sched.c 224.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78 79 80 81 82 83
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
84
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 86
}

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148 149 150 151 152 153 154 155 156 157 158
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

245
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
246

247 248
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
249 250
struct cfs_rq;

P
Peter Zijlstra 已提交
251 252
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
253
/* task group related information */
254
struct task_group {
255
#ifdef CONFIG_CGROUP_SCHED
256 257
	struct cgroup_subsys_state css;
#endif
258 259

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
260 261 262 263 264
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
265 266 267 268 269 270
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

271
	struct rt_bandwidth rt_bandwidth;
272
#endif
273

274
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
275
	struct list_head list;
P
Peter Zijlstra 已提交
276 277 278 279

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
280 281
};

D
Dhaval Giani 已提交
282
#ifdef CONFIG_USER_SCHED
283 284 285 286 287 288 289 290

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

291
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
292 293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
296 297 298 299 300 301
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
302 303
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
304
#endif
P
Peter Zijlstra 已提交
305

306
/* task_group_lock serializes add/remove of task groups and also changes to
307 308
 * a task group's cpu shares.
 */
309
static DEFINE_SPINLOCK(task_group_lock);
310

311 312 313
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

314 315 316 317 318 319 320
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

321 322
#define MIN_SHARES	2

323 324 325
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
326
/* Default task group.
I
Ingo Molnar 已提交
327
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
328
 */
329
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
330 331

/* return group to which a task belongs */
332
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
333
{
334
	struct task_group *tg;
335

336
#ifdef CONFIG_USER_SCHED
337
	tg = p->user->tg;
338
#elif defined(CONFIG_CGROUP_SCHED)
339 340
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
341
#else
I
Ingo Molnar 已提交
342
	tg = &init_task_group;
343
#endif
344
	return tg;
S
Srivatsa Vaddagiri 已提交
345 346 347
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
348
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
349
{
350
#ifdef CONFIG_FAIR_GROUP_SCHED
351 352
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
353
#endif
P
Peter Zijlstra 已提交
354

355
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
356 357
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
358
#endif
S
Srivatsa Vaddagiri 已提交
359 360
}

361 362 363 364 365 366 367 368 369 370
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
371 372
#else

P
Peter Zijlstra 已提交
373
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 375
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
376

377
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
378

I
Ingo Molnar 已提交
379 380 381 382 383 384
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
385
	u64 min_vruntime;
I
Ingo Molnar 已提交
386 387 388

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
389 390 391 392 393 394

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
395 396
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
397
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
398 399 400

	unsigned long nr_spread_over;

401
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
402 403
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
404 405
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
406 407 408 409 410 411
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
412 413
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
451 452
#endif
};
L
Linus Torvalds 已提交
453

I
Ingo Molnar 已提交
454 455 456
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
457
	unsigned long rt_nr_running;
458
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
459 460
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
461
#ifdef CONFIG_SMP
462
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
463
	int overloaded;
P
Peter Zijlstra 已提交
464
#endif
P
Peter Zijlstra 已提交
465
	int rt_throttled;
P
Peter Zijlstra 已提交
466
	u64 rt_time;
P
Peter Zijlstra 已提交
467
	u64 rt_runtime;
I
Ingo Molnar 已提交
468
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
469
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
470

471
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
472 473
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
474 475 476 477 478
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
479 480
};

G
Gregory Haskins 已提交
481 482 483 484
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
485 486
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
487 488 489 490 491 492 493 494
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
495

I
Ingo Molnar 已提交
496
	/*
497 498 499 500
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
501
	atomic_t rto_count;
G
Gregory Haskins 已提交
502 503
};

504 505 506 507
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
508 509 510 511
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
512 513 514 515 516 517 518
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
519
struct rq {
520 521
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
522 523 524 525 526 527

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
528 529
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530
	unsigned char idle_at_tick;
531
#ifdef CONFIG_NO_HZ
532
	unsigned long last_tick_seen;
533 534
	unsigned char in_nohz_recently;
#endif
535 536
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
537 538 539 540
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
541 542
	struct rt_rq rt;

I
Ingo Molnar 已提交
543
#ifdef CONFIG_FAIR_GROUP_SCHED
544 545
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
546 547
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
548
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

559
	struct task_struct *curr, *idle;
560
	unsigned long next_balance;
L
Linus Torvalds 已提交
561
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
562 563 564 565

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

566
	unsigned int clock_warps, clock_overflows, clock_underflows;
567 568
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
569
	u64 tick_timestamp;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576 577 578 579
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
580 581
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
582

583
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
584 585 586
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
587 588 589 590 591 592
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
593 594 595 596 597
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
598 599 600 601
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
602 603

	/* schedule() stats */
604 605 606
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
607 608

	/* try_to_wake_up() stats */
609 610
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
611 612

	/* BKL stats */
613
	unsigned int bkl_count;
L
Linus Torvalds 已提交
614
#endif
615
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
616 617
};

618
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
619

I
Ingo Molnar 已提交
620 621 622 623 624
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

625 626 627 628 629 630 631 632 633
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
660
/*
I
Ingo Molnar 已提交
661 662
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
663
 */
I
Ingo Molnar 已提交
664
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
665 666 667 668 669 670
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
671 672 673
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
674 675 676 677 678 679 680 681 682 683
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
684 685 686 687 688 689
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
690 691
			else
				clock++;
I
Ingo Molnar 已提交
692 693 694 695 696 697 698 699 700 701
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
702
}
I
Ingo Molnar 已提交
703

I
Ingo Molnar 已提交
704 705 706 707
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
708 709
}

N
Nick Piggin 已提交
710 711
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
713 714 715 716
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
717 718
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
719 720 721 722 723 724

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
725 726 727 728 729 730 731 732 733 734 735 736
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
737 738 739 740

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
741
enum {
P
Peter Zijlstra 已提交
742
#include "sched_features.h"
I
Ingo Molnar 已提交
743 744
};

P
Peter Zijlstra 已提交
745 746 747 748 749
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
750
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

__read_mostly char *sched_feat_names[] = {
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

int sched_feat_open(struct inode *inode, struct file *filp)
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
795
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
825
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
868

869 870 871 872 873 874
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
875
/*
P
Peter Zijlstra 已提交
876
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
877 878
 * default: 1s
 */
P
Peter Zijlstra 已提交
879
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
880

881 882
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
883 884 885 886 887
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
888

889 890 891 892 893 894 895 896 897 898 899 900
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
901

902 903 904 905 906
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

907
/*
908 909 910 911
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
912
 */
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
935 936 937
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
938
	struct rq *rq;
939

940 941 942 943
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
944 945 946 947 948 949
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
950
	now = rq->clock;
951
	local_irq_restore(flags);
952 953 954

	return now;
}
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
973
EXPORT_SYMBOL_GPL(cpu_clock);
974

L
Linus Torvalds 已提交
975
#ifndef prepare_arch_switch
976 977 978 979 980 981
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

982 983 984 985 986
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

987
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
988
static inline int task_running(struct rq *rq, struct task_struct *p)
989
{
990
	return task_current(rq, p);
991 992
}

993
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
994 995 996
{
}

997
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
998
{
999 1000 1001 1002
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
1003 1004 1005 1006 1007 1008 1009
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

1010 1011 1012 1013
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1014
static inline int task_running(struct rq *rq, struct task_struct *p)
1015 1016 1017 1018
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
1019
	return task_current(rq, p);
1020 1021 1022
#endif
}

1023
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

1040
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
1053
#endif
1054 1055
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
1056

1057 1058 1059 1060
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
1061
static inline struct rq *__task_rq_lock(struct task_struct *p)
1062 1063
	__acquires(rq->lock)
{
1064 1065 1066 1067 1068
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
1069 1070 1071 1072
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
1073 1074
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
1075
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
1076 1077
 * explicitly disabling preemption.
 */
1078
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1079 1080
	__acquires(rq->lock)
{
1081
	struct rq *rq;
L
Linus Torvalds 已提交
1082

1083 1084 1085 1086 1087 1088
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1089 1090 1091 1092
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1093
static void __task_rq_unlock(struct rq *rq)
1094 1095 1096 1097 1098
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1099
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1106
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1107
 */
A
Alexey Dobriyan 已提交
1108
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1109 1110
	__acquires(rq->lock)
{
1111
	struct rq *rq;
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118 1119

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

1120
/*
1121
 * We are going deep-idle (irqs are disabled):
1122
 */
1123
void sched_clock_idle_sleep_event(void)
1124
{
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
1153
	touch_softlockup_watchdog();
1154
}
1155
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1156

P
Peter Zijlstra 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1337
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1338 1339 1340 1341 1342
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1343
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1344 1345
		return;

P
Peter Zijlstra 已提交
1346
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1411
#else
P
Peter Zijlstra 已提交
1412
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1413 1414
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1415
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1416 1417 1418
}
#endif

1419 1420 1421 1422 1423 1424 1425 1426
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1427 1428 1429
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1430
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1431

1432 1433 1434
/*
 * delta *= weight / lw
 */
1435
static unsigned long
1436 1437 1438 1439 1440 1441
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1442
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1443 1444 1445 1446 1447

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1448
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1449
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1450 1451
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1452
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1453

1454
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1455 1456
}

1457
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1458 1459
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1460
	lw->inv_weight = 0;
1461 1462
}

1463
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1464 1465
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1466
	lw->inv_weight = 0;
1467 1468
}

1469 1470 1471 1472
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1473
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1474 1475 1476 1477
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1489 1490 1491
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1492 1493
 */
static const int prio_to_weight[40] = {
1494 1495 1496 1497 1498 1499 1500 1501
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1502 1503
};

1504 1505 1506 1507 1508 1509 1510
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1511
static const u32 prio_to_wmult[40] = {
1512 1513 1514 1515 1516 1517 1518 1519
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1520
};
1521

I
Ingo Molnar 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1547

1548 1549 1550 1551 1552 1553
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1564 1565 1566 1567 1568
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Redistribute tg->shares amongst all tg->cfs_rq[]s.
 */
static void __aggregate_redistribute_shares(struct task_group *tg)
{
	int i, max_cpu = smp_processor_id();
	unsigned long rq_weight = 0;
	unsigned long shares, max_shares = 0, shares_rem = tg->shares;

	for_each_possible_cpu(i)
		rq_weight += tg->cfs_rq[i]->load.weight;

	for_each_possible_cpu(i) {
		/*
		 * divide shares proportional to the rq_weights.
		 */
		shares = tg->shares * tg->cfs_rq[i]->load.weight;
		shares /= rq_weight + 1;

		tg->cfs_rq[i]->shares = shares;

		if (shares > max_shares) {
			max_shares = shares;
			max_cpu = i;
		}
		shares_rem -= shares;
	}

	/*
	 * Ensure it all adds up to tg->shares; we can loose a few
	 * due to rounding down when computing the per-cpu shares.
	 */
	if (shares_rem)
		tg->cfs_rq[max_cpu]->shares += shares_rem;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

again:
	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

	/*
	 * When the span doesn't have any shares assigned, but does have
	 * tasks to run do a machine wide rebalance (should be rare).
	 */
	if (unlikely(!shares && aggregate(tg, sd)->rq_weight)) {
		__aggregate_redistribute_shares(tg);
		goto again;
	}

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1938 1939
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1940 1941
#include "sched_stats.h"
#include "sched_idletask.c"
1942 1943
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1944 1945 1946 1947 1948 1949
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1950
static void inc_nr_running(struct rq *rq)
1951 1952 1953 1954
{
	rq->nr_running++;
}

1955
static void dec_nr_running(struct rq *rq)
1956 1957 1958 1959
{
	rq->nr_running--;
}

1960 1961 1962
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1963 1964 1965 1966
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1967

I
Ingo Molnar 已提交
1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1976

I
Ingo Molnar 已提交
1977 1978
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1979 1980
}

1981
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1982
{
I
Ingo Molnar 已提交
1983
	sched_info_queued(p);
1984
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1985
	p->se.on_rq = 1;
1986 1987
}

1988
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1989
{
1990
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1991
	p->se.on_rq = 0;
1992 1993
}

1994
/*
I
Ingo Molnar 已提交
1995
 * __normal_prio - return the priority that is based on the static prio
1996 1997 1998
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1999
	return p->static_prio;
2000 2001
}

2002 2003 2004 2005 2006 2007 2008
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2009
static inline int normal_prio(struct task_struct *p)
2010 2011 2012
{
	int prio;

2013
	if (task_has_rt_policy(p))
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2027
static int effective_prio(struct task_struct *p)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2040
/*
I
Ingo Molnar 已提交
2041
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
2042
 */
I
Ingo Molnar 已提交
2043
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
2044
{
2045
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2046
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
2047

2048
	enqueue_task(rq, p, wakeup);
2049
	inc_nr_running(rq);
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
2055
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
2056
{
2057
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2058 2059
		rq->nr_uninterruptible++;

2060
	dequeue_task(rq, p, sleep);
2061
	dec_nr_running(rq);
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2068
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2069 2070 2071 2072
{
	return cpu_curr(task_cpu(p)) == p;
}

2073 2074 2075
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
2076
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
2077 2078 2079 2080
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
2081
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
2082
#ifdef CONFIG_SMP
2083 2084 2085 2086 2087 2088
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
2089 2090
	task_thread_info(p)->cpu = cpu;
#endif
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2105
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2106

2107 2108 2109
/*
 * Is this task likely cache-hot:
 */
2110
static int
2111 2112 2113 2114
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2115 2116 2117
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2118
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2119 2120
		return 1;

2121 2122 2123
	if (p->sched_class != &fair_sched_class)
		return 0;

2124 2125 2126 2127 2128
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2129 2130 2131 2132 2133 2134
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2135
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2136
{
I
Ingo Molnar 已提交
2137 2138
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2139 2140
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2141
	u64 clock_offset;
I
Ingo Molnar 已提交
2142 2143

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2144 2145 2146 2147

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2148 2149 2150 2151
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2152 2153 2154 2155 2156
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2157
#endif
2158 2159
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2160 2161

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2162 2163
}

2164
struct migration_req {
L
Linus Torvalds 已提交
2165 2166
	struct list_head list;

2167
	struct task_struct *task;
L
Linus Torvalds 已提交
2168 2169 2170
	int dest_cpu;

	struct completion done;
2171
};
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2177
static int
2178
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2179
{
2180
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2186
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2195

L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2208
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2209 2210
{
	unsigned long flags;
I
Ingo Molnar 已提交
2211
	int running, on_rq;
2212
	struct rq *rq;
L
Linus Torvalds 已提交
2213

2214 2215 2216 2217 2218 2219 2220 2221
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2222

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2271

2272 2273 2274 2275 2276 2277 2278
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2294
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2306 2307
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2308 2309 2310 2311
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2312
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2313
{
2314
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2315
	unsigned long total = weighted_cpuload(cpu);
2316

2317
	if (type == 0)
I
Ingo Molnar 已提交
2318
		return total;
2319

I
Ingo Molnar 已提交
2320
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2321 2322 2323
}

/*
2324 2325
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2326
 */
A
Alexey Dobriyan 已提交
2327
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2328
{
2329
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2330
	unsigned long total = weighted_cpuload(cpu);
2331

N
Nick Piggin 已提交
2332
	if (type == 0)
I
Ingo Molnar 已提交
2333
		return total;
2334

I
Ingo Molnar 已提交
2335
	return max(rq->cpu_load[type-1], total);
2336 2337 2338 2339 2340
}

/*
 * Return the average load per task on the cpu's run queue
 */
2341
static unsigned long cpu_avg_load_per_task(int cpu)
2342
{
2343
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2344
	unsigned long total = weighted_cpuload(cpu);
2345 2346
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2347
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2348 2349
}

N
Nick Piggin 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2367 2368
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2369
			continue;
2370

N
Nick Piggin 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2387 2388
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2389 2390 2391 2392 2393 2394 2395 2396

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2397
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2398 2399 2400 2401 2402 2403 2404

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2405
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2406
 */
I
Ingo Molnar 已提交
2407
static int
2408 2409
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2410 2411 2412 2413 2414
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2415
	/* Traverse only the allowed CPUs */
2416
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2417

2418
	for_each_cpu_mask(i, *tmp) {
2419
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2445

2446
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2447 2448 2449
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2450 2451
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2452 2453
		if (tmp->flags & flag)
			sd = tmp;
2454
	}
N
Nick Piggin 已提交
2455 2456

	while (sd) {
2457
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2458
		struct sched_group *group;
2459 2460 2461 2462 2463 2464
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2465 2466 2467

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2468 2469 2470 2471
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2472

2473
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2474 2475 2476 2477 2478
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2479

2480
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2512
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2513
{
2514
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2515 2516
	unsigned long flags;
	long old_state;
2517
	struct rq *rq;
L
Linus Torvalds 已提交
2518

2519 2520 2521
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2522
	smp_wmb();
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2528
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2529 2530 2531
		goto out_running;

	cpu = task_cpu(p);
2532
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2533 2534 2535 2536 2537 2538
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2539 2540 2541
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2548
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2549 2550 2551 2552 2553 2554
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2570 2571
out_activate:
#endif /* CONFIG_SMP */
2572 2573 2574 2575 2576 2577 2578 2579 2580
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2581
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2582
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2583 2584 2585
	success = 1;

out_running:
I
Ingo Molnar 已提交
2586 2587
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2588
	p->state = TASK_RUNNING;
2589 2590 2591 2592
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2599
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2600
{
2601
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2602 2603 2604
}
EXPORT_SYMBOL(wake_up_process);

2605
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611 2612
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2613 2614 2615 2616 2617 2618 2619
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2620
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2621 2622
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2623 2624 2625

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2626 2627 2628 2629 2630 2631
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2632
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2633
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2634
#endif
N
Nick Piggin 已提交
2635

P
Peter Zijlstra 已提交
2636
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2637
	p->se.on_rq = 0;
2638
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2639

2640 2641 2642 2643
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2665
	set_task_cpu(p, cpu);
2666 2667 2668 2669 2670

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2671 2672
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2673

2674
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2675
	if (likely(sched_info_on()))
2676
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2677
#endif
2678
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2679 2680
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2681
#ifdef CONFIG_PREEMPT
2682
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2683
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2684
#endif
N
Nick Piggin 已提交
2685
	put_cpu();
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2695
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2696 2697
{
	unsigned long flags;
I
Ingo Molnar 已提交
2698
	struct rq *rq;
L
Linus Torvalds 已提交
2699 2700

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2701
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2702
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2703 2704 2705

	p->prio = effective_prio(p);

2706
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2707
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2708 2709
	} else {
		/*
I
Ingo Molnar 已提交
2710 2711
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2712
		 */
2713
		p->sched_class->task_new(rq, p);
2714
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2715
	}
I
Ingo Molnar 已提交
2716
	check_preempt_curr(rq, p);
2717 2718 2719 2720
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2721
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2722 2723
}

2724 2725 2726
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2727 2728
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2729 2730 2731 2732 2733 2734 2735 2736 2737
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2738
 * @notifier: notifier struct to unregister
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2782 2783 2784
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2785
 * @prev: the current task that is being switched out
2786 2787 2788 2789 2790 2791 2792 2793 2794
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2795 2796 2797
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2798
{
2799
	fire_sched_out_preempt_notifiers(prev, next);
2800 2801 2802 2803
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2804 2805
/**
 * finish_task_switch - clean up after a task-switch
2806
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2807 2808
 * @prev: the thread we just switched away from.
 *
2809 2810 2811 2812
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2813 2814
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2815
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2816 2817 2818
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2819
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2820 2821 2822
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2823
	long prev_state;
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2829
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2830 2831
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2832
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2838
	prev_state = prev->state;
2839 2840
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2841 2842 2843 2844
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2845

2846
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2847 2848
	if (mm)
		mmdrop(mm);
2849
	if (unlikely(prev_state == TASK_DEAD)) {
2850 2851 2852
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2853
		 */
2854
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2855
		put_task_struct(prev);
2856
	}
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2863
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2864 2865
	__releases(rq->lock)
{
2866 2867
	struct rq *rq = this_rq();

2868 2869 2870 2871 2872
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2873
	if (current->set_child_tid)
2874
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2881
static inline void
2882
context_switch(struct rq *rq, struct task_struct *prev,
2883
	       struct task_struct *next)
L
Linus Torvalds 已提交
2884
{
I
Ingo Molnar 已提交
2885
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2886

2887
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2888 2889
	mm = next->mm;
	oldmm = prev->active_mm;
2890 2891 2892 2893 2894 2895 2896
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2897
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2904
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2905 2906 2907
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2908 2909 2910 2911 2912 2913 2914
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2915
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2916
#endif
L
Linus Torvalds 已提交
2917 2918 2919 2920

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2921 2922 2923 2924 2925 2926 2927
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2951
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2966 2967
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2968

2969
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2979
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

3000
/*
I
Ingo Molnar 已提交
3001 3002
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3003
 */
I
Ingo Molnar 已提交
3004
static void update_cpu_load(struct rq *this_rq)
3005
{
3006
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3019 3020 3021 3022 3023 3024 3025
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3026 3027
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3028 3029
}

I
Ingo Molnar 已提交
3030 3031
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3038
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3039 3040 3041
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3042
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3043 3044 3045 3046
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3047
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
3055 3056
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062 3063 3064
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3065
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
3079
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
3080 3081 3082 3083
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
3084 3085
	int ret = 0;

3086 3087 3088 3089 3090
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
3091
	if (unlikely(!spin_trylock(&busiest->lock))) {
3092
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
3093 3094 3095
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
3096
			ret = 1;
L
Linus Torvalds 已提交
3097 3098 3099
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
3100
	return ret;
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3106
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3107 3108
 * the cpu_allowed mask is restored.
 */
3109
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3110
{
3111
	struct migration_req req;
L
Linus Torvalds 已提交
3112
	unsigned long flags;
3113
	struct rq *rq;
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3124

L
Linus Torvalds 已提交
3125 3126 3127 3128 3129
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3130

L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3138 3139
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3140 3141 3142 3143
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3144
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3145
	put_cpu();
N
Nick Piggin 已提交
3146 3147
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3154 3155
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3156
{
3157
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3158
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3159
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3160 3161 3162 3163
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3164
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3170
static
3171
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3172
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3173
		     int *all_pinned)
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179 3180
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3181 3182
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3183
		return 0;
3184
	}
3185 3186
	*all_pinned = 0;

3187 3188
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3189
		return 0;
3190
	}
L
Linus Torvalds 已提交
3191

3192 3193 3194 3195 3196 3197
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3198 3199
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3200
#ifdef CONFIG_SCHEDSTATS
3201
		if (task_hot(p, rq->clock, sd)) {
3202
			schedstat_inc(sd, lb_hot_gained[idle]);
3203 3204
			schedstat_inc(p, se.nr_forced_migrations);
		}
3205 3206 3207 3208
#endif
		return 1;
	}

3209 3210
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3211
		return 0;
3212
	}
L
Linus Torvalds 已提交
3213 3214 3215
	return 1;
}

3216 3217 3218 3219 3220
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3221
{
3222
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3223 3224
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3225

3226
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3227 3228
		goto out;

3229 3230
	pinned = 1;

L
Linus Torvalds 已提交
3231
	/*
I
Ingo Molnar 已提交
3232
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3233
	 */
I
Ingo Molnar 已提交
3234 3235
	p = iterator->start(iterator->arg);
next:
3236
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3237
		goto out;
3238
	/*
3239
	 * To help distribute high priority tasks across CPUs we don't
3240 3241 3242
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3243 3244
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3245
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3246 3247 3248
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3249 3250
	}

I
Ingo Molnar 已提交
3251
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3252
	pulled++;
I
Ingo Molnar 已提交
3253
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3254

3255
	/*
3256
	 * We only want to steal up to the prescribed amount of weighted load.
3257
	 */
3258
	if (rem_load_move > 0) {
3259 3260
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3261 3262
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3263 3264 3265
	}
out:
	/*
3266
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3267 3268 3269 3270
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3271 3272 3273

	if (all_pinned)
		*all_pinned = pinned;
3274 3275

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3276 3277
}

I
Ingo Molnar 已提交
3278
/*
P
Peter Williams 已提交
3279 3280 3281
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3282 3283 3284 3285
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3286
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3287 3288 3289
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3290
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3291
	unsigned long total_load_moved = 0;
3292
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3293 3294

	do {
P
Peter Williams 已提交
3295 3296
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3297
				max_load_move - total_load_moved,
3298
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3299
		class = class->next;
P
Peter Williams 已提交
3300
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3301

P
Peter Williams 已提交
3302 3303 3304
	return total_load_moved > 0;
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3341
	const struct sched_class *class;
P
Peter Williams 已提交
3342 3343

	for (class = sched_class_highest; class; class = class->next)
3344
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3345 3346 3347
			return 1;

	return 0;
I
Ingo Molnar 已提交
3348 3349
}

L
Linus Torvalds 已提交
3350 3351
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3352 3353
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3354 3355 3356
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3357
		   unsigned long *imbalance, enum cpu_idle_type idle,
3358
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3359 3360 3361
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3362
	unsigned long max_pull;
3363 3364
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3365
	int load_idx, group_imb = 0;
3366 3367 3368 3369 3370 3371
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3372 3373

	max_load = this_load = total_load = total_pwr = 0;
3374 3375
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3376
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3377
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3378
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3379 3380 3381
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3382 3383

	do {
3384
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3385 3386
		int local_group;
		int i;
3387
		int __group_imb = 0;
3388
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3389
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3390 3391 3392

		local_group = cpu_isset(this_cpu, group->cpumask);

3393 3394 3395
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3396
		/* Tally up the load of all CPUs in the group */
3397
		sum_weighted_load = sum_nr_running = avg_load = 0;
3398 3399
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3400 3401

		for_each_cpu_mask(i, group->cpumask) {
3402 3403 3404 3405 3406 3407
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3408

3409
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3410 3411
				*sd_idle = 0;

L
Linus Torvalds 已提交
3412
			/* Bias balancing toward cpus of our domain */
3413 3414 3415 3416 3417 3418
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3419
				load = target_load(i, load_idx);
3420
			} else {
N
Nick Piggin 已提交
3421
				load = source_load(i, load_idx);
3422 3423 3424 3425 3426
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3427 3428

			avg_load += load;
3429
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3430
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3431 3432
		}

3433 3434 3435
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3436 3437
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3438
		 */
3439 3440
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3441 3442 3443 3444
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3445
		total_load += avg_load;
3446
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3447 3448

		/* Adjust by relative CPU power of the group */
3449 3450
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3451

3452 3453 3454
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3455
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3456

L
Linus Torvalds 已提交
3457 3458 3459
		if (local_group) {
			this_load = avg_load;
			this = group;
3460 3461 3462
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3463
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3464 3465
			max_load = avg_load;
			busiest = group;
3466 3467
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3468
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3469
		}
3470 3471 3472 3473 3474 3475

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3476 3477 3478
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3479 3480 3481 3482 3483 3484 3485 3486 3487

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3488
		/*
3489 3490
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3491 3492
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3493
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3494
			goto group_next;
3495

I
Ingo Molnar 已提交
3496
		/*
3497
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3498 3499 3500 3501 3502
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3503 3504
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3505 3506
			group_min = group;
			min_nr_running = sum_nr_running;
3507 3508
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3509
		}
3510

I
Ingo Molnar 已提交
3511
		/*
3512
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3524
		}
3525 3526
group_next:
#endif
L
Linus Torvalds 已提交
3527 3528 3529
		group = group->next;
	} while (group != sd->groups);

3530
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536 3537 3538
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3539
	busiest_load_per_task /= busiest_nr_running;
3540 3541 3542
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548 3549 3550
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3551
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3552 3553
	 * appear as very large values with unsigned longs.
	 */
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3566 3567

	/* Don't want to pull so many tasks that a group would go idle */
3568
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3569

L
Linus Torvalds 已提交
3570
	/* How much load to actually move to equalise the imbalance */
3571 3572
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3573 3574
			/ SCHED_LOAD_SCALE;

3575 3576 3577 3578 3579 3580
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3581
	if (*imbalance < busiest_load_per_task) {
3582
		unsigned long tmp, pwr_now, pwr_move;
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3594

I
Ingo Molnar 已提交
3595 3596
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3597
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3607 3608 3609 3610
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3611 3612 3613
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3614 3615
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3616
		if (max_load > tmp)
3617
			pwr_move += busiest->__cpu_power *
3618
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3619 3620

		/* Amount of load we'd add */
3621
		if (max_load * busiest->__cpu_power <
3622
				busiest_load_per_task * SCHED_LOAD_SCALE)
3623 3624
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3625
		else
3626 3627 3628 3629
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3630 3631 3632
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3633 3634
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3635 3636 3637 3638 3639
	}

	return busiest;

out_balanced:
3640
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3641
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3642
		goto ret;
L
Linus Torvalds 已提交
3643

3644 3645 3646 3647 3648
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3649
ret:
L
Linus Torvalds 已提交
3650 3651 3652 3653 3654 3655 3656
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3657
static struct rq *
I
Ingo Molnar 已提交
3658
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3659
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3660
{
3661
	struct rq *busiest = NULL, *rq;
3662
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3663 3664 3665
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3666
		unsigned long wl;
3667 3668 3669 3670

		if (!cpu_isset(i, *cpus))
			continue;

3671
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3672
		wl = weighted_cpuload(i);
3673

I
Ingo Molnar 已提交
3674
		if (rq->nr_running == 1 && wl > imbalance)
3675
			continue;
L
Linus Torvalds 已提交
3676

I
Ingo Molnar 已提交
3677 3678
		if (wl > max_load) {
			max_load = wl;
3679
			busiest = rq;
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684 3685
		}
	}

	return busiest;
}

3686 3687 3688 3689 3690 3691
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3692 3693 3694 3695
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3696
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3697
			struct sched_domain *sd, enum cpu_idle_type idle,
3698
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3699
{
P
Peter Williams 已提交
3700
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3701 3702
	struct sched_group *group;
	unsigned long imbalance;
3703
	struct rq *busiest;
3704
	unsigned long flags;
3705
	int unlock_aggregate;
N
Nick Piggin 已提交
3706

3707 3708
	cpus_setall(*cpus);

3709 3710
	unlock_aggregate = get_aggregate(sd);

3711 3712 3713
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3714
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3715
	 * portraying it as CPU_NOT_IDLE.
3716
	 */
I
Ingo Molnar 已提交
3717
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3718
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3719
		sd_idle = 1;
L
Linus Torvalds 已提交
3720

3721
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3722

3723 3724
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3725
				   cpus, balance);
3726

3727
	if (*balance == 0)
3728 3729
		goto out_balanced;

L
Linus Torvalds 已提交
3730 3731 3732 3733 3734
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3735
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3736 3737 3738 3739 3740
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3741
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3742 3743 3744

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3745
	ld_moved = 0;
L
Linus Torvalds 已提交
3746 3747 3748 3749
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3750
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3751 3752
		 * correctly treated as an imbalance.
		 */
3753
		local_irq_save(flags);
N
Nick Piggin 已提交
3754
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3755
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3756
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3757
		double_rq_unlock(this_rq, busiest);
3758
		local_irq_restore(flags);
3759

3760 3761 3762
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3763
		if (ld_moved && this_cpu != smp_processor_id())
3764 3765
			resched_cpu(this_cpu);

3766
		/* All tasks on this runqueue were pinned by CPU affinity */
3767
		if (unlikely(all_pinned)) {
3768 3769
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3770
				goto redo;
3771
			goto out_balanced;
3772
		}
L
Linus Torvalds 已提交
3773
	}
3774

P
Peter Williams 已提交
3775
	if (!ld_moved) {
L
Linus Torvalds 已提交
3776 3777 3778 3779 3780
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3781
			spin_lock_irqsave(&busiest->lock, flags);
3782 3783 3784 3785 3786

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3787
				spin_unlock_irqrestore(&busiest->lock, flags);
3788 3789 3790 3791
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3792 3793 3794
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3795
				active_balance = 1;
L
Linus Torvalds 已提交
3796
			}
3797
			spin_unlock_irqrestore(&busiest->lock, flags);
3798
			if (active_balance)
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3805
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3806
		}
3807
	} else
L
Linus Torvalds 已提交
3808 3809
		sd->nr_balance_failed = 0;

3810
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3811 3812
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3813 3814 3815 3816 3817 3818 3819 3820 3821
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3822 3823
	}

P
Peter Williams 已提交
3824
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3825
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3826 3827 3828
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3829 3830 3831 3832

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3833
	sd->nr_balance_failed = 0;
3834 3835

out_one_pinned:
L
Linus Torvalds 已提交
3836
	/* tune up the balancing interval */
3837 3838
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3839 3840
		sd->balance_interval *= 2;

3841
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3842
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3843 3844 3845 3846 3847 3848 3849
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3850 3851 3852 3853 3854 3855
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3856
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3857 3858
 * this_rq is locked.
 */
3859
static int
3860 3861
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3862 3863
{
	struct sched_group *group;
3864
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3865
	unsigned long imbalance;
P
Peter Williams 已提交
3866
	int ld_moved = 0;
N
Nick Piggin 已提交
3867
	int sd_idle = 0;
3868
	int all_pinned = 0;
3869 3870

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3871

3872 3873 3874 3875
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3876
	 * portraying it as CPU_NOT_IDLE.
3877 3878 3879
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3880
		sd_idle = 1;
L
Linus Torvalds 已提交
3881

3882
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3883
redo:
I
Ingo Molnar 已提交
3884
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3885
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3886
	if (!group) {
I
Ingo Molnar 已提交
3887
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3888
		goto out_balanced;
L
Linus Torvalds 已提交
3889 3890
	}

3891
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3892
	if (!busiest) {
I
Ingo Molnar 已提交
3893
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3894
		goto out_balanced;
L
Linus Torvalds 已提交
3895 3896
	}

N
Nick Piggin 已提交
3897 3898
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3899
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3900

P
Peter Williams 已提交
3901
	ld_moved = 0;
3902 3903 3904
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3905 3906
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3907
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3908 3909
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3910
		spin_unlock(&busiest->lock);
3911

3912
		if (unlikely(all_pinned)) {
3913 3914
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3915 3916
				goto redo;
		}
3917 3918
	}

P
Peter Williams 已提交
3919
	if (!ld_moved) {
I
Ingo Molnar 已提交
3920
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3921 3922
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3923 3924
			return -1;
	} else
3925
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3926

P
Peter Williams 已提交
3927
	return ld_moved;
3928 3929

out_balanced:
I
Ingo Molnar 已提交
3930
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3931
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3932
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3933
		return -1;
3934
	sd->nr_balance_failed = 0;
3935

3936
	return 0;
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941 3942
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3943
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3944 3945
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3946 3947
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3948
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3949 3950

	for_each_domain(this_cpu, sd) {
3951 3952 3953 3954 3955 3956
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3957
			/* If we've pulled tasks over stop searching: */
3958 3959
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3960 3961 3962 3963 3964 3965

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3966
	}
I
Ingo Molnar 已提交
3967
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3968 3969 3970 3971 3972
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3973
	}
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3984
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3985
{
3986
	int target_cpu = busiest_rq->push_cpu;
3987 3988
	struct sched_domain *sd;
	struct rq *target_rq;
3989

3990
	/* Is there any task to move? */
3991 3992 3993 3994
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3995 3996

	/*
3997
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3998
	 * we need to fix it. Originally reported by
3999
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4000
	 */
4001
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4002

4003 4004
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4005 4006
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4007 4008

	/* Search for an sd spanning us and the target CPU. */
4009
	for_each_domain(target_cpu, sd) {
4010
		if ((sd->flags & SD_LOAD_BALANCE) &&
4011
		    cpu_isset(busiest_cpu, sd->span))
4012
				break;
4013
	}
4014

4015
	if (likely(sd)) {
4016
		schedstat_inc(sd, alb_count);
4017

P
Peter Williams 已提交
4018 4019
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4020 4021 4022 4023
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4024
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
4025 4026
}

4027 4028 4029
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
4030
	cpumask_t cpu_mask;
4031 4032 4033 4034 4035
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

4036
/*
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4047
 *
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4104 4105 4106 4107 4108
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4109
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4110
{
4111 4112
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4113 4114
	unsigned long interval;
	struct sched_domain *sd;
4115
	/* Earliest time when we have to do rebalance again */
4116
	unsigned long next_balance = jiffies + 60*HZ;
4117
	int update_next_balance = 0;
4118
	cpumask_t tmp;
L
Linus Torvalds 已提交
4119

4120
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4121 4122 4123 4124
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4125
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4132 4133 4134
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4135

4136 4137 4138 4139 4140
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4141
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4142
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4143 4144
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4145 4146 4147
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4148
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4149
			}
4150
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4151
		}
4152 4153 4154
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4155
		if (time_after(next_balance, sd->last_balance + interval)) {
4156
			next_balance = sd->last_balance + interval;
4157 4158
			update_next_balance = 1;
		}
4159 4160 4161 4162 4163 4164 4165 4166

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4167
	}
4168 4169 4170 4171 4172 4173 4174 4175

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4176 4177 4178 4179 4180 4181 4182 4183 4184
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4185 4186 4187 4188
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4189

I
Ingo Molnar 已提交
4190
	rebalance_domains(this_cpu, idle);
4191 4192 4193 4194 4195 4196 4197

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4198 4199
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4200 4201 4202 4203
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4204
		cpu_clear(this_cpu, cpus);
4205 4206 4207 4208 4209 4210 4211 4212 4213
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4214
			rebalance_domains(balance_cpu, CPU_IDLE);
4215 4216

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4217 4218
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4231
static inline void trigger_load_balance(struct rq *rq, int cpu)
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4258
			if (ilb < nr_cpu_ids)
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4283
}
I
Ingo Molnar 已提交
4284 4285 4286

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4287 4288 4289
/*
 * on UP we do not need to balance between CPUs:
 */
4290
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4291 4292
{
}
I
Ingo Molnar 已提交
4293

L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4301 4302
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4303
 */
4304
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4305 4306
{
	unsigned long flags;
4307 4308
	u64 ns, delta_exec;
	struct rq *rq;
4309

4310 4311
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4312
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4313 4314
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4315 4316 4317 4318
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4319

L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4343 4344 4345 4346 4347
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4348
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4382
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4383 4384
	cputime64_t tmp;

4385 4386
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
4387

L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4396
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4397
		cpustat->system = cputime64_add(cpustat->system, tmp);
4398
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4426
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4434
	} else
L
Linus Torvalds 已提交
4435 4436 4437
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4449
	struct task_struct *curr = rq->curr;
4450
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
4451 4452

	spin_lock(&rq->lock);
4453
	__update_rq_clock(rq);
4454 4455 4456
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
4457
	if (unlikely(rq->clock < next_tick)) {
4458
		rq->clock = next_tick;
4459 4460
		rq->clock_underflows++;
	}
4461
	rq->tick_timestamp = rq->clock;
4462
	update_last_tick_seen(rq);
4463
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4464
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4465
	spin_unlock(&rq->lock);
4466

4467
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4468 4469
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4470
#endif
L
Linus Torvalds 已提交
4471 4472 4473 4474
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4475
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4476 4477 4478 4479
{
	/*
	 * Underflow?
	 */
4480 4481
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4482 4483 4484 4485
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4486 4487
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4488 4489 4490
}
EXPORT_SYMBOL(add_preempt_count);

4491
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4492 4493 4494 4495
{
	/*
	 * Underflow?
	 */
4496 4497
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4498 4499 4500
	/*
	 * Is the spinlock portion underflowing?
	 */
4501 4502 4503 4504
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4505 4506 4507 4508 4509 4510 4511
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4512
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4513
 */
I
Ingo Molnar 已提交
4514
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4515
{
4516 4517 4518 4519 4520
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4521 4522 4523
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4524 4525 4526 4527 4528

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4529
}
L
Linus Torvalds 已提交
4530

I
Ingo Molnar 已提交
4531 4532 4533 4534 4535
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4536
	/*
I
Ingo Molnar 已提交
4537
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4538 4539 4540
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4541 4542 4543
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4544 4545
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4546
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4547 4548
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4549 4550
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4551 4552
	}
#endif
I
Ingo Molnar 已提交
4553 4554 4555 4556 4557 4558
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4559
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4560
{
4561
	const struct sched_class *class;
I
Ingo Molnar 已提交
4562
	struct task_struct *p;
L
Linus Torvalds 已提交
4563 4564

	/*
I
Ingo Molnar 已提交
4565 4566
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4567
	 */
I
Ingo Molnar 已提交
4568
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4569
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4570 4571
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4572 4573
	}

I
Ingo Molnar 已提交
4574 4575
	class = sched_class_highest;
	for ( ; ; ) {
4576
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4586

I
Ingo Molnar 已提交
4587 4588 4589 4590 4591 4592
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4593
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4609

P
Peter Zijlstra 已提交
4610 4611
	hrtick_clear(rq);

4612 4613 4614 4615
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4616
	__update_rq_clock(rq);
4617 4618
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4619 4620 4621

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4622
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4623
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4624
		} else {
4625
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4626
		}
I
Ingo Molnar 已提交
4627
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4628 4629
	}

4630 4631 4632 4633
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4634

I
Ingo Molnar 已提交
4635
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4636 4637
		idle_balance(cpu, rq);

4638
	prev->sched_class->put_prev_task(rq, prev);
4639
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4640 4641

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4642

L
Linus Torvalds 已提交
4643 4644 4645 4646 4647
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4648
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4649 4650 4651 4652 4653 4654
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4655 4656 4657
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4658 4659 4660
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4661
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4662

L
Linus Torvalds 已提交
4663 4664 4665 4666 4667 4668 4669 4670
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4671
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4672
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677 4678 4679
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4680

L
Linus Torvalds 已提交
4681 4682
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4683
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4684
	 */
N
Nick Piggin 已提交
4685
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4686 4687
		return;

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4701

4702 4703 4704 4705 4706 4707
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4708 4709 4710 4711
}
EXPORT_SYMBOL(preempt_schedule);

/*
4712
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4722

4723
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4724 4725
	BUG_ON(ti->preempt_count || !irqs_disabled());

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4741

4742 4743 4744 4745 4746 4747
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4748 4749 4750 4751
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4752 4753
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4754
{
4755
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4756 4757 4758 4759
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4760 4761
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4762 4763 4764
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4765
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4771
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4772

4773
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4774 4775
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4776
		if (curr->func(curr, mode, sync, key) &&
4777
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4787
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4788
 */
4789
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4790
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4803
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4809
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4821
void
I
Ingo Molnar 已提交
4822
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4839
void complete(struct completion *x)
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4845
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4846 4847 4848 4849
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4850
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4851 4852 4853 4854 4855
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4856
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4857 4858 4859 4860
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4861 4862
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868 4869
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4870 4871 4872 4873
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4874 4875 4876 4877
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4883
				return timeout;
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4892 4893
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4894 4895 4896 4897
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4898
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4899
	spin_unlock_irq(&x->wait.lock);
4900 4901
	return timeout;
}
L
Linus Torvalds 已提交
4902

4903
void __sched wait_for_completion(struct completion *x)
4904 4905
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4906
}
4907
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4908

4909
unsigned long __sched
4910
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4911
{
4912
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4913
}
4914
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4915

4916
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4917
{
4918 4919 4920 4921
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4922
}
4923
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4924

4925
unsigned long __sched
4926 4927
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4928
{
4929
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4930
}
4931
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4932

M
Matthew Wilcox 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4942 4943
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4944
{
I
Ingo Molnar 已提交
4945 4946 4947 4948
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4949

4950
	__set_current_state(state);
L
Linus Torvalds 已提交
4951

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4966 4967 4968
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4969
long __sched
I
Ingo Molnar 已提交
4970
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4971
{
4972
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4973 4974 4975
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4976
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4977
{
4978
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4979 4980 4981
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4982
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4983
{
4984
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4985 4986 4987
}
EXPORT_SYMBOL(sleep_on_timeout);

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5000
void rt_mutex_setprio(struct task_struct *p, int prio)
5001 5002
{
	unsigned long flags;
5003
	int oldprio, on_rq, running;
5004
	struct rq *rq;
5005
	const struct sched_class *prev_class = p->sched_class;
5006 5007 5008 5009

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5010
	update_rq_clock(rq);
5011

5012
	oldprio = p->prio;
I
Ingo Molnar 已提交
5013
	on_rq = p->se.on_rq;
5014
	running = task_current(rq, p);
5015
	if (on_rq)
5016
		dequeue_task(rq, p, 0);
5017 5018
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5019 5020 5021 5022 5023 5024

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5025 5026
	p->prio = prio;

5027 5028
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5029
	if (on_rq) {
5030
		enqueue_task(rq, p, 0);
5031 5032

		check_class_changed(rq, p, prev_class, oldprio, running);
5033 5034 5035 5036 5037 5038
	}
	task_rq_unlock(rq, &flags);
}

#endif

5039
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5040
{
I
Ingo Molnar 已提交
5041
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5042
	unsigned long flags;
5043
	struct rq *rq;
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5052
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5053 5054 5055 5056
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5057
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5058
	 */
5059
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5060 5061 5062
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5063
	on_rq = p->se.on_rq;
5064
	if (on_rq)
5065
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5066 5067

	p->static_prio = NICE_TO_PRIO(nice);
5068
	set_load_weight(p);
5069 5070 5071
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5072

I
Ingo Molnar 已提交
5073
	if (on_rq) {
5074
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5075
		/*
5076 5077
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5078
		 */
5079
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5087 5088 5089 5090 5091
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5092
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5093
{
5094 5095
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5096

M
Matt Mackall 已提交
5097 5098 5099 5100
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5112
	long nice, retval;
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5119 5120
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5130 5131 5132
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5151
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157 5158 5159
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5160
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5161 5162 5163
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5164
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5179
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185 5186 5187
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5188
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5189
{
5190
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5191 5192 5193
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5194 5195
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5196
{
I
Ingo Molnar 已提交
5197
	BUG_ON(p->se.on_rq);
5198

L
Linus Torvalds 已提交
5199
	p->policy = policy;
I
Ingo Molnar 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5212
	p->rt_priority = prio;
5213 5214 5215
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5216
	set_load_weight(p);
L
Linus Torvalds 已提交
5217 5218 5219
}

/**
5220
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5221 5222 5223
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5224
 *
5225
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5226
 */
I
Ingo Molnar 已提交
5227 5228
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5229
{
5230
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5231
	unsigned long flags;
5232
	const struct sched_class *prev_class = p->sched_class;
5233
	struct rq *rq;
L
Linus Torvalds 已提交
5234

5235 5236
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5242 5243
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5244
		return -EINVAL;
L
Linus Torvalds 已提交
5245 5246
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5247 5248
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5249 5250
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5251
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5252
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5253
		return -EINVAL;
5254
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5255 5256
		return -EINVAL;

5257 5258 5259 5260
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5261
		if (rt_policy(policy)) {
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5278 5279 5280 5281 5282 5283
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5284

5285 5286 5287 5288 5289
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5290

5291 5292 5293 5294 5295
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5296
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5297 5298 5299
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5300 5301 5302
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5303 5304 5305 5306 5307
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5308 5309 5310 5311
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5312
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5313 5314 5315
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5316 5317
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5318 5319
		goto recheck;
	}
I
Ingo Molnar 已提交
5320
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5321
	on_rq = p->se.on_rq;
5322
	running = task_current(rq, p);
5323
	if (on_rq)
5324
		deactivate_task(rq, p, 0);
5325 5326
	if (running)
		p->sched_class->put_prev_task(rq, p);
5327

L
Linus Torvalds 已提交
5328
	oldprio = p->prio;
I
Ingo Molnar 已提交
5329
	__setscheduler(rq, p, policy, param->sched_priority);
5330

5331 5332
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5333 5334
	if (on_rq) {
		activate_task(rq, p, 0);
5335 5336

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5337
	}
5338 5339 5340
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5341 5342
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5343 5344 5345 5346
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5347 5348
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5349 5350 5351
{
	struct sched_param lparam;
	struct task_struct *p;
5352
	int retval;
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5358 5359 5360

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5361
	p = find_process_by_pid(pid);
5362 5363 5364
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5365

L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5375 5376
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5377
{
5378 5379 5380 5381
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5401
	struct task_struct *p;
5402
	int retval;
L
Linus Torvalds 已提交
5403 5404

	if (pid < 0)
5405
		return -EINVAL;
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5427
	struct task_struct *p;
5428
	int retval;
L
Linus Torvalds 已提交
5429 5430

	if (!param || pid < 0)
5431
		return -EINVAL;
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5458
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5459 5460
{
	cpumask_t cpus_allowed;
5461
	cpumask_t new_mask = *in_mask;
5462 5463
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5464

5465
	get_online_cpus();
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5471
		put_online_cpus();
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5477
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5488 5489 5490 5491
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5492
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5493
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5494
 again:
5495
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5496

P
Paul Menage 已提交
5497
	if (!retval) {
5498
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5509 5510
out_unlock:
	put_task_struct(p);
5511
	put_online_cpus();
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5542
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5552
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5553 5554 5555
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5556
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5557 5558
EXPORT_SYMBOL(cpu_online_map);

5559
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5560
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5561 5562 5563 5564
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5565
	struct task_struct *p;
L
Linus Torvalds 已提交
5566 5567
	int retval;

5568
	get_online_cpus();
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573 5574 5575
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5576 5577 5578 5579
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5580
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5581 5582 5583

out_unlock:
	read_unlock(&tasklist_lock);
5584
	put_online_cpus();
L
Linus Torvalds 已提交
5585

5586
	return retval;
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5617 5618
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5619 5620 5621
 */
asmlinkage long sys_sched_yield(void)
{
5622
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5623

5624
	schedstat_inc(rq, yld_count);
5625
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5626 5627 5628 5629 5630 5631

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5632
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638 5639 5640
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5641
static void __cond_resched(void)
L
Linus Torvalds 已提交
5642
{
5643 5644 5645
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5646 5647 5648 5649 5650
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656 5657
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5658 5659
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5660
{
5661 5662
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5663 5664 5665 5666 5667
		__cond_resched();
		return 1;
	}
	return 0;
}
5668 5669
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5675
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5676 5677 5678
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5679
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5680
{
N
Nick Piggin 已提交
5681
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5682 5683
	int ret = 0;

N
Nick Piggin 已提交
5684
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5685
		spin_unlock(lock);
N
Nick Piggin 已提交
5686 5687 5688 5689
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5690
		ret = 1;
L
Linus Torvalds 已提交
5691 5692
		spin_lock(lock);
	}
J
Jan Kara 已提交
5693
	return ret;
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5701
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5702
		local_bh_enable();
L
Linus Torvalds 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5714
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5725
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5733
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5734

5735
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5736 5737 5738
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5739
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5740 5741 5742 5743 5744
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5745
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5746 5747
	long ret;

5748
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5749 5750 5751
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5752
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5773
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5774
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5798
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5799
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5816
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5817
	unsigned int time_slice;
5818
	int retval;
L
Linus Torvalds 已提交
5819 5820 5821
	struct timespec t;

	if (pid < 0)
5822
		return -EINVAL;
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5834 5835 5836 5837 5838 5839
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5840
		time_slice = DEF_TIMESLICE;
5841
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5842 5843 5844 5845 5846
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5847 5848
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5849 5850
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5851
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5852
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5853 5854
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5855

L
Linus Torvalds 已提交
5856 5857 5858 5859 5860
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5861
static const char stat_nam[] = "RSDTtZX";
5862

5863
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5864 5865
{
	unsigned long free = 0;
5866
	unsigned state;
L
Linus Torvalds 已提交
5867 5868

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5869
	printk(KERN_INFO "%-13.13s %c", p->comm,
5870
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5871
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5872
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5873
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5874
	else
I
Ingo Molnar 已提交
5875
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5876 5877
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5878
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5879
	else
I
Ingo Molnar 已提交
5880
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5881 5882 5883
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5884
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5885 5886
		while (!*n)
			n++;
5887
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5888 5889
	}
#endif
5890
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5891
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5892

5893
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5894 5895
}

I
Ingo Molnar 已提交
5896
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5897
{
5898
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5899

5900 5901 5902
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5903
#else
5904 5905
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5906 5907 5908 5909 5910 5911 5912 5913
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5914
		if (!state_filter || (p->state & state_filter))
5915
			sched_show_task(p);
L
Linus Torvalds 已提交
5916 5917
	} while_each_thread(g, p);

5918 5919
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5920 5921 5922
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5923
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5924 5925 5926 5927 5928
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5929 5930
}

I
Ingo Molnar 已提交
5931 5932
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5933
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5934 5935
}

5936 5937 5938 5939 5940 5941 5942 5943
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5944
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5945
{
5946
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5947 5948
	unsigned long flags;

I
Ingo Molnar 已提交
5949 5950 5951
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5952
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5953
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5954
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5955 5956 5957

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5958 5959 5960
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5961 5962 5963
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5964
	task_thread_info(idle)->preempt_count = 0;
5965

I
Ingo Molnar 已提交
5966 5967 5968 5969
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
6006 6007 6008 6009
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6010
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6029
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6030 6031
 * call is not atomic; no spinlocks may be held.
 */
6032
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
6033
{
6034
	struct migration_req req;
L
Linus Torvalds 已提交
6035
	unsigned long flags;
6036
	struct rq *rq;
6037
	int ret = 0;
L
Linus Torvalds 已提交
6038 6039

	rq = task_rq_lock(p, &flags);
6040
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
6041 6042 6043 6044
		ret = -EINVAL;
		goto out;
	}

6045
	if (p->sched_class->set_cpus_allowed)
6046
		p->sched_class->set_cpus_allowed(p, new_mask);
6047
	else {
6048 6049
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6050 6051
	}

L
Linus Torvalds 已提交
6052
	/* Can the task run on the task's current CPU? If so, we're done */
6053
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
6054 6055
		goto out;

6056
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6066

L
Linus Torvalds 已提交
6067 6068
	return ret;
}
6069
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6070 6071

/*
I
Ingo Molnar 已提交
6072
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6073 6074 6075 6076 6077 6078
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6079 6080
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6081
 */
6082
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6083
{
6084
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6085
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6086 6087

	if (unlikely(cpu_is_offline(dest_cpu)))
6088
		return ret;
L
Linus Torvalds 已提交
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
6101
	on_rq = p->se.on_rq;
6102
	if (on_rq)
6103
		deactivate_task(rq_src, p, 0);
6104

L
Linus Torvalds 已提交
6105
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6106 6107 6108
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
6109
	}
6110
	ret = 1;
L
Linus Torvalds 已提交
6111 6112
out:
	double_rq_unlock(rq_src, rq_dest);
6113
	return ret;
L
Linus Torvalds 已提交
6114 6115 6116 6117 6118 6119 6120
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6121
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6122 6123
{
	int cpu = (long)data;
6124
	struct rq *rq;
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6131
		struct migration_req *req;
L
Linus Torvalds 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6154
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6155 6156
		list_del_init(head->next);

N
Nick Piggin 已提交
6157 6158 6159
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6189
/*
6190
 * Figure out where task on dead CPU should go, use force if necessary.
6191 6192
 * NOTE: interrupts should be disabled by the caller
 */
6193
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6194
{
6195
	unsigned long flags;
L
Linus Torvalds 已提交
6196
	cpumask_t mask;
6197 6198
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6199

6200 6201 6202 6203 6204 6205 6206
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6207
		if (dest_cpu >= nr_cpu_ids)
6208 6209 6210
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6211
		if (dest_cpu >= nr_cpu_ids) {
6212 6213 6214
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6215 6216 6217 6218
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6219
			 * cpuset_cpus_allowed() will not block. It must be
6220 6221
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6222
			rq = task_rq_lock(p, &flags);
6223
			p->cpus_allowed = cpus_allowed;
6224 6225
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6226

6227 6228 6229 6230 6231
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6232
			if (p->mm && printk_ratelimit()) {
6233 6234
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6235 6236
					task_pid_nr(p), p->comm, dead_cpu);
			}
6237
		}
6238
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6248
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6249
{
6250
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6264
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6265

6266
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6267

6268 6269
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6270 6271
			continue;

6272 6273 6274
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6275

6276
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6277 6278
}

I
Ingo Molnar 已提交
6279 6280
/*
 * Schedules idle task to be the next runnable task on current CPU.
6281 6282
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6283 6284 6285
 */
void sched_idle_next(void)
{
6286
	int this_cpu = smp_processor_id();
6287
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6288 6289 6290 6291
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6292
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6293

6294 6295 6296
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6297 6298 6299
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6300
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6301

6302 6303
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6304 6305 6306 6307

	spin_unlock_irqrestore(&rq->lock, flags);
}

6308 6309
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6323
/* called under rq->lock with disabled interrupts */
6324
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6325
{
6326
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6327 6328

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6329
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6330 6331

	/* Cannot have done final schedule yet: would have vanished. */
6332
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6333

6334
	get_task_struct(p);
L
Linus Torvalds 已提交
6335 6336 6337

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6338
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6339 6340
	 * fine.
	 */
6341
	spin_unlock_irq(&rq->lock);
6342
	move_task_off_dead_cpu(dead_cpu, p);
6343
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6344

6345
	put_task_struct(p);
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6351
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6352
	struct task_struct *next;
6353

I
Ingo Molnar 已提交
6354 6355 6356
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6357
		update_rq_clock(rq);
6358
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6359 6360 6361
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6362

L
Linus Torvalds 已提交
6363 6364 6365 6366
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6367 6368 6369
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6370 6371
	{
		.procname	= "sched_domain",
6372
		.mode		= 0555,
6373
	},
I
Ingo Molnar 已提交
6374
	{0, },
6375 6376 6377
};

static struct ctl_table sd_ctl_root[] = {
6378
	{
6379
		.ctl_name	= CTL_KERN,
6380
		.procname	= "kernel",
6381
		.mode		= 0555,
6382 6383
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6384
	{0, },
6385 6386 6387 6388 6389
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6390
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6391 6392 6393 6394

	return entry;
}

6395 6396
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6397
	struct ctl_table *entry;
6398

6399 6400 6401
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6402
	 * will always be set. In the lowest directory the names are
6403 6404 6405
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6406 6407
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6408 6409 6410
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6411 6412 6413 6414 6415

	kfree(*tablep);
	*tablep = NULL;
}

6416
static void
6417
set_table_entry(struct ctl_table *entry,
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6431
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6432

6433 6434 6435
	if (table == NULL)
		return NULL;

6436
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6437
		sizeof(long), 0644, proc_doulongvec_minmax);
6438
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6439
		sizeof(long), 0644, proc_doulongvec_minmax);
6440
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6441
		sizeof(int), 0644, proc_dointvec_minmax);
6442
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6443
		sizeof(int), 0644, proc_dointvec_minmax);
6444
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6445
		sizeof(int), 0644, proc_dointvec_minmax);
6446
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6447
		sizeof(int), 0644, proc_dointvec_minmax);
6448
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6449
		sizeof(int), 0644, proc_dointvec_minmax);
6450
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6451
		sizeof(int), 0644, proc_dointvec_minmax);
6452
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6453
		sizeof(int), 0644, proc_dointvec_minmax);
6454
	set_table_entry(&table[9], "cache_nice_tries",
6455 6456
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6457
	set_table_entry(&table[10], "flags", &sd->flags,
6458
		sizeof(int), 0644, proc_dointvec_minmax);
6459
	/* &table[11] is terminator */
6460 6461 6462 6463

	return table;
}

6464
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6465 6466 6467 6468 6469 6470 6471 6472 6473
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6474 6475
	if (table == NULL)
		return NULL;
6476 6477 6478 6479 6480

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6481
		entry->mode = 0555;
6482 6483 6484 6485 6486 6487 6488 6489
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6490
static void register_sched_domain_sysctl(void)
6491 6492 6493 6494 6495
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6496 6497 6498
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6499 6500 6501
	if (entry == NULL)
		return;

6502
	for_each_online_cpu(i) {
6503 6504
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6505
		entry->mode = 0555;
6506
		entry->child = sd_alloc_ctl_cpu_table(i);
6507
		entry++;
6508
	}
6509 6510

	WARN_ON(sd_sysctl_header);
6511 6512
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6513

6514
/* may be called multiple times per register */
6515 6516
static void unregister_sched_domain_sysctl(void)
{
6517 6518
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6519
	sd_sysctl_header = NULL;
6520 6521
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6522
}
6523
#else
6524 6525 6526 6527
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6528 6529 6530 6531
{
}
#endif

L
Linus Torvalds 已提交
6532 6533 6534 6535
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6536 6537
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6538 6539
{
	struct task_struct *p;
6540
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6541
	unsigned long flags;
6542
	struct rq *rq;
L
Linus Torvalds 已提交
6543 6544

	switch (action) {
6545

L
Linus Torvalds 已提交
6546
	case CPU_UP_PREPARE:
6547
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6548
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6549 6550 6551 6552 6553
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6554
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6555 6556 6557
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6558

L
Linus Torvalds 已提交
6559
	case CPU_ONLINE:
6560
	case CPU_ONLINE_FROZEN:
6561
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6562
		wake_up_process(cpu_rq(cpu)->migration_thread);
6563 6564 6565 6566 6567 6568 6569 6570 6571

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6572
		break;
6573

L
Linus Torvalds 已提交
6574 6575
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6576
	case CPU_UP_CANCELED_FROZEN:
6577 6578
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6579
		/* Unbind it from offline cpu so it can run. Fall thru. */
6580 6581
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6582 6583 6584
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6585

L
Linus Torvalds 已提交
6586
	case CPU_DEAD:
6587
	case CPU_DEAD_FROZEN:
6588
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6589 6590 6591 6592 6593
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6594
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6595
		update_rq_clock(rq);
6596
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6597
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6598 6599
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6600
		migrate_dead_tasks(cpu);
6601
		spin_unlock_irq(&rq->lock);
6602
		cpuset_unlock();
L
Linus Torvalds 已提交
6603 6604 6605
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6606 6607 6608 6609 6610
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6611 6612
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6613 6614
			struct migration_req *req;

L
Linus Torvalds 已提交
6615
			req = list_entry(rq->migration_queue.next,
6616
					 struct migration_req, list);
L
Linus Torvalds 已提交
6617 6618 6619 6620 6621
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6622

6623 6624
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6634 6635 6636 6637 6638 6639 6640 6641
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6642
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6643 6644 6645 6646
	.notifier_call = migration_call,
	.priority = 10
};

6647
void __init migration_init(void)
L
Linus Torvalds 已提交
6648 6649
{
	void *cpu = (void *)(long)smp_processor_id();
6650
	int err;
6651 6652

	/* Start one for the boot CPU: */
6653 6654
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6655 6656 6657 6658 6659 6660
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6661

6662
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6663

6664 6665
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6666
{
I
Ingo Molnar 已提交
6667
	struct sched_group *group = sd->groups;
6668
	char str[256];
L
Linus Torvalds 已提交
6669

6670
	cpulist_scnprintf(str, sizeof(str), sd->span);
6671
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6672 6673 6674 6675 6676 6677 6678 6679 6680

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6681 6682
	}

I
Ingo Molnar 已提交
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6693

I
Ingo Molnar 已提交
6694
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6695
	do {
I
Ingo Molnar 已提交
6696 6697 6698
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6699 6700 6701
			break;
		}

I
Ingo Molnar 已提交
6702 6703 6704 6705 6706 6707
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6708

I
Ingo Molnar 已提交
6709 6710 6711 6712 6713
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6714

6715
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6716 6717 6718 6719
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6720

6721
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6722

6723
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6724
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6725

I
Ingo Molnar 已提交
6726 6727 6728
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6729

6730
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6731
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6732

6733
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6734 6735 6736 6737
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6738

I
Ingo Molnar 已提交
6739 6740
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6741
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6742
	int level = 0;
L
Linus Torvalds 已提交
6743

I
Ingo Molnar 已提交
6744 6745 6746 6747
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6748

I
Ingo Molnar 已提交
6749 6750
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6751 6752 6753 6754 6755 6756
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6757
	for (;;) {
6758
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6759
			break;
L
Linus Torvalds 已提交
6760 6761
		level++;
		sd = sd->parent;
6762
		if (!sd)
I
Ingo Molnar 已提交
6763 6764
			break;
	}
6765
	kfree(groupmask);
L
Linus Torvalds 已提交
6766 6767
}
#else
6768
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6769 6770
#endif

6771
static int sd_degenerate(struct sched_domain *sd)
6772 6773 6774 6775 6776 6777 6778 6779
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6780 6781 6782
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6796 6797
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6816 6817 6818
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6819 6820 6821 6822 6823 6824 6825
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6836
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6837 6838
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6839
		}
G
Gregory Haskins 已提交
6840

6841 6842 6843
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6844 6845 6846 6847 6848 6849 6850
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6851
	cpu_set(rq->cpu, rd->span);
6852 6853
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6854

I
Ingo Molnar 已提交
6855
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6856 6857
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6858
	}
G
Gregory Haskins 已提交
6859 6860 6861 6862

	spin_unlock_irqrestore(&rq->lock, flags);
}

6863
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6864 6865 6866
{
	memset(rd, 0, sizeof(*rd));

6867 6868
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6869 6870 6871 6872
}

static void init_defrootdomain(void)
{
6873
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6874 6875 6876
	atomic_set(&def_root_domain.refcount, 1);
}

6877
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6878 6879 6880 6881 6882 6883 6884
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6885
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6886 6887 6888 6889

	return rd;
}

L
Linus Torvalds 已提交
6890
/*
I
Ingo Molnar 已提交
6891
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6892 6893
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6894 6895
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6896
{
6897
	struct rq *rq = cpu_rq(cpu);
6898 6899 6900 6901 6902 6903 6904
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6905
		if (sd_parent_degenerate(tmp, parent)) {
6906
			tmp->parent = parent->parent;
6907 6908 6909
			if (parent->parent)
				parent->parent->child = tmp;
		}
6910 6911
	}

6912
	if (sd && sd_degenerate(sd)) {
6913
		sd = sd->parent;
6914 6915 6916
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6917 6918 6919

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6920
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6921
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6922 6923 6924
}

/* cpus with isolated domains */
6925
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6940
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6941 6942

/*
6943 6944 6945 6946
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6947 6948 6949 6950 6951
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6952
static void
6953
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6954
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6955 6956 6957
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6958 6959 6960 6961
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6962 6963 6964
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6965
		struct sched_group *sg;
6966
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6967 6968
		int j;

6969
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6970 6971
			continue;

6972
		cpus_clear(sg->cpumask);
6973
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6974

6975 6976
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6977 6978
				continue;

6979
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6991
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6992

6993
#ifdef CONFIG_NUMA
6994

6995 6996 6997 6998 6999
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7000
 * Find the next node to include in a given scheduling domain. Simply
7001 7002 7003 7004
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7005
static int find_next_best_node(int node, nodemask_t *used_nodes)
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7019
		if (node_isset(n, *used_nodes))
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7031
	node_set(best_node, *used_nodes);
7032 7033 7034 7035 7036 7037 7038
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 *
I
Ingo Molnar 已提交
7039
 * Given a node, construct a good cpumask for its sched_domain to span. It
7040 7041 7042
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7043
static void sched_domain_node_span(int node, cpumask_t *span)
7044
{
7045 7046
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7047
	int i;
7048

7049
	cpus_clear(*span);
7050
	nodes_clear(used_nodes);
7051

7052
	cpus_or(*span, *span, *nodemask);
7053
	node_set(node, used_nodes);
7054 7055

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7056
		int next_node = find_next_best_node(node, &used_nodes);
7057

7058
		node_to_cpumask_ptr_next(nodemask, next_node);
7059
		cpus_or(*span, *span, *nodemask);
7060 7061 7062 7063
	}
}
#endif

7064
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7065

7066
/*
7067
 * SMT sched-domains:
7068
 */
L
Linus Torvalds 已提交
7069 7070
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7071
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7072

I
Ingo Molnar 已提交
7073
static int
7074 7075
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7076
{
7077 7078
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7079 7080 7081 7082
	return cpu;
}
#endif

7083 7084 7085
/*
 * multi-core sched-domains:
 */
7086 7087
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7088
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7089 7090 7091
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7092
static int
7093 7094
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7095
{
7096
	int group;
7097 7098 7099 7100

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7101 7102 7103
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7104 7105
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7106
static int
7107 7108
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7109
{
7110 7111
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7112 7113 7114 7115
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7116
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7117
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7118

I
Ingo Molnar 已提交
7119
static int
7120 7121
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7122
{
7123
	int group;
7124
#ifdef CONFIG_SCHED_MC
7125 7126 7127
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7128
#elif defined(CONFIG_SCHED_SMT)
7129 7130 7131
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7132
#else
7133
	group = cpu;
L
Linus Torvalds 已提交
7134
#endif
7135 7136 7137
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7138 7139 7140 7141
}

#ifdef CONFIG_NUMA
/*
7142 7143 7144
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7145
 */
7146
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7147
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7148

7149
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7150
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7151

7152
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7153
				 struct sched_group **sg, cpumask_t *nodemask)
7154
{
7155 7156
	int group;

7157 7158 7159
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7160 7161 7162 7163

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7164
}
7165

7166 7167 7168 7169 7170 7171 7172
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7173 7174 7175
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7176

7177 7178 7179 7180 7181 7182 7183 7184
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7185

7186 7187 7188 7189
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7190
}
L
Linus Torvalds 已提交
7191 7192
#endif

7193
#ifdef CONFIG_NUMA
7194
/* Free memory allocated for various sched_group structures */
7195
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7196
{
7197
	int cpu, i;
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7209 7210 7211
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7228
#else
7229
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7230 7231 7232
{
}
#endif
7233

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7260 7261
	sd->groups->__cpu_power = 0;

7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7272
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7273 7274 7275 7276 7277 7278 7279 7280
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7281
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7282 7283 7284 7285
		group = group->next;
	} while (group != child->groups);
}

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7297
	sd->level = SD_LV_##type;				\
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7376
/*
7377 7378
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7379
 */
7380 7381
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7382 7383
{
	int i;
G
Gregory Haskins 已提交
7384
	struct root_domain *rd;
7385 7386
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7387 7388
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7389
	int sd_allnodes = 0;
7390 7391 7392 7393

	/*
	 * Allocate the per-node list of sched groups
	 */
7394
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7395
				    GFP_KERNEL);
7396 7397
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7398
		return -ENOMEM;
7399 7400
	}
#endif
L
Linus Torvalds 已提交
7401

7402
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7403 7404
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7405 7406 7407
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7408 7409 7410
		return -ENOMEM;
	}

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7430
	/*
7431
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7432
	 */
7433
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7434
		struct sched_domain *sd = NULL, *p;
7435
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7436

7437 7438
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7439 7440

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7441
		if (cpus_weight(*cpu_map) >
7442
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7443
			sd = &per_cpu(allnodes_domains, i);
7444
			SD_INIT(sd, ALLNODES);
7445
			set_domain_attribute(sd, attr);
7446
			sd->span = *cpu_map;
7447
			sd->first_cpu = first_cpu(sd->span);
7448
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7449
			p = sd;
7450
			sd_allnodes = 1;
7451 7452 7453
		} else
			p = NULL;

L
Linus Torvalds 已提交
7454
		sd = &per_cpu(node_domains, i);
7455
		SD_INIT(sd, NODE);
7456
		set_domain_attribute(sd, attr);
7457
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7458
		sd->first_cpu = first_cpu(sd->span);
7459
		sd->parent = p;
7460 7461
		if (p)
			p->child = sd;
7462
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7463 7464 7465 7466
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7467
		SD_INIT(sd, CPU);
7468
		set_domain_attribute(sd, attr);
7469
		sd->span = *nodemask;
7470
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7471
		sd->parent = p;
7472 7473
		if (p)
			p->child = sd;
7474
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7475

7476 7477 7478
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7479
		SD_INIT(sd, MC);
7480
		set_domain_attribute(sd, attr);
7481
		sd->span = cpu_coregroup_map(i);
7482
		sd->first_cpu = first_cpu(sd->span);
7483 7484
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7485
		p->child = sd;
7486
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7487 7488
#endif

L
Linus Torvalds 已提交
7489 7490 7491
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7492
		SD_INIT(sd, SIBLING);
7493
		set_domain_attribute(sd, attr);
7494
		sd->span = per_cpu(cpu_sibling_map, i);
7495
		sd->first_cpu = first_cpu(sd->span);
7496
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7497
		sd->parent = p;
7498
		p->child = sd;
7499
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7500 7501 7502 7503 7504
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7505
	for_each_cpu_mask(i, *cpu_map) {
7506 7507 7508 7509 7510 7511
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7512 7513
			continue;

I
Ingo Molnar 已提交
7514
		init_sched_build_groups(this_sibling_map, cpu_map,
7515 7516
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7517 7518 7519
	}
#endif

7520 7521 7522
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7523 7524 7525 7526 7527 7528
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7529
			continue;
7530

I
Ingo Molnar 已提交
7531
		init_sched_build_groups(this_core_map, cpu_map,
7532 7533
					&cpu_to_core_group,
					send_covered, tmpmask);
7534 7535 7536
	}
#endif

L
Linus Torvalds 已提交
7537 7538
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7539 7540
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7541

7542 7543 7544
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7545 7546
			continue;

7547 7548 7549
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7550 7551 7552 7553
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7554 7555 7556 7557 7558 7559 7560
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7561 7562 7563 7564

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7565 7566 7567
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7568 7569
		int j;

7570 7571 7572 7573 7574
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7575
			sched_group_nodes[i] = NULL;
7576
			continue;
7577
		}
7578

7579
		sched_domain_node_span(i, domainspan);
7580
		cpus_and(*domainspan, *domainspan, *cpu_map);
7581

7582
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7583 7584 7585 7586 7587
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7588
		sched_group_nodes[i] = sg;
7589
		for_each_cpu_mask(j, *nodemask) {
7590
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7591

7592 7593 7594
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7595
		sg->__cpu_power = 0;
7596
		sg->cpumask = *nodemask;
7597
		sg->next = sg;
7598
		cpus_or(*covered, *covered, *nodemask);
7599 7600 7601
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7602
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7603
			int n = (i + j) % MAX_NUMNODES;
7604
			node_to_cpumask_ptr(pnodemask, n);
7605

7606 7607 7608 7609
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7610 7611
				break;

7612 7613
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7614 7615
				continue;

7616 7617
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7618 7619 7620
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7621
				goto error;
7622
			}
7623
			sg->__cpu_power = 0;
7624
			sg->cpumask = *tmpmask;
7625
			sg->next = prev->next;
7626
			cpus_or(*covered, *covered, *tmpmask);
7627 7628 7629 7630
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7631 7632 7633
#endif

	/* Calculate CPU power for physical packages and nodes */
7634
#ifdef CONFIG_SCHED_SMT
7635
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7636 7637
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7638
		init_sched_groups_power(i, sd);
7639
	}
L
Linus Torvalds 已提交
7640
#endif
7641
#ifdef CONFIG_SCHED_MC
7642
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7643 7644
		struct sched_domain *sd = &per_cpu(core_domains, i);

7645
		init_sched_groups_power(i, sd);
7646 7647
	}
#endif
7648

7649
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7650 7651
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7652
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7653 7654
	}

7655
#ifdef CONFIG_NUMA
7656 7657
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7658

7659 7660
	if (sd_allnodes) {
		struct sched_group *sg;
7661

7662 7663
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7664 7665
		init_numa_sched_groups_power(sg);
	}
7666 7667
#endif

L
Linus Torvalds 已提交
7668
	/* Attach the domains */
7669
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7670 7671 7672
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7673 7674
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7675 7676 7677
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7678
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7679
	}
7680

7681
	SCHED_CPUMASK_FREE((void *)allmasks);
7682 7683
	return 0;

7684
#ifdef CONFIG_NUMA
7685
error:
7686 7687
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7688
	return -ENOMEM;
7689
#endif
L
Linus Torvalds 已提交
7690
}
P
Paul Jackson 已提交
7691

7692 7693 7694 7695 7696
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7697 7698
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7699 7700
static struct sched_domain_attr *dattr_cur;	/* attribues of custom domains
						   in 'doms_cur' */
P
Paul Jackson 已提交
7701 7702 7703 7704 7705 7706 7707 7708

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7709 7710 7711 7712
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7713
/*
I
Ingo Molnar 已提交
7714
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7715 7716
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7717
 */
7718
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7719
{
7720 7721
	int err;

7722
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7723 7724 7725 7726 7727
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7728
	dattr_cur = NULL;
7729
	err = build_sched_domains(doms_cur);
7730
	register_sched_domain_sysctl();
7731 7732

	return err;
7733 7734
}

7735 7736
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7737
{
7738
	free_sched_groups(cpu_map, tmpmask);
7739
}
L
Linus Torvalds 已提交
7740

7741 7742 7743 7744
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7745
static void detach_destroy_domains(const cpumask_t *cpu_map)
7746
{
7747
	cpumask_t tmpmask;
7748 7749
	int i;

7750 7751
	unregister_sched_domain_sysctl();

7752
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7753
		cpu_attach_domain(NULL, &def_root_domain, i);
7754
	synchronize_sched();
7755
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7756 7757
}

7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7774 7775
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7776
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7777 7778 7779 7780
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7781 7782 7783
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7784 7785 7786
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7787 7788
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7789 7790 7791 7792 7793 7794
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7795 7796
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7797 7798 7799
{
	int i, j;

7800 7801
	lock_doms_cur();

7802 7803 7804
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7805 7806 7807 7808
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7809
		dattr_new = NULL;
P
Paul Jackson 已提交
7810 7811 7812 7813 7814
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7815 7816
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7828 7829
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7830 7831 7832
				goto match2;
		}
		/* no match - add a new doms_new */
7833 7834
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7835 7836 7837 7838 7839 7840 7841
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7842
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7843
	doms_cur = doms_new;
7844
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7845
	ndoms_cur = ndoms_new;
7846 7847

	register_sched_domain_sysctl();
7848 7849

	unlock_doms_cur();
P
Paul Jackson 已提交
7850 7851
}

7852
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7853
int arch_reinit_sched_domains(void)
7854 7855 7856
{
	int err;

7857
	get_online_cpus();
7858 7859
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7860
	put_online_cpus();
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7887 7888
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7889 7890 7891
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7892 7893
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7894 7895 7896 7897 7898 7899 7900
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7901 7902
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7903 7904 7905
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7926 7927
#endif

L
Linus Torvalds 已提交
7928
/*
I
Ingo Molnar 已提交
7929
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7930
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7931
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7932 7933 7934 7935 7936 7937 7938
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7939
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7940
	case CPU_DOWN_PREPARE:
7941
	case CPU_DOWN_PREPARE_FROZEN:
7942
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7943 7944 7945
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7946
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7947
	case CPU_DOWN_FAILED:
7948
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7949
	case CPU_ONLINE:
7950
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7951
	case CPU_DEAD:
7952
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7953 7954 7955 7956 7957 7958 7959 7960 7961
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7962
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7963 7964 7965 7966 7967 7968

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7969 7970
	cpumask_t non_isolated_cpus;

7971 7972 7973 7974 7975
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7976
	get_online_cpus();
7977
	arch_init_sched_domains(&cpu_online_map);
7978
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7979 7980
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7981
	put_online_cpus();
L
Linus Torvalds 已提交
7982 7983
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7984 7985

	/* Move init over to a non-isolated CPU */
7986
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7987
		BUG();
I
Ingo Molnar 已提交
7988
	sched_init_granularity();
L
Linus Torvalds 已提交
7989 7990 7991 7992
}
#else
void __init sched_init_smp(void)
{
7993 7994 7995 7996 7997
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
I
Ingo Molnar 已提交
7998
	sched_init_granularity();
L
Linus Torvalds 已提交
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8009
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8010 8011
{
	cfs_rq->tasks_timeline = RB_ROOT;
8012
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8013 8014 8015
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8016
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8017 8018
}

P
Peter Zijlstra 已提交
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8032
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8033 8034
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8035 8036 8037 8038 8039 8040 8041
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8042 8043
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8044

8045
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8046
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8047 8048
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8049 8050
}

P
Peter Zijlstra 已提交
8051
#ifdef CONFIG_FAIR_GROUP_SCHED
8052 8053 8054
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8055
{
8056
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8057 8058 8059 8060 8061 8062 8063
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8064 8065 8066 8067
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8068 8069 8070 8071 8072
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8073 8074 8075
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
8076
	se->parent = parent;
P
Peter Zijlstra 已提交
8077
}
8078
#endif
P
Peter Zijlstra 已提交
8079

8080
#ifdef CONFIG_RT_GROUP_SCHED
8081 8082 8083
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8084
{
8085 8086
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8087 8088 8089 8090
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8091
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8092 8093 8094 8095
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8096 8097 8098
	if (!rt_se)
		return;

8099 8100 8101 8102 8103
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8104 8105
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
8106
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8107 8108 8109 8110
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8111 8112
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8113
	int i, j;
8114 8115 8116 8117 8118 8119 8120
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8121 8122 8123
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
		ptr = (unsigned long)alloc_bootmem_low(alloc_size);

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8138 8139 8140 8141 8142 8143 8144 8145

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8146 8147 8148 8149 8150 8151
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8152 8153 8154 8155 8156 8157 8158 8159 8160
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8161 8162
#endif
	}
I
Ingo Molnar 已提交
8163

G
Gregory Haskins 已提交
8164
#ifdef CONFIG_SMP
8165
	init_aggregate();
G
Gregory Haskins 已提交
8166 8167 8168
	init_defrootdomain();
#endif

8169 8170 8171 8172 8173 8174
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8175 8176 8177 8178
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8179 8180
#endif

8181
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8182
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8183 8184 8185 8186 8187 8188 8189
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8190 8191
#endif

8192
	for_each_possible_cpu(i) {
8193
		struct rq *rq;
L
Linus Torvalds 已提交
8194 8195 8196

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8197
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8198
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8199
		rq->clock = 1;
8200
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
8201
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8202
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8203
#ifdef CONFIG_FAIR_GROUP_SCHED
8204
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8205
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8226
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8227
#elif defined CONFIG_USER_SCHED
8228 8229
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8241
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8242
				&per_cpu(init_cfs_rq, i),
8243 8244
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8245

8246
#endif
D
Dhaval Giani 已提交
8247 8248 8249
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8250
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8251
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8252
#ifdef CONFIG_CGROUP_SCHED
8253
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8254
#elif defined CONFIG_USER_SCHED
8255
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8256
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8257
				&per_cpu(init_rt_rq, i),
8258 8259
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8260
#endif
I
Ingo Molnar 已提交
8261
#endif
L
Linus Torvalds 已提交
8262

I
Ingo Molnar 已提交
8263 8264
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8265
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8266
		rq->sd = NULL;
G
Gregory Haskins 已提交
8267
		rq->rd = NULL;
L
Linus Torvalds 已提交
8268
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8269
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8270
		rq->push_cpu = 0;
8271
		rq->cpu = i;
L
Linus Torvalds 已提交
8272 8273
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8274
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8275
#endif
P
Peter Zijlstra 已提交
8276
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8277 8278 8279
		atomic_set(&rq->nr_iowait, 0);
	}

8280
	set_load_weight(&init_task);
8281

8282 8283 8284 8285
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8286 8287 8288 8289
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8290 8291 8292 8293
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8307 8308 8309 8310
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8311 8312

	scheduler_running = 1;
L
Linus Torvalds 已提交
8313 8314 8315 8316 8317
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8318
#ifdef in_atomic
L
Linus Torvalds 已提交
8319 8320 8321 8322 8323 8324 8325
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8326
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8327 8328 8329
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8330
		debug_show_held_locks(current);
8331 8332
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8333 8334 8335 8336 8337 8338 8339 8340
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8355 8356
void normalize_rt_tasks(void)
{
8357
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8358
	unsigned long flags;
8359
	struct rq *rq;
L
Linus Torvalds 已提交
8360

8361
	read_lock_irqsave(&tasklist_lock, flags);
8362
	do_each_thread(g, p) {
8363 8364 8365 8366 8367 8368
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8369 8370
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8371 8372 8373
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8374
#endif
I
Ingo Molnar 已提交
8375 8376 8377 8378 8379 8380 8381 8382 8383
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8384
			continue;
I
Ingo Molnar 已提交
8385
		}
L
Linus Torvalds 已提交
8386

8387
		spin_lock(&p->pi_lock);
8388
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8389

8390
		normalize_task(rq, p);
8391

8392
		__task_rq_unlock(rq);
8393
		spin_unlock(&p->pi_lock);
8394 8395
	} while_each_thread(g, p);

8396
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8397 8398 8399
}

#endif /* CONFIG_MAGIC_SYSRQ */
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8418
struct task_struct *curr_task(int cpu)
8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8429 8430
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8431 8432 8433 8434 8435 8436 8437
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8438
void set_curr_task(int cpu, struct task_struct *p)
8439 8440 8441 8442 8443
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8444

8445 8446
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8461 8462
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8463 8464
{
	struct cfs_rq *cfs_rq;
8465
	struct sched_entity *se, *parent_se;
8466
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8467 8468
	int i;

8469
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8470 8471
	if (!tg->cfs_rq)
		goto err;
8472
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8473 8474
	if (!tg->se)
		goto err;
8475 8476

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8477 8478

	for_each_possible_cpu(i) {
8479
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8480

P
Peter Zijlstra 已提交
8481 8482
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8483 8484 8485
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8486 8487
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8488 8489 8490
		if (!se)
			goto err;

8491 8492
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8516 8517
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8529 8530 8531
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8532 8533 8534 8535
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8536 8537
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8549 8550
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8551 8552
{
	struct rt_rq *rt_rq;
8553
	struct sched_rt_entity *rt_se, *parent_se;
8554 8555 8556
	struct rq *rq;
	int i;

8557
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8558 8559
	if (!tg->rt_rq)
		goto err;
8560
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8561 8562 8563
	if (!tg->rt_se)
		goto err;

8564 8565
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8566 8567 8568 8569

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8570 8571 8572 8573
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8574

P
Peter Zijlstra 已提交
8575 8576 8577 8578
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8579

8580 8581
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8582 8583
	}

8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8605 8606
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8620
#ifdef CONFIG_GROUP_SCHED
8621 8622 8623 8624 8625 8626 8627 8628
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8629
struct task_group *sched_create_group(struct task_group *parent)
8630 8631 8632 8633 8634 8635 8636 8637 8638
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8639
	if (!alloc_fair_sched_group(tg, parent))
8640 8641
		goto err;

8642
	if (!alloc_rt_sched_group(tg, parent))
8643 8644
		goto err;

8645
	spin_lock_irqsave(&task_group_lock, flags);
8646
	for_each_possible_cpu(i) {
8647 8648
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8649
	}
P
Peter Zijlstra 已提交
8650
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8651 8652 8653 8654 8655 8656

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8657
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8658

8659
	return tg;
S
Srivatsa Vaddagiri 已提交
8660 8661

err:
P
Peter Zijlstra 已提交
8662
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8663 8664 8665
	return ERR_PTR(-ENOMEM);
}

8666
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8667
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8668 8669
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8670
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8671 8672
}

8673
/* Destroy runqueue etc associated with a task group */
8674
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8675
{
8676
	unsigned long flags;
8677
	int i;
S
Srivatsa Vaddagiri 已提交
8678

8679
	spin_lock_irqsave(&task_group_lock, flags);
8680
	for_each_possible_cpu(i) {
8681 8682
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8683
	}
P
Peter Zijlstra 已提交
8684
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8685
	list_del_rcu(&tg->siblings);
8686
	spin_unlock_irqrestore(&task_group_lock, flags);
8687 8688

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8689
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8690 8691
}

8692
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8693 8694 8695
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8696 8697
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8698 8699 8700 8701 8702 8703 8704 8705 8706
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8707
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8708 8709
	on_rq = tsk->se.on_rq;

8710
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8711
		dequeue_task(rq, tsk, 0);
8712 8713
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8714

P
Peter Zijlstra 已提交
8715
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8716

P
Peter Zijlstra 已提交
8717 8718 8719 8720 8721
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8722 8723 8724
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8725
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8726 8727 8728

	task_rq_unlock(rq, &flags);
}
8729
#endif
S
Srivatsa Vaddagiri 已提交
8730

8731
#ifdef CONFIG_FAIR_GROUP_SCHED
8732
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8733 8734 8735 8736 8737
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8738
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8739 8740 8741 8742 8743
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

8744
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8745
		enqueue_entity(cfs_rq, se, 0);
8746
}
8747

8748 8749 8750 8751 8752 8753 8754 8755 8756
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8757 8758
}

8759 8760
static DEFINE_MUTEX(shares_mutex);

8761
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8762 8763
{
	int i;
8764
	unsigned long flags;
8765

8766 8767 8768 8769 8770 8771
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8772 8773 8774 8775 8776
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
8777 8778
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8779

8780
	mutex_lock(&shares_mutex);
8781
	if (tg->shares == shares)
8782
		goto done;
S
Srivatsa Vaddagiri 已提交
8783

8784
	spin_lock_irqsave(&task_group_lock, flags);
8785 8786
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8787
	list_del_rcu(&tg->siblings);
8788
	spin_unlock_irqrestore(&task_group_lock, flags);
8789 8790 8791 8792 8793 8794 8795 8796

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8797
	tg->shares = shares;
8798 8799 8800 8801 8802 8803 8804
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
		set_se_shares(tg->se[i], shares/nr_cpu_ids);
	}
S
Srivatsa Vaddagiri 已提交
8805

8806 8807 8808 8809
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8810
	spin_lock_irqsave(&task_group_lock, flags);
8811 8812
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8813
	list_add_rcu(&tg->siblings, &tg->parent->children);
8814
	spin_unlock_irqrestore(&task_group_lock, flags);
8815
done:
8816
	mutex_unlock(&shares_mutex);
8817
	return 0;
S
Srivatsa Vaddagiri 已提交
8818 8819
}

8820 8821 8822 8823
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8824
#endif
8825

8826
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8827
/*
P
Peter Zijlstra 已提交
8828
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8829
 */
P
Peter Zijlstra 已提交
8830 8831 8832 8833 8834 8835 8836
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

8837
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
8838 8839
}

8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8872
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8873 8874 8875
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8876
	unsigned long global_ratio =
8877
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8878 8879

	rcu_read_lock();
P
Peter Zijlstra 已提交
8880 8881 8882
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8883

8884 8885
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8886 8887
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8888

P
Peter Zijlstra 已提交
8889
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8890
}
8891
#endif
P
Peter Zijlstra 已提交
8892

8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8904 8905
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8906
{
P
Peter Zijlstra 已提交
8907
	int i, err = 0;
P
Peter Zijlstra 已提交
8908 8909

	mutex_lock(&rt_constraints_mutex);
8910
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8911
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8912 8913 8914
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8915 8916 8917 8918
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8919 8920

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8921 8922
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8923 8924 8925 8926 8927 8928 8929 8930 8931

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8932
 unlock:
8933
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8934 8935 8936
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8937 8938
}

8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8951 8952 8953 8954
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8955
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8956 8957
		return -1;

8958
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8959 8960 8961
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9009 9010
	return 0;
}
9011
#endif
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9042

9043
#ifdef CONFIG_CGROUP_SCHED
9044 9045

/* return corresponding task_group object of a cgroup */
9046
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9047
{
9048 9049
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9050 9051 9052
}

static struct cgroup_subsys_state *
9053
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9054
{
9055
	struct task_group *tg, *parent;
9056

9057
	if (!cgrp->parent) {
9058
		/* This is early initialization for the top cgroup */
9059
		init_task_group.css.cgroup = cgrp;
9060 9061 9062
		return &init_task_group.css;
	}

9063 9064
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9065 9066 9067 9068
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9069
	tg->css.cgroup = cgrp;
9070 9071 9072 9073

	return &tg->css;
}

I
Ingo Molnar 已提交
9074 9075
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9076
{
9077
	struct task_group *tg = cgroup_tg(cgrp);
9078 9079 9080 9081

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9082 9083 9084
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9085
{
9086 9087
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9088
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9089 9090
		return -EINVAL;
#else
9091 9092 9093
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9094
#endif
9095 9096 9097 9098 9099

	return 0;
}

static void
9100
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9101 9102 9103 9104 9105
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9106
#ifdef CONFIG_FAIR_GROUP_SCHED
9107 9108
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
9109
{
9110
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9111 9112
}

9113
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
9114
{
9115
	struct task_group *tg = cgroup_tg(cgrp);
9116 9117 9118

	return (u64) tg->shares;
}
9119
#endif
9120

9121
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9122
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
P
Peter Zijlstra 已提交
9123 9124 9125
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
9126
{
P
Peter Zijlstra 已提交
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
9153 9154
}

P
Peter Zijlstra 已提交
9155 9156 9157 9158
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
9159
{
P
Peter Zijlstra 已提交
9160 9161 9162
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
9163

P
Peter Zijlstra 已提交
9164
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
9165
}
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9177
#endif
P
Peter Zijlstra 已提交
9178

9179
static struct cftype cpu_files[] = {
9180
#ifdef CONFIG_FAIR_GROUP_SCHED
9181 9182 9183 9184 9185
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
9186 9187
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9188
	{
P
Peter Zijlstra 已提交
9189 9190 9191
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9192
	},
9193 9194 9195 9196 9197
	{
		.name = "rt_period_us",
		.read_uint = cpu_rt_period_read_uint,
		.write_uint = cpu_rt_period_write_uint,
	},
9198
#endif
9199 9200 9201 9202
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9203
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9204 9205 9206
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9207 9208 9209 9210 9211 9212 9213
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9214 9215 9216
	.early_init	= 1,
};

9217
#endif	/* CONFIG_CGROUP_SCHED */
9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9238
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9239
{
9240
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9253
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9270
static void
9271
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9272
{
9273
	struct cpuacct *ca = cgroup_ca(cgrp);
9274 9275 9276 9277 9278 9279

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9280
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9281
{
9282
	struct cpuacct *ca = cgroup_ca(cgrp);
9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9324 9325 9326 9327
static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
9328
		.write_uint = cpuusage_write,
9329 9330 9331
	},
};

9332
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9333
{
9334
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */