541 3542
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3543

I
Ingo Molnar 已提交
3544
	debug_show_held_locks(prev);
3545
	print_modules();
I
Ingo Molnar 已提交
3546 3547
	if (irqs_disabled())
		print_irqtrace_events(prev);
3548 3549 3550 3551 3552

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3553
}
L
Linus Torvalds 已提交
3554

I
Ingo Molnar 已提交
3555 3556 3557 3558 3559
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3560
	/*
I
Ingo Molnar 已提交
3561
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3562 3563 3564
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3565
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3566 3567
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3568 3569
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3570
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3571 3572
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3573 3574
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3575 3576
	}
#endif
I
Ingo Molnar 已提交
3577 3578
}

P
Peter Zijlstra 已提交
3579
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3580
{
P
Peter Zijlstra 已提交
3581
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3582 3583
}

I
Ingo Molnar 已提交
3584 3585 3586 3587
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3588
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3589
{
3590
	const struct sched_class *class;
I
Ingo Molnar 已提交
3591
	struct task_struct *p;
L
Linus Torvalds 已提交
3592 3593

	/*
I
Ingo Molnar 已提交
3594 3595
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3596
	 */
I
Ingo Molnar 已提交
3597
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3598
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3599 3600
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3601 3602
	}

I
Ingo Molnar 已提交
3603 3604
	class = sched_class_highest;
	for ( ; ; ) {
3605
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3615

I
Ingo Molnar 已提交
3616 3617 3618
/*
 * schedule() is the main scheduler function.
 */
3619
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3620 3621
{
	struct task_struct *prev, *next;
3622
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3623
	struct rq *rq;
3624
	int cpu;
I
Ingo Molnar 已提交
3625

3626 3627
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3628 3629
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3630
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3631 3632 3633 3634 3635 3636 3637
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3638

3639
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3640
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3641

3642
	raw_spin_lock_irq(&rq->lock);
3643
	update_rq_clock(rq);
3644
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3645 3646

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3647
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3648
			prev->state = TASK_RUNNING;
3649
		else
3650
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3651
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3652 3653
	}

3654
	pre_schedule(rq, prev);
3655

I
Ingo Molnar 已提交
3656
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3657 3658
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3659
	put_prev_task(rq, prev);
3660
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3661 3662

	if (likely(prev != next)) {
3663
		sched_info_switch(prev, next);
3664
		perf_event_task_sched_out(prev, next);
3665

L
Linus Torvalds 已提交
3666 3667 3668 3669
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3670
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3671 3672 3673 3674 3675 3676
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3677
	} else
3678
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3679

3680
	post_schedule(rq);
L
Linus Torvalds 已提交
3681

3682 3683 3684
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3685
		goto need_resched_nonpreemptible;
3686
	}
P
Peter Zijlstra 已提交
3687

L
Linus Torvalds 已提交
3688
	preempt_enable_no_resched();
3689
	if (need_resched())
L
Linus Torvalds 已提交
3690 3691 3692 3693
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3694
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3755 3756
#ifdef CONFIG_PREEMPT
/*
3757
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3758
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3764

L
Linus Torvalds 已提交
3765 3766
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3767
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3768
	 */
N
Nick Piggin 已提交
3769
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3770 3771
		return;

3772 3773 3774 3775
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3776

3777 3778 3779 3780 3781
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3782
	} while (need_resched());
L
Linus Torvalds 已提交
3783 3784 3785 3786
}
EXPORT_SYMBOL(preempt_schedule);

/*
3787
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792 3793 3794
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3795

3796
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3797 3798
	BUG_ON(ti->preempt_count || !irqs_disabled());

3799 3800 3801 3802 3803 3804
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3805

3806 3807 3808 3809 3810
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3811
	} while (need_resched());
L
Linus Torvalds 已提交
3812 3813 3814 3815
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3816
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3817
			  void *key)
L
Linus Torvalds 已提交
3818
{
P
Peter Zijlstra 已提交
3819
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3820 3821 3822 3823
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3824 3825
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3826 3827 3828
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3829
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3830 3831
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3832
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3833
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3834
{
3835
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3836

3837
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3838 3839
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3840
		if (curr->func(curr, mode, wake_flags, key) &&
3841
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3851
 * @key: is directly passed to the wakeup function
3852 3853 3854
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3855
 */
3856
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3857
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3870
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3871 3872 3873 3874
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3875 3876 3877 3878 3879
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3880
/**
3881
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3882 3883 3884
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3885
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890 3891 3892
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3893 3894 3895
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3896
 */
3897 3898
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3899 3900
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3901
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3902 3903 3904 3905 3906

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3907
		wake_flags = 0;
L
Linus Torvalds 已提交
3908 3909

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3910
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3911 3912
	spin_unlock_irqrestore(&q->lock, flags);
}
3913 3914 3915 3916 3917 3918 3919 3920 3921
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3922 3923
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3924 3925 3926 3927 3928 3929 3930 3931
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3932 3933 3934
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3935
 */
3936
void complete(struct completion *x)
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3942
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3943 3944 3945 3946
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3947 3948 3949 3950 3951
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3952 3953 3954
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3955
 */
3956
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3957 3958 3959 3960 3961
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3962
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3963 3964 3965 3966
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3967 3968
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973 3974 3975
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3976
			if (signal_pending_state(state, current)) {
3977 3978
				timeout = -ERESTARTSYS;
				break;
3979 3980
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3981 3982 3983
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3984
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3985
		__remove_wait_queue(&x->wait, &wait);
3986 3987
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3988 3989
	}
	x->done--;
3990
	return timeout ?: 1;
L
Linus Torvalds 已提交
3991 3992
}

3993 3994
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3995 3996 3997 3998
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3999
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4000
	spin_unlock_irq(&x->wait.lock);
4001 4002
	return timeout;
}
L
Linus Torvalds 已提交
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4014
void __sched wait_for_completion(struct completion *x)
4015 4016
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4017
}
4018
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4019

4020 4021 4022 4023 4024 4025 4026 4027 4028
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4029
unsigned long __sched
4030
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4031
{
4032
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4033
}
4034
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4035

4036 4037 4038 4039 4040 4041 4042
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4043
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4044
{
4045 4046 4047 4048
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4049
}
4050
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4051

4052 4053 4054 4055 4056 4057 4058 4059
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4060
unsigned long __sched
4061 4062
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4063
{
4064
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4065
}
4066
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4067

4068 4069 4070 4071 4072 4073 4074
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4098
	unsigned long flags;
4099 4100
	int ret = 1;

4101
	spin_lock_irqsave(&x->wait.lock, flags);
4102 4103 4104 4105
	if (!x->done)
		ret = 0;
	else
		x->done--;
4106
	spin_unlock_irqrestore(&x->wait.lock, flags);
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4121
	unsigned long flags;
4122 4123
	int ret = 1;

4124
	spin_lock_irqsave(&x->wait.lock, flags);
4125 4126
	if (!x->done)
		ret = 0;
4127
	spin_unlock_irqrestore(&x->wait.lock, flags);
4128 4129 4130 4131
	return ret;
}
EXPORT_SYMBOL(completion_done);

4132 4133
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4134
{
I
Ingo Molnar 已提交
4135 4136 4137 4138
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4139

4140
	__set_current_state(state);
L
Linus Torvalds 已提交
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4156 4157 4158
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4159
long __sched
I
Ingo Molnar 已提交
4160
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4161
{
4162
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4163 4164 4165
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4166
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4167
{
4168
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4169 4170 4171
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4172
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4173
{
4174
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4175 4176 4177
}
EXPORT_SYMBOL(sleep_on_timeout);

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4190
void rt_mutex_setprio(struct task_struct *p, int prio)
4191 4192
{
	unsigned long flags;
4193
	int oldprio, on_rq, running;
4194
	struct rq *rq;
4195
	const struct sched_class *prev_class;
4196 4197 4198 4199

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4200
	update_rq_clock(rq);
4201

4202
	oldprio = p->prio;
4203
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4204
	on_rq = p->se.on_rq;
4205
	running = task_current(rq, p);
4206
	if (on_rq)
4207
		dequeue_task(rq, p, 0);
4208 4209
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4210 4211 4212 4213 4214 4215

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4216 4217
	p->prio = prio;

4218 4219
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4220
	if (on_rq) {
4221
		enqueue_task(rq, p, 0, oldprio < prio);
4222 4223

		check_class_changed(rq, p, prev_class, oldprio, running);
4224 4225 4226 4227 4228 4229
	}
	task_rq_unlock(rq, &flags);
}

#endif

4230
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4231
{
I
Ingo Molnar 已提交
4232
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4233
	unsigned long flags;
4234
	struct rq *rq;
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241 4242

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4243
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4244 4245 4246 4247
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4248
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4249
	 */
4250
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4251 4252 4253
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4254
	on_rq = p->se.on_rq;
4255
	if (on_rq)
4256
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4257 4258

	p->static_prio = NICE_TO_PRIO(nice);
4259
	set_load_weight(p);
4260 4261 4262
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4263

I
Ingo Molnar 已提交
4264
	if (on_rq) {
4265
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4266
		/*
4267 4268
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4269
		 */
4270
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4278 4279 4280 4281 4282
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4283
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4284
{
4285 4286
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4287

M
Matt Mackall 已提交
4288 4289 4290 4291
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4301
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4302
{
4303
	long nice, retval;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4310 4311
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4312 4313 4314
	if (increment > 40)
		increment = 40;

4315
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4321 4322 4323
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4342
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4351
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4352 4353 4354
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4355
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4370
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4379
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4380
{
4381
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4382 4383 4384
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4385 4386
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4387
{
I
Ingo Molnar 已提交
4388
	BUG_ON(p->se.on_rq);
4389

L
Linus Torvalds 已提交
4390 4391
	p->policy = policy;
	p->rt_priority = prio;
4392 4393 4394
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4395 4396 4397 4398
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4399
	set_load_weight(p);
L
Linus Torvalds 已提交
4400 4401
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4418 4419
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4420
{
4421
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4422
	unsigned long flags;
4423
	const struct sched_class *prev_class;
4424
	struct rq *rq;
4425
	int reset_on_fork;
L
Linus Torvalds 已提交
4426

4427 4428
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4429 4430
recheck:
	/* double check policy once rq lock held */
4431 4432
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4433
		policy = oldpolicy = p->policy;
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4444 4445
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4446 4447
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4448 4449
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4450
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4451
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4452
		return -EINVAL;
4453
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4454 4455
		return -EINVAL;

4456 4457 4458
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4459
	if (user && !capable(CAP_SYS_NICE)) {
4460
		if (rt_policy(policy)) {
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4477 4478 4479 4480 4481 4482
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4483

4484
		/* can't change other user's priorities */
4485
		if (!check_same_owner(p))
4486
			return -EPERM;
4487 4488 4489 4490

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4491
	}
L
Linus Torvalds 已提交
4492

4493
	if (user) {
4494
#ifdef CONFIG_RT_GROUP_SCHED
4495 4496 4497 4498
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4499 4500
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4501
			return -EPERM;
4502 4503
#endif

4504 4505 4506 4507 4508
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4509 4510 4511 4512
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4513
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4514 4515 4516 4517
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4518
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4519 4520 4521
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4522
		__task_rq_unlock(rq);
4523
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4524 4525
		goto recheck;
	}
I
Ingo Molnar 已提交
4526
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4527
	on_rq = p->se.on_rq;
4528
	running = task_current(rq, p);
4529
	if (on_rq)
4530
		deactivate_task(rq, p, 0);
4531 4532
	if (running)
		p->sched_class->put_prev_task(rq, p);
4533

4534 4535
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4536
	oldprio = p->prio;
4537
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4538
	__setscheduler(rq, p, policy, param->sched_priority);
4539

4540 4541
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4542 4543
	if (on_rq) {
		activate_task(rq, p, 0);
4544 4545

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4546
	}
4547
	__task_rq_unlock(rq);
4548
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4549

4550 4551
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4552 4553
	return 0;
}
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4568 4569
EXPORT_SYMBOL_GPL(sched_setscheduler);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4587 4588
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4589 4590 4591
{
	struct sched_param lparam;
	struct task_struct *p;
4592
	int retval;
L
Linus Torvalds 已提交
4593 4594 4595 4596 4597

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4598 4599 4600

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4601
	p = find_process_by_pid(pid);
4602 4603 4604
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4605

L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4615 4616
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4617
{
4618 4619 4620 4621
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4630
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4639
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4640
{
4641
	struct task_struct *p;
4642
	int retval;
L
Linus Torvalds 已提交
4643 4644

	if (pid < 0)
4645
		return -EINVAL;
L
Linus Torvalds 已提交
4646 4647

	retval = -ESRCH;
4648
	rcu_read_lock();
L
Linus Torvalds 已提交
4649 4650 4651 4652
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4653 4654
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4655
	}
4656
	rcu_read_unlock();
L
Linus Torvalds 已提交
4657 4658 4659 4660
	return retval;
}

/**
4661
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4662 4663 4664
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4665
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4666 4667
{
	struct sched_param lp;
4668
	struct task_struct *p;
4669
	int retval;
L
Linus Torvalds 已提交
4670 4671

	if (!param || pid < 0)
4672
		return -EINVAL;
L
Linus Torvalds 已提交
4673

4674
	rcu_read_lock();
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4685
	rcu_read_unlock();
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4695
	rcu_read_unlock();
L
Linus Torvalds 已提交
4696 4697 4698
	return retval;
}

4699
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4700
{
4701
	cpumask_var_t cpus_allowed, new_mask;
4702 4703
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4704

4705
	get_online_cpus();
4706
	rcu_read_lock();
L
Linus Torvalds 已提交
4707 4708 4709

	p = find_process_by_pid(pid);
	if (!p) {
4710
		rcu_read_unlock();
4711
		put_online_cpus();
L
Linus Torvalds 已提交
4712 4713 4714
		return -ESRCH;
	}

4715
	/* Prevent p going away */
L
Linus Torvalds 已提交
4716
	get_task_struct(p);
4717
	rcu_read_unlock();
L
Linus Torvalds 已提交
4718

4719 4720 4721 4722 4723 4724 4725 4726
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4727
	retval = -EPERM;
4728
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4729 4730
		goto out_unlock;

4731 4732 4733 4734
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4735 4736
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4737
 again:
4738
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4739

P
Paul Menage 已提交
4740
	if (!retval) {
4741 4742
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4743 4744 4745 4746 4747
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4748
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4749 4750 4751
			goto again;
		}
	}
L
Linus Torvalds 已提交
4752
out_unlock:
4753 4754 4755 4756
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4757
	put_task_struct(p);
4758
	put_online_cpus();
L
Linus Torvalds 已提交
4759 4760 4761 4762
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4763
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4764
{
4765 4766 4767 4768 4769
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4779 4780
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4781
{
4782
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4783 4784
	int retval;

4785 4786
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4787

4788 4789 4790 4791 4792
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4793 4794
}

4795
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4796
{
4797
	struct task_struct *p;
4798 4799
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4800 4801
	int retval;

4802
	get_online_cpus();
4803
	rcu_read_lock();
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808 4809

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4810 4811 4812 4813
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4814
	rq = task_rq_lock(p, &flags);
4815
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4816
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4817 4818

out_unlock:
4819
	rcu_read_unlock();
4820
	put_online_cpus();
L
Linus Torvalds 已提交
4821

4822
	return retval;
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829 4830
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4831 4832
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4833 4834
{
	int ret;
4835
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4836

4837
	if (len < cpumask_size())
L
Linus Torvalds 已提交
4838 4839
		return -EINVAL;

4840 4841
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4842

4843 4844 4845 4846 4847 4848 4849 4850
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4851

4852
	return ret;
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4858 4859
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4860
 */
4861
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4862
{
4863
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4864

4865
	schedstat_inc(rq, yld_count);
4866
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871 4872

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4873
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4874
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879 4880 4881
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4882 4883 4884 4885 4886
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4887
static void __cond_resched(void)
L
Linus Torvalds 已提交
4888
{
4889 4890 4891
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4892 4893
}

4894
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4895
{
P
Peter Zijlstra 已提交
4896
	if (should_resched()) {
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901
		__cond_resched();
		return 1;
	}
	return 0;
}
4902
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4903 4904

/*
4905
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4906 4907
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4908
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4909 4910 4911
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4912
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4913
{
P
Peter Zijlstra 已提交
4914
	int resched = should_resched();
J
Jan Kara 已提交
4915 4916
	int ret = 0;

4917 4918
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4919
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4920
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4921
		if (resched)
N
Nick Piggin 已提交
4922 4923 4924
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4925
		ret = 1;
L
Linus Torvalds 已提交
4926 4927
		spin_lock(lock);
	}
J
Jan Kara 已提交
4928
	return ret;
L
Linus Torvalds 已提交
4929
}
4930
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4931

4932
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4933 4934 4935
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4936
	if (should_resched()) {
4937
		local_bh_enable();
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4944
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4945 4946 4947 4948

/**
 * yield - yield the current processor to other threads.
 *
4949
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4960
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4961 4962 4963 4964
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4965
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4966

4967
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4968
	atomic_inc(&rq->nr_iowait);
4969
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4970
	schedule();
4971
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4972
	atomic_dec(&rq->nr_iowait);
4973
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4974 4975 4976 4977 4978
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4979
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4980 4981
	long ret;

4982
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4983
	atomic_inc(&rq->nr_iowait);
4984
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4985
	ret = schedule_timeout(timeout);
4986
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4987
	atomic_dec(&rq->nr_iowait);
4988
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4999
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5009
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5010
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5024
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031 5032 5033
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5034
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5035
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5049
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5050
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5051
{
5052
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5053
	unsigned int time_slice;
5054 5055
	unsigned long flags;
	struct rq *rq;
5056
	int retval;
L
Linus Torvalds 已提交
5057 5058 5059
	struct timespec t;

	if (pid < 0)
5060
		return -EINVAL;
L
Linus Torvalds 已提交
5061 5062

	retval = -ESRCH;
5063
	rcu_read_lock();
L
Linus Torvalds 已提交
5064 5065 5066 5067 5068 5069 5070 5071
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5072 5073 5074
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5075

5076
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5077
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5078 5079
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5080

L
Linus Torvalds 已提交
5081
out_unlock:
5082
	rcu_read_unlock();
L
Linus Torvalds 已提交
5083 5084 5085
	return retval;
}

5086
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5087

5088
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5089 5090
{
	unsigned long free = 0;
5091
	unsigned state;
L
Linus Torvalds 已提交
5092 5093

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5094
	printk(KERN_INFO "%-13.13s %c", p->comm,
5095
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5096
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5097
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5098
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5099
	else
P
Peter Zijlstra 已提交
5100
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5101 5102
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5103
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5104
	else
P
Peter Zijlstra 已提交
5105
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5106 5107
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5108
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5109
#endif
P
Peter Zijlstra 已提交
5110
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5111 5112
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5113

5114
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5115 5116
}

I
Ingo Molnar 已提交
5117
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5118
{
5119
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5120

5121
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5122 5123
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5124
#else
P
Peter Zijlstra 已提交
5125 5126
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5135
		if (!state_filter || (p->state & state_filter))
5136
			sched_show_task(p);
L
Linus Torvalds 已提交
5137 5138
	} while_each_thread(g, p);

5139 5140
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5141 5142 5143
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5144
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5145 5146 5147
	/*
	 * Only show locks if all tasks are dumped:
	 */
5148
	if (!state_filter)
I
Ingo Molnar 已提交
5149
		debug_show_all_locks();
L
Linus Torvalds 已提交
5150 5151
}

I
Ingo Molnar 已提交
5152 5153
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5154
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5155 5156
}

5157 5158 5159 5160 5161 5162 5163 5164
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5165
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5166
{
5167
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5168 5169
	unsigned long flags;

5170
	raw_spin_lock_irqsave(&rq->lock, flags);
5171

I
Ingo Molnar 已提交
5172
	__sched_fork(idle);
5173
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5174 5175
	idle->se.exec_start = sched_clock();

5176
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5177
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5178 5179

	rq->curr = rq->idle = idle;
5180 5181 5182
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5183
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5184 5185

	/* Set the preempt count _outside_ the spinlocks! */
5186 5187 5188
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5189
	task_thread_info(idle)->preempt_count = 0;
5190
#endif
I
Ingo Molnar 已提交
5191 5192 5193 5194
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5195
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200 5201 5202
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5203
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5204
 */
5205
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5206

I
Ingo Molnar 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5216
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5217
{
5218
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5233

5234 5235
	return factor;
}
I
Ingo Molnar 已提交
5236

5237 5238 5239
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5240

5241 5242 5243 5244 5245 5246 5247 5248
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5249

5250 5251 5252
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5253 5254
}

L
Linus Torvalds 已提交
5255 5256 5257 5258
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5259
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5278
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5279 5280
 * call is not atomic; no spinlocks may be held.
 */
5281
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5282
{
5283
	struct migration_req req;
L
Linus Torvalds 已提交
5284
	unsigned long flags;
5285
	struct rq *rq;
5286
	int ret = 0;
L
Linus Torvalds 已提交
5287 5288

	rq = task_rq_lock(p, &flags);
5289

5290
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5291 5292 5293 5294
		ret = -EINVAL;
		goto out;
	}

5295
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5296
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5297 5298 5299 5300
		ret = -EINVAL;
		goto out;
	}

5301
	if (p->sched_class->set_cpus_allowed)
5302
		p->sched_class->set_cpus_allowed(p, new_mask);
5303
	else {
5304 5305
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5306 5307
	}

L
Linus Torvalds 已提交
5308
	/* Can the task run on the task's current CPU? If so, we're done */
5309
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5310 5311
		goto out;

5312
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5313
		/* Need help from migration thread: drop lock and wait. */
5314 5315 5316
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5317 5318
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5319
		put_task_struct(mt);
L
Linus Torvalds 已提交
5320 5321 5322 5323 5324 5325
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5326

L
Linus Torvalds 已提交
5327 5328
	return ret;
}
5329
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5330 5331

/*
I
Ingo Molnar 已提交
5332
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5339 5340
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5341
 */
5342
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5343
{
5344
	struct rq *rq_dest, *rq_src;
5345
	int ret = 0;
L
Linus Torvalds 已提交
5346

5347
	if (unlikely(!cpu_active(dest_cpu)))
5348
		return ret;
L
Linus Torvalds 已提交
5349 5350 5351 5352 5353 5354 5355

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5356
		goto done;
L
Linus Torvalds 已提交
5357
	/* Affinity changed (again). */
5358
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5359
		goto fail;
L
Linus Torvalds 已提交
5360

5361 5362 5363 5364 5365
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5366
		deactivate_task(rq_src, p, 0);
5367
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5368
		activate_task(rq_dest, p, 0);
5369
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5370
	}
L
Linus Torvalds 已提交
5371
done:
5372
	ret = 1;
L
Linus Torvalds 已提交
5373
fail:
L
Linus Torvalds 已提交
5374
	double_rq_unlock(rq_src, rq_dest);
5375
	return ret;
L
Linus Torvalds 已提交
5376 5377
}

5378 5379 5380 5381 5382
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5383 5384 5385 5386 5387
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5388
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5389
{
5390
	int badcpu;
L
Linus Torvalds 已提交
5391
	int cpu = (long)data;
5392
	struct rq *rq;
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5399
		struct migration_req *req;
L
Linus Torvalds 已提交
5400 5401
		struct list_head *head;

5402
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5403 5404

		if (cpu_is_offline(cpu)) {
5405
			raw_spin_unlock_irq(&rq->lock);
5406
			break;
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5417
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5418 5419 5420 5421
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5422
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5423 5424
		list_del_init(head->next);

5425
		if (req->task != NULL) {
5426
			raw_spin_unlock(&rq->lock);
5427 5428 5429
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5430
			raw_spin_unlock(&rq->lock);
5431 5432
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5433
			raw_spin_unlock(&rq->lock);
5434 5435
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5436
		local_irq_enable();
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5457
/*
5458
 * Figure out where task on dead CPU should go, use force if necessary.
5459
 */
5460
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5461
{
5462
	int dest_cpu;
5463 5464

again:
5465
	dest_cpu = select_fallback_rq(dead_cpu, p);
5466 5467 5468 5469

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5470 5471 5472 5473 5474 5475 5476 5477 5478
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5479
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5480
{
5481
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5495
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5496

5497
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5498

5499 5500
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5501 5502
			continue;

5503 5504 5505
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5506

5507
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5508 5509
}

I
Ingo Molnar 已提交
5510 5511
/*
 * Schedules idle task to be the next runnable task on current CPU.
5512 5513
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5514 5515 5516
 */
void sched_idle_next(void)
{
5517
	int this_cpu = smp_processor_id();
5518
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5519 5520 5521 5522
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5523
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5524

5525 5526 5527
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5528
	 */
5529
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5530

I
Ingo Molnar 已提交
5531
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5532

5533 5534
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5535

5536
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5537 5538
}

5539 5540
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5554
/* called under rq->lock with disabled interrupts */
5555
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5556
{
5557
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5558 5559

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5560
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5561 5562

	/* Cannot have done final schedule yet: would have vanished. */
5563
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5564

5565
	get_task_struct(p);
L
Linus Torvalds 已提交
5566 5567 5568

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5569
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5570 5571
	 * fine.
	 */
5572
	raw_spin_unlock_irq(&rq->lock);
5573
	move_task_off_dead_cpu(dead_cpu, p);
5574
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5575

5576
	put_task_struct(p);
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5582
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5583
	struct task_struct *next;
5584

I
Ingo Molnar 已提交
5585 5586 5587
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5588
		update_rq_clock(rq);
5589
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5590 5591
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5592
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5593
		migrate_dead(dead_cpu, next);
5594

L
Linus Torvalds 已提交
5595 5596
	}
}
5597 5598 5599 5600 5601 5602 5603

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5604
	rq->calc_load_active = 0;
5605
}
L
Linus Torvalds 已提交
5606 5607
#endif /* CONFIG_HOTPLUG_CPU */

5608 5609 5610
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5611 5612
	{
		.procname	= "sched_domain",
5613
		.mode		= 0555,
5614
	},
5615
	{}
5616 5617 5618
};

static struct ctl_table sd_ctl_root[] = {
5619 5620
	{
		.procname	= "kernel",
5621
		.mode		= 0555,
5622 5623
		.child		= sd_ctl_dir,
	},
5624
	{}
5625 5626 5627 5628 5629
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5630
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5631 5632 5633 5634

	return entry;
}

5635 5636
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5637
	struct ctl_table *entry;
5638

5639 5640 5641
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5642
	 * will always be set. In the lowest directory the names are
5643 5644 5645
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5646 5647
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5648 5649 5650
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5651 5652 5653 5654 5655

	kfree(*tablep);
	*tablep = NULL;
}

5656
static void
5657
set_table_entry(struct ctl_table *entry,
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5671
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5672

5673 5674 5675
	if (table == NULL)
		return NULL;

5676
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5677
		sizeof(long), 0644, proc_doulongvec_minmax);
5678
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5679
		sizeof(long), 0644, proc_doulongvec_minmax);
5680
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5681
		sizeof(int), 0644, proc_dointvec_minmax);
5682
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5683
		sizeof(int), 0644, proc_dointvec_minmax);
5684
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5685
		sizeof(int), 0644, proc_dointvec_minmax);
5686
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5687
		sizeof(int), 0644, proc_dointvec_minmax);
5688
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5689
		sizeof(int), 0644, proc_dointvec_minmax);
5690
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5691
		sizeof(int), 0644, proc_dointvec_minmax);
5692
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5693
		sizeof(int), 0644, proc_dointvec_minmax);
5694
	set_table_entry(&table[9], "cache_nice_tries",
5695 5696
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5697
	set_table_entry(&table[10], "flags", &sd->flags,
5698
		sizeof(int), 0644, proc_dointvec_minmax);
5699 5700 5701
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5702 5703 5704 5705

	return table;
}

5706
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5707 5708 5709 5710 5711 5712 5713 5714 5715
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5716 5717
	if (table == NULL)
		return NULL;
5718 5719 5720 5721 5722

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5723
		entry->mode = 0555;
5724 5725 5726 5727 5728 5729 5730 5731
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5732
static void register_sched_domain_sysctl(void)
5733
{
5734
	int i, cpu_num = num_possible_cpus();
5735 5736 5737
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5738 5739 5740
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5741 5742 5743
	if (entry == NULL)
		return;

5744
	for_each_possible_cpu(i) {
5745 5746
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5747
		entry->mode = 0555;
5748
		entry->child = sd_alloc_ctl_cpu_table(i);
5749
		entry++;
5750
	}
5751 5752

	WARN_ON(sd_sysctl_header);
5753 5754
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5755

5756
/* may be called multiple times per register */
5757 5758
static void unregister_sched_domain_sysctl(void)
{
5759 5760
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5761
	sd_sysctl_header = NULL;
5762 5763
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5764
}
5765
#else
5766 5767 5768 5769
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5770 5771 5772 5773
{
}
#endif

5774 5775 5776 5777 5778
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5779
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5799
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5800 5801 5802 5803
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5804 5805 5806 5807
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5808 5809
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5810 5811
{
	struct task_struct *p;
5812
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5813
	unsigned long flags;
5814
	struct rq *rq;
L
Linus Torvalds 已提交
5815 5816

	switch (action) {
5817

L
Linus Torvalds 已提交
5818
	case CPU_UP_PREPARE:
5819
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5820
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5821 5822 5823 5824 5825
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5826
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5827
		task_rq_unlock(rq, &flags);
5828
		get_task_struct(p);
L
Linus Torvalds 已提交
5829
		cpu_rq(cpu)->migration_thread = p;
5830
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5831
		break;
5832

L
Linus Torvalds 已提交
5833
	case CPU_ONLINE:
5834
	case CPU_ONLINE_FROZEN:
5835
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5836
		wake_up_process(cpu_rq(cpu)->migration_thread);
5837 5838 5839

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5840
		raw_spin_lock_irqsave(&rq->lock, flags);
5841
		if (rq->rd) {
5842
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5843 5844

			set_rq_online(rq);
5845
		}
5846
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5847
		break;
5848

L
Linus Torvalds 已提交
5849 5850
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5851
	case CPU_UP_CANCELED_FROZEN:
5852 5853
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5854
		/* Unbind it from offline cpu so it can run. Fall thru. */
5855
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5856
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5857
		kthread_stop(cpu_rq(cpu)->migration_thread);
5858
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5859 5860
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5861

L
Linus Torvalds 已提交
5862
	case CPU_DEAD:
5863
	case CPU_DEAD_FROZEN:
5864
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5865 5866 5867
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5868
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5869 5870
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5871
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5872
		update_rq_clock(rq);
5873
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5874 5875
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5876
		migrate_dead_tasks(cpu);
5877
		raw_spin_unlock_irq(&rq->lock);
5878
		cpuset_unlock();
L
Linus Torvalds 已提交
5879 5880
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5881
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5882 5883 5884 5885 5886
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5887
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5888
		while (!list_empty(&rq->migration_queue)) {
5889 5890
			struct migration_req *req;

L
Linus Torvalds 已提交
5891
			req = list_entry(rq->migration_queue.next,
5892
					 struct migration_req, list);
L
Linus Torvalds 已提交
5893
			list_del_init(&req->list);
5894
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5895
			complete(&req->done);
5896
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5897
		}
5898
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5899
		break;
G
Gregory Haskins 已提交
5900

5901 5902
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5903 5904
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5905
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5906
		if (rq->rd) {
5907
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5908
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5909
		}
5910
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5911
		break;
L
Linus Torvalds 已提交
5912 5913 5914 5915 5916
#endif
	}
	return NOTIFY_OK;
}

5917 5918 5919
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5920
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5921
 */
5922
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5923 5924 5925 5926
	.notifier_call = migration_call,
	.priority = 10
};

5927
static int __init migration_init(void)
L
Linus Torvalds 已提交
5928 5929
{
	void *cpu = (void *)(long)smp_processor_id();
5930
	int err;
5931 5932

	/* Start one for the boot CPU: */
5933 5934
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5935 5936
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5937

5938
	return 0;
L
Linus Torvalds 已提交
5939
}
5940
early_initcall(migration_init);
L
Linus Torvalds 已提交
5941 5942 5943
#endif

#ifdef CONFIG_SMP
5944

5945
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5946

5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5957
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5958
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5959
{
I
Ingo Molnar 已提交
5960
	struct sched_group *group = sd->groups;
5961
	char str[256];
L
Linus Torvalds 已提交
5962

R
Rusty Russell 已提交
5963
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5964
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5965 5966 5967 5968

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5969
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5970
		if (sd->parent)
P
Peter Zijlstra 已提交
5971 5972
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5973
		return -1;
N
Nick Piggin 已提交
5974 5975
	}

P
Peter Zijlstra 已提交
5976
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5977

5978
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5979 5980
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5981
	}
5982
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5983 5984
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5985
	}
L
Linus Torvalds 已提交
5986

I
Ingo Molnar 已提交
5987
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5988
	do {
I
Ingo Molnar 已提交
5989
		if (!group) {
P
Peter Zijlstra 已提交
5990 5991
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5992 5993 5994
			break;
		}

5995
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5996 5997 5998
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5999 6000
			break;
		}
L
Linus Torvalds 已提交
6001

6002
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6003 6004
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6005 6006
			break;
		}
L
Linus Torvalds 已提交
6007

6008
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6009 6010
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6011 6012
			break;
		}
L
Linus Torvalds 已提交
6013

6014
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6015

R
Rusty Russell 已提交
6016
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6017

P
Peter Zijlstra 已提交
6018
		printk(KERN_CONT " %s", str);
6019
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6020 6021
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6022
		}
L
Linus Torvalds 已提交
6023

I
Ingo Molnar 已提交
6024 6025
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6026
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6027

6028
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6029
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6030

6031 6032
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6033 6034
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6035 6036
	return 0;
}
L
Linus Torvalds 已提交
6037

I
Ingo Molnar 已提交
6038 6039
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6040
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6041
	int level = 0;
L
Linus Torvalds 已提交
6042

6043 6044 6045
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6046 6047 6048 6049
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6050

I
Ingo Molnar 已提交
6051 6052
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6053
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6054 6055 6056 6057
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6058
	for (;;) {
6059
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6060
			break;
L
Linus Torvalds 已提交
6061 6062
		level++;
		sd = sd->parent;
6063
		if (!sd)
I
Ingo Molnar 已提交
6064 6065
			break;
	}
6066
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6067
}
6068
#else /* !CONFIG_SCHED_DEBUG */
6069
# define sched_domain_debug(sd, cpu) do { } while (0)
6070
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6071

6072
static int sd_degenerate(struct sched_domain *sd)
6073
{
6074
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6075 6076 6077 6078 6079 6080
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6081 6082 6083
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6084 6085 6086 6087 6088
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6089
	if (sd->flags & (SD_WAKE_AFFINE))
6090 6091 6092 6093 6094
		return 0;

	return 1;
}

6095 6096
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6097 6098 6099 6100 6101 6102
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6103
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6104 6105 6106 6107 6108 6109 6110
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6111 6112 6113
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6114 6115
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6116 6117 6118 6119 6120 6121 6122
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6123 6124
static void free_rootdomain(struct root_domain *rd)
{
6125 6126
	synchronize_sched();

6127 6128
	cpupri_cleanup(&rd->cpupri);

6129 6130 6131 6132 6133 6134
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6135 6136
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6137
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6138 6139
	unsigned long flags;

6140
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6141 6142

	if (rq->rd) {
I
Ingo Molnar 已提交
6143
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6144

6145
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6146
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6147

6148
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6149

I
Ingo Molnar 已提交
6150 6151 6152 6153 6154 6155 6156
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6157 6158 6159 6160 6161
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6162
	cpumask_set_cpu(rq->cpu, rd->span);
6163
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6164
		set_rq_online(rq);
G
Gregory Haskins 已提交
6165

6166
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6167 6168 6169

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6170 6171
}

L
Li Zefan 已提交
6172
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6173
{
6174 6175
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6176 6177
	memset(rd, 0, sizeof(*rd));

6178 6179
	if (bootmem)
		gfp = GFP_NOWAIT;
6180

6181
	if (!alloc_cpumask_var(&rd->span, gfp))
6182
		goto out;
6183
	if (!alloc_cpumask_var(&rd->online, gfp))
6184
		goto free_span;
6185
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6186
		goto free_online;
6187

P
Pekka Enberg 已提交
6188
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6189
		goto free_rto_mask;
6190
	return 0;
6191

6192 6193
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6194 6195 6196 6197
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6198
out:
6199
	return -ENOMEM;
G
Gregory Haskins 已提交
6200 6201 6202 6203
}

static void init_defrootdomain(void)
{
6204 6205
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6206 6207 6208
	atomic_set(&def_root_domain.refcount, 1);
}

6209
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6210 6211 6212 6213 6214 6215 6216
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6217 6218 6219 6220
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6221 6222 6223 6224

	return rd;
}

L
Linus Torvalds 已提交
6225
/*
I
Ingo Molnar 已提交
6226
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6227 6228
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6229 6230
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6231
{
6232
	struct rq *rq = cpu_rq(cpu);
6233 6234 6235
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6236
	for (tmp = sd; tmp; ) {
6237 6238 6239
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6240

6241
		if (sd_parent_degenerate(tmp, parent)) {
6242
			tmp->parent = parent->parent;
6243 6244
			if (parent->parent)
				parent->parent->child = tmp;
6245 6246
		} else
			tmp = tmp->parent;
6247 6248
	}

6249
	if (sd && sd_degenerate(sd)) {
6250
		sd = sd->parent;
6251 6252 6253
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6254 6255 6256

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6257
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6258
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6259 6260 6261
}

/* cpus with isolated domains */
6262
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6263 6264 6265 6266

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6267
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6268
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6269 6270 6271
	return 1;
}

I
Ingo Molnar 已提交
6272
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6273 6274

/*
6275 6276
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6277 6278
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6279 6280 6281 6282 6283
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6284
static void
6285 6286 6287
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6288
					struct sched_group **sg,
6289 6290
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6291 6292 6293 6294
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6295
	cpumask_clear(covered);
6296

6297
	for_each_cpu(i, span) {
6298
		struct sched_group *sg;
6299
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6300 6301
		int j;

6302
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6303 6304
			continue;

6305
		cpumask_clear(sched_group_cpus(sg));
6306
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6307

6308
		for_each_cpu(j, span) {
6309
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6310 6311
				continue;

6312
			cpumask_set_cpu(j, covered);
6313
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6324
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6325

6326
#ifdef CONFIG_NUMA
6327

6328 6329 6330 6331 6332
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6333
 * Find the next node to include in a given scheduling domain. Simply
6334 6335 6336 6337
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6338
static int find_next_best_node(int node, nodemask_t *used_nodes)
6339 6340 6341 6342 6343
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6344
	for (i = 0; i < nr_node_ids; i++) {
6345
		/* Start at @node */
6346
		n = (node + i) % nr_node_ids;
6347 6348 6349 6350 6351

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6352
		if (node_isset(n, *used_nodes))
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6364
	node_set(best_node, *used_nodes);
6365 6366 6367 6368 6369 6370
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6371
 * @span: resulting cpumask
6372
 *
I
Ingo Molnar 已提交
6373
 * Given a node, construct a good cpumask for its sched_domain to span. It
6374 6375 6376
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6377
static void sched_domain_node_span(int node, struct cpumask *span)
6378
{
6379
	nodemask_t used_nodes;
6380
	int i;
6381

6382
	cpumask_clear(span);
6383
	nodes_clear(used_nodes);
6384

6385
	cpumask_or(span, span, cpumask_of_node(node));
6386
	node_set(node, used_nodes);
6387 6388

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6389
		int next_node = find_next_best_node(node, &used_nodes);
6390

6391
		cpumask_or(span, span, cpumask_of_node(next_node));
6392 6393
	}
}
6394
#endif /* CONFIG_NUMA */
6395

6396
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6397

6398 6399
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6400 6401 6402
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6447
/*
6448
 * SMT sched-domains:
6449
 */
L
Linus Torvalds 已提交
6450
#ifdef CONFIG_SCHED_SMT
6451
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6452
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6453

I
Ingo Molnar 已提交
6454
static int
6455 6456
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6457
{
6458
	if (sg)
6459
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6460 6461
	return cpu;
}
6462
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6463

6464 6465 6466
/*
 * multi-core sched-domains:
 */
6467
#ifdef CONFIG_SCHED_MC
6468 6469
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6470
#endif /* CONFIG_SCHED_MC */
6471 6472

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6473
static int
6474 6475
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6476
{
6477
	int group;
6478

6479
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6480
	group = cpumask_first(mask);
6481
	if (sg)
6482
		*sg = &per_cpu(sched_group_core, group).sg;
6483
	return group;
6484 6485
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6486
static int
6487 6488
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6489
{
6490
	if (sg)
6491
		*sg = &per_cpu(sched_group_core, cpu).sg;
6492 6493 6494 6495
	return cpu;
}
#endif

6496 6497
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6498

I
Ingo Molnar 已提交
6499
static int
6500 6501
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6502
{
6503
	int group;
6504
#ifdef CONFIG_SCHED_MC
6505
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6506
	group = cpumask_first(mask);
6507
#elif defined(CONFIG_SCHED_SMT)
6508
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6509
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6510
#else
6511
	group = cpu;
L
Linus Torvalds 已提交
6512
#endif
6513
	if (sg)
6514
		*sg = &per_cpu(sched_group_phys, group).sg;
6515
	return group;
L
Linus Torvalds 已提交
6516 6517 6518 6519
}

#ifdef CONFIG_NUMA
/*
6520 6521 6522
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6523
 */
6524
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6525
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6526

6527
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6528
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6529

6530 6531 6532
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6533
{
6534 6535
	int group;

6536
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6537
	group = cpumask_first(nodemask);
6538 6539

	if (sg)
6540
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6541
	return group;
L
Linus Torvalds 已提交
6542
}
6543

6544 6545 6546 6547 6548 6549 6550
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6551
	do {
6552
		for_each_cpu(j, sched_group_cpus(sg)) {
6553
			struct sched_domain *sd;
6554

6555
			sd = &per_cpu(phys_domains, j).sd;
6556
			if (j != group_first_cpu(sd->groups)) {
6557 6558 6559 6560 6561 6562
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6563

6564
			sg->cpu_power += sd->groups->cpu_power;
6565 6566 6567
		}
		sg = sg->next;
	} while (sg != group_head);
6568
}
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6590 6591
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6592 6593 6594 6595 6596 6597 6598 6599 6600
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6601
	sg->cpu_power = 0;
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6620 6621
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6622 6623
			return -ENOMEM;
		}
6624
		sg->cpu_power = 0;
6625 6626 6627 6628 6629 6630 6631 6632 6633
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6634
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6635

6636
#ifdef CONFIG_NUMA
6637
/* Free memory allocated for various sched_group structures */
6638 6639
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6640
{
6641
	int cpu, i;
6642

6643
	for_each_cpu(cpu, cpu_map) {
6644 6645 6646 6647 6648 6649
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6650
		for (i = 0; i < nr_node_ids; i++) {
6651 6652
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6653
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6654
			if (cpumask_empty(nodemask))
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6671
#else /* !CONFIG_NUMA */
6672 6673
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6674 6675
{
}
6676
#endif /* CONFIG_NUMA */
6677

6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6692 6693
	long power;
	int weight;
6694 6695 6696

	WARN_ON(!sd || !sd->groups);

6697
	if (cpu != group_first_cpu(sd->groups))
6698 6699 6700 6701
		return;

	child = sd->child;

6702
	sd->groups->cpu_power = 0;
6703

6704 6705 6706 6707 6708
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6709 6710 6711
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6712
		 */
P
Peter Zijlstra 已提交
6713 6714
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6715
			power /= weight;
P
Peter Zijlstra 已提交
6716 6717
			power >>= SCHED_LOAD_SHIFT;
		}
6718
		sd->groups->cpu_power += power;
6719 6720 6721 6722
		return;
	}

	/*
6723
	 * Add cpu_power of each child group to this groups cpu_power.
6724 6725 6726
	 */
	group = child->groups;
	do {
6727
		sd->groups->cpu_power += group->cpu_power;
6728 6729 6730 6731
		group = group->next;
	} while (group != child->groups);
}

6732 6733 6734 6735 6736
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6737 6738 6739 6740 6741 6742
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6743
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6744

6745 6746 6747 6748 6749
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6750
	sd->level = SD_LV_##type;				\
6751
	SD_INIT_NAME(sd, type);					\
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6766 6767 6768 6769
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6770 6771 6772 6773 6774 6775
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6794
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6795 6796
	} else {
		/* turn on idle balance on this domain */
6797
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6798 6799 6800
	}
}

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6821
#ifdef CONFIG_NUMA
6822 6823 6824 6825 6826 6827 6828
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6829
#endif
6830 6831 6832 6833
	case sa_none:
		break;
	}
}
6834

6835 6836 6837
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6838
#ifdef CONFIG_NUMA
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6849
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6850
		return sa_notcovered;
6851
	}
6852
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6853
#endif
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6866
		printk(KERN_WARNING "Cannot alloc root domain\n");
6867
		return sa_tmpmask;
G
Gregory Haskins 已提交
6868
	}
6869 6870
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6871

6872 6873 6874 6875
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6876
#ifdef CONFIG_NUMA
6877
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6878

6879 6880 6881 6882 6883
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6884
		set_domain_attribute(sd, attr);
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6899
#endif
6900 6901
	return sd;
}
L
Linus Torvalds 已提交
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6918

6919 6920 6921 6922 6923
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6924
#ifdef CONFIG_SCHED_MC
6925 6926 6927 6928 6929 6930 6931
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6932
#endif
6933 6934
	return sd;
}
6935

6936 6937 6938 6939 6940
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6941
#ifdef CONFIG_SCHED_SMT
6942 6943 6944 6945 6946 6947 6948
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6949
#endif
6950 6951
	return sd;
}
L
Linus Torvalds 已提交
6952

6953 6954 6955 6956
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6957
#ifdef CONFIG_SCHED_SMT
6958 6959 6960 6961 6962 6963 6964 6965
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6966
#endif
6967
#ifdef CONFIG_SCHED_MC
6968 6969 6970 6971 6972 6973 6974
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6975
#endif
6976 6977 6978 6979 6980 6981 6982
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6983
#ifdef CONFIG_NUMA
6984 6985 6986 6987 6988
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6989 6990
	default:
		break;
6991
	}
6992
}
6993

6994 6995 6996 6997 6998 6999 7000 7001 7002
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7003
	struct sched_domain *sd;
7004
	int i;
7005
#ifdef CONFIG_NUMA
7006
	d.sd_allnodes = 0;
7007
#endif
7008

7009 7010 7011 7012
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7013

L
Linus Torvalds 已提交
7014
	/*
7015
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7016
	 */
7017
	for_each_cpu(i, cpu_map) {
7018 7019
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7020

7021
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7022
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7023
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7024
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7025
	}
7026

7027
	for_each_cpu(i, cpu_map) {
7028
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7029
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7030
	}
7031

L
Linus Torvalds 已提交
7032
	/* Set up physical groups */
7033 7034
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7035

L
Linus Torvalds 已提交
7036 7037
#ifdef CONFIG_NUMA
	/* Set up node groups */
7038 7039
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7040

7041 7042
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7043
			goto error;
L
Linus Torvalds 已提交
7044 7045 7046
#endif

	/* Calculate CPU power for physical packages and nodes */
7047
#ifdef CONFIG_SCHED_SMT
7048
	for_each_cpu(i, cpu_map) {
7049
		sd = &per_cpu(cpu_domains, i).sd;
7050
		init_sched_groups_power(i, sd);
7051
	}
L
Linus Torvalds 已提交
7052
#endif
7053
#ifdef CONFIG_SCHED_MC
7054
	for_each_cpu(i, cpu_map) {
7055
		sd = &per_cpu(core_domains, i).sd;
7056
		init_sched_groups_power(i, sd);
7057 7058
	}
#endif
7059

7060
	for_each_cpu(i, cpu_map) {
7061
		sd = &per_cpu(phys_domains, i).sd;
7062
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7063 7064
	}

7065
#ifdef CONFIG_NUMA
7066
	for (i = 0; i < nr_node_ids; i++)
7067
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7068

7069
	if (d.sd_allnodes) {
7070
		struct sched_group *sg;
7071

7072
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7073
								d.tmpmask);
7074 7075
		init_numa_sched_groups_power(sg);
	}
7076 7077
#endif

L
Linus Torvalds 已提交
7078
	/* Attach the domains */
7079
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7080
#ifdef CONFIG_SCHED_SMT
7081
		sd = &per_cpu(cpu_domains, i).sd;
7082
#elif defined(CONFIG_SCHED_MC)
7083
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7084
#else
7085
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7086
#endif
7087
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7088
	}
7089

7090 7091 7092
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7093 7094

error:
7095 7096
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7097
}
P
Paul Jackson 已提交
7098

7099
static int build_sched_domains(const struct cpumask *cpu_map)
7100 7101 7102 7103
{
	return __build_sched_domains(cpu_map, NULL);
}

7104
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7105
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7106 7107
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7108 7109 7110

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7111 7112
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7113
 */
7114
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7115

7116 7117 7118 7119 7120 7121
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7122
{
7123
	return 0;
7124 7125
}

7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7151
/*
I
Ingo Molnar 已提交
7152
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7153 7154
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7155
 */
7156
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7157
{
7158 7159
	int err;

7160
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7161
	ndoms_cur = 1;
7162
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7163
	if (!doms_cur)
7164 7165
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7166
	dattr_cur = NULL;
7167
	err = build_sched_domains(doms_cur[0]);
7168
	register_sched_domain_sysctl();
7169 7170

	return err;
7171 7172
}

7173 7174
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7175
{
7176
	free_sched_groups(cpu_map, tmpmask);
7177
}
L
Linus Torvalds 已提交
7178

7179 7180 7181 7182
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7183
static void detach_destroy_domains(const struct cpumask *cpu_map)
7184
{
7185 7186
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7187 7188
	int i;

7189
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7190
		cpu_attach_domain(NULL, &def_root_domain, i);
7191
	synchronize_sched();
7192
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7193 7194
}

7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7211 7212
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7213
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7214 7215 7216
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7217
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7218 7219 7220
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7221 7222 7223
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7224 7225 7226 7227 7228 7229
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7230
 *
7231
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7232 7233
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7234
 *
P
Paul Jackson 已提交
7235 7236
 * Call with hotplug lock held
 */
7237
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7238
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7239
{
7240
	int i, j, n;
7241
	int new_topology;
P
Paul Jackson 已提交
7242

7243
	mutex_lock(&sched_domains_mutex);
7244

7245 7246 7247
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7248 7249 7250
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7251
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7252 7253 7254

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7255
		for (j = 0; j < n && !new_topology; j++) {
7256
			if (cpumask_equal(doms_cur[i], doms_new[j])
7257
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7258 7259 7260
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7261
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7262 7263 7264 7265
match1:
		;
	}

7266 7267
	if (doms_new == NULL) {
		ndoms_cur = 0;
7268
		doms_new = &fallback_doms;
7269
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7270
		WARN_ON_ONCE(dattr_new);
7271 7272
	}

P
Paul Jackson 已提交
7273 7274
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7275
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7276
			if (cpumask_equal(doms_new[i], doms_cur[j])
7277
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7278 7279 7280
				goto match2;
		}
		/* no match - add a new doms_new */
7281
		__build_sched_domains(doms_new[i],
7282
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7283 7284 7285 7286 7287
match2:
		;
	}

	/* Remember the new sched domains */
7288 7289
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7290
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7291
	doms_cur = doms_new;
7292
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7293
	ndoms_cur = ndoms_new;
7294 7295

	register_sched_domain_sysctl();
7296

7297
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7298 7299
}

7300
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7301
static void arch_reinit_sched_domains(void)
7302
{
7303
	get_online_cpus();
7304 7305 7306 7307

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7308
	rebuild_sched_domains();
7309
	put_online_cpus();
7310 7311 7312 7313
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7314
	unsigned int level = 0;
7315

7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7327 7328 7329
		return -EINVAL;

	if (smt)
7330
		sched_smt_power_savings = level;
7331
	else
7332
		sched_mc_power_savings = level;
7333

7334
	arch_reinit_sched_domains();
7335

7336
	return count;
7337 7338 7339
}

#ifdef CONFIG_SCHED_MC
7340 7341
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7342 7343 7344
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7345
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7346
					    const char *buf, size_t count)
7347 7348 7349
{
	return sched_power_savings_store(buf, count, 0);
}
7350 7351 7352
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7353 7354 7355
#endif

#ifdef CONFIG_SCHED_SMT
7356 7357
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7358 7359 7360
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7361
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7362
					     const char *buf, size_t count)
7363 7364 7365
{
	return sched_power_savings_store(buf, count, 1);
}
7366 7367
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7368 7369 7370
		   sched_smt_power_savings_store);
#endif

7371
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7387
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7388

7389
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7390
/*
7391 7392
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7393 7394 7395
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7396 7397 7398 7399
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7400 7401 7402 7403
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7404
		partition_sched_domains(1, NULL, NULL);
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7415
{
P
Peter Zijlstra 已提交
7416 7417
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7418 7419
	switch (action) {
	case CPU_DOWN_PREPARE:
7420
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7421
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7422 7423 7424
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7425
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7426
	case CPU_ONLINE:
7427
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7428
		enable_runtime(cpu_rq(cpu));
7429 7430
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7431 7432 7433 7434 7435 7436 7437
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7438 7439 7440
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7441
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7442

7443 7444 7445 7446 7447
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7448
	get_online_cpus();
7449
	mutex_lock(&sched_domains_mutex);
7450
	arch_init_sched_domains(cpu_active_mask);
7451 7452 7453
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7454
	mutex_unlock(&sched_domains_mutex);
7455
	put_online_cpus();
7456 7457

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7458 7459
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7460 7461 7462 7463 7464
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7465
	init_hrtick();
7466 7467

	/* Move init over to a non-isolated CPU */
7468
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7469
		BUG();
I
Ingo Molnar 已提交
7470
	sched_init_granularity();
7471
	free_cpumask_var(non_isolated_cpus);
7472

7473
	init_sched_rt_class();
L
Linus Torvalds 已提交
7474 7475 7476 7477
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7478
	sched_init_granularity();
L
Linus Torvalds 已提交
7479 7480 7481
}
#endif /* CONFIG_SMP */

7482 7483
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7484 7485 7486 7487 7488 7489 7490
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7491
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7492 7493
{
	cfs_rq->tasks_timeline = RB_ROOT;
7494
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7495 7496 7497
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7498
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7499 7500
}

P
Peter Zijlstra 已提交
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7514
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7515
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7516
#ifdef CONFIG_SMP
7517
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7518 7519
#endif
#endif
P
Peter Zijlstra 已提交
7520 7521 7522
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7523
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7524 7525 7526 7527
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7528
	rt_rq->rt_runtime = 0;
7529
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7530

7531
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7532
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7533 7534
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7535 7536
}

P
Peter Zijlstra 已提交
7537
#ifdef CONFIG_FAIR_GROUP_SCHED
7538 7539 7540
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7541
{
7542
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7543 7544 7545 7546 7547 7548 7549
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7550 7551 7552 7553
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7554 7555 7556 7557 7558
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7559 7560
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7561
	se->load.inv_weight = 0;
7562
	se->parent = parent;
P
Peter Zijlstra 已提交
7563
}
7564
#endif
P
Peter Zijlstra 已提交
7565

7566
#ifdef CONFIG_RT_GROUP_SCHED
7567 7568 7569
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7570
{
7571 7572
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7573 7574 7575
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7576
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7577 7578 7579 7580
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7581 7582 7583
	if (!rt_se)
		return;

7584 7585 7586 7587 7588
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7589
	rt_se->my_q = rt_rq;
7590
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7591 7592 7593 7594
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7595 7596
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7597
	int i, j;
7598 7599 7600 7601 7602 7603 7604
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7605
#endif
7606
#ifdef CONFIG_CPUMASK_OFFSTACK
7607
	alloc_size += num_possible_cpus() * cpumask_size();
7608 7609
#endif
	if (alloc_size) {
7610
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7611 7612 7613 7614 7615 7616 7617

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7618

7619
#endif /* CONFIG_FAIR_GROUP_SCHED */
7620 7621 7622 7623 7624
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7625 7626
		ptr += nr_cpu_ids * sizeof(void **);

7627
#endif /* CONFIG_RT_GROUP_SCHED */
7628 7629 7630 7631 7632 7633
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7634
	}
I
Ingo Molnar 已提交
7635

G
Gregory Haskins 已提交
7636 7637 7638 7639
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7640 7641 7642 7643 7644 7645
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7646
#endif /* CONFIG_RT_GROUP_SCHED */
7647

D
Dhaval Giani 已提交
7648
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7649
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7650 7651
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7652
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7653

7654 7655 7656 7657
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7658
	for_each_possible_cpu(i) {
7659
		struct rq *rq;
L
Linus Torvalds 已提交
7660 7661

		rq = cpu_rq(i);
7662
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7663
		rq->nr_running = 0;
7664 7665
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7666
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7667
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7668
#ifdef CONFIG_FAIR_GROUP_SCHED
7669
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7670
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7686
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7687 7688 7689 7690
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7691
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7692
#endif
D
Dhaval Giani 已提交
7693 7694 7695
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7696
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7697
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7698
#ifdef CONFIG_CGROUP_SCHED
7699
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7700
#endif
I
Ingo Molnar 已提交
7701
#endif
L
Linus Torvalds 已提交
7702

I
Ingo Molnar 已提交
7703 7704
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7705
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7706
		rq->sd = NULL;
G
Gregory Haskins 已提交
7707
		rq->rd = NULL;
7708
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7709
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7710
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7711
		rq->push_cpu = 0;
7712
		rq->cpu = i;
7713
		rq->online = 0;
L
Linus Torvalds 已提交
7714
		rq->migration_thread = NULL;
7715 7716
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7717
		INIT_LIST_HEAD(&rq->migration_queue);
7718
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7719
#endif
P
Peter Zijlstra 已提交
7720
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7721 7722 7723
		atomic_set(&rq->nr_iowait, 0);
	}

7724
	set_load_weight(&init_task);
7725

7726 7727 7728 7729
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7730
#ifdef CONFIG_SMP
7731
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7732 7733
#endif

7734
#ifdef CONFIG_RT_MUTEXES
7735
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7736 7737
#endif

L
Linus Torvalds 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7751 7752 7753

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7754 7755 7756 7757
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7758

7759
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7760
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7761
#ifdef CONFIG_SMP
7762
#ifdef CONFIG_NO_HZ
7763
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7764
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7765
#endif
R
Rusty Russell 已提交
7766 7767 7768
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7769
#endif /* SMP */
7770

7771
	perf_event_init();
7772

7773
	scheduler_running = 1;
L
Linus Torvalds 已提交
7774 7775 7776
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7777 7778
static inline int preempt_count_equals(int preempt_offset)
{
7779
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7780 7781 7782 7783

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7784
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7785
{
7786
#ifdef in_atomic
L
Linus Torvalds 已提交
7787 7788
	static unsigned long prev_jiffy;	/* ratelimiting */

7789 7790
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7791 7792 7793 7794 7795
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7796 7797 7798 7799 7800 7801 7802
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7803 7804 7805 7806 7807

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7808 7809 7810 7811 7812 7813
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7814 7815 7816
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7817

7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7829 7830
void normalize_rt_tasks(void)
{
7831
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7832
	unsigned long flags;
7833
	struct rq *rq;
L
Linus Torvalds 已提交
7834

7835
	read_lock_irqsave(&tasklist_lock, flags);
7836
	do_each_thread(g, p) {
7837 7838 7839 7840 7841 7842
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7843 7844
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7845 7846 7847
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7848
#endif
I
Ingo Molnar 已提交
7849 7850 7851 7852 7853 7854 7855 7856

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7857
			continue;
I
Ingo Molnar 已提交
7858
		}
L
Linus Torvalds 已提交
7859

7860
		raw_spin_lock(&p->pi_lock);
7861
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7862

7863
		normalize_task(rq, p);
7864

7865
		__task_rq_unlock(rq);
7866
		raw_spin_unlock(&p->pi_lock);
7867 7868
	} while_each_thread(g, p);

7869
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7870 7871 7872
}

#endif /* CONFIG_MAGIC_SYSRQ */
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7891
struct task_struct *curr_task(int cpu)
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7902 7903
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7904 7905 7906 7907 7908 7909 7910
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7911
void set_curr_task(int cpu, struct task_struct *p)
7912 7913 7914 7915 7916
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7917

7918 7919
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7934 7935
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7936 7937
{
	struct cfs_rq *cfs_rq;
7938
	struct sched_entity *se;
7939
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7940 7941
	int i;

7942
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7943 7944
	if (!tg->cfs_rq)
		goto err;
7945
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7946 7947
	if (!tg->se)
		goto err;
7948 7949

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7950 7951

	for_each_possible_cpu(i) {
7952
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7953

7954 7955
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7956 7957 7958
		if (!cfs_rq)
			goto err;

7959 7960
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7961
		if (!se)
7962
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7963

7964
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7965 7966 7967 7968
	}

	return 1;

7969 7970
 err_free_rq:
	kfree(cfs_rq);
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7985
#else /* !CONFG_FAIR_GROUP_SCHED */
7986 7987 7988 7989
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7990 7991
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8003
#endif /* CONFIG_FAIR_GROUP_SCHED */
8004 8005

#ifdef CONFIG_RT_GROUP_SCHED
8006 8007 8008 8009
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8010 8011
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8023 8024
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8025 8026
{
	struct rt_rq *rt_rq;
8027
	struct sched_rt_entity *rt_se;
8028 8029 8030
	struct rq *rq;
	int i;

8031
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8032 8033
	if (!tg->rt_rq)
		goto err;
8034
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8035 8036 8037
	if (!tg->rt_se)
		goto err;

8038 8039
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8040 8041 8042 8043

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8044 8045
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8046 8047
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8048

8049 8050
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8051
		if (!rt_se)
8052
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8053

8054
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8055 8056
	}

8057 8058
	return 1;

8059 8060
 err_free_rq:
	kfree(rt_rq);
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8075
#else /* !CONFIG_RT_GROUP_SCHED */
8076 8077 8078 8079
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8080 8081
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8093
#endif /* CONFIG_RT_GROUP_SCHED */
8094

D
Dhaval Giani 已提交
8095
#ifdef CONFIG_CGROUP_SCHED
8096 8097 8098 8099 8100 8101 8102 8103
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8104
struct task_group *sched_create_group(struct task_group *parent)
8105 8106 8107 8108 8109 8110 8111 8112 8113
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8114
	if (!alloc_fair_sched_group(tg, parent))
8115 8116
		goto err;

8117
	if (!alloc_rt_sched_group(tg, parent))
8118 8119
		goto err;

8120
	spin_lock_irqsave(&task_group_lock, flags);
8121
	for_each_possible_cpu(i) {
8122 8123
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8124
	}
P
Peter Zijlstra 已提交
8125
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8126 8127 8128 8129 8130

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8131
	list_add_rcu(&tg->siblings, &parent->children);
8132
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8133

8134
	return tg;
S
Srivatsa Vaddagiri 已提交
8135 8136

err:
P
Peter Zijlstra 已提交
8137
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8138 8139 8140
	return ERR_PTR(-ENOMEM);
}

8141
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8142
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8143 8144
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8145
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8146 8147
}

8148
/* Destroy runqueue etc associated with a task group */
8149
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8150
{
8151
	unsigned long flags;
8152
	int i;
S
Srivatsa Vaddagiri 已提交
8153

8154
	spin_lock_irqsave(&task_group_lock, flags);
8155
	for_each_possible_cpu(i) {
8156 8157
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8158
	}
P
Peter Zijlstra 已提交
8159
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8160
	list_del_rcu(&tg->siblings);
8161
	spin_unlock_irqrestore(&task_group_lock, flags);
8162 8163

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8164
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8165 8166
}

8167
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8168 8169 8170
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8171 8172
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8173 8174 8175 8176 8177 8178 8179 8180 8181
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8182
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8183 8184
	on_rq = tsk->se.on_rq;

8185
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8186
		dequeue_task(rq, tsk, 0);
8187 8188
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8189

P
Peter Zijlstra 已提交
8190
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8191

P
Peter Zijlstra 已提交
8192 8193
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8194
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8195 8196
#endif

8197 8198 8199
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8200
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8201 8202 8203

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8204
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8205

8206
#ifdef CONFIG_FAIR_GROUP_SCHED
8207
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8208 8209 8210 8211 8212
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8213
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8214 8215 8216
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8217
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8218

8219
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8220
		enqueue_entity(cfs_rq, se, 0);
8221
}
8222

8223 8224 8225 8226 8227 8228
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8229
	raw_spin_lock_irqsave(&rq->lock, flags);
8230
	__set_se_shares(se, shares);
8231
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8232 8233
}

8234 8235
static DEFINE_MUTEX(shares_mutex);

8236
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8237 8238
{
	int i;
8239
	unsigned long flags;
8240

8241 8242 8243 8244 8245 8246
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8247 8248
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8249 8250
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8251

8252
	mutex_lock(&shares_mutex);
8253
	if (tg->shares == shares)
8254
		goto done;
S
Srivatsa Vaddagiri 已提交
8255

8256
	spin_lock_irqsave(&task_group_lock, flags);
8257 8258
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8259
	list_del_rcu(&tg->siblings);
8260
	spin_unlock_irqrestore(&task_group_lock, flags);
8261 8262 8263 8264 8265 8266 8267 8268

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8269
	tg->shares = shares;
8270 8271 8272 8273 8274
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8275
		set_se_shares(tg->se[i], shares);
8276
	}
S
Srivatsa Vaddagiri 已提交
8277

8278 8279 8280 8281
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8282
	spin_lock_irqsave(&task_group_lock, flags);
8283 8284
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8285
	list_add_rcu(&tg->siblings, &tg->parent->children);
8286
	spin_unlock_irqrestore(&task_group_lock, flags);
8287
done:
8288
	mutex_unlock(&shares_mutex);
8289
	return 0;
S
Srivatsa Vaddagiri 已提交
8290 8291
}

8292 8293 8294 8295
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8296
#endif
8297

8298
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8299
/*
P
Peter Zijlstra 已提交
8300
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8301
 */
P
Peter Zijlstra 已提交
8302 8303 8304 8305 8306
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8307
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8308

P
Peter Zijlstra 已提交
8309
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8310 8311
}

P
Peter Zijlstra 已提交
8312 8313
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8314
{
P
Peter Zijlstra 已提交
8315
	struct task_struct *g, *p;
8316

P
Peter Zijlstra 已提交
8317 8318 8319 8320
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8321

P
Peter Zijlstra 已提交
8322 8323
	return 0;
}
8324

P
Peter Zijlstra 已提交
8325 8326 8327 8328 8329
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8330

P
Peter Zijlstra 已提交
8331 8332 8333 8334 8335 8336
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8337

P
Peter Zijlstra 已提交
8338 8339
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8340

P
Peter Zijlstra 已提交
8341 8342 8343
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8344 8345
	}

8346 8347 8348 8349 8350
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8351

8352 8353 8354
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8355 8356
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8357

P
Peter Zijlstra 已提交
8358
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8359

8360 8361 8362 8363 8364
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8365

8366 8367 8368
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8369 8370 8371
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8372

P
Peter Zijlstra 已提交
8373 8374 8375 8376
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8377

P
Peter Zijlstra 已提交
8378
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8379
	}
P
Peter Zijlstra 已提交
8380

P
Peter Zijlstra 已提交
8381 8382 8383 8384
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8385 8386
}

P
Peter Zijlstra 已提交
8387
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8388
{
P
Peter Zijlstra 已提交
8389 8390 8391 8392 8393 8394 8395
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8396 8397
}

8398 8399
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8400
{
P
Peter Zijlstra 已提交
8401
	int i, err = 0;
P
Peter Zijlstra 已提交
8402 8403

	mutex_lock(&rt_constraints_mutex);
8404
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8405 8406
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8407
		goto unlock;
P
Peter Zijlstra 已提交
8408

8409
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8410 8411
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8412 8413 8414 8415

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8416
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8417
		rt_rq->rt_runtime = rt_runtime;
8418
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8419
	}
8420
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8421
 unlock:
8422
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8423 8424 8425
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8426 8427
}

8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8440 8441 8442 8443
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8444
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8445 8446
		return -1;

8447
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8448 8449 8450
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8451 8452 8453 8454 8455 8456 8457 8458

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8459 8460 8461
	if (rt_period == 0)
		return -EINVAL;

8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8476
	u64 runtime, period;
8477 8478
	int ret = 0;

8479 8480 8481
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8482 8483 8484 8485 8486 8487 8488 8489
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8490

8491
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8492
	read_lock(&tasklist_lock);
8493
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8494
	read_unlock(&tasklist_lock);
8495 8496 8497 8498
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8509
#else /* !CONFIG_RT_GROUP_SCHED */
8510 8511
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8512 8513 8514
	unsigned long flags;
	int i;

8515 8516 8517
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8518 8519 8520 8521 8522 8523 8524
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8525
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8526 8527 8528
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8529
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8530
		rt_rq->rt_runtime = global_rt_runtime();
8531
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8532
	}
8533
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8534

8535 8536
	return 0;
}
8537
#endif /* CONFIG_RT_GROUP_SCHED */
8538 8539

int sched_rt_handler(struct ctl_table *table, int write,
8540
		void __user *buffer, size_t *lenp,
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8551
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8568

8569
#ifdef CONFIG_CGROUP_SCHED
8570 8571

/* return corresponding task_group object of a cgroup */
8572
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8573
{
8574 8575
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8576 8577 8578
}

static struct cgroup_subsys_state *
8579
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8580
{
8581
	struct task_group *tg, *parent;
8582

8583
	if (!cgrp->parent) {
8584 8585 8586 8587
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8588 8589
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8590 8591 8592 8593 8594 8595
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8596 8597
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8598
{
8599
	struct task_group *tg = cgroup_tg(cgrp);
8600 8601 8602 8603

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8604
static int
8605
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8606
{
8607
#ifdef CONFIG_RT_GROUP_SCHED
8608
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8609 8610
		return -EINVAL;
#else
8611 8612 8613
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8614
#endif
8615 8616
	return 0;
}
8617

8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8637 8638 8639 8640
	return 0;
}

static void
8641
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8642 8643
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8644 8645
{
	sched_move_task(tsk);
8646 8647 8648 8649 8650 8651 8652 8653
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8654 8655
}

8656
#ifdef CONFIG_FAIR_GROUP_SCHED
8657
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8658
				u64 shareval)
8659
{
8660
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8661 8662
}

8663
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8664
{
8665
	struct task_group *tg = cgroup_tg(cgrp);
8666 8667 8668

	return (u64) tg->shares;
}
8669
#endif /* CONFIG_FAIR_GROUP_SCHED */
8670

8671
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8672
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8673
				s64 val)
P
Peter Zijlstra 已提交
8674
{
8675
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8676 8677
}

8678
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8679
{
8680
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8681
}
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8693
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8694

8695
static struct cftype cpu_files[] = {
8696
#ifdef CONFIG_FAIR_GROUP_SCHED
8697 8698
	{
		.name = "shares",
8699 8700
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8701
	},
8702 8703
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8704
	{
P
Peter Zijlstra 已提交
8705
		.name = "rt_runtime_us",
8706 8707
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8708
	},
8709 8710
	{
		.name = "rt_period_us",
8711 8712
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8713
	},
8714
#endif
8715 8716 8717 8718
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8719
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8720 8721 8722
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8723 8724 8725 8726 8727 8728 8729
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8730 8731 8732
	.early_init	= 1,
};

8733
#endif	/* CONFIG_CGROUP_SCHED */
8734 8735 8736 8737 8738 8739 8740 8741 8742 8743

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8744
/* track cpu usage of a group of tasks and its child groups */
8745 8746 8747 8748
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
8749
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8750
	struct cpuacct *parent;
8751 8752 8753 8754 8755
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8756
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8757
{
8758
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8771
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8772 8773
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8774
	int i;
8775 8776

	if (!ca)
8777
		goto out;
8778 8779

	ca->cpuusage = alloc_percpu(u64);
8780 8781 8782 8783 8784 8785
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8786

8787 8788 8789
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8790
	return &ca->css;
8791 8792 8793 8794 8795 8796 8797 8798 8799

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8800 8801 8802
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8803
static void
8804
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8805
{
8806
	struct cpuacct *ca = cgroup_ca(cgrp);
8807
	int i;
8808

8809 8810
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8811 8812 8813 8814
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8815 8816
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8817
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8818 8819 8820 8821 8822 8823
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8824
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8825
	data = *cpuusage;
8826
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8827 8828 8829 8830 8831 8832 8833 8834 8835
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8836
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8837 8838 8839 8840 8841

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8842
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8843
	*cpuusage = val;
8844
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8845 8846 8847 8848 8849
#else
	*cpuusage = val;
#endif
}

8850
/* return total cpu usage (in nanoseconds) of a group */
8851
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8852
{
8853
	struct cpuacct *ca = cgroup_ca(cgrp);
8854 8855 8856
	u64 totalcpuusage = 0;
	int i;

8857 8858
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8859 8860 8861 8862

	return totalcpuusage;
}

8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8875 8876
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8877 8878 8879 8880 8881

out:
	return err;
}

8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8916 8917 8918
static struct cftype files[] = {
	{
		.name = "usage",
8919 8920
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8921
	},
8922 8923 8924 8925
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8926 8927 8928 8929
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8930 8931
};

8932
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8933
{
8934
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8945
	int cpu;
8946

L
Li Zefan 已提交
8947
	if (unlikely(!cpuacct_subsys.active))
8948 8949
		return;

8950
	cpu = task_cpu(tsk);
8951 8952 8953

	rcu_read_lock();

8954 8955
	ca = task_ca(tsk);

8956
	for (; ca; ca = ca->parent) {
8957
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8958 8959
		*cpuusage += cputime;
	}
8960 8961

	rcu_read_unlock();
8962 8963
}

8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8981 8982 8983 8984 8985 8986 8987
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8988
	int batch = CPUACCT_BATCH;
8989 8990 8991 8992 8993 8994 8995 8996

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8997
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8998 8999 9000 9001 9002
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9003 9004 9005 9006 9007 9008 9009 9010
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9096
		raw_spin_lock_irqsave(&rq->lock, flags);
9097
		list_add(&req->list, &rq->migration_queue);
9098
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9099 9100 9101 9102 9103 9104 9105
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9106
		raw_spin_lock_irqsave(&rq->lock, flags);
9107 9108 9109
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9110
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9111 9112
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9113
	synchronize_sched_expedited_count++;
9114 9115 9116 9117 9118 9119 9120 9121
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */