sched.c 228.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81
#include "sched_autogroup.h"
82

83
#define CREATE_TRACE_POINTS
84
#include <trace/events/sched.h>
85

L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
105
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
106
 */
107
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
108

I
Ingo Molnar 已提交
109 110 111
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
112 113 114
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
115
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
116 117 118
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
119

120 121 122 123 124
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

125 126
static inline int rt_policy(int policy)
{
127
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 129 130 131 132 133 134 135 136
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
137
/*
I
Ingo Molnar 已提交
138
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
139
 */
I
Ingo Molnar 已提交
140 141 142 143 144
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

145
struct rt_bandwidth {
I
Ingo Molnar 已提交
146
	/* nests inside the rq lock: */
147
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
148 149 150
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

184
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
185

186 187 188 189 190
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

191 192 193
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
194 195 196 197 198 199
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

200
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 202 203 204 205
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

206
	raw_spin_lock(&rt_b->rt_runtime_lock);
207
	for (;;) {
208 209 210
		unsigned long delta;
		ktime_t soft, hard;

211 212 213 214 215
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 217 218 219 220

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221
				HRTIMER_MODE_ABS_PINNED, 0);
222
	}
223
	raw_spin_unlock(&rt_b->rt_runtime_lock);
224 225 226 227 228 229 230 231 232
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

233 234 235 236 237 238
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
239
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
240

241 242
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
243 244
struct cfs_rq;

P
Peter Zijlstra 已提交
245 246
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
247
/* task group related information */
248
struct task_group {
249
	struct cgroup_subsys_state css;
250

251
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252 253 254 255 256
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
257 258

	atomic_t load_weight;
259 260 261 262 263 264
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

265
	struct rt_bandwidth rt_bandwidth;
266
#endif
267

268
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
269
	struct list_head list;
P
Peter Zijlstra 已提交
270 271 272 273

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
274 275 276 277

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
278 279
};

280
/* task_group_lock serializes the addition/removal of task groups */
281
static DEFINE_SPINLOCK(task_group_lock);
282

283 284
#ifdef CONFIG_FAIR_GROUP_SCHED

285
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
286

287
/*
288 289 290 291
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
292 293 294
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
295
#define MIN_SHARES	2
296
#define MAX_SHARES	(1UL << 18)
297

298
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 300
#endif

S
Srivatsa Vaddagiri 已提交
301
/* Default task group.
I
Ingo Molnar 已提交
302
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
303
 */
304
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
305

D
Dhaval Giani 已提交
306
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
307

I
Ingo Molnar 已提交
308 309 310 311 312 313
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
314
	u64 min_vruntime;
I
Ingo Molnar 已提交
315 316 317

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
318 319 320 321 322 323

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
324 325
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
326
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
327

P
Peter Zijlstra 已提交
328
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
331 332
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
333 334
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
335 336 337 338 339 340
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
341
	int on_list;
I
Ingo Molnar 已提交
342 343
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
344 345 346

#ifdef CONFIG_SMP
	/*
347
	 * the part of load.weight contributed by tasks
348
	 */
349
	unsigned long task_weight;
350

351 352 353 354 355 356 357
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
358

359
	/*
360 361 362 363 364
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
365
	 */
P
Peter Zijlstra 已提交
366 367
	u64 load_avg;
	u64 load_period;
368
	u64 load_stamp, load_last, load_unacc_exec_time;
369

P
Peter Zijlstra 已提交
370
	unsigned long load_contribution;
371
#endif
I
Ingo Molnar 已提交
372 373
#endif
};
L
Linus Torvalds 已提交
374

I
Ingo Molnar 已提交
375 376 377
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
378
	unsigned long rt_nr_running;
379
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 381
	struct {
		int curr; /* highest queued rt task prio */
382
#ifdef CONFIG_SMP
383
		int next; /* next highest */
384
#endif
385
	} highest_prio;
P
Peter Zijlstra 已提交
386
#endif
P
Peter Zijlstra 已提交
387
#ifdef CONFIG_SMP
388
	unsigned long rt_nr_migratory;
389
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
390
	int overloaded;
391
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
392
#endif
P
Peter Zijlstra 已提交
393
	int rt_throttled;
P
Peter Zijlstra 已提交
394
	u64 rt_time;
P
Peter Zijlstra 已提交
395
	u64 rt_runtime;
I
Ingo Molnar 已提交
396
	/* Nests inside the rq lock: */
397
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
398

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400 401
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
402 403 404 405
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
406 407
};

G
Gregory Haskins 已提交
408 409 410 411
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
412 413
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
414 415 416 417 418 419
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
420 421
	cpumask_var_t span;
	cpumask_var_t online;
422

I
Ingo Molnar 已提交
423
	/*
424 425 426
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
427
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
428
	atomic_t rto_count;
429
	struct cpupri cpupri;
G
Gregory Haskins 已提交
430 431
};

432 433 434 435
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
436 437
static struct root_domain def_root_domain;

438
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
439

L
Linus Torvalds 已提交
440 441 442 443 444 445 446
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
447
struct rq {
448
	/* runqueue lock: */
449
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
450 451 452 453 454 455

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
456 457
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458
	unsigned long last_load_update_tick;
459
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
460
	u64 nohz_stamp;
461
	unsigned char nohz_balance_kick;
462
#endif
463 464
	unsigned int skip_clock_update;

465 466
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
467 468 469 470
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
471 472
	struct rt_rq rt;

I
Ingo Molnar 已提交
473
#ifdef CONFIG_FAIR_GROUP_SCHED
474 475
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
476 477
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
478
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
479 480 481 482 483 484 485 486 487 488
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

489
	struct task_struct *curr, *idle, *stop;
490
	unsigned long next_balance;
L
Linus Torvalds 已提交
491
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
492

493
	u64 clock;
494
	u64 clock_task;
I
Ingo Molnar 已提交
495

L
Linus Torvalds 已提交
496 497 498
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
499
	struct root_domain *rd;
L
Linus Torvalds 已提交
500 501
	struct sched_domain *sd;

502 503
	unsigned long cpu_power;

504
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
505
	/* For active balancing */
506
	int post_schedule;
L
Linus Torvalds 已提交
507 508
	int active_balance;
	int push_cpu;
509
	struct cpu_stop_work active_balance_work;
510 511
	/* cpu of this runqueue: */
	int cpu;
512
	int online;
L
Linus Torvalds 已提交
513

514
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
515

516 517
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
518 519
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
520 521
#endif

522 523 524 525
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif

526 527 528 529
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
530
#ifdef CONFIG_SCHED_HRTICK
531 532 533 534
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
535 536 537
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
538 539 540
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
541 542
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
543 544

	/* sys_sched_yield() stats */
545
	unsigned int yld_count;
L
Linus Torvalds 已提交
546 547

	/* schedule() stats */
548 549 550
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
551 552

	/* try_to_wake_up() stats */
553 554
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
555 556 557
#endif
};

558
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
559

560

561
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
562

563 564 565 566 567 568 569 570 571
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

572
#define rcu_dereference_check_sched_domain(p) \
573 574 575 576
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
577 578
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
580 581 582 583
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
584
#define for_each_domain(cpu, __sd) \
585
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
586 587 588 589 590

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
591
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
592

593 594 595 596 597 598 599 600 601 602 603 604
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We use task_subsys_state_check() and extend the RCU verification
 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
 * holds that lock for each task it moves into the cgroup. Therefore
 * by holding that lock, we pin the task to the current cgroup.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
605
	struct task_group *tg;
606 607 608 609
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
			lockdep_is_held(&task_rq(p)->lock));
610 611 612
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

639
static void update_rq_clock_task(struct rq *rq, s64 delta);
640

641
static void update_rq_clock(struct rq *rq)
642
{
643
	s64 delta;
644

645 646
	if (rq->skip_clock_update)
		return;
647

648 649 650
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
651 652
}

I
Ingo Molnar 已提交
653 654 655 656 657 658 659 660 661
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
662
/**
663
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
665 666 667 668
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
669
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
670
{
671
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
672 673
}

I
Ingo Molnar 已提交
674 675 676
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
677 678 679 680

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
681
enum {
P
Peter Zijlstra 已提交
682
#include "sched_features.h"
I
Ingo Molnar 已提交
683 684
};

P
Peter Zijlstra 已提交
685 686 687 688 689
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
690
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
691 692 693 694 695 696 697 698 699
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

700
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
701 702 703 704 705 706
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
707
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
708 709 710 711
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
712 713 714
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
715
	}
L
Li Zefan 已提交
716
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
717

L
Li Zefan 已提交
718
	return 0;
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
726
	char *cmp;
P
Peter Zijlstra 已提交
727 728 729 730 731 732 733 734 735 736
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
737
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
738

H
Hillf Danton 已提交
739
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
740 741 742 743 744
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
745
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754 755 756
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

757
	*ppos += cnt;
P
Peter Zijlstra 已提交
758 759 760 761

	return cnt;
}

L
Li Zefan 已提交
762 763 764 765 766
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

767
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
768 769 770 771 772
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
787

788 789 790 791 792 793
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

794 795 796 797 798 799 800 801
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
802
/*
P
Peter Zijlstra 已提交
803
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
804 805
 * default: 1s
 */
P
Peter Zijlstra 已提交
806
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
807

808 809
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
810 811 812 813 814
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
815

816 817 818 819 820 821 822
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
823
	if (sysctl_sched_rt_runtime < 0)
824 825 826 827
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
828

L
Linus Torvalds 已提交
829
#ifndef prepare_arch_switch
830 831 832 833 834 835
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

836 837 838 839 840
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

841
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
842
static inline int task_running(struct rq *rq, struct task_struct *p)
843
{
844
	return task_current(rq, p);
845 846
}

847
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
848 849 850
{
}

851
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
852
{
853 854 855 856
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
857 858 859 860 861 862 863
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

864
	raw_spin_unlock_irq(&rq->lock);
865 866 867
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
868
static inline int task_running(struct rq *rq, struct task_struct *p)
869 870 871 872
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
873
	return task_current(rq, p);
874 875 876
#endif
}

877
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 879 880 881 882 883 884 885 886 887
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888
	raw_spin_unlock_irq(&rq->lock);
889
#else
890
	raw_spin_unlock(&rq->lock);
891 892 893
#endif
}

894
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 896 897 898 899 900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
907
#endif
908 909
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
910

911
/*
P
Peter Zijlstra 已提交
912 913
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
914 915 916
 */
static inline int task_is_waking(struct task_struct *p)
{
917
	return unlikely(p->state == TASK_WAKING);
918 919
}

920 921 922 923
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
924
static inline struct rq *__task_rq_lock(struct task_struct *p)
925 926
	__acquires(rq->lock)
{
927 928
	struct rq *rq;

929
	for (;;) {
930
		rq = task_rq(p);
931
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
932
		if (likely(rq == task_rq(p)))
933
			return rq;
934
		raw_spin_unlock(&rq->lock);
935 936 937
	}
}

L
Linus Torvalds 已提交
938 939
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
940
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
941 942
 * explicitly disabling preemption.
 */
943
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
944 945
	__acquires(rq->lock)
{
946
	struct rq *rq;
L
Linus Torvalds 已提交
947

948 949 950
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
951
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
952
		if (likely(rq == task_rq(p)))
953
			return rq;
954
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
955 956 957
	}
}

A
Alexey Dobriyan 已提交
958
static void __task_rq_unlock(struct rq *rq)
959 960
	__releases(rq->lock)
{
961
	raw_spin_unlock(&rq->lock);
962 963
}

964
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__releases(rq->lock)
{
967
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
}

/*
971
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
972
 */
A
Alexey Dobriyan 已提交
973
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
974 975
	__acquires(rq->lock)
{
976
	struct rq *rq;
L
Linus Torvalds 已提交
977 978 979

	local_irq_disable();
	rq = this_rq();
980
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
981 982 983 984

	return rq;
}

P
Peter Zijlstra 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1006
	if (!cpu_active(cpu_of(rq)))
1007
		return 0;
P
Peter Zijlstra 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1027
	raw_spin_lock(&rq->lock);
1028
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1029
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1030
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1031 1032 1033 1034

	return HRTIMER_NORESTART;
}

1035
#ifdef CONFIG_SMP
1036 1037 1038 1039
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1040
{
1041
	struct rq *rq = arg;
1042

1043
	raw_spin_lock(&rq->lock);
1044 1045
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1046
	raw_spin_unlock(&rq->lock);
1047 1048
}

1049 1050 1051 1052 1053 1054
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1055
{
1056 1057
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1058

1059
	hrtimer_set_expires(timer, time);
1060 1061 1062 1063

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1064
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1065 1066
		rq->hrtick_csd_pending = 1;
	}
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1081
		hrtick_clear(cpu_rq(cpu));
1082 1083 1084 1085 1086 1087
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1088
static __init void init_hrtick(void)
1089 1090 1091
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1092 1093 1094 1095 1096 1097 1098 1099
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1100
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1101
			HRTIMER_MODE_REL_PINNED, 0);
1102
}
1103

A
Andrew Morton 已提交
1104
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1105 1106
{
}
1107
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1108

1109
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1110
{
1111 1112
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1113

1114 1115 1116 1117
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1118

1119 1120
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1121
}
A
Andrew Morton 已提交
1122
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1131 1132 1133
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1134
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1135

I
Ingo Molnar 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1149
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1150 1151 1152
{
	int cpu;

1153
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1154

1155
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1156 1157
		return;

1158
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1175
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1176 1177
		return;
	resched_task(cpu_curr(cpu));
1178
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1179
}
1180 1181

#ifdef CONFIG_NO_HZ
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		for_each_cpu(i, sched_domain_span(sd))
			if (!idle_cpu(i))
				return i;
	}
	return cpu;
}
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1242

1243
#endif /* CONFIG_NO_HZ */
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 1256 1257 1258 1259 1260
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1272
#else /* !CONFIG_SMP */
1273
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1274
{
1275
	assert_raw_spin_locked(&task_rq(p)->lock);
1276
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1277
}
1278 1279 1280 1281

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1282 1283 1284 1285

static void sched_avg_update(struct rq *rq)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

P
Peter Zijlstra 已提交
1343 1344 1345 1346 1347 1348
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1349 1350 1351 1352
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1353
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 1355 1356 1357
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1358 1359
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 1370 1371
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1372 1373
 */
static const int prio_to_weight[40] = {
1374 1375 1376 1377 1378 1379 1380 1381
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1382 1383
};

1384 1385 1386 1387 1388 1389 1390
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1391
static const u32 prio_to_wmult[40] = {
1392 1393 1394 1395 1396 1397 1398 1399
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1400
};
1401

1402 1403 1404 1405 1406 1407 1408 1409
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1410 1411
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1412 1413
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1414 1415
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1416 1417
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1418 1419
#endif

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1430
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1431
typedef int (*tg_visitor)(struct task_group *, void *);
1432 1433 1434 1435 1436

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1437
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 1439
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1440
	int ret;
1441 1442 1443 1444

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1445 1446 1447
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1448 1449 1450 1451 1452 1453 1454
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1455 1456 1457
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1458 1459 1460 1461 1462

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1463
out_unlock:
1464
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1465 1466

	return ret;
1467 1468
}

P
Peter Zijlstra 已提交
1469 1470 1471
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1472
}
P
Peter Zijlstra 已提交
1473 1474 1475
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1515 1516
static unsigned long power_of(int cpu)
{
1517
	return cpu_rq(cpu)->cpu_power;
1518 1519
}

P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1525
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1526

1527 1528
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1529 1530
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1531 1532 1533 1534 1535

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1536 1537

/*
1538 1539 1540
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1541
 */
P
Peter Zijlstra 已提交
1542
static int tg_load_down(struct task_group *tg, void *data)
1543
{
1544
	unsigned long load;
P
Peter Zijlstra 已提交
1545
	long cpu = (long)data;
1546

1547 1548 1549 1550
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
P
Peter Zijlstra 已提交
1551
		load *= tg->se[cpu]->load.weight;
1552 1553
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1554

1555
	tg->cfs_rq[cpu]->h_load = load;
1556

P
Peter Zijlstra 已提交
1557
	return 0;
1558 1559
}

P
Peter Zijlstra 已提交
1560
static void update_h_load(long cpu)
1561
{
P
Peter Zijlstra 已提交
1562
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1563 1564
}

1565 1566
#endif

1567 1568
#ifdef CONFIG_PREEMPT

1569 1570
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1571
/*
1572 1573 1574 1575 1576 1577
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1578
 */
1579 1580 1581 1582 1583
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1584
	raw_spin_unlock(&this_rq->lock);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1599 1600 1601 1602 1603 1604
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1605
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1606
		if (busiest < this_rq) {
1607 1608 1609 1610
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1611 1612
			ret = 1;
		} else
1613 1614
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1615 1616 1617 1618
	}
	return ret;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1628
		raw_spin_unlock(&this_rq->lock);
1629 1630 1631 1632 1633 1634
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1635 1636 1637
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1638
	raw_spin_unlock(&busiest->lock);
1639 1640
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1717 1718
#endif

1719
static void calc_load_account_idle(struct rq *this_rq);
1720
static void update_sysctl(void);
1721
static int get_update_sysctl_factor(void);
1722
static void update_cpu_load(struct rq *this_rq);
1723

P
Peter Zijlstra 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1737

1738
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1739

1740
#define sched_class_highest (&stop_sched_class)
1741 1742
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1743

1744 1745
#include "sched_stats.h"

1746
static void inc_nr_running(struct rq *rq)
1747 1748 1749 1750
{
	rq->nr_running++;
}

1751
static void dec_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running--;
}

1756 1757
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1766

I
Ingo Molnar 已提交
1767 1768
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1769 1770
}

1771
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1772
{
1773
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1774
	sched_info_queued(p);
1775
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1776
	p->se.on_rq = 1;
1777 1778
}

1779
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1780
{
1781
	update_rq_clock(rq);
1782
	sched_info_dequeued(p);
1783
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1784
	p->se.on_rq = 0;
1785 1786
}

1787 1788 1789
/*
 * activate_task - move a task to the runqueue.
 */
1790
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1791 1792 1793 1794
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1795
	enqueue_task(rq, p, flags);
1796 1797 1798 1799 1800 1801
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1802
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1803 1804 1805 1806
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1807
	dequeue_task(rq, p, flags);
1808 1809 1810
	dec_nr_running(rq);
}

1811 1812
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1813 1814 1815 1816 1817 1818 1819
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1820 1821 1822
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1823
 */
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1878 1879 1880
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1881
#endif /* CONFIG_64BIT */
1882

1883 1884 1885 1886
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1887 1888 1889
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1890
	s64 delta;
1891 1892 1893 1894 1895 1896 1897 1898
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1899 1900 1901
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1902
	irq_time_write_begin();
1903 1904 1905 1906 1907 1908 1909
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1910
		__this_cpu_add(cpu_hardirq_time, delta);
1911
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1912
		__this_cpu_add(cpu_softirq_time, delta);
1913

1914
	irq_time_write_end();
1915 1916
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1917
EXPORT_SYMBOL_GPL(account_system_vtime);
1918

1919
static void update_rq_clock_task(struct rq *rq, s64 delta)
1920
{
1921 1922
	s64 irq_delta;

1923
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
	rq->clock_task += delta;

	if (irq_delta && sched_feat(NONIRQ_POWER))
		sched_rt_avg_update(rq, irq_delta);
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

1981
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
1982

1983 1984
#define sched_clock_irqtime	(0)

1985
static void update_rq_clock_task(struct rq *rq, s64 delta)
1986
{
1987
	rq->clock_task += delta;
1988 1989
}

1990
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1991

1992 1993 1994
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
1995
#include "sched_autogroup.c"
1996
#include "sched_stoptask.c"
1997 1998 1999 2000
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2031
/*
I
Ingo Molnar 已提交
2032
 * __normal_prio - return the priority that is based on the static prio
2033 2034 2035
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2036
	return p->static_prio;
2037 2038
}

2039 2040 2041 2042 2043 2044 2045
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2046
static inline int normal_prio(struct task_struct *p)
2047 2048 2049
{
	int prio;

2050
	if (task_has_rt_policy(p))
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2064
static int effective_prio(struct task_struct *p)
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2077 2078 2079 2080
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2081
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2082 2083 2084 2085
{
	return cpu_curr(task_cpu(p)) == p;
}

2086 2087
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2088
				       int oldprio)
2089 2090 2091
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2092 2093 2094 2095
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
2119
	if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2120 2121 2122
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2123
#ifdef CONFIG_SMP
2124 2125 2126
/*
 * Is this task likely cache-hot:
 */
2127
static int
2128 2129 2130 2131
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2132 2133 2134
	if (p->sched_class != &fair_sched_class)
		return 0;

2135 2136 2137
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2138 2139 2140
	/*
	 * Buddy candidates are cache hot:
	 */
2141
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2142 2143
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2144 2145
		return 1;

2146 2147 2148 2149 2150
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2151 2152 2153 2154 2155
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2156
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2157
{
2158 2159 2160 2161 2162
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2163 2164
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 2166
#endif

2167
	trace_sched_migrate_task(p, new_cpu);
2168

2169 2170 2171 2172
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2173 2174

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2175 2176
}

2177
struct migration_arg {
2178
	struct task_struct *task;
L
Linus Torvalds 已提交
2179
	int dest_cpu;
2180
};
L
Linus Torvalds 已提交
2181

2182 2183
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2184 2185 2186 2187
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2188
static bool migrate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
2189 2190 2191
{
	/*
	 * If the task is not on a runqueue (and not running), then
2192
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2193
	 */
2194
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2195 2196 2197 2198 2199
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2200 2201 2202 2203 2204 2205 2206
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2213
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2214 2215
{
	unsigned long flags;
I
Ingo Molnar 已提交
2216
	int running, on_rq;
R
Roland McGrath 已提交
2217
	unsigned long ncsw;
2218
	struct rq *rq;
L
Linus Torvalds 已提交
2219

2220 2221 2222 2223 2224 2225 2226 2227
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2240 2241 2242
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2243
			cpu_relax();
R
Roland McGrath 已提交
2244
		}
2245

2246 2247 2248 2249 2250 2251
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2252
		trace_sched_wait_task(p);
2253 2254
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2255
		ncsw = 0;
2256
		if (!match_state || p->state == match_state)
2257
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258
		task_rq_unlock(rq, &flags);
2259

R
Roland McGrath 已提交
2260 2261 2262 2263 2264 2265
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2276

2277 2278 2279 2280 2281
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2282
		 * So if it was still runnable (but just not actively
2283 2284 2285 2286
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2287 2288 2289 2290
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2291 2292
			continue;
		}
2293

2294 2295 2296 2297 2298 2299 2300
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2301 2302

	return ncsw;
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2318
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2328
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2329
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2330

2331
#ifdef CONFIG_SMP
2332 2333 2334
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2351 2352 2353 2354 2355 2356 2357 2358 2359
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2360 2361 2362 2363 2364
	}

	return dest_cpu;
}

2365
/*
2366
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2367
 */
2368
static inline
2369
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2370
{
2371
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2384
		     !cpu_online(cpu)))
2385
		cpu = select_fallback_rq(task_cpu(p), p);
2386 2387

	return cpu;
2388
}
2389 2390 2391 2392 2393 2394

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2395 2396
#endif

T
Tejun Heo 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2436 2437 2438
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2439 2440 2441
}

/**
L
Linus Torvalds 已提交
2442
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2443
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2444
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2445
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450 2451 2452
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2453 2454
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2455
 */
P
Peter Zijlstra 已提交
2456 2457
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2458
{
2459
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2460
	unsigned long flags;
2461
	unsigned long en_flags = ENQUEUE_WAKEUP;
2462
	struct rq *rq;
L
Linus Torvalds 已提交
2463

P
Peter Zijlstra 已提交
2464
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2465

2466
	smp_wmb();
2467
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2468
	if (!(p->state & state))
L
Linus Torvalds 已提交
2469 2470
		goto out;

I
Ingo Molnar 已提交
2471
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2472 2473 2474
		goto out_running;

	cpu = task_cpu(p);
2475
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2481 2482 2483
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2484 2485
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2486
	 */
2487 2488 2489 2490 2491 2492
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2493
	p->state = TASK_WAKING;
2494

2495
	if (p->sched_class->task_waking) {
2496
		p->sched_class->task_waking(rq, p);
2497 2498
		en_flags |= ENQUEUE_WAKING;
	}
2499

2500 2501
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2502
		set_task_cpu(p, cpu);
2503
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2504

2505 2506
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2507

2508 2509 2510 2511 2512 2513 2514
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2515
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2516

2517 2518 2519 2520 2521 2522 2523
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2524
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2525 2526 2527 2528 2529
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2530
#endif /* CONFIG_SCHEDSTATS */
2531

L
Linus Torvalds 已提交
2532 2533
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2534 2535
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2536 2537
	success = 1;
out_running:
T
Tejun Heo 已提交
2538
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2539 2540
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2541
	put_cpu();
L
Linus Torvalds 已提交
2542 2543 2544 2545

	return success;
}

T
Tejun Heo 已提交
2546 2547 2548 2549
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2550
 * Put @p on the run-queue if it's not already there.  The caller must
T
Tejun Heo 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2588
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2589
{
2590
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2591 2592 2593
}
EXPORT_SYMBOL(wake_up_process);

2594
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599 2600 2601
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2602 2603 2604 2605 2606 2607 2608
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2609
	p->se.prev_sum_exec_runtime	= 0;
2610
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2611
	p->se.vruntime			= 0;
I
Ingo Molnar 已提交
2612 2613

#ifdef CONFIG_SCHEDSTATS
2614
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2615
#endif
N
Nick Piggin 已提交
2616

P
Peter Zijlstra 已提交
2617
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2618
	p->se.on_rq = 0;
2619
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2620

2621 2622 2623
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2634
	/*
2635
	 * We mark the process as running here. This guarantees that
2636 2637 2638
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2639
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2640

2641 2642 2643 2644
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2645
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2646
			p->policy = SCHED_NORMAL;
2647 2648
			p->normal_prio = p->static_prio;
		}
2649

2650 2651
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2652
			p->normal_prio = p->static_prio;
2653 2654 2655
			set_load_weight(p);
		}

2656 2657 2658 2659 2660 2661
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2662

2663 2664 2665 2666 2667
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2668 2669
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2670

P
Peter Zijlstra 已提交
2671 2672 2673
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2674 2675 2676 2677 2678 2679 2680 2681
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
	rcu_read_lock();
2682
	set_task_cpu(p, cpu);
2683
	rcu_read_unlock();
2684

2685
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2686
	if (likely(sched_info_on()))
2687
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2688
#endif
2689
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 2691
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2692
#ifdef CONFIG_PREEMPT
2693
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2694
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2695
#endif
2696
#ifdef CONFIG_SMP
2697
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2698
#endif
2699

N
Nick Piggin 已提交
2700
	put_cpu();
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2710
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2711 2712
{
	unsigned long flags;
I
Ingo Molnar 已提交
2713
	struct rq *rq;
2714
	int cpu __maybe_unused = get_cpu();
2715 2716

#ifdef CONFIG_SMP
2717 2718 2719
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2720 2721 2722 2723 2724
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2725 2726
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2727
	 */
2728
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2729
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2730

2731
	p->state = TASK_RUNNING;
2732 2733 2734 2735
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2736
	activate_task(rq, p, 0);
2737
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2738
	check_preempt_curr(rq, p, WF_FORK);
2739
#ifdef CONFIG_SMP
2740 2741
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2742
#endif
I
Ingo Molnar 已提交
2743
	task_rq_unlock(rq, &flags);
2744
	put_cpu();
L
Linus Torvalds 已提交
2745 2746
}

2747 2748 2749
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2750
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2751
 * @notifier: notifier struct to register
2752 2753 2754 2755 2756 2757 2758 2759 2760
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2761
 * @notifier: notifier struct to unregister
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2791
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2803
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2804

2805 2806 2807
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2808
 * @prev: the current task that is being switched out
2809 2810 2811 2812 2813 2814 2815 2816 2817
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2818 2819 2820
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2821
{
2822 2823
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
2824
	fire_sched_out_preempt_notifiers(prev, next);
2825 2826
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
2827
	trace_sched_switch(prev, next);
2828 2829
}

L
Linus Torvalds 已提交
2830 2831
/**
 * finish_task_switch - clean up after a task-switch
2832
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2833 2834
 * @prev: the thread we just switched away from.
 *
2835 2836 2837 2838
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2839 2840
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2841
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2842 2843 2844
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2845
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2846 2847 2848
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2849
	long prev_state;
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2855
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2856 2857
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2858
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2864
	prev_state = prev->state;
2865
	finish_arch_switch(prev);
2866 2867 2868
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869
	perf_event_task_sched_in(current);
2870 2871 2872
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2874

2875
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2876 2877
	if (mm)
		mmdrop(mm);
2878
	if (unlikely(prev_state == TASK_DEAD)) {
2879 2880 2881
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2882
		 */
2883
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2884
		put_task_struct(prev);
2885
	}
L
Linus Torvalds 已提交
2886 2887
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2903
		raw_spin_lock_irqsave(&rq->lock, flags);
2904 2905
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2906
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2907 2908 2909 2910 2911 2912

		rq->post_schedule = 0;
	}
}

#else
2913

2914 2915 2916 2917 2918 2919
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2920 2921
}

2922 2923
#endif

L
Linus Torvalds 已提交
2924 2925 2926 2927
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2928
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2929 2930
	__releases(rq->lock)
{
2931 2932
	struct rq *rq = this_rq();

2933
	finish_task_switch(rq, prev);
2934

2935 2936 2937 2938 2939
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2940

2941 2942 2943 2944
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2945
	if (current->set_child_tid)
2946
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951 2952
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2953
static inline void
2954
context_switch(struct rq *rq, struct task_struct *prev,
2955
	       struct task_struct *next)
L
Linus Torvalds 已提交
2956
{
I
Ingo Molnar 已提交
2957
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2958

2959
	prepare_task_switch(rq, prev, next);
2960

I
Ingo Molnar 已提交
2961 2962
	mm = next->mm;
	oldmm = prev->active_mm;
2963 2964 2965 2966 2967
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2968
	arch_start_context_switch(prev);
2969

2970
	if (!mm) {
L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2977
	if (!prev->mm) {
L
Linus Torvalds 已提交
2978 2979 2980
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2981 2982 2983 2984 2985 2986 2987
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2989
#endif
L
Linus Torvalds 已提交
2990 2991 2992 2993

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2994 2995 2996 2997 2998 2999 3000
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3018
}
L
Linus Torvalds 已提交
3019 3020

unsigned long nr_uninterruptible(void)
3021
{
L
Linus Torvalds 已提交
3022
	unsigned long i, sum = 0;
3023

3024
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3025
		sum += cpu_rq(i)->nr_uninterruptible;
3026 3027

	/*
L
Linus Torvalds 已提交
3028 3029
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3030
	 */
L
Linus Torvalds 已提交
3031 3032
	if (unlikely((long)sum < 0))
		sum = 0;
3033

L
Linus Torvalds 已提交
3034
	return sum;
3035 3036
}

L
Linus Torvalds 已提交
3037
unsigned long long nr_context_switches(void)
3038
{
3039 3040
	int i;
	unsigned long long sum = 0;
3041

3042
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3043
		sum += cpu_rq(i)->nr_switches;
3044

L
Linus Torvalds 已提交
3045 3046
	return sum;
}
3047

L
Linus Torvalds 已提交
3048 3049 3050
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3051

3052
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3053
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3054

L
Linus Torvalds 已提交
3055 3056
	return sum;
}
3057

3058
unsigned long nr_iowait_cpu(int cpu)
3059
{
3060
	struct rq *this = cpu_rq(cpu);
3061 3062
	return atomic_read(&this->nr_iowait);
}
3063

3064 3065 3066 3067 3068
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3069

3070

3071 3072 3073 3074 3075
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3092 3093 3094 3095 3096 3097 3098 3099 3100
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3252 3253 3254 3255 3256 3257 3258 3259 3260
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3261 3262 3263 3264

static void calc_global_nohz(unsigned long ticks)
{
}
3265 3266
#endif

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3280 3281 3282
}

/*
3283 3284
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3285
 */
3286
void calc_global_load(unsigned long ticks)
3287
{
3288
	long active;
L
Linus Torvalds 已提交
3289

3290 3291 3292
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3293
		return;
L
Linus Torvalds 已提交
3294

3295 3296
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3297

3298 3299 3300
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3301

3302 3303
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3304

3305
/*
3306 3307
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3308 3309 3310
 */
static void calc_load_account_active(struct rq *this_rq)
{
3311
	long delta;
3312

3313 3314
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3315

3316 3317 3318
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3319
		atomic_long_add(delta, &calc_load_tasks);
3320 3321

	this_rq->calc_load_update += LOAD_FREQ;
3322 3323
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3391
/*
I
Ingo Molnar 已提交
3392
 * Update rq->cpu_load[] statistics. This function is usually called every
3393 3394
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3395
 */
I
Ingo Molnar 已提交
3396
static void update_cpu_load(struct rq *this_rq)
3397
{
3398
	unsigned long this_load = this_rq->load.weight;
3399 3400
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3401
	int i, scale;
3402

I
Ingo Molnar 已提交
3403
	this_rq->nr_load_updates++;
3404

3405 3406 3407 3408 3409 3410 3411
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3412
	/* Update our load: */
3413 3414
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3415
		unsigned long old_load, new_load;
3416

I
Ingo Molnar 已提交
3417
		/* scale is effectively 1 << i now, and >> i divides by scale */
3418

I
Ingo Molnar 已提交
3419
		old_load = this_rq->cpu_load[i];
3420
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3421
		new_load = this_load;
I
Ingo Molnar 已提交
3422 3423 3424 3425 3426 3427
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3428 3429 3430
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3431
	}
3432 3433

	sched_avg_update(this_rq);
3434 3435 3436 3437 3438
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3439

3440
	calc_load_account_active(this_rq);
3441 3442
}

I
Ingo Molnar 已提交
3443
#ifdef CONFIG_SMP
3444

3445
/*
P
Peter Zijlstra 已提交
3446 3447
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3448
 */
P
Peter Zijlstra 已提交
3449
void sched_exec(void)
3450
{
P
Peter Zijlstra 已提交
3451
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3452
	unsigned long flags;
3453
	struct rq *rq;
3454
	int dest_cpu;
3455

L
Linus Torvalds 已提交
3456
	rq = task_rq_lock(p, &flags);
3457 3458 3459
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3460

3461
	/*
P
Peter Zijlstra 已提交
3462
	 * select_task_rq() can race against ->cpus_allowed
3463
	 */
3464
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3465
	    likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3466
		struct migration_arg arg = { p, dest_cpu };
3467

L
Linus Torvalds 已提交
3468
		task_rq_unlock(rq, &flags);
3469
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3470 3471
		return;
	}
3472
unlock:
L
Linus Torvalds 已提交
3473 3474
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3475

L
Linus Torvalds 已提交
3476 3477 3478 3479 3480 3481 3482
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3483
 * Return any ns on the sched_clock that have not yet been accounted in
3484
 * @p in case that task is currently running.
3485 3486
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3487
 */
3488 3489 3490 3491 3492 3493
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3494
		ns = rq->clock_task - p->se.exec_start;
3495 3496 3497 3498 3499 3500 3501
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3502
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3503 3504
{
	unsigned long flags;
3505
	struct rq *rq;
3506
	u64 ns = 0;
3507

3508
	rq = task_rq_lock(p, &flags);
3509 3510
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3511

3512 3513
	return ns;
}
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3552
	task_rq_unlock(rq, &flags);
3553

L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3561
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3562
 */
3563 3564
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3565 3566 3567 3568
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3569
	/* Add user time to process. */
L
Linus Torvalds 已提交
3570
	p->utime = cputime_add(p->utime, cputime);
3571
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3572
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3573 3574 3575 3576 3577 3578 3579

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3580 3581

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3582 3583
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3584 3585
}

3586 3587 3588 3589
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3590
 * @cputime_scaled: cputime scaled by cpu frequency
3591
 */
3592 3593
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3594 3595 3596 3597 3598 3599
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3600
	/* Add guest time to process. */
3601
	p->utime = cputime_add(p->utime, cputime);
3602
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3603
	account_group_user_time(p, cputime);
3604 3605
	p->gtime = cputime_add(p->gtime, cputime);

3606
	/* Add guest time to cpustat. */
3607 3608 3609 3610 3611 3612 3613
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3614 3615
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3642 3643 3644 3645 3646
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3647
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3648 3649
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3650
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3651 3652
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3653
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3654

3655
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3656
		account_guest_time(p, cputime, cputime_scaled);
3657 3658
		return;
	}
3659

L
Linus Torvalds 已提交
3660
	if (hardirq_count() - hardirq_offset)
3661
		target_cputime64 = &cpustat->irq;
3662
	else if (in_serving_softirq())
3663
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3664
	else
3665
		target_cputime64 = &cpustat->system;
3666

3667
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3668 3669
}

3670
/*
L
Linus Torvalds 已提交
3671
 * Account for involuntary wait time.
3672
 * @cputime: the cpu time spent in involuntary wait
3673
 */
3674
void account_steal_time(cputime_t cputime)
3675
{
3676 3677 3678 3679
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3680 3681
}

L
Linus Torvalds 已提交
3682
/*
3683 3684
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3685
 */
3686
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3687 3688
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3691

3692 3693 3694 3695
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3696 3697
}

3698 3699
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 3734 3735 3736 3737 3738 3739 3740
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3761
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 3763 3764
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3765
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3766 3767 3768 3769 3770 3771 3772 3773

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3774
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3775 3776
	struct rq *rq = this_rq();

3777 3778 3779 3780 3781
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

3782
	if (user_tick)
3783
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3784
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3785
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3786 3787
				    one_jiffy_scaled);
	else
3788
		account_idle_time(cputime_one_jiffy);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3807 3808 3809 3810 3811 3812

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3813
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3814 3815
}

3816 3817
#endif

3818 3819 3820 3821
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823
{
3824 3825
	*ut = p->utime;
	*st = p->stime;
3826 3827
}

3828
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3829
{
3830 3831 3832 3833 3834 3835
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3836 3837
}
#else
3838 3839

#ifndef nsecs_to_cputime
3840
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3841 3842
#endif

3843
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3844
{
3845
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3846 3847 3848 3849

	/*
	 * Use CFS's precise accounting:
	 */
3850
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3851 3852

	if (total) {
3853
		u64 temp = rtime;
3854

3855
		temp *= utime;
3856
		do_div(temp, total);
3857 3858 3859
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3860

3861 3862 3863
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3864
	p->prev_utime = max(p->prev_utime, utime);
3865
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3866

3867 3868
	*ut = p->prev_utime;
	*st = p->prev_stime;
3869 3870
}

3871 3872 3873 3874
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3875
{
3876 3877 3878
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3879

3880
	thread_group_cputime(p, &cputime);
3881

3882 3883
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3884

3885
	if (total) {
3886
		u64 temp = rtime;
3887

3888
		temp *= cputime.utime;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3900 3901 3902
}
#endif

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3914
	struct task_struct *curr = rq->curr;
3915 3916

	sched_clock_tick();
I
Ingo Molnar 已提交
3917

3918
	raw_spin_lock(&rq->lock);
3919
	update_rq_clock(rq);
3920
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3921
	curr->sched_class->task_tick(rq, curr, 0);
3922
	raw_spin_unlock(&rq->lock);
3923

3924
	perf_event_task_tick();
3925

3926
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3927 3928
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3929
#endif
L
Linus Torvalds 已提交
3930 3931
}

3932
notrace unsigned long get_parent_ip(unsigned long addr)
3933 3934 3935 3936 3937 3938 3939 3940
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3941

3942 3943 3944
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3945
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3946
{
3947
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3948 3949 3950
	/*
	 * Underflow?
	 */
3951 3952
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3953
#endif
L
Linus Torvalds 已提交
3954
	preempt_count() += val;
3955
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3956 3957 3958
	/*
	 * Spinlock count overflowing soon?
	 */
3959 3960
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3961 3962 3963
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3964 3965 3966
}
EXPORT_SYMBOL(add_preempt_count);

3967
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3968
{
3969
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3970 3971 3972
	/*
	 * Underflow?
	 */
3973
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3974
		return;
L
Linus Torvalds 已提交
3975 3976 3977
	/*
	 * Is the spinlock portion underflowing?
	 */
3978 3979 3980
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3981
#endif
3982

3983 3984
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3992
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3993
 */
I
Ingo Molnar 已提交
3994
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3995
{
3996 3997
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3998 3999
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4000

I
Ingo Molnar 已提交
4001
	debug_show_held_locks(prev);
4002
	print_modules();
I
Ingo Molnar 已提交
4003 4004
	if (irqs_disabled())
		print_irqtrace_events(prev);
4005 4006 4007 4008 4009

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4010
}
L
Linus Torvalds 已提交
4011

I
Ingo Molnar 已提交
4012 4013 4014 4015 4016
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4017
	/*
I
Ingo Molnar 已提交
4018
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4019 4020 4021
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4022
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4023 4024
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4025 4026
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4027
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4028 4029
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4030
		schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4031
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4032 4033
	}
#endif
I
Ingo Molnar 已提交
4034 4035
}

P
Peter Zijlstra 已提交
4036
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4037
{
4038 4039
	if (prev->se.on_rq)
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4040
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4041 4042
}

I
Ingo Molnar 已提交
4043 4044 4045 4046
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4047
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4048
{
4049
	const struct sched_class *class;
I
Ingo Molnar 已提交
4050
	struct task_struct *p;
L
Linus Torvalds 已提交
4051 4052

	/*
I
Ingo Molnar 已提交
4053 4054
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4055
	 */
I
Ingo Molnar 已提交
4056
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4057
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4058 4059
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4060 4061
	}

4062
	for_each_class(class) {
4063
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4064 4065 4066
		if (p)
			return p;
	}
4067 4068

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4069
}
L
Linus Torvalds 已提交
4070

I
Ingo Molnar 已提交
4071 4072 4073
/*
 * schedule() is the main scheduler function.
 */
4074
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4075 4076
{
	struct task_struct *prev, *next;
4077
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4078
	struct rq *rq;
4079
	int cpu;
I
Ingo Molnar 已提交
4080

4081 4082
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4083 4084
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4085
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4086 4087 4088
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4089

4090
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4091
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4092

4093
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4094

4095
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4096
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4097
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4098
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
4113
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
4114
		}
I
Ingo Molnar 已提交
4115
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4116 4117
	}

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	/*
	 * If we are going to sleep and we have plugged IO queued, make
	 * sure to submit it to avoid deadlocks.
	 */
	if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
		raw_spin_unlock(&rq->lock);
		blk_flush_plug(prev);
		raw_spin_lock(&rq->lock);
	}

4128
	pre_schedule(rq, prev);
4129

I
Ingo Molnar 已提交
4130
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4131 4132
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4133
	put_prev_task(rq, prev);
4134
	next = pick_next_task(rq);
4135 4136
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141 4142

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4143
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4144
		/*
4145 4146 4147 4148
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4149 4150 4151
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4152
	} else
4153
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4154

4155
	post_schedule(rq);
L
Linus Torvalds 已提交
4156 4157

	preempt_enable_no_resched();
4158
	if (need_resched())
L
Linus Torvalds 已提交
4159 4160 4161 4162
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4163
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
4183
		return 0;
4184 4185 4186 4187 4188 4189 4190 4191 4192
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
4193
		return 0;
4194 4195 4196 4197 4198 4199

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
4200
		return 0;
4201 4202 4203 4204 4205 4206 4207

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
4208 4209 4210 4211 4212 4213 4214 4215
		if (lock->owner != owner) {
			/*
			 * If the lock has switched to a different owner,
			 * we likely have heavy contention. Return 0 to quit
			 * optimistic spinning and not contend further:
			 */
			if (lock->owner)
				return 0;
4216
			break;
4217
		}
4218 4219 4220 4221 4222 4223 4224

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

4225
		arch_mutex_cpu_relax();
4226
	}
4227

4228 4229 4230 4231
	return 1;
}
#endif

L
Linus Torvalds 已提交
4232 4233
#ifdef CONFIG_PREEMPT
/*
4234
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4235
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4236 4237
 * occur there and call schedule directly.
 */
4238
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4239 4240
{
	struct thread_info *ti = current_thread_info();
4241

L
Linus Torvalds 已提交
4242 4243
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4244
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4245
	 */
N
Nick Piggin 已提交
4246
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4247 4248
		return;

4249
	do {
4250
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4251
		schedule();
4252
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4253

4254 4255 4256 4257 4258
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4259
	} while (need_resched());
L
Linus Torvalds 已提交
4260 4261 4262 4263
}
EXPORT_SYMBOL(preempt_schedule);

/*
4264
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4265 4266 4267 4268 4269 4270 4271
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4272

4273
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4274 4275
	BUG_ON(ti->preempt_count || !irqs_disabled());

4276 4277 4278 4279 4280 4281
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4282

4283 4284 4285 4286 4287
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4288
	} while (need_resched());
L
Linus Torvalds 已提交
4289 4290 4291 4292
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4293
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4294
			  void *key)
L
Linus Torvalds 已提交
4295
{
P
Peter Zijlstra 已提交
4296
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4297 4298 4299 4300
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4301 4302
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4303 4304 4305
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4306
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4307 4308
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4309
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4310
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4311
{
4312
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4313

4314
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4315 4316
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4317
		if (curr->func(curr, mode, wake_flags, key) &&
4318
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4328
 * @key: is directly passed to the wakeup function
4329 4330 4331
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4332
 */
4333
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4334
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4347
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4348 4349 4350
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4351
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4352

4353 4354 4355 4356
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4357
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4358

L
Linus Torvalds 已提交
4359
/**
4360
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4361 4362 4363
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4364
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369 4370 4371
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4372 4373 4374
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4375
 */
4376 4377
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4378 4379
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4380
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4386
		wake_flags = 0;
L
Linus Torvalds 已提交
4387 4388

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4389
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4390 4391
	spin_unlock_irqrestore(&q->lock, flags);
}
4392 4393 4394 4395 4396 4397 4398 4399 4400
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4401 4402
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4403 4404 4405 4406 4407 4408 4409 4410
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4411 4412 4413
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4414
 */
4415
void complete(struct completion *x)
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4421
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4422 4423 4424 4425
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4426 4427 4428 4429 4430
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4431 4432 4433
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4434
 */
4435
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4441
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4442 4443 4444 4445
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4446 4447
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4448 4449 4450 4451
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4452
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4453
		do {
4454
			if (signal_pending_state(state, current)) {
4455 4456
				timeout = -ERESTARTSYS;
				break;
4457 4458
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4459 4460 4461
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4462
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4463
		__remove_wait_queue(&x->wait, &wait);
4464 4465
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4466 4467
	}
	x->done--;
4468
	return timeout ?: 1;
L
Linus Torvalds 已提交
4469 4470
}

4471 4472
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4473 4474 4475 4476
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4477
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4478
	spin_unlock_irq(&x->wait.lock);
4479 4480
	return timeout;
}
L
Linus Torvalds 已提交
4481

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4492
void __sched wait_for_completion(struct completion *x)
4493 4494
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4495
}
4496
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4497

4498 4499 4500 4501 4502 4503 4504 4505 4506
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4507
unsigned long __sched
4508
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4509
{
4510
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4511
}
4512
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4513

4514 4515 4516 4517 4518 4519 4520
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4521
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4522
{
4523 4524 4525 4526
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4527
}
4528
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4529

4530 4531 4532 4533 4534 4535 4536 4537
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4538
long __sched
4539 4540
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4541
{
4542
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4543
}
4544
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4545

4546 4547 4548 4549 4550 4551 4552
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4562 4563 4564 4565 4566 4567 4568 4569 4570
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4571
long __sched
4572 4573 4574 4575 4576 4577 4578
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4593
	unsigned long flags;
4594 4595
	int ret = 1;

4596
	spin_lock_irqsave(&x->wait.lock, flags);
4597 4598 4599 4600
	if (!x->done)
		ret = 0;
	else
		x->done--;
4601
	spin_unlock_irqrestore(&x->wait.lock, flags);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4616
	unsigned long flags;
4617 4618
	int ret = 1;

4619
	spin_lock_irqsave(&x->wait.lock, flags);
4620 4621
	if (!x->done)
		ret = 0;
4622
	spin_unlock_irqrestore(&x->wait.lock, flags);
4623 4624 4625 4626
	return ret;
}
EXPORT_SYMBOL(completion_done);

4627 4628
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4629
{
I
Ingo Molnar 已提交
4630 4631 4632 4633
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4634

4635
	__set_current_state(state);
L
Linus Torvalds 已提交
4636

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4651 4652 4653
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4654
long __sched
I
Ingo Molnar 已提交
4655
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4656
{
4657
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4658 4659 4660
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4661
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4662
{
4663
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4664 4665 4666
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4667
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4668
{
4669
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4670 4671 4672
}
EXPORT_SYMBOL(sleep_on_timeout);

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4685
void rt_mutex_setprio(struct task_struct *p, int prio)
4686 4687
{
	unsigned long flags;
4688
	int oldprio, on_rq, running;
4689
	struct rq *rq;
4690
	const struct sched_class *prev_class;
4691 4692 4693 4694 4695

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4696
	trace_sched_pi_setprio(p, prio);
4697
	oldprio = p->prio;
4698
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4699
	on_rq = p->se.on_rq;
4700
	running = task_current(rq, p);
4701
	if (on_rq)
4702
		dequeue_task(rq, p, 0);
4703 4704
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4705 4706 4707 4708 4709 4710

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4711 4712
	p->prio = prio;

4713 4714
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4715
	if (on_rq)
4716
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4717

P
Peter Zijlstra 已提交
4718
	check_class_changed(rq, p, prev_class, oldprio);
4719 4720 4721 4722 4723
	task_rq_unlock(rq, &flags);
}

#endif

4724
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4725
{
I
Ingo Molnar 已提交
4726
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4727
	unsigned long flags;
4728
	struct rq *rq;
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4741
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4742
	 */
4743
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4744 4745 4746
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4747
	on_rq = p->se.on_rq;
4748
	if (on_rq)
4749
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4750 4751

	p->static_prio = NICE_TO_PRIO(nice);
4752
	set_load_weight(p);
4753 4754 4755
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4756

I
Ingo Molnar 已提交
4757
	if (on_rq) {
4758
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4759
		/*
4760 4761
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4762
		 */
4763
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4764 4765 4766 4767 4768 4769 4770
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4771 4772 4773 4774 4775
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4776
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4777
{
4778 4779
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4780

4781
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4782 4783 4784
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4794
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4795
{
4796
	long nice, retval;
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4803 4804
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4805 4806 4807
	if (increment > 40)
		increment = 40;

4808
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4814 4815 4816
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4835
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842 4843
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4844
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4845 4846 4847
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4848
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4863
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868 4869 4870 4871
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4872
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4873
{
4874
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4875 4876 4877
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4878 4879
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4880
{
I
Ingo Molnar 已提交
4881
	BUG_ON(p->se.on_rq);
4882

L
Linus Torvalds 已提交
4883 4884
	p->policy = policy;
	p->rt_priority = prio;
4885 4886 4887
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4888 4889 4890 4891
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4892
	set_load_weight(p);
L
Linus Torvalds 已提交
4893 4894
}

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4905 4906 4907 4908 4909
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4910 4911 4912 4913
	rcu_read_unlock();
	return match;
}

4914
static int __sched_setscheduler(struct task_struct *p, int policy,
4915
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4916
{
4917
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4918
	unsigned long flags;
4919
	const struct sched_class *prev_class;
4920
	struct rq *rq;
4921
	int reset_on_fork;
L
Linus Torvalds 已提交
4922

4923 4924
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4925 4926
recheck:
	/* double check policy once rq lock held */
4927 4928
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4929
		policy = oldpolicy = p->policy;
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4940 4941
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4942 4943
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4944 4945
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4946
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4947
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4948
		return -EINVAL;
4949
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4950 4951
		return -EINVAL;

4952 4953 4954
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4955
	if (user && !capable(CAP_SYS_NICE)) {
4956
		if (rt_policy(policy)) {
4957 4958
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4969

I
Ingo Molnar 已提交
4970
		/*
4971 4972
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4973
		 */
4974 4975 4976 4977
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4978

4979
		/* can't change other user's priorities */
4980
		if (!check_same_owner(p))
4981
			return -EPERM;
4982 4983 4984 4985

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4986
	}
L
Linus Torvalds 已提交
4987

4988
	if (user) {
4989
		retval = security_task_setscheduler(p);
4990 4991 4992 4993
		if (retval)
			return retval;
	}

4994 4995 4996 4997
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4998
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4999 5000 5001 5002
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5003
	rq = __task_rq_lock(p);
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return -EINVAL;
	}

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5025 5026 5027 5028 5029 5030 5031
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5032 5033
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5034 5035 5036 5037 5038 5039 5040
			__task_rq_unlock(rq);
			raw_spin_unlock_irqrestore(&p->pi_lock, flags);
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5041 5042 5043
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5044
		__task_rq_unlock(rq);
5045
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5046 5047
		goto recheck;
	}
I
Ingo Molnar 已提交
5048
	on_rq = p->se.on_rq;
5049
	running = task_current(rq, p);
5050
	if (on_rq)
5051
		deactivate_task(rq, p, 0);
5052 5053
	if (running)
		p->sched_class->put_prev_task(rq, p);
5054

5055 5056
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5057
	oldprio = p->prio;
5058
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5059
	__setscheduler(rq, p, policy, param->sched_priority);
5060

5061 5062
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5063
	if (on_rq)
I
Ingo Molnar 已提交
5064
		activate_task(rq, p, 0);
5065

P
Peter Zijlstra 已提交
5066
	check_class_changed(rq, p, prev_class, oldprio);
5067
	__task_rq_unlock(rq);
5068
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5069

5070 5071
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5072 5073
	return 0;
}
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5084
		       const struct sched_param *param)
5085 5086 5087
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5088 5089
EXPORT_SYMBOL_GPL(sched_setscheduler);

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5102
			       const struct sched_param *param)
5103 5104 5105 5106
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5107 5108
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5109 5110 5111
{
	struct sched_param lparam;
	struct task_struct *p;
5112
	int retval;
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5118 5119 5120

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5121
	p = find_process_by_pid(pid);
5122 5123 5124
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5125

L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5135 5136
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5137
{
5138 5139 5140 5141
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5142 5143 5144 5145 5146 5147 5148 5149
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5150
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155 5156 5157 5158
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5159
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5160
{
5161
	struct task_struct *p;
5162
	int retval;
L
Linus Torvalds 已提交
5163 5164

	if (pid < 0)
5165
		return -EINVAL;
L
Linus Torvalds 已提交
5166 5167

	retval = -ESRCH;
5168
	rcu_read_lock();
L
Linus Torvalds 已提交
5169 5170 5171 5172
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5173 5174
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5175
	}
5176
	rcu_read_unlock();
L
Linus Torvalds 已提交
5177 5178 5179 5180
	return retval;
}

/**
5181
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5182 5183 5184
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5185
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5186 5187
{
	struct sched_param lp;
5188
	struct task_struct *p;
5189
	int retval;
L
Linus Torvalds 已提交
5190 5191

	if (!param || pid < 0)
5192
		return -EINVAL;
L
Linus Torvalds 已提交
5193

5194
	rcu_read_lock();
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5205
	rcu_read_unlock();
L
Linus Torvalds 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5215
	rcu_read_unlock();
L
Linus Torvalds 已提交
5216 5217 5218
	return retval;
}

5219
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5220
{
5221
	cpumask_var_t cpus_allowed, new_mask;
5222 5223
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5224

5225
	get_online_cpus();
5226
	rcu_read_lock();
L
Linus Torvalds 已提交
5227 5228 5229

	p = find_process_by_pid(pid);
	if (!p) {
5230
		rcu_read_unlock();
5231
		put_online_cpus();
L
Linus Torvalds 已提交
5232 5233 5234
		return -ESRCH;
	}

5235
	/* Prevent p going away */
L
Linus Torvalds 已提交
5236
	get_task_struct(p);
5237
	rcu_read_unlock();
L
Linus Torvalds 已提交
5238

5239 5240 5241 5242 5243 5244 5245 5246
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5247
	retval = -EPERM;
5248
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5249 5250
		goto out_unlock;

5251
	retval = security_task_setscheduler(p);
5252 5253 5254
	if (retval)
		goto out_unlock;

5255 5256
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5257
again:
5258
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5259

P
Paul Menage 已提交
5260
	if (!retval) {
5261 5262
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5263 5264 5265 5266 5267
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5268
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5269 5270 5271
			goto again;
		}
	}
L
Linus Torvalds 已提交
5272
out_unlock:
5273 5274 5275 5276
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5277
	put_task_struct(p);
5278
	put_online_cpus();
L
Linus Torvalds 已提交
5279 5280 5281 5282
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5283
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5284
{
5285 5286 5287 5288 5289
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5299 5300
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5301
{
5302
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5303 5304
	int retval;

5305 5306
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5307

5308 5309 5310 5311 5312
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5313 5314
}

5315
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5316
{
5317
	struct task_struct *p;
5318 5319
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
5320 5321
	int retval;

5322
	get_online_cpus();
5323
	rcu_read_lock();
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5330 5331 5332 5333
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5334
	rq = task_rq_lock(p, &flags);
5335
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5336
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5337 5338

out_unlock:
5339
	rcu_read_unlock();
5340
	put_online_cpus();
L
Linus Torvalds 已提交
5341

5342
	return retval;
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5351 5352
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5353 5354
{
	int ret;
5355
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5356

A
Anton Blanchard 已提交
5357
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5358 5359
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5360 5361
		return -EINVAL;

5362 5363
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5364

5365 5366
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5367
		size_t retlen = min_t(size_t, len, cpumask_size());
5368 5369

		if (copy_to_user(user_mask_ptr, mask, retlen))
5370 5371
			ret = -EFAULT;
		else
5372
			ret = retlen;
5373 5374
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5375

5376
	return ret;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5382 5383
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5384
 */
5385
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5386
{
5387
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5388

5389
	schedstat_inc(rq, yld_count);
5390
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5397
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5398
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5399 5400 5401 5402 5403 5404 5405
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5406 5407 5408 5409 5410
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5411
static void __cond_resched(void)
L
Linus Torvalds 已提交
5412
{
5413 5414 5415
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5416 5417
}

5418
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5419
{
P
Peter Zijlstra 已提交
5420
	if (should_resched()) {
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425
		__cond_resched();
		return 1;
	}
	return 0;
}
5426
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5427 5428

/*
5429
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5430 5431
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5432
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5433 5434 5435
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5436
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5437
{
P
Peter Zijlstra 已提交
5438
	int resched = should_resched();
J
Jan Kara 已提交
5439 5440
	int ret = 0;

5441 5442
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5443
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5444
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5445
		if (resched)
N
Nick Piggin 已提交
5446 5447 5448
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5449
		ret = 1;
L
Linus Torvalds 已提交
5450 5451
		spin_lock(lock);
	}
J
Jan Kara 已提交
5452
	return ret;
L
Linus Torvalds 已提交
5453
}
5454
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5455

5456
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5457 5458 5459
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5460
	if (should_resched()) {
5461
		local_bh_enable();
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5468
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5469 5470 5471 5472

/**
 * yield - yield the current processor to other threads.
 *
5473
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5483 5484 5485 5486
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5487 5488
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5523
	if (yielded) {
5524
		schedstat_inc(rq, yld_count);
5525 5526 5527 5528 5529 5530 5531
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5544
/*
I
Ingo Molnar 已提交
5545
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5546 5547 5548 5549
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5550
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5551

5552
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5553
	atomic_inc(&rq->nr_iowait);
5554
	blk_flush_plug(current);
5555
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5556
	schedule();
5557
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5558
	atomic_dec(&rq->nr_iowait);
5559
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5560 5561 5562 5563 5564
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5565
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5566 5567
	long ret;

5568
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5569
	atomic_inc(&rq->nr_iowait);
5570
	blk_flush_plug(current);
5571
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5572
	ret = schedule_timeout(timeout);
5573
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5574
	atomic_dec(&rq->nr_iowait);
5575
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5586
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5596
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5597
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5611
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5621
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5622
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5636
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5637
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5638
{
5639
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5640
	unsigned int time_slice;
5641 5642
	unsigned long flags;
	struct rq *rq;
5643
	int retval;
L
Linus Torvalds 已提交
5644 5645 5646
	struct timespec t;

	if (pid < 0)
5647
		return -EINVAL;
L
Linus Torvalds 已提交
5648 5649

	retval = -ESRCH;
5650
	rcu_read_lock();
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656 5657 5658
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5659 5660 5661
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5662

5663
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5664
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5665 5666
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5667

L
Linus Torvalds 已提交
5668
out_unlock:
5669
	rcu_read_unlock();
L
Linus Torvalds 已提交
5670 5671 5672
	return retval;
}

5673
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5674

5675
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5676 5677
{
	unsigned long free = 0;
5678
	unsigned state;
L
Linus Torvalds 已提交
5679 5680

	state = p->state ? __ffs(p->state) + 1 : 0;
5681
	printk(KERN_INFO "%-15.15s %c", p->comm,
5682
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5683
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5684
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5685
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5686
	else
P
Peter Zijlstra 已提交
5687
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5688 5689
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5690
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5691
	else
P
Peter Zijlstra 已提交
5692
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5693 5694
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5695
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5696
#endif
P
Peter Zijlstra 已提交
5697
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5698 5699
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5700

5701
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5702 5703
}

I
Ingo Molnar 已提交
5704
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5705
{
5706
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5707

5708
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5709 5710
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5711
#else
P
Peter Zijlstra 已提交
5712 5713
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719 5720 5721
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5722
		if (!state_filter || (p->state & state_filter))
5723
			sched_show_task(p);
L
Linus Torvalds 已提交
5724 5725
	} while_each_thread(g, p);

5726 5727
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5728 5729 5730
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5731
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5732 5733 5734
	/*
	 * Only show locks if all tasks are dumped:
	 */
5735
	if (!state_filter)
I
Ingo Molnar 已提交
5736
		debug_show_all_locks();
L
Linus Torvalds 已提交
5737 5738
}

I
Ingo Molnar 已提交
5739 5740
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5741
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5742 5743
}

5744 5745 5746 5747 5748 5749 5750 5751
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5752
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5753
{
5754
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5755 5756
	unsigned long flags;

5757
	raw_spin_lock_irqsave(&rq->lock, flags);
5758

I
Ingo Molnar 已提交
5759
	__sched_fork(idle);
5760
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5761 5762
	idle->se.exec_start = sched_clock();

5763
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5775
	__set_task_cpu(idle, cpu);
5776
	rcu_read_unlock();
L
Linus Torvalds 已提交
5777 5778

	rq->curr = rq->idle = idle;
5779 5780 5781
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5782
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5783 5784

	/* Set the preempt count _outside_ the spinlocks! */
5785 5786 5787
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5788
	task_thread_info(idle)->preempt_count = 0;
5789
#endif
I
Ingo Molnar 已提交
5790 5791 5792 5793
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5794
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799 5800 5801
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5802
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5803
 */
5804
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5805

I
Ingo Molnar 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5815
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5816
{
5817
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5832

5833 5834
	return factor;
}
I
Ingo Molnar 已提交
5835

5836 5837 5838
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5839

5840 5841 5842 5843 5844 5845 5846
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
5847

5848 5849 5850
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5851 5852
}

L
Linus Torvalds 已提交
5853 5854 5855 5856
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5857 5858 5859 5860 5861 5862
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5863
 *    it and puts it into the right queue.
5864 5865
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5866 5867 5868 5869 5870 5871 5872 5873
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5874
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5875 5876
 * call is not atomic; no spinlocks may be held.
 */
5877
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5878 5879
{
	unsigned long flags;
5880
	struct rq *rq;
5881
	unsigned int dest_cpu;
5882
	int ret = 0;
L
Linus Torvalds 已提交
5883

P
Peter Zijlstra 已提交
5884 5885 5886 5887 5888 5889 5890
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5891
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5892 5893 5894 5895
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5896

5897
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5898 5899 5900 5901
		ret = -EINVAL;
		goto out;
	}

5902
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5903
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5904 5905 5906 5907
		ret = -EINVAL;
		goto out;
	}

5908
	if (p->sched_class->set_cpus_allowed)
5909
		p->sched_class->set_cpus_allowed(p, new_mask);
5910
	else {
5911 5912
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5913 5914
	}

L
Linus Torvalds 已提交
5915
	/* Can the task run on the task's current CPU? If so, we're done */
5916
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5917 5918
		goto out;

5919
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5920
	if (migrate_task(p, rq)) {
5921
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5922 5923
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5924
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5925 5926 5927 5928 5929
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5930

L
Linus Torvalds 已提交
5931 5932
	return ret;
}
5933
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5934 5935

/*
I
Ingo Molnar 已提交
5936
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5937 5938 5939 5940 5941 5942
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5943 5944
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5945
 */
5946
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5947
{
5948
	struct rq *rq_dest, *rq_src;
5949
	int ret = 0;
L
Linus Torvalds 已提交
5950

5951
	if (unlikely(!cpu_active(dest_cpu)))
5952
		return ret;
L
Linus Torvalds 已提交
5953 5954 5955 5956 5957 5958 5959

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5960
		goto done;
L
Linus Torvalds 已提交
5961
	/* Affinity changed (again). */
5962
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5963
		goto fail;
L
Linus Torvalds 已提交
5964

5965 5966 5967 5968 5969
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5970
		deactivate_task(rq_src, p, 0);
5971
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5972
		activate_task(rq_dest, p, 0);
5973
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5974
	}
L
Linus Torvalds 已提交
5975
done:
5976
	ret = 1;
L
Linus Torvalds 已提交
5977
fail:
L
Linus Torvalds 已提交
5978
	double_rq_unlock(rq_src, rq_dest);
5979
	return ret;
L
Linus Torvalds 已提交
5980 5981 5982
}

/*
5983 5984 5985
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5986
 */
5987
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5988
{
5989
	struct migration_arg *arg = data;
5990

5991 5992 5993 5994
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5995
	local_irq_disable();
5996
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5997
	local_irq_enable();
L
Linus Torvalds 已提交
5998
	return 0;
5999 6000
}

L
Linus Torvalds 已提交
6001
#ifdef CONFIG_HOTPLUG_CPU
6002

6003
/*
6004 6005
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6006
 */
6007
void idle_task_exit(void)
L
Linus Torvalds 已提交
6008
{
6009
	struct mm_struct *mm = current->active_mm;
6010

6011
	BUG_ON(cpu_online(smp_processor_id()));
6012

6013 6014 6015
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6016 6017 6018 6019 6020 6021 6022 6023 6024
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6025
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6026
{
6027
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6028 6029 6030 6031 6032

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6033
/*
6034
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6035
 */
6036
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6037
{
6038 6039
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6040 6041
}

6042
/*
6043 6044 6045 6046 6047 6048
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6049
 */
6050
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6051
{
6052
	struct rq *rq = cpu_rq(dead_cpu);
6053 6054
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6055 6056

	/*
6057 6058 6059 6060 6061 6062 6063
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6064
	 */
6065
	rq->stop = NULL;
6066

I
Ingo Molnar 已提交
6067
	for ( ; ; ) {
6068 6069 6070 6071 6072
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6073
			break;
6074

6075
		next = pick_next_task(rq);
6076
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6077
		next->sched_class->put_prev_task(rq, next);
6078

6079 6080 6081 6082 6083 6084 6085
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6086
	}
6087

6088
	rq->stop = stop;
6089
}
6090

L
Linus Torvalds 已提交
6091 6092
#endif /* CONFIG_HOTPLUG_CPU */

6093 6094 6095
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6096 6097
	{
		.procname	= "sched_domain",
6098
		.mode		= 0555,
6099
	},
6100
	{}
6101 6102 6103
};

static struct ctl_table sd_ctl_root[] = {
6104 6105
	{
		.procname	= "kernel",
6106
		.mode		= 0555,
6107 6108
		.child		= sd_ctl_dir,
	},
6109
	{}
6110 6111 6112 6113 6114
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6115
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6116 6117 6118 6119

	return entry;
}

6120 6121
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6122
	struct ctl_table *entry;
6123

6124 6125 6126
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6127
	 * will always be set. In the lowest directory the names are
6128 6129 6130
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6131 6132
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6133 6134 6135
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6136 6137 6138 6139 6140

	kfree(*tablep);
	*tablep = NULL;
}

6141
static void
6142
set_table_entry(struct ctl_table *entry,
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6156
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6157

6158 6159 6160
	if (table == NULL)
		return NULL;

6161
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6162
		sizeof(long), 0644, proc_doulongvec_minmax);
6163
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6164
		sizeof(long), 0644, proc_doulongvec_minmax);
6165
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6166
		sizeof(int), 0644, proc_dointvec_minmax);
6167
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6168
		sizeof(int), 0644, proc_dointvec_minmax);
6169
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6170
		sizeof(int), 0644, proc_dointvec_minmax);
6171
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6172
		sizeof(int), 0644, proc_dointvec_minmax);
6173
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6174
		sizeof(int), 0644, proc_dointvec_minmax);
6175
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6176
		sizeof(int), 0644, proc_dointvec_minmax);
6177
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6178
		sizeof(int), 0644, proc_dointvec_minmax);
6179
	set_table_entry(&table[9], "cache_nice_tries",
6180 6181
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6182
	set_table_entry(&table[10], "flags", &sd->flags,
6183
		sizeof(int), 0644, proc_dointvec_minmax);
6184 6185 6186
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6187 6188 6189 6190

	return table;
}

6191
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6192 6193 6194 6195 6196 6197 6198 6199 6200
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6201 6202
	if (table == NULL)
		return NULL;
6203 6204 6205 6206 6207

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6208
		entry->mode = 0555;
6209 6210 6211 6212 6213 6214 6215 6216
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6217
static void register_sched_domain_sysctl(void)
6218
{
6219
	int i, cpu_num = num_possible_cpus();
6220 6221 6222
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6223 6224 6225
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6226 6227 6228
	if (entry == NULL)
		return;

6229
	for_each_possible_cpu(i) {
6230 6231
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6232
		entry->mode = 0555;
6233
		entry->child = sd_alloc_ctl_cpu_table(i);
6234
		entry++;
6235
	}
6236 6237

	WARN_ON(sd_sysctl_header);
6238 6239
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6240

6241
/* may be called multiple times per register */
6242 6243
static void unregister_sched_domain_sysctl(void)
{
6244 6245
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6246
	sd_sysctl_header = NULL;
6247 6248
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6249
}
6250
#else
6251 6252 6253 6254
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6255 6256 6257 6258
{
}
#endif

6259 6260 6261 6262 6263
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6264
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6284
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6285 6286 6287 6288
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6289 6290 6291 6292
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6293 6294
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6295
{
6296
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6297
	unsigned long flags;
6298
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6299

6300
	switch (action & ~CPU_TASKS_FROZEN) {
6301

L
Linus Torvalds 已提交
6302
	case CPU_UP_PREPARE:
6303
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6304
		break;
6305

L
Linus Torvalds 已提交
6306
	case CPU_ONLINE:
6307
		/* Update our root-domain */
6308
		raw_spin_lock_irqsave(&rq->lock, flags);
6309
		if (rq->rd) {
6310
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6311 6312

			set_rq_online(rq);
6313
		}
6314
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6315
		break;
6316

L
Linus Torvalds 已提交
6317
#ifdef CONFIG_HOTPLUG_CPU
6318
	case CPU_DYING:
G
Gregory Haskins 已提交
6319
		/* Update our root-domain */
6320
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6321
		if (rq->rd) {
6322
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6323
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6324
		}
6325 6326
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6327
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6328 6329 6330

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6331
		break;
L
Linus Torvalds 已提交
6332 6333 6334 6335 6336
#endif
	}
	return NOTIFY_OK;
}

6337 6338 6339
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6340
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6341
 */
6342
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6343
	.notifier_call = migration_call,
6344
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6345 6346
};

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6372
static int __init migration_init(void)
L
Linus Torvalds 已提交
6373 6374
{
	void *cpu = (void *)(long)smp_processor_id();
6375
	int err;
6376

6377
	/* Initialize migration for the boot CPU */
6378 6379
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6380 6381
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6382

6383 6384 6385 6386
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6387
	return 0;
L
Linus Torvalds 已提交
6388
}
6389
early_initcall(migration_init);
L
Linus Torvalds 已提交
6390 6391 6392
#endif

#ifdef CONFIG_SMP
6393

6394
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6395

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6406
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6407
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6408
{
I
Ingo Molnar 已提交
6409
	struct sched_group *group = sd->groups;
6410
	char str[256];
L
Linus Torvalds 已提交
6411

R
Rusty Russell 已提交
6412
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6413
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6414 6415 6416 6417

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6418
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6419
		if (sd->parent)
P
Peter Zijlstra 已提交
6420 6421
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6422
		return -1;
N
Nick Piggin 已提交
6423 6424
	}

P
Peter Zijlstra 已提交
6425
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6426

6427
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6428 6429
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6430
	}
6431
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6432 6433
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6434
	}
L
Linus Torvalds 已提交
6435

I
Ingo Molnar 已提交
6436
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6437
	do {
I
Ingo Molnar 已提交
6438
		if (!group) {
P
Peter Zijlstra 已提交
6439 6440
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6441 6442 6443
			break;
		}

6444
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6445 6446 6447
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6448 6449
			break;
		}
L
Linus Torvalds 已提交
6450

6451
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6452 6453
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6454 6455
			break;
		}
L
Linus Torvalds 已提交
6456

6457
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6458 6459
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6460 6461
			break;
		}
L
Linus Torvalds 已提交
6462

6463
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6464

R
Rusty Russell 已提交
6465
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6466

P
Peter Zijlstra 已提交
6467
		printk(KERN_CONT " %s", str);
6468
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6469 6470
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6471
		}
L
Linus Torvalds 已提交
6472

I
Ingo Molnar 已提交
6473 6474
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6475
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6476

6477
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6478
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6479

6480 6481
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6482 6483
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6484 6485
	return 0;
}
L
Linus Torvalds 已提交
6486

I
Ingo Molnar 已提交
6487 6488
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6489
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6490
	int level = 0;
L
Linus Torvalds 已提交
6491

6492 6493 6494
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6495 6496 6497 6498
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6499

I
Ingo Molnar 已提交
6500 6501
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6502
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6503 6504 6505 6506
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6507
	for (;;) {
6508
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6509
			break;
L
Linus Torvalds 已提交
6510 6511
		level++;
		sd = sd->parent;
6512
		if (!sd)
I
Ingo Molnar 已提交
6513 6514
			break;
	}
6515
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6516
}
6517
#else /* !CONFIG_SCHED_DEBUG */
6518
# define sched_domain_debug(sd, cpu) do { } while (0)
6519
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6520

6521
static int sd_degenerate(struct sched_domain *sd)
6522
{
6523
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6524 6525 6526 6527 6528 6529
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6530 6531 6532
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6533 6534 6535 6536 6537
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6538
	if (sd->flags & (SD_WAKE_AFFINE))
6539 6540 6541 6542 6543
		return 0;

	return 1;
}

6544 6545
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6546 6547 6548 6549 6550 6551
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6552
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6553 6554 6555 6556 6557 6558 6559
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6560 6561 6562
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6563 6564
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6565 6566 6567 6568 6569 6570 6571
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6572 6573
static void free_rootdomain(struct root_domain *rd)
{
6574 6575
	synchronize_sched();

6576 6577
	cpupri_cleanup(&rd->cpupri);

6578 6579 6580 6581 6582 6583
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6584 6585
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6586
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6587 6588
	unsigned long flags;

6589
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6590 6591

	if (rq->rd) {
I
Ingo Molnar 已提交
6592
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6593

6594
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6595
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6596

6597
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6598

I
Ingo Molnar 已提交
6599 6600 6601 6602 6603 6604 6605
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6606 6607 6608 6609 6610
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6611
	cpumask_set_cpu(rq->cpu, rd->span);
6612
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6613
		set_rq_online(rq);
G
Gregory Haskins 已提交
6614

6615
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6616 6617 6618

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6619 6620
}

6621
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6622 6623 6624
{
	memset(rd, 0, sizeof(*rd));

6625
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6626
		goto out;
6627
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6628
		goto free_span;
6629
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6630
		goto free_online;
6631

6632
	if (cpupri_init(&rd->cpupri) != 0)
6633
		goto free_rto_mask;
6634
	return 0;
6635

6636 6637
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6638 6639 6640 6641
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6642
out:
6643
	return -ENOMEM;
G
Gregory Haskins 已提交
6644 6645 6646 6647
}

static void init_defrootdomain(void)
{
6648
	init_rootdomain(&def_root_domain);
6649

G
Gregory Haskins 已提交
6650 6651 6652
	atomic_set(&def_root_domain.refcount, 1);
}

6653
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6654 6655 6656 6657 6658 6659 6660
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6661
	if (init_rootdomain(rd) != 0) {
6662 6663 6664
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6665 6666 6667 6668

	return rd;
}

L
Linus Torvalds 已提交
6669
/*
I
Ingo Molnar 已提交
6670
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6671 6672
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6673 6674
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6675
{
6676
	struct rq *rq = cpu_rq(cpu);
6677 6678
	struct sched_domain *tmp;

6679 6680 6681
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6682
	/* Remove the sched domains which do not contribute to scheduling. */
6683
	for (tmp = sd; tmp; ) {
6684 6685 6686
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6687

6688
		if (sd_parent_degenerate(tmp, parent)) {
6689
			tmp->parent = parent->parent;
6690 6691
			if (parent->parent)
				parent->parent->child = tmp;
6692 6693
		} else
			tmp = tmp->parent;
6694 6695
	}

6696
	if (sd && sd_degenerate(sd)) {
6697
		sd = sd->parent;
6698 6699 6700
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6701 6702 6703

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6704
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6705
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6706 6707 6708
}

/* cpus with isolated domains */
6709
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6710 6711 6712 6713

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6714
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6715
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6716 6717 6718
	return 1;
}

I
Ingo Molnar 已提交
6719
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6720 6721

/*
6722 6723
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6724 6725
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6731
static void
6732 6733 6734
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6735
					struct sched_group **sg,
6736 6737
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6738 6739 6740 6741
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6742
	cpumask_clear(covered);
6743

6744
	for_each_cpu(i, span) {
6745
		struct sched_group *sg;
6746
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6747 6748
		int j;

6749
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6750 6751
			continue;

6752
		cpumask_clear(sched_group_cpus(sg));
6753
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6754

6755
		for_each_cpu(j, span) {
6756
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6757 6758
				continue;

6759
			cpumask_set_cpu(j, covered);
6760
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6771
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6772

6773
#ifdef CONFIG_NUMA
6774

6775 6776 6777 6778 6779
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6780
 * Find the next node to include in a given scheduling domain. Simply
6781 6782 6783 6784
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6785
static int find_next_best_node(int node, nodemask_t *used_nodes)
6786 6787 6788 6789 6790
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6791
	for (i = 0; i < nr_node_ids; i++) {
6792
		/* Start at @node */
6793
		n = (node + i) % nr_node_ids;
6794 6795 6796 6797 6798

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6799
		if (node_isset(n, *used_nodes))
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6811
	node_set(best_node, *used_nodes);
6812 6813 6814 6815 6816 6817
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6818
 * @span: resulting cpumask
6819
 *
I
Ingo Molnar 已提交
6820
 * Given a node, construct a good cpumask for its sched_domain to span. It
6821 6822 6823
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6824
static void sched_domain_node_span(int node, struct cpumask *span)
6825
{
6826
	nodemask_t used_nodes;
6827
	int i;
6828

6829
	cpumask_clear(span);
6830
	nodes_clear(used_nodes);
6831

6832
	cpumask_or(span, span, cpumask_of_node(node));
6833
	node_set(node, used_nodes);
6834 6835

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6836
		int next_node = find_next_best_node(node, &used_nodes);
6837

6838
		cpumask_or(span, span, cpumask_of_node(next_node));
6839 6840
	}
}
6841
#endif /* CONFIG_NUMA */
6842

6843
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6844

6845 6846
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6847 6848 6849
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
6871
	cpumask_var_t		this_book_map;
6872 6873 6874 6875 6876 6877
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6878 6879 6880 6881 6882
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
6883
	sa_this_book_map,
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6896
/*
6897
 * SMT sched-domains:
6898
 */
L
Linus Torvalds 已提交
6899
#ifdef CONFIG_SCHED_SMT
6900
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6901
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6902

I
Ingo Molnar 已提交
6903
static int
6904 6905
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6906
{
6907
	if (sg)
6908
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6909 6910
	return cpu;
}
6911
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6912

6913 6914 6915
/*
 * multi-core sched-domains:
 */
6916
#ifdef CONFIG_SCHED_MC
6917 6918
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6919

I
Ingo Molnar 已提交
6920
static int
6921 6922
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6923
{
6924
	int group;
6925
#ifdef CONFIG_SCHED_SMT
6926
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6927
	group = cpumask_first(mask);
6928 6929 6930
#else
	group = cpu;
#endif
6931
	if (sg)
6932
		*sg = &per_cpu(sched_group_core, group).sg;
6933
	return group;
6934
}
6935
#endif /* CONFIG_SCHED_MC */
6936

6937 6938 6939 6940 6941 6942 6943
/*
 * book sched-domains:
 */
#ifdef CONFIG_SCHED_BOOK
static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);

I
Ingo Molnar 已提交
6944
static int
6945 6946
cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6947
{
6948 6949 6950 6951 6952 6953 6954 6955
	int group = cpu;
#ifdef CONFIG_SCHED_MC
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
	group = cpumask_first(mask);
#endif
6956
	if (sg)
6957 6958
		*sg = &per_cpu(sched_group_book, group).sg;
	return group;
6959
}
6960
#endif /* CONFIG_SCHED_BOOK */
6961

6962 6963
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6964

I
Ingo Molnar 已提交
6965
static int
6966 6967
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6968
{
6969
	int group;
6970 6971 6972 6973
#ifdef CONFIG_SCHED_BOOK
	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_MC)
6974
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6975
	group = cpumask_first(mask);
6976
#elif defined(CONFIG_SCHED_SMT)
6977
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6978
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6979
#else
6980
	group = cpu;
L
Linus Torvalds 已提交
6981
#endif
6982
	if (sg)
6983
		*sg = &per_cpu(sched_group_phys, group).sg;
6984
	return group;
L
Linus Torvalds 已提交
6985 6986 6987 6988
}

#ifdef CONFIG_NUMA
/*
6989 6990 6991
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6992
 */
6993
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6994
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6995

6996
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6997
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6998

6999 7000 7001
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7002
{
7003 7004
	int group;

7005
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7006
	group = cpumask_first(nodemask);
7007 7008

	if (sg)
7009
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7010
	return group;
L
Linus Torvalds 已提交
7011
}
7012

7013 7014 7015 7016 7017 7018 7019
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7020
	do {
7021
		for_each_cpu(j, sched_group_cpus(sg)) {
7022
			struct sched_domain *sd;
7023

7024
			sd = &per_cpu(phys_domains, j).sd;
7025
			if (j != group_first_cpu(sd->groups)) {
7026 7027 7028 7029 7030 7031
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7032

7033
			sg->cpu_power += sd->groups->cpu_power;
7034 7035 7036
		}
		sg = sg->next;
	} while (sg != group_head);
7037
}
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
7059 7060
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
7061 7062 7063 7064 7065 7066 7067 7068 7069
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

7070
	sg->cpu_power = 0;
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
7089 7090
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
7091 7092
			return -ENOMEM;
		}
7093
		sg->cpu_power = 0;
7094 7095 7096 7097 7098 7099 7100 7101 7102
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
7103
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7104

7105
#ifdef CONFIG_NUMA
7106
/* Free memory allocated for various sched_group structures */
7107 7108
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7109
{
7110
	int cpu, i;
7111

7112
	for_each_cpu(cpu, cpu_map) {
7113 7114 7115 7116 7117 7118
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7119
		for (i = 0; i < nr_node_ids; i++) {
7120 7121
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7122
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7123
			if (cpumask_empty(nodemask))
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7140
#else /* !CONFIG_NUMA */
7141 7142
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7143 7144
{
}
7145
#endif /* CONFIG_NUMA */
7146

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
7161 7162
	long power;
	int weight;
7163 7164 7165

	WARN_ON(!sd || !sd->groups);

7166
	if (cpu != group_first_cpu(sd->groups))
7167 7168
		return;

7169 7170
	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));

7171 7172
	child = sd->child;

7173
	sd->groups->cpu_power = 0;
7174

7175 7176 7177 7178 7179
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
7180 7181 7182
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
7183
		 */
P
Peter Zijlstra 已提交
7184 7185
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
7186
			power /= weight;
P
Peter Zijlstra 已提交
7187 7188
			power >>= SCHED_LOAD_SHIFT;
		}
7189
		sd->groups->cpu_power += power;
7190 7191 7192 7193
		return;
	}

	/*
7194
	 * Add cpu_power of each child group to this groups cpu_power.
7195 7196 7197
	 */
	group = child->groups;
	do {
7198
		sd->groups->cpu_power += group->cpu_power;
7199 7200 7201 7202
		group = group->next;
	} while (group != child->groups);
}

7203 7204 7205 7206 7207
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7208 7209 7210 7211 7212 7213
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7214
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7215

7216 7217 7218 7219 7220
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7221
	sd->level = SD_LV_##type;				\
7222
	SD_INIT_NAME(sd, type);					\
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7236 7237 7238
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7239

7240 7241 7242 7243
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7244 7245 7246 7247 7248 7249
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7268
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7269 7270
	} else {
		/* turn on idle balance on this domain */
7271
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7272 7273 7274
	}
}

7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
7288 7289
	case sa_this_book_map:
		free_cpumask_var(d->this_book_map); /* fall through */
7290 7291 7292 7293 7294 7295 7296
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
7297
#ifdef CONFIG_NUMA
7298 7299 7300 7301 7302 7303 7304
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
7305
#endif
7306 7307 7308 7309
	case sa_none:
		break;
	}
}
7310

7311 7312 7313
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7314
#ifdef CONFIG_NUMA
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
7325
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7326
		return sa_notcovered;
7327
	}
7328
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7329
#endif
7330 7331 7332 7333 7334 7335
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
7336
	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7337
		return sa_this_core_map;
7338 7339
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_book_map;
7340 7341 7342 7343
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
7344
		printk(KERN_WARNING "Cannot alloc root domain\n");
7345
		return sa_tmpmask;
G
Gregory Haskins 已提交
7346
	}
7347 7348
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7349

7350 7351 7352 7353
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
7354
#ifdef CONFIG_NUMA
7355
	struct sched_domain *parent;
L
Linus Torvalds 已提交
7356

7357 7358 7359 7360 7361
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
7362
		set_domain_attribute(sd, attr);
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7377
#endif
7378 7379
	return sd;
}
L
Linus Torvalds 已提交
7380

7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7396

7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
static struct sched_domain *__build_book_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_BOOK
	sd = &per_cpu(book_domains, i).sd;
	SD_INIT(sd, BOOK);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
#endif
	return sd;
}

7414 7415 7416 7417 7418
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7419
#ifdef CONFIG_SCHED_MC
7420 7421 7422 7423 7424 7425 7426
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7427
#endif
7428 7429
	return sd;
}
7430

7431 7432 7433 7434 7435
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7436
#ifdef CONFIG_SCHED_SMT
7437 7438 7439 7440 7441 7442 7443
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7444
#endif
7445 7446
	return sd;
}
L
Linus Torvalds 已提交
7447

7448 7449 7450 7451
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7452
#ifdef CONFIG_SCHED_SMT
7453 7454 7455 7456 7457 7458 7459 7460
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7461
#endif
7462
#ifdef CONFIG_SCHED_MC
7463 7464 7465 7466 7467 7468 7469
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7470 7471 7472 7473 7474 7475 7476 7477 7478
#endif
#ifdef CONFIG_SCHED_BOOK
	case SD_LV_BOOK: /* set up book groups */
		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
		if (cpu == cpumask_first(d->this_book_map))
			init_sched_build_groups(d->this_book_map, cpu_map,
						&cpu_to_book_group,
						d->send_covered, d->tmpmask);
		break;
7479
#endif
7480 7481 7482 7483 7484 7485 7486
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7487
#ifdef CONFIG_NUMA
7488 7489 7490 7491 7492
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7493 7494
	default:
		break;
7495
	}
7496
}
7497

7498 7499 7500 7501 7502 7503 7504 7505 7506
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7507
	struct sched_domain *sd;
7508
	int i;
7509
#ifdef CONFIG_NUMA
7510
	d.sd_allnodes = 0;
7511
#endif
7512

7513 7514 7515 7516
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7517

L
Linus Torvalds 已提交
7518
	/*
7519
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7520
	 */
7521
	for_each_cpu(i, cpu_map) {
7522 7523
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7524

7525
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7526
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7527
		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7528
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7529
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7530
	}
7531

7532
	for_each_cpu(i, cpu_map) {
7533
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7534
		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7535
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7536
	}
7537

L
Linus Torvalds 已提交
7538
	/* Set up physical groups */
7539 7540
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7541

L
Linus Torvalds 已提交
7542 7543
#ifdef CONFIG_NUMA
	/* Set up node groups */
7544 7545
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7546

7547 7548
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7549
			goto error;
L
Linus Torvalds 已提交
7550 7551 7552
#endif

	/* Calculate CPU power for physical packages and nodes */
7553
#ifdef CONFIG_SCHED_SMT
7554
	for_each_cpu(i, cpu_map) {
7555
		sd = &per_cpu(cpu_domains, i).sd;
7556
		init_sched_groups_power(i, sd);
7557
	}
L
Linus Torvalds 已提交
7558
#endif
7559
#ifdef CONFIG_SCHED_MC
7560
	for_each_cpu(i, cpu_map) {
7561
		sd = &per_cpu(core_domains, i).sd;
7562
		init_sched_groups_power(i, sd);
7563 7564
	}
#endif
7565 7566 7567 7568 7569 7570
#ifdef CONFIG_SCHED_BOOK
	for_each_cpu(i, cpu_map) {
		sd = &per_cpu(book_domains, i).sd;
		init_sched_groups_power(i, sd);
	}
#endif
7571

7572
	for_each_cpu(i, cpu_map) {
7573
		sd = &per_cpu(phys_domains, i).sd;
7574
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7575 7576
	}

7577
#ifdef CONFIG_NUMA
7578
	for (i = 0; i < nr_node_ids; i++)
7579
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7580

7581
	if (d.sd_allnodes) {
7582
		struct sched_group *sg;
7583

7584
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7585
								d.tmpmask);
7586 7587
		init_numa_sched_groups_power(sg);
	}
7588 7589
#endif

L
Linus Torvalds 已提交
7590
	/* Attach the domains */
7591
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7592
#ifdef CONFIG_SCHED_SMT
7593
		sd = &per_cpu(cpu_domains, i).sd;
7594
#elif defined(CONFIG_SCHED_MC)
7595
		sd = &per_cpu(core_domains, i).sd;
7596 7597
#elif defined(CONFIG_SCHED_BOOK)
		sd = &per_cpu(book_domains, i).sd;
L
Linus Torvalds 已提交
7598
#else
7599
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7600
#endif
7601
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7602
	}
7603

7604 7605 7606
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7607 7608

error:
7609 7610
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7611
}
P
Paul Jackson 已提交
7612

7613
static int build_sched_domains(const struct cpumask *cpu_map)
7614 7615 7616 7617
{
	return __build_sched_domains(cpu_map, NULL);
}

7618
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7619
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7620 7621
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7622 7623 7624

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7625 7626
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7627
 */
7628
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7629

7630 7631 7632 7633 7634 7635
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7636
{
7637
	return 0;
7638 7639
}

7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7665
/*
I
Ingo Molnar 已提交
7666
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7667 7668
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7669
 */
7670
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7671
{
7672 7673
	int err;

7674
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7675
	ndoms_cur = 1;
7676
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7677
	if (!doms_cur)
7678 7679
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7680
	dattr_cur = NULL;
7681
	err = build_sched_domains(doms_cur[0]);
7682
	register_sched_domain_sysctl();
7683 7684

	return err;
7685 7686
}

7687 7688
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7689
{
7690
	free_sched_groups(cpu_map, tmpmask);
7691
}
L
Linus Torvalds 已提交
7692

7693 7694 7695 7696
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7697
static void detach_destroy_domains(const struct cpumask *cpu_map)
7698
{
7699 7700
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7701 7702
	int i;

7703
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7704
		cpu_attach_domain(NULL, &def_root_domain, i);
7705
	synchronize_sched();
7706
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7707 7708
}

7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7725 7726
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7727
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7728 7729 7730
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7731
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7732 7733 7734
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7735 7736 7737
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7738 7739 7740 7741 7742 7743
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7744
 *
7745
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7746 7747
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7748
 *
P
Paul Jackson 已提交
7749 7750
 * Call with hotplug lock held
 */
7751
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7752
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7753
{
7754
	int i, j, n;
7755
	int new_topology;
P
Paul Jackson 已提交
7756

7757
	mutex_lock(&sched_domains_mutex);
7758

7759 7760 7761
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7762 7763 7764
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7765
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7766 7767 7768

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7769
		for (j = 0; j < n && !new_topology; j++) {
7770
			if (cpumask_equal(doms_cur[i], doms_new[j])
7771
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7772 7773 7774
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7775
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7776 7777 7778 7779
match1:
		;
	}

7780 7781
	if (doms_new == NULL) {
		ndoms_cur = 0;
7782
		doms_new = &fallback_doms;
7783
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7784
		WARN_ON_ONCE(dattr_new);
7785 7786
	}

P
Paul Jackson 已提交
7787 7788
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7789
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7790
			if (cpumask_equal(doms_new[i], doms_cur[j])
7791
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7792 7793 7794
				goto match2;
		}
		/* no match - add a new doms_new */
7795
		__build_sched_domains(doms_new[i],
7796
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7797 7798 7799 7800 7801
match2:
		;
	}

	/* Remember the new sched domains */
7802 7803
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7804
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7805
	doms_cur = doms_new;
7806
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7807
	ndoms_cur = ndoms_new;
7808 7809

	register_sched_domain_sysctl();
7810

7811
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7812 7813
}

7814
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7815
static void arch_reinit_sched_domains(void)
7816
{
7817
	get_online_cpus();
7818 7819 7820 7821

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7822
	rebuild_sched_domains();
7823
	put_online_cpus();
7824 7825 7826 7827
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7828
	unsigned int level = 0;
7829

7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7841 7842 7843
		return -EINVAL;

	if (smt)
7844
		sched_smt_power_savings = level;
7845
	else
7846
		sched_mc_power_savings = level;
7847

7848
	arch_reinit_sched_domains();
7849

7850
	return count;
7851 7852 7853
}

#ifdef CONFIG_SCHED_MC
7854
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7855
					   struct sysdev_class_attribute *attr,
7856
					   char *page)
7857 7858 7859
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7860
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7861
					    struct sysdev_class_attribute *attr,
7862
					    const char *buf, size_t count)
7863 7864 7865
{
	return sched_power_savings_store(buf, count, 0);
}
7866 7867 7868
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7869 7870 7871
#endif

#ifdef CONFIG_SCHED_SMT
7872
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7873
					    struct sysdev_class_attribute *attr,
7874
					    char *page)
7875 7876 7877
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7878
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7879
					     struct sysdev_class_attribute *attr,
7880
					     const char *buf, size_t count)
7881 7882 7883
{
	return sched_power_savings_store(buf, count, 1);
}
7884 7885
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7886 7887 7888
		   sched_smt_power_savings_store);
#endif

7889
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7905
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7906

L
Linus Torvalds 已提交
7907
/*
7908 7909 7910
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7911
 */
7912 7913
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7914
{
7915
	switch (action & ~CPU_TASKS_FROZEN) {
7916
	case CPU_ONLINE:
7917
	case CPU_DOWN_FAILED:
7918
		cpuset_update_active_cpus();
7919
		return NOTIFY_OK;
7920 7921 7922 7923
	default:
		return NOTIFY_DONE;
	}
}
7924

7925 7926
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7927 7928 7929 7930 7931
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7932 7933 7934 7935 7936 7937 7938
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7939
{
P
Peter Zijlstra 已提交
7940 7941
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7942 7943
	switch (action) {
	case CPU_DOWN_PREPARE:
7944
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7945
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7946 7947 7948
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7949
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7950
	case CPU_ONLINE:
7951
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7952
		enable_runtime(cpu_rq(cpu));
7953 7954
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7955 7956 7957 7958 7959 7960 7961
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7962 7963 7964
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7965
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7966

7967 7968 7969 7970 7971
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7972
	get_online_cpus();
7973
	mutex_lock(&sched_domains_mutex);
7974
	arch_init_sched_domains(cpu_active_mask);
7975 7976 7977
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7978
	mutex_unlock(&sched_domains_mutex);
7979
	put_online_cpus();
7980

7981 7982
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7983 7984 7985 7986

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7987
	init_hrtick();
7988 7989

	/* Move init over to a non-isolated CPU */
7990
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7991
		BUG();
I
Ingo Molnar 已提交
7992
	sched_init_granularity();
7993
	free_cpumask_var(non_isolated_cpus);
7994

7995
	init_sched_rt_class();
L
Linus Torvalds 已提交
7996 7997 7998 7999
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8000
	sched_init_granularity();
L
Linus Torvalds 已提交
8001 8002 8003
}
#endif /* CONFIG_SMP */

8004 8005
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
8006 8007 8008 8009 8010 8011 8012
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8013
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8014 8015
{
	cfs_rq->tasks_timeline = RB_ROOT;
8016
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8017 8018
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
8019
	/* allow initial update_cfs_load() to truncate */
8020
#ifdef CONFIG_SMP
8021
	cfs_rq->load_stamp = 1;
8022
#endif
I
Ingo Molnar 已提交
8023
#endif
P
Peter Zijlstra 已提交
8024
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8025 8026
}

P
Peter Zijlstra 已提交
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8040
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8041
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8042
#ifdef CONFIG_SMP
8043
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8044 8045
#endif
#endif
P
Peter Zijlstra 已提交
8046 8047 8048
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8049
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8050 8051 8052 8053
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8054
	rt_rq->rt_runtime = 0;
8055
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8056

8057
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8058
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8059 8060
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8061 8062
}

P
Peter Zijlstra 已提交
8063
#ifdef CONFIG_FAIR_GROUP_SCHED
8064
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8065
				struct sched_entity *se, int cpu,
8066
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8067
{
8068
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8069 8070 8071 8072 8073
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;

	tg->se[cpu] = se;
8074
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
8075 8076 8077
	if (!se)
		return;

8078 8079 8080 8081 8082
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8083
	se->my_q = cfs_rq;
8084
	update_load_set(&se->load, 0);
8085
	se->parent = parent;
P
Peter Zijlstra 已提交
8086
}
8087
#endif
P
Peter Zijlstra 已提交
8088

8089
#ifdef CONFIG_RT_GROUP_SCHED
8090
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8091
		struct sched_rt_entity *rt_se, int cpu,
8092
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8093
{
8094 8095
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8096 8097 8098
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
8099
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8100 8101

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8102 8103 8104
	if (!rt_se)
		return;

8105 8106 8107 8108 8109
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8110
	rt_se->my_q = rt_rq;
8111
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8112 8113 8114 8115
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8116 8117
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8118
	int i, j;
8119 8120 8121 8122 8123 8124 8125
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8126
#endif
8127
#ifdef CONFIG_CPUMASK_OFFSTACK
8128
	alloc_size += num_possible_cpus() * cpumask_size();
8129 8130
#endif
	if (alloc_size) {
8131
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8132 8133

#ifdef CONFIG_FAIR_GROUP_SCHED
8134
		root_task_group.se = (struct sched_entity **)ptr;
8135 8136
		ptr += nr_cpu_ids * sizeof(void **);

8137
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8138
		ptr += nr_cpu_ids * sizeof(void **);
8139

8140
#endif /* CONFIG_FAIR_GROUP_SCHED */
8141
#ifdef CONFIG_RT_GROUP_SCHED
8142
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8143 8144
		ptr += nr_cpu_ids * sizeof(void **);

8145
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8146 8147
		ptr += nr_cpu_ids * sizeof(void **);

8148
#endif /* CONFIG_RT_GROUP_SCHED */
8149 8150 8151 8152 8153 8154
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8155
	}
I
Ingo Molnar 已提交
8156

G
Gregory Haskins 已提交
8157 8158 8159 8160
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8161 8162 8163 8164
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8165
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8166
			global_rt_period(), global_rt_runtime());
8167
#endif /* CONFIG_RT_GROUP_SCHED */
8168

D
Dhaval Giani 已提交
8169
#ifdef CONFIG_CGROUP_SCHED
8170 8171
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8172
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8173
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8174

8175
	for_each_possible_cpu(i) {
8176
		struct rq *rq;
L
Linus Torvalds 已提交
8177 8178

		rq = cpu_rq(i);
8179
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8180
		rq->nr_running = 0;
8181 8182
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
8183
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8184
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8185
#ifdef CONFIG_FAIR_GROUP_SCHED
8186
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8187
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8188
		/*
8189
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8190 8191 8192 8193
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8194
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8195 8196 8197
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8198
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8199 8200 8201
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8202
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8203
		 *
8204 8205
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8206
		 */
8207
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8208 8209 8210
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8211
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8212
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8213
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8214
#endif
L
Linus Torvalds 已提交
8215

I
Ingo Molnar 已提交
8216 8217
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8218 8219 8220

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8221
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8222
		rq->sd = NULL;
G
Gregory Haskins 已提交
8223
		rq->rd = NULL;
8224
		rq->cpu_power = SCHED_LOAD_SCALE;
8225
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8226
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8227
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8228
		rq->push_cpu = 0;
8229
		rq->cpu = i;
8230
		rq->online = 0;
8231 8232
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8233
		rq_attach_root(rq, &def_root_domain);
8234 8235 8236 8237
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8238
#endif
P
Peter Zijlstra 已提交
8239
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8240 8241 8242
		atomic_set(&rq->nr_iowait, 0);
	}

8243
	set_load_weight(&init_task);
8244

8245 8246 8247 8248
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8249
#ifdef CONFIG_SMP
8250
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8251 8252
#endif

8253
#ifdef CONFIG_RT_MUTEXES
8254
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8255 8256
#endif

L
Linus Torvalds 已提交
8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8270 8271 8272

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8273 8274 8275 8276
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8277

8278
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8279
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8280
#ifdef CONFIG_SMP
8281
#ifdef CONFIG_NO_HZ
8282 8283 8284 8285 8286
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8287
#endif
R
Rusty Russell 已提交
8288 8289 8290
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8291
#endif /* SMP */
8292

8293
	scheduler_running = 1;
L
Linus Torvalds 已提交
8294 8295 8296
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8297 8298
static inline int preempt_count_equals(int preempt_offset)
{
8299
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8300

A
Arnd Bergmann 已提交
8301
	return (nested == preempt_offset);
8302 8303
}

8304
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8305
{
8306
#ifdef in_atomic
L
Linus Torvalds 已提交
8307 8308
	static unsigned long prev_jiffy;	/* ratelimiting */

8309 8310
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8311 8312 8313 8314 8315
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8316 8317 8318 8319 8320 8321 8322
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8323 8324 8325 8326 8327

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8328 8329 8330 8331 8332 8333
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8334 8335
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8336 8337
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8338
	int on_rq;
8339

8340 8341 8342 8343 8344 8345 8346 8347
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8348 8349

	check_class_changed(rq, p, prev_class, old_prio);
8350 8351
}

L
Linus Torvalds 已提交
8352 8353
void normalize_rt_tasks(void)
{
8354
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8355
	unsigned long flags;
8356
	struct rq *rq;
L
Linus Torvalds 已提交
8357

8358
	read_lock_irqsave(&tasklist_lock, flags);
8359
	do_each_thread(g, p) {
8360 8361 8362 8363 8364 8365
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8366 8367
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8368 8369 8370
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8371
#endif
I
Ingo Molnar 已提交
8372 8373 8374 8375 8376 8377 8378 8379

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8380
			continue;
I
Ingo Molnar 已提交
8381
		}
L
Linus Torvalds 已提交
8382

8383
		raw_spin_lock(&p->pi_lock);
8384
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8385

8386
		normalize_task(rq, p);
8387

8388
		__task_rq_unlock(rq);
8389
		raw_spin_unlock(&p->pi_lock);
8390 8391
	} while_each_thread(g, p);

8392
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8393 8394 8395
}

#endif /* CONFIG_MAGIC_SYSRQ */
8396

8397
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8398
/*
8399
 * These functions are only useful for the IA64 MCA handling, or kdb.
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8414
struct task_struct *curr_task(int cpu)
8415 8416 8417 8418
{
	return cpu_curr(cpu);
}

8419 8420 8421
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8422 8423 8424 8425 8426 8427
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8428 8429
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8430 8431 8432 8433 8434 8435 8436
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8437
void set_curr_task(int cpu, struct task_struct *p)
8438 8439 8440 8441 8442
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8443

8444 8445
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8460 8461
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8462 8463
{
	struct cfs_rq *cfs_rq;
8464
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8465 8466
	int i;

8467
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8468 8469
	if (!tg->cfs_rq)
		goto err;
8470
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8471 8472
	if (!tg->se)
		goto err;
8473 8474

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8475 8476

	for_each_possible_cpu(i) {
8477 8478
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8479 8480 8481
		if (!cfs_rq)
			goto err;

8482 8483
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8484
		if (!se)
8485
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8486

8487
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8488 8489 8490 8491
	}

	return 1;

P
Peter Zijlstra 已提交
8492
err_free_rq:
8493
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8494
err:
8495 8496 8497 8498 8499
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8511
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8512
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8513
}
8514
#else /* !CONFG_FAIR_GROUP_SCHED */
8515 8516 8517 8518
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8519 8520
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8521 8522 8523 8524 8525 8526 8527
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8528
#endif /* CONFIG_FAIR_GROUP_SCHED */
8529 8530

#ifdef CONFIG_RT_GROUP_SCHED
8531 8532 8533 8534
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8535 8536
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8548 8549
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8550 8551
{
	struct rt_rq *rt_rq;
8552
	struct sched_rt_entity *rt_se;
8553 8554 8555
	struct rq *rq;
	int i;

8556
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8557 8558
	if (!tg->rt_rq)
		goto err;
8559
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8560 8561 8562
	if (!tg->rt_se)
		goto err;

8563 8564
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8565 8566 8567 8568

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8569 8570
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8571 8572
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8573

8574 8575
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8576
		if (!rt_se)
8577
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8578

8579
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8580 8581
	}

8582 8583
	return 1;

P
Peter Zijlstra 已提交
8584
err_free_rq:
8585
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8586
err:
8587 8588
	return 0;
}
8589
#else /* !CONFIG_RT_GROUP_SCHED */
8590 8591 8592 8593
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8594 8595
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8596 8597 8598
{
	return 1;
}
8599
#endif /* CONFIG_RT_GROUP_SCHED */
8600

D
Dhaval Giani 已提交
8601
#ifdef CONFIG_CGROUP_SCHED
8602 8603 8604 8605
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8606
	autogroup_free(tg);
8607 8608 8609 8610
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8611
struct task_group *sched_create_group(struct task_group *parent)
8612 8613 8614 8615 8616 8617 8618 8619
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8620
	if (!alloc_fair_sched_group(tg, parent))
8621 8622
		goto err;

8623
	if (!alloc_rt_sched_group(tg, parent))
8624 8625
		goto err;

8626
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8627
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8628 8629 8630 8631 8632

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8633
	list_add_rcu(&tg->siblings, &parent->children);
8634
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8635

8636
	return tg;
S
Srivatsa Vaddagiri 已提交
8637 8638

err:
P
Peter Zijlstra 已提交
8639
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8640 8641 8642
	return ERR_PTR(-ENOMEM);
}

8643
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8644
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8645 8646
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8647
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8648 8649
}

8650
/* Destroy runqueue etc associated with a task group */
8651
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8652
{
8653
	unsigned long flags;
8654
	int i;
S
Srivatsa Vaddagiri 已提交
8655

8656 8657
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8658
		unregister_fair_sched_group(tg, i);
8659 8660

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8661
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8662
	list_del_rcu(&tg->siblings);
8663
	spin_unlock_irqrestore(&task_group_lock, flags);
8664 8665

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8666
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8667 8668
}

8669
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8670 8671 8672
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8673 8674
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8675 8676 8677 8678 8679 8680 8681
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8682
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8683 8684
	on_rq = tsk->se.on_rq;

8685
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8686
		dequeue_task(rq, tsk, 0);
8687 8688
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8689

P
Peter Zijlstra 已提交
8690
#ifdef CONFIG_FAIR_GROUP_SCHED
8691 8692 8693
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8694
#endif
8695
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8696

8697 8698 8699
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8700
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8701 8702 8703

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8704
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8705

8706
#ifdef CONFIG_FAIR_GROUP_SCHED
8707 8708
static DEFINE_MUTEX(shares_mutex);

8709
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8710 8711
{
	int i;
8712
	unsigned long flags;
8713

8714 8715 8716 8717 8718 8719
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8720 8721
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8722 8723
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8724

8725
	mutex_lock(&shares_mutex);
8726
	if (tg->shares == shares)
8727
		goto done;
S
Srivatsa Vaddagiri 已提交
8728

8729
	tg->shares = shares;
8730
	for_each_possible_cpu(i) {
8731 8732 8733 8734 8735 8736 8737
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8738
			update_cfs_shares(group_cfs_rq(se));
8739
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8740
	}
S
Srivatsa Vaddagiri 已提交
8741

8742
done:
8743
	mutex_unlock(&shares_mutex);
8744
	return 0;
S
Srivatsa Vaddagiri 已提交
8745 8746
}

8747 8748 8749 8750
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8751
#endif
8752

8753
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8754
/*
P
Peter Zijlstra 已提交
8755
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8756
 */
P
Peter Zijlstra 已提交
8757 8758 8759 8760 8761
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8762
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8763

P
Peter Zijlstra 已提交
8764
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8765 8766
}

P
Peter Zijlstra 已提交
8767 8768
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8769
{
P
Peter Zijlstra 已提交
8770
	struct task_struct *g, *p;
8771

P
Peter Zijlstra 已提交
8772 8773 8774 8775
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8776

P
Peter Zijlstra 已提交
8777 8778
	return 0;
}
8779

P
Peter Zijlstra 已提交
8780 8781 8782 8783 8784
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8785

P
Peter Zijlstra 已提交
8786 8787 8788 8789 8790 8791
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8792

P
Peter Zijlstra 已提交
8793 8794
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8795

P
Peter Zijlstra 已提交
8796 8797 8798
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8799 8800
	}

8801 8802 8803 8804 8805
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8806

8807 8808 8809
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8810 8811
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8812

P
Peter Zijlstra 已提交
8813
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8814

8815 8816 8817 8818 8819
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8820

8821 8822 8823
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8824 8825 8826
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8827

P
Peter Zijlstra 已提交
8828 8829 8830 8831
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8832

P
Peter Zijlstra 已提交
8833
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8834
	}
P
Peter Zijlstra 已提交
8835

P
Peter Zijlstra 已提交
8836 8837 8838 8839
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8840 8841
}

P
Peter Zijlstra 已提交
8842
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8843
{
P
Peter Zijlstra 已提交
8844 8845 8846 8847 8848 8849 8850
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8851 8852
}

8853 8854
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8855
{
P
Peter Zijlstra 已提交
8856
	int i, err = 0;
P
Peter Zijlstra 已提交
8857 8858

	mutex_lock(&rt_constraints_mutex);
8859
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8860 8861
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8862
		goto unlock;
P
Peter Zijlstra 已提交
8863

8864
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8865 8866
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8867 8868 8869 8870

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8871
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8872
		rt_rq->rt_runtime = rt_runtime;
8873
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8874
	}
8875
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8876
unlock:
8877
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8878 8879 8880
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8881 8882
}

8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8895 8896 8897 8898
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8899
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8900 8901
		return -1;

8902
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8903 8904 8905
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8906 8907 8908 8909 8910 8911 8912 8913

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8914 8915 8916
	if (rt_period == 0)
		return -EINVAL;

8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8931
	u64 runtime, period;
8932 8933
	int ret = 0;

8934 8935 8936
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8937 8938 8939 8940 8941 8942 8943 8944
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8945

8946
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8947
	read_lock(&tasklist_lock);
8948
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8949
	read_unlock(&tasklist_lock);
8950 8951 8952 8953
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8954 8955 8956 8957 8958 8959 8960 8961 8962 8963

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8964
#else /* !CONFIG_RT_GROUP_SCHED */
8965 8966
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8967 8968 8969
	unsigned long flags;
	int i;

8970 8971 8972
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8973 8974 8975 8976 8977 8978 8979
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8980
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8981 8982 8983
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8984
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8985
		rt_rq->rt_runtime = global_rt_runtime();
8986
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8987
	}
8988
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8989

8990 8991
	return 0;
}
8992
#endif /* CONFIG_RT_GROUP_SCHED */
8993 8994

int sched_rt_handler(struct ctl_table *table, int write,
8995
		void __user *buffer, size_t *lenp,
8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

9006
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9023

9024
#ifdef CONFIG_CGROUP_SCHED
9025 9026

/* return corresponding task_group object of a cgroup */
9027
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9028
{
9029 9030
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9031 9032 9033
}

static struct cgroup_subsys_state *
9034
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9035
{
9036
	struct task_group *tg, *parent;
9037

9038
	if (!cgrp->parent) {
9039
		/* This is early initialization for the top cgroup */
9040
		return &root_task_group.css;
9041 9042
	}

9043 9044
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9045 9046 9047 9048 9049 9050
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9051 9052
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9053
{
9054
	struct task_group *tg = cgroup_tg(cgrp);
9055 9056 9057 9058

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9059
static int
9060
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9061
{
9062
#ifdef CONFIG_RT_GROUP_SCHED
9063
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9064 9065
		return -EINVAL;
#else
9066 9067 9068
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9069
#endif
9070 9071
	return 0;
}
9072

9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
9092 9093 9094 9095
	return 0;
}

static void
9096
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9097 9098
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
9099 9100
{
	sched_move_task(tsk);
9101 9102 9103 9104 9105 9106 9107 9108
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
9109 9110
}

9111
static void
9112 9113
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9126
#ifdef CONFIG_FAIR_GROUP_SCHED
9127
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9128
				u64 shareval)
9129
{
9130
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9131 9132
}

9133
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9134
{
9135
	struct task_group *tg = cgroup_tg(cgrp);
9136 9137 9138

	return (u64) tg->shares;
}
9139
#endif /* CONFIG_FAIR_GROUP_SCHED */
9140

9141
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9142
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9143
				s64 val)
P
Peter Zijlstra 已提交
9144
{
9145
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9146 9147
}

9148
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9149
{
9150
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9151
}
9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9163
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9164

9165
static struct cftype cpu_files[] = {
9166
#ifdef CONFIG_FAIR_GROUP_SCHED
9167 9168
	{
		.name = "shares",
9169 9170
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9171
	},
9172 9173
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9174
	{
P
Peter Zijlstra 已提交
9175
		.name = "rt_runtime_us",
9176 9177
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9178
	},
9179 9180
	{
		.name = "rt_period_us",
9181 9182
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9183
	},
9184
#endif
9185 9186 9187 9188
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9189
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9190 9191 9192
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9193 9194 9195 9196 9197
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
9198
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9199 9200
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9201 9202 9203
	.early_init	= 1,
};

9204
#endif	/* CONFIG_CGROUP_SCHED */
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9215
/* track cpu usage of a group of tasks and its child groups */
9216 9217 9218
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9219
	u64 __percpu *cpuusage;
9220
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9221
	struct cpuacct *parent;
9222 9223 9224 9225 9226
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9227
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9228
{
9229
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9242
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9243 9244
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9245
	int i;
9246 9247

	if (!ca)
9248
		goto out;
9249 9250

	ca->cpuusage = alloc_percpu(u64);
9251 9252 9253 9254 9255 9256
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9257

9258 9259 9260
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9261
	return &ca->css;
9262 9263 9264 9265 9266 9267 9268 9269 9270

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9271 9272 9273
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9274
static void
9275
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9276
{
9277
	struct cpuacct *ca = cgroup_ca(cgrp);
9278
	int i;
9279

9280 9281
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9282 9283 9284 9285
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9286 9287
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9288
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9289 9290 9291 9292 9293 9294
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9295
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9296
	data = *cpuusage;
9297
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9298 9299 9300 9301 9302 9303 9304 9305 9306
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9307
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9308 9309 9310 9311 9312

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9313
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9314
	*cpuusage = val;
9315
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9316 9317 9318 9319 9320
#else
	*cpuusage = val;
#endif
}

9321
/* return total cpu usage (in nanoseconds) of a group */
9322
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9323
{
9324
	struct cpuacct *ca = cgroup_ca(cgrp);
9325 9326 9327
	u64 totalcpuusage = 0;
	int i;

9328 9329
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9330 9331 9332 9333

	return totalcpuusage;
}

9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9346 9347
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9348 9349 9350 9351 9352

out:
	return err;
}

9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9387 9388 9389
static struct cftype files[] = {
	{
		.name = "usage",
9390 9391
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9392
	},
9393 9394 9395 9396
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9397 9398 9399 9400
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9401 9402
};

9403
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9404
{
9405
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9406 9407 9408 9409 9410 9411 9412 9413 9414 9415
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9416
	int cpu;
9417

L
Li Zefan 已提交
9418
	if (unlikely(!cpuacct_subsys.active))
9419 9420
		return;

9421
	cpu = task_cpu(tsk);
9422 9423 9424

	rcu_read_lock();

9425 9426
	ca = task_ca(tsk);

9427
	for (; ca; ca = ca->parent) {
9428
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9429 9430
		*cpuusage += cputime;
	}
9431 9432

	rcu_read_unlock();
9433 9434
}

9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9452 9453 9454 9455 9456 9457 9458
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9459
	int batch = CPUACCT_BATCH;
9460 9461 9462 9463 9464 9465 9466 9467

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9468
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9469 9470 9471 9472 9473
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9474 9475 9476 9477 9478 9479 9480 9481
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9482