sched.c 223.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
G
Glauber Costa 已提交
78 79 80
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
81

82
#include "sched_cpupri.h"
T
Tejun Heo 已提交
83
#include "workqueue_sched.h"
84
#include "sched_autogroup.h"
85

86
#define CREATE_TRACE_POINTS
87
#include <trace/events/sched.h>
88

L
Linus Torvalds 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
108
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
109
 */
110
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
111

I
Ingo Molnar 已提交
112 113 114
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
115 116 117
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
118
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
119 120 121
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
122

123 124 125 126 127
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

128 129
static inline int rt_policy(int policy)
{
130
	if (policy == SCHED_FIFO || policy == SCHED_RR)
131 132 133 134 135 136 137 138 139
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
140
/*
I
Ingo Molnar 已提交
141
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
142
 */
I
Ingo Molnar 已提交
143 144 145 146 147
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

148
struct rt_bandwidth {
I
Ingo Molnar 已提交
149
	/* nests inside the rq lock: */
150
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
151 152 153
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

187
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
188

189 190 191 192 193
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

194 195 196
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
197 198 199 200 201 202
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

203
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
204 205 206 207 208
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

209
	raw_spin_lock(&rt_b->rt_runtime_lock);
210
	for (;;) {
211 212 213
		unsigned long delta;
		ktime_t soft, hard;

214 215 216 217 218
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
219 220 221 222 223

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
224
				HRTIMER_MODE_ABS_PINNED, 0);
225
	}
226
	raw_spin_unlock(&rt_b->rt_runtime_lock);
227 228 229 230 231 232 233 234 235
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

236
/*
237
 * sched_domains_mutex serializes calls to init_sched_domains,
238 239 240 241
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
242
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
243

244 245
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
246 247
struct cfs_rq;

P
Peter Zijlstra 已提交
248 249
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
250
/* task group related information */
251
struct task_group {
252
	struct cgroup_subsys_state css;
253

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
260 261

	atomic_t load_weight;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
P
Peter Zijlstra 已提交
273 274 275 276

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
277 278 279 280

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
S
Srivatsa Vaddagiri 已提交
281 282
};

283
/* task_group_lock serializes the addition/removal of task groups */
284
static DEFINE_SPINLOCK(task_group_lock);
285

286 287
#ifdef CONFIG_FAIR_GROUP_SCHED

288
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
289

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298 299
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
300

301
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
302 303
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
308

D
Dhaval Giani 已提交
309
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
310

I
Ingo Molnar 已提交
311 312 313 314 315 316
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
317
	u64 min_vruntime;
318 319 320
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
321 322 323

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
324 325 326 327 328 329

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
330 331
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
332
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
333

334
#ifdef	CONFIG_SCHED_DEBUG
P
Peter Zijlstra 已提交
335
	unsigned int nr_spread_over;
336
#endif
P
Peter Zijlstra 已提交
337

338
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
339 340
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
341 342
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
343 344 345 346 347 348
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
349
	int on_list;
I
Ingo Molnar 已提交
350 351
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
352 353 354

#ifdef CONFIG_SMP
	/*
355
	 * the part of load.weight contributed by tasks
356
	 */
357
	unsigned long task_weight;
358

359 360 361 362 363 364 365
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
366

367
	/*
368 369 370 371 372
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
373
	 */
P
Peter Zijlstra 已提交
374 375
	u64 load_avg;
	u64 load_period;
376
	u64 load_stamp, load_last, load_unacc_exec_time;
377

P
Peter Zijlstra 已提交
378
	unsigned long load_contribution;
379
#endif
I
Ingo Molnar 已提交
380 381
#endif
};
L
Linus Torvalds 已提交
382

I
Ingo Molnar 已提交
383 384 385
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
386
	unsigned long rt_nr_running;
387
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
388 389
	struct {
		int curr; /* highest queued rt task prio */
390
#ifdef CONFIG_SMP
391
		int next; /* next highest */
392
#endif
393
	} highest_prio;
P
Peter Zijlstra 已提交
394
#endif
P
Peter Zijlstra 已提交
395
#ifdef CONFIG_SMP
396
	unsigned long rt_nr_migratory;
397
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
398
	int overloaded;
399
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
400
#endif
P
Peter Zijlstra 已提交
401
	int rt_throttled;
P
Peter Zijlstra 已提交
402
	u64 rt_time;
P
Peter Zijlstra 已提交
403
	u64 rt_runtime;
I
Ingo Molnar 已提交
404
	/* Nests inside the rq lock: */
405
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
406

407
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
408 409
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
410 411 412 413
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
414 415
};

G
Gregory Haskins 已提交
416 417 418 419
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
420 421
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
422 423 424 425 426 427
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
428
	atomic_t rto_count;
429
	struct rcu_head rcu;
430 431
	cpumask_var_t span;
	cpumask_var_t online;
432

I
Ingo Molnar 已提交
433
	/*
434 435 436
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
437
	cpumask_var_t rto_mask;
438
	struct cpupri cpupri;
G
Gregory Haskins 已提交
439 440
};

441 442 443 444
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
445 446
static struct root_domain def_root_domain;

447
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
448

L
Linus Torvalds 已提交
449 450 451 452 453 454 455
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
456
struct rq {
457
	/* runqueue lock: */
458
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
459 460 461 462 463 464

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
465 466
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
467
	unsigned long last_load_update_tick;
468
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
469
	u64 nohz_stamp;
470
	unsigned char nohz_balance_kick;
471
#endif
472
	int skip_clock_update;
473

474 475
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
476 477 478 479
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
480 481
	struct rt_rq rt;

I
Ingo Molnar 已提交
482
#ifdef CONFIG_FAIR_GROUP_SCHED
483 484
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
485 486
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
487
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
488 489 490 491 492 493 494 495 496 497
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

498
	struct task_struct *curr, *idle, *stop;
499
	unsigned long next_balance;
L
Linus Torvalds 已提交
500
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
501

502
	u64 clock;
503
	u64 clock_task;
I
Ingo Molnar 已提交
504

L
Linus Torvalds 已提交
505 506 507
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
508
	struct root_domain *rd;
L
Linus Torvalds 已提交
509 510
	struct sched_domain *sd;

511 512
	unsigned long cpu_power;

513
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
514
	/* For active balancing */
515
	int post_schedule;
L
Linus Torvalds 已提交
516 517
	int active_balance;
	int push_cpu;
518
	struct cpu_stop_work active_balance_work;
519 520
	/* cpu of this runqueue: */
	int cpu;
521
	int online;
L
Linus Torvalds 已提交
522

523
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
524

525 526
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
527 528
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
529 530
#endif

531 532 533
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
G
Glauber Costa 已提交
534 535 536
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
537 538 539
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif
540

541 542 543 544
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
545
#ifdef CONFIG_SCHED_HRTICK
546 547 548 549
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
550 551 552
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
553 554 555
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
556 557
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
558 559

	/* sys_sched_yield() stats */
560
	unsigned int yld_count;
L
Linus Torvalds 已提交
561 562

	/* schedule() stats */
563 564 565
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
566 567

	/* try_to_wake_up() stats */
568 569
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
570
#endif
571 572 573 574

#ifdef CONFIG_SMP
	struct task_struct *wake_list;
#endif
L
Linus Torvalds 已提交
575 576
};

577
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
578

579

580
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
581

582 583 584 585 586 587 588 589 590
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

591
#define rcu_dereference_check_sched_domain(p) \
592 593 594
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
595 596
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
597
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
598 599 600 601
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
602
#define for_each_domain(cpu, __sd) \
603
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
604 605 606 607 608

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
609
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
610

611 612 613 614 615
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
616 617 618 619
 * We use task_subsys_state_check() and extend the RCU verification with
 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
 * task it moves into the cgroup. Therefore by holding either of those locks,
 * we pin the task to the current cgroup.
620 621 622
 */
static inline struct task_group *task_group(struct task_struct *p)
{
623
	struct task_group *tg;
624 625 626
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
627 628
			lockdep_is_held(&p->pi_lock) ||
			lockdep_is_held(&task_rq(p)->lock));
629 630 631
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

658
static void update_rq_clock_task(struct rq *rq, s64 delta);
659

660
static void update_rq_clock(struct rq *rq)
661
{
662
	s64 delta;
663

664
	if (rq->skip_clock_update > 0)
665
		return;
666

667 668 669
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
670 671
}

I
Ingo Molnar 已提交
672 673 674 675 676 677 678 679 680
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
681
/**
682
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
683
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
684 685 686 687
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
688
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
689
{
690
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
691 692
}

I
Ingo Molnar 已提交
693 694 695
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
696 697 698 699

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
700
enum {
P
Peter Zijlstra 已提交
701
#include "sched_features.h"
I
Ingo Molnar 已提交
702 703
};

P
Peter Zijlstra 已提交
704 705 706 707 708
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
709
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

719
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
720 721 722 723 724 725
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
726
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
727 728 729 730
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
731 732 733
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
734
	}
L
Li Zefan 已提交
735
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
736

L
Li Zefan 已提交
737
	return 0;
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
745
	char *cmp;
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754 755
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
756
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
757

H
Hillf Danton 已提交
758
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
759 760 761 762 763
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
764
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

776
	*ppos += cnt;
P
Peter Zijlstra 已提交
777 778 779 780

	return cnt;
}

L
Li Zefan 已提交
781 782 783 784 785
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

786
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
787 788 789 790 791
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
806

807 808 809 810 811 812
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

813 814 815 816 817 818 819 820
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
821
/*
P
Peter Zijlstra 已提交
822
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
823 824
 * default: 1s
 */
P
Peter Zijlstra 已提交
825
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
826

827 828
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
829 830 831 832 833
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
834

835 836 837 838 839 840 841
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
842
	if (sysctl_sched_rt_runtime < 0)
843 844 845 846
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
847

L
Linus Torvalds 已提交
848
#ifndef prepare_arch_switch
849 850 851 852 853 854
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

855 856 857 858 859
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

860
static inline int task_running(struct rq *rq, struct task_struct *p)
861
{
P
Peter Zijlstra 已提交
862 863 864
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
865
	return task_current(rq, p);
P
Peter Zijlstra 已提交
866
#endif
867 868
}

P
Peter Zijlstra 已提交
869
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
870
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871
{
P
Peter Zijlstra 已提交
872 873 874 875 876 877 878 879
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
880 881
}

882
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883
{
P
Peter Zijlstra 已提交
884 885 886 887 888 889 890 891 892
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
893 894 895 896
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
897 898 899 900 901 902 903
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

904
	raw_spin_unlock_irq(&rq->lock);
905 906 907
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911 912 913 914 915
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
916
	next->on_cpu = 1;
917 918
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919
	raw_spin_unlock_irq(&rq->lock);
920
#else
921
	raw_spin_unlock(&rq->lock);
922 923 924
#endif
}

925
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 927 928
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
929
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
930 931 932 933
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
934
	prev->on_cpu = 0;
935 936 937
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
938
#endif
939 940
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
941

942
/*
943
 * __task_rq_lock - lock the rq @p resides on.
944
 */
945
static inline struct rq *__task_rq_lock(struct task_struct *p)
946 947
	__acquires(rq->lock)
{
948 949
	struct rq *rq;

950 951
	lockdep_assert_held(&p->pi_lock);

952
	for (;;) {
953
		rq = task_rq(p);
954
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
955
		if (likely(rq == task_rq(p)))
956
			return rq;
957
		raw_spin_unlock(&rq->lock);
958 959 960
	}
}

L
Linus Torvalds 已提交
961
/*
962
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
963
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
966 967
	__acquires(rq->lock)
{
968
	struct rq *rq;
L
Linus Torvalds 已提交
969

970
	for (;;) {
971
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
972
		rq = task_rq(p);
973
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
974
		if (likely(rq == task_rq(p)))
975
			return rq;
976 977
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
978 979 980
	}
}

A
Alexey Dobriyan 已提交
981
static void __task_rq_unlock(struct rq *rq)
982 983
	__releases(rq->lock)
{
984
	raw_spin_unlock(&rq->lock);
985 986
}

987 988
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
989
	__releases(rq->lock)
990
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
991
{
992 993
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
994 995 996
}

/*
997
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
998
 */
A
Alexey Dobriyan 已提交
999
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1000 1001
	__acquires(rq->lock)
{
1002
	struct rq *rq;
L
Linus Torvalds 已提交
1003 1004 1005

	local_irq_disable();
	rq = this_rq();
1006
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1007 1008 1009 1010

	return rq;
}

P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1032
	if (!cpu_active(cpu_of(rq)))
1033
		return 0;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1053
	raw_spin_lock(&rq->lock);
1054
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1055
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1057 1058 1059 1060

	return HRTIMER_NORESTART;
}

1061
#ifdef CONFIG_SMP
1062 1063 1064 1065
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1066
{
1067
	struct rq *rq = arg;
1068

1069
	raw_spin_lock(&rq->lock);
1070 1071
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1072
	raw_spin_unlock(&rq->lock);
1073 1074
}

1075 1076 1077 1078 1079 1080
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1081
{
1082 1083
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084

1085
	hrtimer_set_expires(timer, time);
1086 1087 1088 1089

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1090
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 1092
		rq->hrtick_csd_pending = 1;
	}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1107
		hrtick_clear(cpu_rq(cpu));
1108 1109 1110 1111 1112 1113
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1114
static __init void init_hrtick(void)
1115 1116 1117
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1118 1119 1120 1121 1122 1123 1124 1125
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1126
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127
			HRTIMER_MODE_REL_PINNED, 0);
1128
}
1129

A
Andrew Morton 已提交
1130
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1131 1132
{
}
1133
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1134

1135
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1136
{
1137 1138
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1139

1140 1141 1142 1143
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1144

1145 1146
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1147
}
A
Andrew Morton 已提交
1148
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149 1150 1151 1152 1153 1154 1155 1156
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1157 1158 1159
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1160
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1161

I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1175
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1176 1177 1178
{
	int cpu;

1179
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1180

1181
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1182 1183
		return;

1184
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1201
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1202 1203
		return;
	resched_task(cpu_curr(cpu));
1204
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1205
}
1206 1207

#ifdef CONFIG_NO_HZ
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

1222
	rcu_read_lock();
1223
	for_each_domain(cpu, sd) {
1224 1225 1226 1227 1228 1229
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
1230
	}
1231 1232
unlock:
	rcu_read_unlock();
1233 1234
	return cpu;
}
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1267
	set_tsk_need_resched(rq->idle);
1268 1269 1270 1271 1272 1273

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1274

1275
#endif /* CONFIG_NO_HZ */
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1287 1288 1289 1290 1291 1292
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1304
#else /* !CONFIG_SMP */
1305
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1306
{
1307
	assert_raw_spin_locked(&task_rq(p)->lock);
1308
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1309
}
1310 1311 1312 1313

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1314 1315 1316 1317

static void sched_avg_update(struct rq *rq)
{
}
1318
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1319

1320 1321 1322 1323 1324 1325 1326 1327
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1328 1329 1330
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1331
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1332

1333 1334 1335
/*
 * delta *= weight / lw
 */
1336
static unsigned long
1337 1338 1339 1340 1341
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;
1351

1352
	if (!lw->inv_weight) {
1353 1354 1355
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1356
			lw->inv_weight = 1;
1357 1358
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
1359
		else
1360
			lw->inv_weight = WMULT_CONST / w;
1361
	}
1362 1363 1364 1365

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1366
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1367
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1368 1369
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1370
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1371

1372
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1373 1374
}

1375
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1376 1377
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1378
	lw->inv_weight = 0;
1379 1380
}

1381
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1382 1383
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1384
	lw->inv_weight = 0;
1385 1386
}

P
Peter Zijlstra 已提交
1387 1388 1389 1390 1391 1392
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1393 1394 1395 1396
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1397
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1398 1399 1400 1401
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1402 1403
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1413 1414 1415
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1416 1417
 */
static const int prio_to_weight[40] = {
1418 1419 1420 1421 1422 1423 1424 1425
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1426 1427
};

1428 1429 1430 1431 1432 1433 1434
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1435
static const u32 prio_to_wmult[40] = {
1436 1437 1438 1439 1440 1441 1442 1443
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1444
};
1445

1446 1447 1448 1449 1450 1451 1452 1453
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1454 1455
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1456 1457
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1458 1459
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1460 1461
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1462 1463
#endif

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1474
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1475
typedef int (*tg_visitor)(struct task_group *, void *);
1476 1477 1478 1479 1480

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1481
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1482 1483
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1484
	int ret;
1485 1486 1487 1488

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1489 1490 1491
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1492 1493 1494 1495 1496 1497 1498
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1499 1500 1501
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1502 1503 1504 1505 1506

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1507
out_unlock:
1508
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1509 1510

	return ret;
1511 1512
}

P
Peter Zijlstra 已提交
1513 1514 1515
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1516
}
P
Peter Zijlstra 已提交
1517 1518 1519
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1559 1560
static unsigned long power_of(int cpu)
{
1561
	return cpu_rq(cpu)->cpu_power;
1562 1563
}

P
Peter Zijlstra 已提交
1564 1565 1566 1567 1568
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1569
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1570

1571 1572
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1573 1574
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1575 1576 1577 1578

	return rq->avg_load_per_task;
}

1579 1580
#ifdef CONFIG_PREEMPT

1581 1582
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1583
/*
1584 1585 1586 1587 1588 1589
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1590
 */
1591 1592 1593 1594 1595
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1596
	raw_spin_unlock(&this_rq->lock);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 1612 1613 1614 1615 1616
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1617
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618
		if (busiest < this_rq) {
1619 1620 1621 1622
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1623 1624
			ret = 1;
		} else
1625 1626
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1627 1628 1629 1630
	}
	return ret;
}

1631 1632 1633 1634 1635 1636 1637 1638 1639
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1640
		raw_spin_unlock(&this_rq->lock);
1641 1642 1643 1644 1645 1646
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1647 1648 1649
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1650
	raw_spin_unlock(&busiest->lock);
1651 1652
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1729 1730
#endif

1731
static void calc_load_account_idle(struct rq *this_rq);
1732
static void update_sysctl(void);
1733
static int get_update_sysctl_factor(void);
1734
static void update_cpu_load(struct rq *this_rq);
1735

P
Peter Zijlstra 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1749

1750
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1751

1752
#define sched_class_highest (&stop_sched_class)
1753 1754
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1755

1756 1757
#include "sched_stats.h"

1758
static void inc_nr_running(struct rq *rq)
1759 1760 1761 1762
{
	rq->nr_running++;
}

1763
static void dec_nr_running(struct rq *rq)
1764 1765 1766 1767
{
	rq->nr_running--;
}

1768 1769
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
1770 1771 1772
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
1773 1774 1775 1776
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
1777
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
1778
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
1779 1780
		return;
	}
1781

1782
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
1783
	load->inv_weight = prio_to_wmult[prio];
1784 1785
}

1786
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1787
{
1788
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1789
	sched_info_queued(p);
1790
	p->sched_class->enqueue_task(rq, p, flags);
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1794
{
1795
	update_rq_clock(rq);
1796
	sched_info_dequeued(p);
1797
	p->sched_class->dequeue_task(rq, p, flags);
1798 1799
}

1800 1801 1802
/*
 * activate_task - move a task to the runqueue.
 */
1803
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1804 1805 1806 1807
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1808
	enqueue_task(rq, p, flags);
1809 1810 1811 1812 1813 1814
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1815
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1816 1817 1818 1819
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1820
	dequeue_task(rq, p, flags);
1821 1822 1823
	dec_nr_running(rq);
}

1824 1825
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1826 1827 1828 1829 1830 1831 1832
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1833 1834 1835
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1836
 */
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1891 1892 1893
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1894
#endif /* CONFIG_64BIT */
1895

1896 1897 1898 1899
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1900 1901 1902
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1903
	s64 delta;
1904 1905 1906 1907 1908 1909 1910 1911
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1912 1913 1914
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1915
	irq_time_write_begin();
1916 1917 1918 1919 1920 1921 1922
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1923
		__this_cpu_add(cpu_hardirq_time, delta);
1924
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1925
		__this_cpu_add(cpu_softirq_time, delta);
1926

1927
	irq_time_write_end();
1928 1929
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1930
EXPORT_SYMBOL_GPL(account_system_vtime);
1931

G
Glauber Costa 已提交
1932 1933 1934 1935
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
1936
{
G
Glauber Costa 已提交
1937 1938
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
1939

G
Glauber Costa 已提交
1940 1941 1942 1943
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

1944
static void update_rq_clock_task(struct rq *rq, s64 delta)
1945
{
1946 1947 1948 1949 1950 1951 1952 1953
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1954
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

1996 1997
	rq->clock_task += delta;

1998 1999 2000 2001
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
2002 2003
}

2004
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

2035
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2036

2037 2038
#define sched_clock_irqtime	(0)

2039
#endif
2040

2041 2042 2043
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2044
#include "sched_autogroup.c"
2045
#include "sched_stoptask.c"
2046 2047 2048 2049
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2080
/*
I
Ingo Molnar 已提交
2081
 * __normal_prio - return the priority that is based on the static prio
2082 2083 2084
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2085
	return p->static_prio;
2086 2087
}

2088 2089 2090 2091 2092 2093 2094
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2095
static inline int normal_prio(struct task_struct *p)
2096 2097 2098
{
	int prio;

2099
	if (task_has_rt_policy(p))
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2113
static int effective_prio(struct task_struct *p)
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2126 2127 2128 2129
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2130
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2131 2132 2133 2134
{
	return cpu_curr(task_cpu(p)) == p;
}

2135 2136
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2137
				       int oldprio)
2138 2139 2140
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2141 2142 2143 2144
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2168
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2169 2170 2171
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2172
#ifdef CONFIG_SMP
2173 2174 2175
/*
 * Is this task likely cache-hot:
 */
2176
static int
2177 2178 2179 2180
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2181 2182 2183
	if (p->sched_class != &fair_sched_class)
		return 0;

2184 2185 2186
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2187 2188 2189
	/*
	 * Buddy candidates are cache hot:
	 */
2190
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2191 2192
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2193 2194
		return 1;

2195 2196 2197 2198 2199
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2200 2201 2202 2203 2204
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2205
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2206
{
2207 2208 2209 2210 2211
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2212 2213
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2214 2215

#ifdef CONFIG_LOCKDEP
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
2226 2227 2228
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
2229 2230
#endif

2231
	trace_sched_migrate_task(p, new_cpu);
2232

2233 2234
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
2235
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2236
	}
I
Ingo Molnar 已提交
2237 2238

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2239 2240
}

2241
struct migration_arg {
2242
	struct task_struct *task;
L
Linus Torvalds 已提交
2243
	int dest_cpu;
2244
};
L
Linus Torvalds 已提交
2245

2246 2247
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2248 2249 2250
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2251 2252 2253 2254 2255 2256 2257
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2264
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2265 2266
{
	unsigned long flags;
I
Ingo Molnar 已提交
2267
	int running, on_rq;
R
Roland McGrath 已提交
2268
	unsigned long ncsw;
2269
	struct rq *rq;
L
Linus Torvalds 已提交
2270

2271 2272 2273 2274 2275 2276 2277 2278
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2291 2292 2293
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2294
			cpu_relax();
R
Roland McGrath 已提交
2295
		}
2296

2297 2298 2299 2300 2301 2302
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2303
		trace_sched_wait_task(p);
2304
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2305
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2306
		ncsw = 0;
2307
		if (!match_state || p->state == match_state)
2308
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2309
		task_rq_unlock(rq, p, &flags);
2310

R
Roland McGrath 已提交
2311 2312 2313 2314 2315 2316
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2327

2328 2329 2330 2331 2332
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2333
		 * So if it was still runnable (but just not actively
2334 2335 2336 2337
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2338 2339 2340 2341
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2342 2343
			continue;
		}
2344

2345 2346 2347 2348 2349 2350 2351
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2352 2353

	return ncsw;
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2363
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2369
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2379
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2380
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2381

2382
#ifdef CONFIG_SMP
2383
/*
2384
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2385
 */
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2402 2403 2404 2405 2406 2407 2408 2409 2410
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2411 2412 2413 2414 2415
	}

	return dest_cpu;
}

2416
/*
2417
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2418
 */
2419
static inline
2420
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2421
{
2422
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2435
		     !cpu_online(cpu)))
2436
		cpu = select_fallback_rq(task_cpu(p), p);
2437 2438

	return cpu;
2439
}
2440 2441 2442 2443 2444 2445

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2446 2447
#endif

P
Peter Zijlstra 已提交
2448
static void
2449
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2450
{
P
Peter Zijlstra 已提交
2451
#ifdef CONFIG_SCHEDSTATS
2452 2453
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2464
		rcu_read_lock();
P
Peter Zijlstra 已提交
2465 2466 2467 2468 2469 2470
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
2471
		rcu_read_unlock();
P
Peter Zijlstra 已提交
2472
	}
2473 2474 2475 2476

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2477 2478 2479
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2480
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2481 2482

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2483
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2484 2485 2486 2487 2488 2489

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2490
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2491
	p->on_rq = 1;
2492 2493 2494 2495

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2496 2497
}

2498 2499 2500
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
2501
static void
2502
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
2503
{
2504
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2505 2506 2507 2508 2509 2510 2511
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

2512
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

2558
#ifdef CONFIG_SMP
2559
static void sched_ttwu_do_pending(struct task_struct *list)
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
{
	struct rq *rq = this_rq();

	raw_spin_lock(&rq->lock);

	while (list) {
		struct task_struct *p = list;
		list = list->wake_entry;
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
#ifdef CONFIG_HOTPLUG_CPU

static void sched_ttwu_pending(void)
{
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	sched_ttwu_do_pending(list);
}

#endif /* CONFIG_HOTPLUG_CPU */

2589 2590
void scheduler_ipi(void)
{
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
	sched_ttwu_do_pending(list);
	irq_exit();
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct task_struct *next = rq->wake_list;

	for (;;) {
		struct task_struct *old = next;

		p->wake_entry = next;
		next = cmpxchg(&rq->wake_list, old, p);
		if (next == old)
			break;
	}

	if (!next)
		smp_send_reschedule(cpu);
}
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
2652

2653 2654 2655 2656
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

2657
#if defined(CONFIG_SMP)
2658
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2659
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
2660 2661 2662 2663 2664
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

2665 2666 2667
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
2668 2669 2670
}

/**
L
Linus Torvalds 已提交
2671
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2672
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2673
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2674
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2675 2676 2677 2678 2679 2680 2681
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2682 2683
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2684
 */
2685 2686
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2687 2688
{
	unsigned long flags;
2689
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2690

2691
	smp_wmb();
2692
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2693
	if (!(p->state & state))
L
Linus Torvalds 已提交
2694 2695
		goto out;

2696
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2697 2698
	cpu = task_cpu(p);

2699 2700
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2701 2702

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2703
	/*
2704 2705
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
2706
	 */
2707 2708 2709
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
2710 2711 2712 2713 2714
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
2715
		 */
2716
		if (ttwu_activate_remote(p, wake_flags))
2717
			goto stat;
2718
#else
2719
		cpu_relax();
2720
#endif
2721
	}
2722
	/*
2723
	 * Pairs with the smp_wmb() in finish_lock_switch().
2724
	 */
2725
	smp_rmb();
L
Linus Torvalds 已提交
2726

2727
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2728
	p->state = TASK_WAKING;
2729

2730
	if (p->sched_class->task_waking)
2731
		p->sched_class->task_waking(p);
2732

2733
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2734 2735
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2736
		set_task_cpu(p, cpu);
2737
	}
L
Linus Torvalds 已提交
2738 2739
#endif /* CONFIG_SMP */

2740 2741
	ttwu_queue(p, cpu);
stat:
2742
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2743
out:
2744
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2745 2746 2747 2748

	return success;
}

T
Tejun Heo 已提交
2749 2750 2751 2752
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2753
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2754
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2755
 * the current task.
T
Tejun Heo 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

2765 2766 2767 2768 2769 2770
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
2771
	if (!(p->state & TASK_NORMAL))
2772
		goto out;
T
Tejun Heo 已提交
2773

P
Peter Zijlstra 已提交
2774
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2775 2776
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2777
	ttwu_do_wakeup(rq, p, 0);
2778
	ttwu_stat(p, smp_processor_id(), 0);
2779 2780
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2794
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2795
{
2796
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2797 2798 2799
}
EXPORT_SYMBOL(wake_up_process);

2800
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806 2807
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2808 2809 2810 2811 2812
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2813 2814 2815
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2816 2817
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2818
	p->se.prev_sum_exec_runtime	= 0;
2819
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2820
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2821
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2822 2823

#ifdef CONFIG_SCHEDSTATS
2824
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2825
#endif
N
Nick Piggin 已提交
2826

P
Peter Zijlstra 已提交
2827
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2828

2829 2830 2831
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2832 2833 2834 2835 2836
}

/*
 * fork()/clone()-time setup:
 */
2837
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
2838
{
2839
	unsigned long flags;
I
Ingo Molnar 已提交
2840 2841 2842
	int cpu = get_cpu();

	__sched_fork(p);
2843
	/*
2844
	 * We mark the process as running here. This guarantees that
2845 2846 2847
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2848
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2849

2850 2851 2852 2853
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2854
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2855
			p->policy = SCHED_NORMAL;
2856 2857
			p->normal_prio = p->static_prio;
		}
2858

2859 2860
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2861
			p->normal_prio = p->static_prio;
2862 2863 2864
			set_load_weight(p);
		}

2865 2866 2867 2868 2869 2870
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2871

2872 2873 2874 2875 2876
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2877 2878
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2879

P
Peter Zijlstra 已提交
2880 2881 2882
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2883 2884 2885 2886 2887 2888 2889
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2890
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2891
	set_task_cpu(p, cpu);
2892
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2893

2894
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2895
	if (likely(sched_info_on()))
2896
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2897
#endif
P
Peter Zijlstra 已提交
2898 2899
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2900
#endif
2901
#ifdef CONFIG_PREEMPT_COUNT
2902
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2903
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2904
#endif
2905
#ifdef CONFIG_SMP
2906
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2907
#endif
2908

N
Nick Piggin 已提交
2909
	put_cpu();
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2919
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2920 2921
{
	unsigned long flags;
I
Ingo Molnar 已提交
2922
	struct rq *rq;
2923

2924
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 2926 2927 2928 2929 2930
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2931
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2932 2933
#endif

2934
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2935
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2936
	p->on_rq = 1;
2937
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2938
	check_preempt_curr(rq, p, WF_FORK);
2939
#ifdef CONFIG_SMP
2940 2941
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2942
#endif
2943
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2944 2945
}

2946 2947 2948
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2949
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2950
 * @notifier: notifier struct to register
2951 2952 2953 2954 2955 2956 2957 2958 2959
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2960
 * @notifier: notifier struct to unregister
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2990
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

3002
#endif /* CONFIG_PREEMPT_NOTIFIERS */
3003

3004 3005 3006
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
3007
 * @prev: the current task that is being switched out
3008 3009 3010 3011 3012 3013 3014 3015 3016
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
3017 3018 3019
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
3020
{
3021 3022
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
3023
	fire_sched_out_preempt_notifiers(prev, next);
3024 3025
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
3026
	trace_sched_switch(prev, next);
3027 3028
}

L
Linus Torvalds 已提交
3029 3030
/**
 * finish_task_switch - clean up after a task-switch
3031
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
3032 3033
 * @prev: the thread we just switched away from.
 *
3034 3035 3036 3037
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
3038 3039
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
3040
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
3041 3042 3043
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
3044
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
3045 3046 3047
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
3048
	long prev_state;
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
3054
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
3055 3056
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
3057
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
3058 3059 3060 3061 3062
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
3063
	prev_state = prev->state;
3064
	finish_arch_switch(prev);
3065 3066 3067
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3068
	perf_event_task_sched_in(prev, current);
3069 3070 3071
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3072
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
3073

3074
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
3075 3076
	if (mm)
		mmdrop(mm);
3077
	if (unlikely(prev_state == TASK_DEAD)) {
3078 3079 3080
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
3081
		 */
3082
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
3083
		put_task_struct(prev);
3084
	}
L
Linus Torvalds 已提交
3085 3086
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

3102
		raw_spin_lock_irqsave(&rq->lock, flags);
3103 3104
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
3105
		raw_spin_unlock_irqrestore(&rq->lock, flags);
3106 3107 3108 3109 3110 3111

		rq->post_schedule = 0;
	}
}

#else
3112

3113 3114 3115 3116 3117 3118
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
3119 3120
}

3121 3122
#endif

L
Linus Torvalds 已提交
3123 3124 3125 3126
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
3127
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
3128 3129
	__releases(rq->lock)
{
3130 3131
	struct rq *rq = this_rq();

3132
	finish_task_switch(rq, prev);
3133

3134 3135 3136 3137 3138
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
3139

3140 3141 3142 3143
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
3144
	if (current->set_child_tid)
3145
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
3152
static inline void
3153
context_switch(struct rq *rq, struct task_struct *prev,
3154
	       struct task_struct *next)
L
Linus Torvalds 已提交
3155
{
I
Ingo Molnar 已提交
3156
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
3157

3158
	prepare_task_switch(rq, prev, next);
3159

I
Ingo Molnar 已提交
3160 3161
	mm = next->mm;
	oldmm = prev->active_mm;
3162 3163 3164 3165 3166
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3167
	arch_start_context_switch(prev);
3168

3169
	if (!mm) {
L
Linus Torvalds 已提交
3170 3171 3172 3173 3174 3175
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

3176
	if (!prev->mm) {
L
Linus Torvalds 已提交
3177 3178 3179
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3180 3181 3182 3183 3184 3185 3186
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3187
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3188
#endif
L
Linus Torvalds 已提交
3189 3190 3191 3192

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3193 3194 3195 3196 3197 3198 3199
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3217
}
L
Linus Torvalds 已提交
3218 3219

unsigned long nr_uninterruptible(void)
3220
{
L
Linus Torvalds 已提交
3221
	unsigned long i, sum = 0;
3222

3223
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3224
		sum += cpu_rq(i)->nr_uninterruptible;
3225 3226

	/*
L
Linus Torvalds 已提交
3227 3228
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3229
	 */
L
Linus Torvalds 已提交
3230 3231
	if (unlikely((long)sum < 0))
		sum = 0;
3232

L
Linus Torvalds 已提交
3233
	return sum;
3234 3235
}

L
Linus Torvalds 已提交
3236
unsigned long long nr_context_switches(void)
3237
{
3238 3239
	int i;
	unsigned long long sum = 0;
3240

3241
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3242
		sum += cpu_rq(i)->nr_switches;
3243

L
Linus Torvalds 已提交
3244 3245
	return sum;
}
3246

L
Linus Torvalds 已提交
3247 3248 3249
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3250

3251
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3252
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3253

L
Linus Torvalds 已提交
3254 3255
	return sum;
}
3256

3257
unsigned long nr_iowait_cpu(int cpu)
3258
{
3259
	struct rq *this = cpu_rq(cpu);
3260 3261
	return atomic_read(&this->nr_iowait);
}
3262

3263 3264 3265 3266 3267
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3268

3269

3270 3271 3272 3273 3274
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3291 3292 3293 3294 3295 3296 3297 3298 3299
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3451 3452 3453 3454 3455 3456 3457 3458 3459
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3460 3461 3462 3463

static void calc_global_nohz(unsigned long ticks)
{
}
3464 3465
#endif

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3479 3480 3481
}

/*
3482 3483
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3484
 */
3485
void calc_global_load(unsigned long ticks)
3486
{
3487
	long active;
L
Linus Torvalds 已提交
3488

3489 3490 3491
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3492
		return;
L
Linus Torvalds 已提交
3493

3494 3495
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3496

3497 3498 3499
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3500

3501 3502
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3503

3504
/*
3505 3506
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3507 3508 3509
 */
static void calc_load_account_active(struct rq *this_rq)
{
3510
	long delta;
3511

3512 3513
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3514

3515 3516 3517
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3518
		atomic_long_add(delta, &calc_load_tasks);
3519 3520

	this_rq->calc_load_update += LOAD_FREQ;
3521 3522
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3590
/*
I
Ingo Molnar 已提交
3591
 * Update rq->cpu_load[] statistics. This function is usually called every
3592 3593
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3594
 */
I
Ingo Molnar 已提交
3595
static void update_cpu_load(struct rq *this_rq)
3596
{
3597
	unsigned long this_load = this_rq->load.weight;
3598 3599
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3600
	int i, scale;
3601

I
Ingo Molnar 已提交
3602
	this_rq->nr_load_updates++;
3603

3604 3605 3606 3607 3608 3609 3610
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3611
	/* Update our load: */
3612 3613
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3614
		unsigned long old_load, new_load;
3615

I
Ingo Molnar 已提交
3616
		/* scale is effectively 1 << i now, and >> i divides by scale */
3617

I
Ingo Molnar 已提交
3618
		old_load = this_rq->cpu_load[i];
3619
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3620
		new_load = this_load;
I
Ingo Molnar 已提交
3621 3622 3623 3624 3625 3626
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3627 3628 3629
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3630
	}
3631 3632

	sched_avg_update(this_rq);
3633 3634 3635 3636 3637
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3638

3639
	calc_load_account_active(this_rq);
3640 3641
}

I
Ingo Molnar 已提交
3642
#ifdef CONFIG_SMP
3643

3644
/*
P
Peter Zijlstra 已提交
3645 3646
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3647
 */
P
Peter Zijlstra 已提交
3648
void sched_exec(void)
3649
{
P
Peter Zijlstra 已提交
3650
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3651
	unsigned long flags;
3652
	int dest_cpu;
3653

3654
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3655
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3656 3657
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3658

3659
	if (likely(cpu_active(dest_cpu))) {
3660
		struct migration_arg arg = { p, dest_cpu };
3661

3662 3663
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3664 3665
		return;
	}
3666
unlock:
3667
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3668
}
I
Ingo Molnar 已提交
3669

L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3677
 * Return any ns on the sched_clock that have not yet been accounted in
3678
 * @p in case that task is currently running.
3679 3680
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3681
 */
3682 3683 3684 3685 3686 3687
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3688
		ns = rq->clock_task - p->se.exec_start;
3689 3690 3691 3692 3693 3694 3695
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3696
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3697 3698
{
	unsigned long flags;
3699
	struct rq *rq;
3700
	u64 ns = 0;
3701

3702
	rq = task_rq_lock(p, &flags);
3703
	ns = do_task_delta_exec(p, rq);
3704
	task_rq_unlock(rq, p, &flags);
3705

3706 3707
	return ns;
}
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3722
	task_rq_unlock(rq, p, &flags);
3723 3724 3725

	return ns;
}
3726

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3746
	task_rq_unlock(rq, p, &flags);
3747

L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753 3754
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3755
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3756
 */
3757 3758
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3759 3760 3761 3762
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3763
	/* Add user time to process. */
L
Linus Torvalds 已提交
3764
	p->utime = cputime_add(p->utime, cputime);
3765
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3766
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3774 3775

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3776 3777
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3778 3779
}

3780 3781 3782 3783
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3784
 * @cputime_scaled: cputime scaled by cpu frequency
3785
 */
3786 3787
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3788 3789 3790 3791 3792 3793
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3794
	/* Add guest time to process. */
3795
	p->utime = cputime_add(p->utime, cputime);
3796
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3797
	account_group_user_time(p, cputime);
3798 3799
	p->gtime = cputime_add(p->gtime, cputime);

3800
	/* Add guest time to cpustat. */
3801 3802 3803 3804 3805 3806 3807
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3808 3809
}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3836 3837 3838 3839 3840
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3841
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3842 3843
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3844
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3845 3846
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3847
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3848

3849
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3850
		account_guest_time(p, cputime, cputime_scaled);
3851 3852
		return;
	}
3853

L
Linus Torvalds 已提交
3854
	if (hardirq_count() - hardirq_offset)
3855
		target_cputime64 = &cpustat->irq;
3856
	else if (in_serving_softirq())
3857
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3858
	else
3859
		target_cputime64 = &cpustat->system;
3860

3861
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3862 3863
}

3864
/*
L
Linus Torvalds 已提交
3865
 * Account for involuntary wait time.
3866
 * @cputime: the cpu time spent in involuntary wait
3867
 */
3868
void account_steal_time(cputime_t cputime)
3869
{
3870 3871 3872 3873
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3874 3875
}

L
Linus Torvalds 已提交
3876
/*
3877 3878
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3879
 */
3880
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3881 3882
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3883
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3884
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3885

3886 3887 3888 3889
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3890 3891
}

G
Glauber Costa 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

3911 3912
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

G
Glauber Costa 已提交
3942 3943 3944
	if (steal_account_process_tick())
		return;

3945 3946 3947 3948
	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3949 3950 3951 3952 3953 3954 3955 3956
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3977
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3978 3979 3980
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3981
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3982 3983 3984 3985 3986 3987 3988 3989

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3990
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3991 3992
	struct rq *rq = this_rq();

3993 3994 3995 3996 3997
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
3998 3999 4000
	if (steal_account_process_tick())
		return;

4001
	if (user_tick)
4002
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4003
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4004
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4005 4006
				    one_jiffy_scaled);
	else
4007
		account_idle_time(cputime_one_jiffy);
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
4026 4027 4028 4029 4030 4031

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

4032
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4033 4034
}

4035 4036
#endif

4037 4038 4039 4040
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4041
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4042
{
4043 4044
	*ut = p->utime;
	*st = p->stime;
4045 4046
}

4047
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4048
{
4049 4050 4051 4052 4053 4054
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
4055 4056
}
#else
4057 4058

#ifndef nsecs_to_cputime
4059
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
4060 4061
#endif

4062
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4063
{
4064
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4065 4066 4067 4068

	/*
	 * Use CFS's precise accounting:
	 */
4069
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4070 4071

	if (total) {
4072
		u64 temp = rtime;
4073

4074
		temp *= utime;
4075
		do_div(temp, total);
4076 4077 4078
		utime = (cputime_t)temp;
	} else
		utime = rtime;
4079

4080 4081 4082
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
4083
	p->prev_utime = max(p->prev_utime, utime);
4084
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4085

4086 4087
	*ut = p->prev_utime;
	*st = p->prev_stime;
4088 4089
}

4090 4091 4092 4093
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4094
{
4095 4096 4097
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
4098

4099
	thread_group_cputime(p, &cputime);
4100

4101 4102
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4103

4104
	if (total) {
4105
		u64 temp = rtime;
4106

4107
		temp *= cputime.utime;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
4119 4120 4121
}
#endif

4122 4123 4124 4125 4126 4127 4128 4129
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4130
	struct task_struct *curr = rq->curr;
4131 4132

	sched_clock_tick();
I
Ingo Molnar 已提交
4133

4134
	raw_spin_lock(&rq->lock);
4135
	update_rq_clock(rq);
4136
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
4137
	curr->sched_class->task_tick(rq, curr, 0);
4138
	raw_spin_unlock(&rq->lock);
4139

4140
	perf_event_task_tick();
4141

4142
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4143 4144
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4145
#endif
L
Linus Torvalds 已提交
4146 4147
}

4148
notrace unsigned long get_parent_ip(unsigned long addr)
4149 4150 4151 4152 4153 4154 4155 4156
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4157

4158 4159 4160
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4161
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4162
{
4163
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4164 4165 4166
	/*
	 * Underflow?
	 */
4167 4168
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4169
#endif
L
Linus Torvalds 已提交
4170
	preempt_count() += val;
4171
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4172 4173 4174
	/*
	 * Spinlock count overflowing soon?
	 */
4175 4176
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4177 4178 4179
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4180 4181 4182
}
EXPORT_SYMBOL(add_preempt_count);

4183
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4184
{
4185
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4186 4187 4188
	/*
	 * Underflow?
	 */
4189
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4190
		return;
L
Linus Torvalds 已提交
4191 4192 4193
	/*
	 * Is the spinlock portion underflowing?
	 */
4194 4195 4196
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4197
#endif
4198

4199 4200
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206 4207
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4208
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4209
 */
I
Ingo Molnar 已提交
4210
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4211
{
4212 4213
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4214 4215
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4216

I
Ingo Molnar 已提交
4217
	debug_show_held_locks(prev);
4218
	print_modules();
I
Ingo Molnar 已提交
4219 4220
	if (irqs_disabled())
		print_irqtrace_events(prev);
4221 4222 4223 4224 4225

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4226
}
L
Linus Torvalds 已提交
4227

I
Ingo Molnar 已提交
4228 4229 4230 4231 4232
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4233
	/*
I
Ingo Molnar 已提交
4234
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4235 4236 4237
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4238
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4239 4240
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4241 4242
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4243
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4244 4245
}

P
Peter Zijlstra 已提交
4246
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4247
{
4248
	if (prev->on_rq || rq->skip_clock_update < 0)
4249
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4250
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4251 4252
}

I
Ingo Molnar 已提交
4253 4254 4255 4256
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4257
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4258
{
4259
	const struct sched_class *class;
I
Ingo Molnar 已提交
4260
	struct task_struct *p;
L
Linus Torvalds 已提交
4261 4262

	/*
I
Ingo Molnar 已提交
4263 4264
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4265
	 */
I
Ingo Molnar 已提交
4266
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4267
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4268 4269
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4270 4271
	}

4272
	for_each_class(class) {
4273
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4274 4275 4276
		if (p)
			return p;
	}
4277 4278

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4279
}
L
Linus Torvalds 已提交
4280

I
Ingo Molnar 已提交
4281
/*
4282
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
4283
 */
4284
static void __sched __schedule(void)
I
Ingo Molnar 已提交
4285 4286
{
	struct task_struct *prev, *next;
4287
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4288
	struct rq *rq;
4289
	int cpu;
I
Ingo Molnar 已提交
4290

4291 4292
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4293 4294
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4295
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4296 4297 4298
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4299

4300
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4301
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4302

4303
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4304

4305
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4306
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4307
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4308
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4309
		} else {
4310 4311 4312
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
4313
			/*
4314 4315 4316
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
4326
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4327 4328
	}

4329
	pre_schedule(rq, prev);
4330

I
Ingo Molnar 已提交
4331
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4332 4333
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4334
	put_prev_task(rq, prev);
4335
	next = pick_next_task(rq);
4336 4337
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4344
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4345
		/*
4346 4347 4348 4349
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4350 4351 4352
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4353
	} else
4354
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4355

4356
	post_schedule(rq);
L
Linus Torvalds 已提交
4357 4358

	preempt_enable_no_resched();
4359
	if (need_resched())
L
Linus Torvalds 已提交
4360 4361
		goto need_resched;
}
4362

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
4375
asmlinkage void __sched schedule(void)
4376
{
4377 4378 4379
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
4380 4381
	__schedule();
}
L
Linus Torvalds 已提交
4382 4383
EXPORT_SYMBOL(schedule);

4384
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4385

4386 4387 4388
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
4389
		return false;
4390 4391

	/*
4392 4393 4394 4395
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4396
	 */
4397
	barrier();
4398

4399
	return owner->on_cpu;
4400
}
4401

4402 4403 4404 4405 4406 4407 4408 4409
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4410

4411
	rcu_read_lock();
4412 4413
	while (owner_running(lock, owner)) {
		if (need_resched())
4414
			break;
4415

4416
		arch_mutex_cpu_relax();
4417
	}
4418
	rcu_read_unlock();
4419

4420
	/*
4421 4422 4423
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
4424
	 */
4425
	return lock->owner == NULL;
4426 4427 4428
}
#endif

L
Linus Torvalds 已提交
4429 4430
#ifdef CONFIG_PREEMPT
/*
4431
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4432
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4433 4434
 * occur there and call schedule directly.
 */
4435
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4436 4437
{
	struct thread_info *ti = current_thread_info();
4438

L
Linus Torvalds 已提交
4439 4440
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4441
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4442
	 */
N
Nick Piggin 已提交
4443
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4444 4445
		return;

4446
	do {
4447
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4448
		__schedule();
4449
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4450

4451 4452 4453 4454 4455
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4456
	} while (need_resched());
L
Linus Torvalds 已提交
4457 4458 4459 4460
}
EXPORT_SYMBOL(preempt_schedule);

/*
4461
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4469

4470
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4471 4472
	BUG_ON(ti->preempt_count || !irqs_disabled());

4473 4474 4475
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
4476
		__schedule();
4477 4478
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4479

4480 4481 4482 4483 4484
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4485
	} while (need_resched());
L
Linus Torvalds 已提交
4486 4487 4488 4489
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4490
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4491
			  void *key)
L
Linus Torvalds 已提交
4492
{
P
Peter Zijlstra 已提交
4493
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4494 4495 4496 4497
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4498 4499
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4500 4501 4502
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4503
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4504 4505
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4506
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4507
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4508
{
4509
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4510

4511
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4512 4513
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4514
		if (curr->func(curr, mode, wake_flags, key) &&
4515
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4525
 * @key: is directly passed to the wakeup function
4526 4527 4528
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4529
 */
4530
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4531
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4544
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4545 4546 4547
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4548
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4549

4550 4551 4552 4553
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4554
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4555

L
Linus Torvalds 已提交
4556
/**
4557
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4558 4559 4560
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4561
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4569 4570 4571
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4572
 */
4573 4574
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4575 4576
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4577
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4578 4579 4580 4581 4582

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4583
		wake_flags = 0;
L
Linus Torvalds 已提交
4584 4585

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4586
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4587 4588
	spin_unlock_irqrestore(&q->lock, flags);
}
4589 4590 4591 4592 4593 4594 4595 4596 4597
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4598 4599
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4600 4601 4602 4603 4604 4605 4606 4607
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4608 4609 4610
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4611
 */
4612
void complete(struct completion *x)
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4618
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4619 4620 4621 4622
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4623 4624 4625 4626 4627
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4628 4629 4630
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4631
 */
4632
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4638
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4639 4640 4641 4642
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4643 4644
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4645 4646 4647 4648
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4649
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4650
		do {
4651
			if (signal_pending_state(state, current)) {
4652 4653
				timeout = -ERESTARTSYS;
				break;
4654 4655
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4656 4657 4658
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4659
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4660
		__remove_wait_queue(&x->wait, &wait);
4661 4662
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4663 4664
	}
	x->done--;
4665
	return timeout ?: 1;
L
Linus Torvalds 已提交
4666 4667
}

4668 4669
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4670 4671 4672 4673
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4674
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4675
	spin_unlock_irq(&x->wait.lock);
4676 4677
	return timeout;
}
L
Linus Torvalds 已提交
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4689
void __sched wait_for_completion(struct completion *x)
4690 4691
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4692
}
4693
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4694

4695 4696 4697 4698 4699 4700 4701 4702 4703
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4704
unsigned long __sched
4705
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4706
{
4707
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4708
}
4709
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4710

4711 4712 4713 4714 4715 4716 4717
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4718
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4719
{
4720 4721 4722 4723
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4724
}
4725
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4726

4727 4728 4729 4730 4731 4732 4733 4734
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4735
long __sched
4736 4737
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4738
{
4739
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4740
}
4741
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4742

4743 4744 4745 4746 4747 4748 4749
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4759 4760 4761 4762 4763 4764 4765 4766 4767
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4768
long __sched
4769 4770 4771 4772 4773 4774 4775
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4790
	unsigned long flags;
4791 4792
	int ret = 1;

4793
	spin_lock_irqsave(&x->wait.lock, flags);
4794 4795 4796 4797
	if (!x->done)
		ret = 0;
	else
		x->done--;
4798
	spin_unlock_irqrestore(&x->wait.lock, flags);
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4813
	unsigned long flags;
4814 4815
	int ret = 1;

4816
	spin_lock_irqsave(&x->wait.lock, flags);
4817 4818
	if (!x->done)
		ret = 0;
4819
	spin_unlock_irqrestore(&x->wait.lock, flags);
4820 4821 4822 4823
	return ret;
}
EXPORT_SYMBOL(completion_done);

4824 4825
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4826
{
I
Ingo Molnar 已提交
4827 4828 4829 4830
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4831

4832
	__set_current_state(state);
L
Linus Torvalds 已提交
4833

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4848 4849 4850
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4851
long __sched
I
Ingo Molnar 已提交
4852
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4853
{
4854
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4855 4856 4857
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4858
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4859
{
4860
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4861 4862 4863
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4864
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4865
{
4866
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4867 4868 4869
}
EXPORT_SYMBOL(sleep_on_timeout);

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4882
void rt_mutex_setprio(struct task_struct *p, int prio)
4883
{
4884
	int oldprio, on_rq, running;
4885
	struct rq *rq;
4886
	const struct sched_class *prev_class;
4887 4888 4889

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4890
	rq = __task_rq_lock(p);
4891

4892
	trace_sched_pi_setprio(p, prio);
4893
	oldprio = p->prio;
4894
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4895
	on_rq = p->on_rq;
4896
	running = task_current(rq, p);
4897
	if (on_rq)
4898
		dequeue_task(rq, p, 0);
4899 4900
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4901 4902 4903 4904 4905 4906

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4907 4908
	p->prio = prio;

4909 4910
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4911
	if (on_rq)
4912
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4913

P
Peter Zijlstra 已提交
4914
	check_class_changed(rq, p, prev_class, oldprio);
4915
	__task_rq_unlock(rq);
4916 4917 4918 4919
}

#endif

4920
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4921
{
I
Ingo Molnar 已提交
4922
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4923
	unsigned long flags;
4924
	struct rq *rq;
L
Linus Torvalds 已提交
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4937
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4938
	 */
4939
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4940 4941 4942
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4943
	on_rq = p->on_rq;
4944
	if (on_rq)
4945
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4946 4947

	p->static_prio = NICE_TO_PRIO(nice);
4948
	set_load_weight(p);
4949 4950 4951
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4952

I
Ingo Molnar 已提交
4953
	if (on_rq) {
4954
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4955
		/*
4956 4957
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4958
		 */
4959
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4960 4961 4962
			resched_task(rq->curr);
	}
out_unlock:
4963
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4964 4965 4966
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4967 4968 4969 4970 4971
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4972
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4973
{
4974 4975
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4976

4977
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4978 4979 4980
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987 4988 4989
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4990
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4991
{
4992
	long nice, retval;
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4999 5000
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5001 5002 5003
	if (increment > 40)
		increment = 40;

5004
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5010 5011 5012
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5031
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5040
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5041 5042 5043
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5044
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5059
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065 5066 5067
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5068
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5069
{
5070
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5071 5072 5073
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5074 5075
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5076 5077 5078
{
	p->policy = policy;
	p->rt_priority = prio;
5079 5080 5081
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5082 5083 5084 5085
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
5086
	set_load_weight(p);
L
Linus Torvalds 已提交
5087 5088
}

5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
5099 5100 5101 5102 5103
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
5104 5105 5106 5107
	rcu_read_unlock();
	return match;
}

5108
static int __sched_setscheduler(struct task_struct *p, int policy,
5109
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5110
{
5111
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5112
	unsigned long flags;
5113
	const struct sched_class *prev_class;
5114
	struct rq *rq;
5115
	int reset_on_fork;
L
Linus Torvalds 已提交
5116

5117 5118
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5119 5120
recheck:
	/* double check policy once rq lock held */
5121 5122
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
5123
		policy = oldpolicy = p->policy;
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
5134 5135
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5136 5137
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5138 5139
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5140
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5141
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5142
		return -EINVAL;
5143
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5144 5145
		return -EINVAL;

5146 5147 5148
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5149
	if (user && !capable(CAP_SYS_NICE)) {
5150
		if (rt_policy(policy)) {
5151 5152
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
5163

I
Ingo Molnar 已提交
5164
		/*
5165 5166
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
5167
		 */
5168 5169 5170 5171
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
5172

5173
		/* can't change other user's priorities */
5174
		if (!check_same_owner(p))
5175
			return -EPERM;
5176 5177 5178 5179

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5180
	}
L
Linus Torvalds 已提交
5181

5182
	if (user) {
5183
		retval = security_task_setscheduler(p);
5184 5185 5186 5187
		if (retval)
			return retval;
	}

5188 5189 5190
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
5191
	 *
L
Lucas De Marchi 已提交
5192
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5193 5194
	 * runqueue lock must be held.
	 */
5195
	rq = task_rq_lock(p, &flags);
5196

5197 5198 5199 5200
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
5201
		task_rq_unlock(rq, p, &flags);
5202 5203 5204
		return -EINVAL;
	}

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5216 5217 5218 5219 5220 5221 5222
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5223 5224
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5225
			task_rq_unlock(rq, p, &flags);
5226 5227 5228 5229 5230
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5231 5232 5233
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5234
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5235 5236
		goto recheck;
	}
P
Peter Zijlstra 已提交
5237
	on_rq = p->on_rq;
5238
	running = task_current(rq, p);
5239
	if (on_rq)
5240
		deactivate_task(rq, p, 0);
5241 5242
	if (running)
		p->sched_class->put_prev_task(rq, p);
5243

5244 5245
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5246
	oldprio = p->prio;
5247
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5248
	__setscheduler(rq, p, policy, param->sched_priority);
5249

5250 5251
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5252
	if (on_rq)
I
Ingo Molnar 已提交
5253
		activate_task(rq, p, 0);
5254

P
Peter Zijlstra 已提交
5255
	check_class_changed(rq, p, prev_class, oldprio);
5256
	task_rq_unlock(rq, p, &flags);
5257

5258 5259
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5260 5261
	return 0;
}
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5272
		       const struct sched_param *param)
5273 5274 5275
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5276 5277
EXPORT_SYMBOL_GPL(sched_setscheduler);

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5290
			       const struct sched_param *param)
5291 5292 5293 5294
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5295 5296
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5297 5298 5299
{
	struct sched_param lparam;
	struct task_struct *p;
5300
	int retval;
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5306 5307 5308

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5309
	p = find_process_by_pid(pid);
5310 5311 5312
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5313

L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5323 5324
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5325
{
5326 5327 5328 5329
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5330 5331 5332 5333 5334 5335 5336 5337
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5338
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5347
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5348
{
5349
	struct task_struct *p;
5350
	int retval;
L
Linus Torvalds 已提交
5351 5352

	if (pid < 0)
5353
		return -EINVAL;
L
Linus Torvalds 已提交
5354 5355

	retval = -ESRCH;
5356
	rcu_read_lock();
L
Linus Torvalds 已提交
5357 5358 5359 5360
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5361 5362
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5363
	}
5364
	rcu_read_unlock();
L
Linus Torvalds 已提交
5365 5366 5367 5368
	return retval;
}

/**
5369
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5370 5371 5372
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5373
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5374 5375
{
	struct sched_param lp;
5376
	struct task_struct *p;
5377
	int retval;
L
Linus Torvalds 已提交
5378 5379

	if (!param || pid < 0)
5380
		return -EINVAL;
L
Linus Torvalds 已提交
5381

5382
	rcu_read_lock();
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5393
	rcu_read_unlock();
L
Linus Torvalds 已提交
5394 5395 5396 5397 5398 5399 5400 5401 5402

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5403
	rcu_read_unlock();
L
Linus Torvalds 已提交
5404 5405 5406
	return retval;
}

5407
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5408
{
5409
	cpumask_var_t cpus_allowed, new_mask;
5410 5411
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5412

5413
	get_online_cpus();
5414
	rcu_read_lock();
L
Linus Torvalds 已提交
5415 5416 5417

	p = find_process_by_pid(pid);
	if (!p) {
5418
		rcu_read_unlock();
5419
		put_online_cpus();
L
Linus Torvalds 已提交
5420 5421 5422
		return -ESRCH;
	}

5423
	/* Prevent p going away */
L
Linus Torvalds 已提交
5424
	get_task_struct(p);
5425
	rcu_read_unlock();
L
Linus Torvalds 已提交
5426

5427 5428 5429 5430 5431 5432 5433 5434
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5435
	retval = -EPERM;
5436
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5437 5438
		goto out_unlock;

5439
	retval = security_task_setscheduler(p);
5440 5441 5442
	if (retval)
		goto out_unlock;

5443 5444
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5445
again:
5446
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5447

P
Paul Menage 已提交
5448
	if (!retval) {
5449 5450
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5451 5452 5453 5454 5455
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5456
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5457 5458 5459
			goto again;
		}
	}
L
Linus Torvalds 已提交
5460
out_unlock:
5461 5462 5463 5464
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5465
	put_task_struct(p);
5466
	put_online_cpus();
L
Linus Torvalds 已提交
5467 5468 5469 5470
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5471
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5472
{
5473 5474 5475 5476 5477
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5487 5488
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5489
{
5490
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5491 5492
	int retval;

5493 5494
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5495

5496 5497 5498 5499 5500
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5501 5502
}

5503
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5504
{
5505
	struct task_struct *p;
5506
	unsigned long flags;
L
Linus Torvalds 已提交
5507 5508
	int retval;

5509
	get_online_cpus();
5510
	rcu_read_lock();
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5517 5518 5519 5520
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5521
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5522
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5523
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5524 5525

out_unlock:
5526
	rcu_read_unlock();
5527
	put_online_cpus();
L
Linus Torvalds 已提交
5528

5529
	return retval;
L
Linus Torvalds 已提交
5530 5531 5532 5533 5534 5535 5536 5537
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5538 5539
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5540 5541
{
	int ret;
5542
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5543

A
Anton Blanchard 已提交
5544
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5545 5546
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5547 5548
		return -EINVAL;

5549 5550
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5551

5552 5553
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5554
		size_t retlen = min_t(size_t, len, cpumask_size());
5555 5556

		if (copy_to_user(user_mask_ptr, mask, retlen))
5557 5558
			ret = -EFAULT;
		else
5559
			ret = retlen;
5560 5561
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5562

5563
	return ret;
L
Linus Torvalds 已提交
5564 5565 5566 5567 5568
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5569 5570
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5571
 */
5572
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5573
{
5574
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5575

5576
	schedstat_inc(rq, yld_count);
5577
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5584
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5585
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5593 5594 5595 5596 5597
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5598
static void __cond_resched(void)
L
Linus Torvalds 已提交
5599
{
5600
	add_preempt_count(PREEMPT_ACTIVE);
5601
	__schedule();
5602
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5603 5604
}

5605
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5606
{
P
Peter Zijlstra 已提交
5607
	if (should_resched()) {
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612
		__cond_resched();
		return 1;
	}
	return 0;
}
5613
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5614 5615

/*
5616
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5617 5618
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5619
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5620 5621 5622
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5623
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5624
{
P
Peter Zijlstra 已提交
5625
	int resched = should_resched();
J
Jan Kara 已提交
5626 5627
	int ret = 0;

5628 5629
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5630
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5631
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5632
		if (resched)
N
Nick Piggin 已提交
5633 5634 5635
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5636
		ret = 1;
L
Linus Torvalds 已提交
5637 5638
		spin_lock(lock);
	}
J
Jan Kara 已提交
5639
	return ret;
L
Linus Torvalds 已提交
5640
}
5641
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5642

5643
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5644 5645 5646
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5647
	if (should_resched()) {
5648
		local_bh_enable();
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5655
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5656 5657 5658 5659

/**
 * yield - yield the current processor to other threads.
 *
5660
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5670 5671 5672 5673
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5674 5675
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5710
	if (yielded) {
5711
		schedstat_inc(rq, yld_count);
5712 5713 5714 5715 5716 5717 5718
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5731
/*
I
Ingo Molnar 已提交
5732
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5733 5734 5735 5736
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5737
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5738

5739
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5740
	atomic_inc(&rq->nr_iowait);
5741
	blk_flush_plug(current);
5742
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5743
	schedule();
5744
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5745
	atomic_dec(&rq->nr_iowait);
5746
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5747 5748 5749 5750 5751
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5752
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5753 5754
	long ret;

5755
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5756
	atomic_inc(&rq->nr_iowait);
5757
	blk_flush_plug(current);
5758
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5759
	ret = schedule_timeout(timeout);
5760
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5761
	atomic_dec(&rq->nr_iowait);
5762
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5773
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779 5780 5781 5782
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5783
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5784
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5798
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5808
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5809
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5823
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5824
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5825
{
5826
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5827
	unsigned int time_slice;
5828 5829
	unsigned long flags;
	struct rq *rq;
5830
	int retval;
L
Linus Torvalds 已提交
5831 5832 5833
	struct timespec t;

	if (pid < 0)
5834
		return -EINVAL;
L
Linus Torvalds 已提交
5835 5836

	retval = -ESRCH;
5837
	rcu_read_lock();
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842 5843 5844 5845
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5846 5847
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5848
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5849

5850
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5851
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5852 5853
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5854

L
Linus Torvalds 已提交
5855
out_unlock:
5856
	rcu_read_unlock();
L
Linus Torvalds 已提交
5857 5858 5859
	return retval;
}

5860
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5861

5862
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5863 5864
{
	unsigned long free = 0;
5865
	unsigned state;
L
Linus Torvalds 已提交
5866 5867

	state = p->state ? __ffs(p->state) + 1 : 0;
5868
	printk(KERN_INFO "%-15.15s %c", p->comm,
5869
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5870
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5871
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5872
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5873
	else
P
Peter Zijlstra 已提交
5874
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5875 5876
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5877
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5878
	else
P
Peter Zijlstra 已提交
5879
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5880 5881
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5882
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5883
#endif
P
Peter Zijlstra 已提交
5884
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5885 5886
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5887

5888
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5889 5890
}

I
Ingo Molnar 已提交
5891
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5892
{
5893
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5894

5895
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5896 5897
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5898
#else
P
Peter Zijlstra 已提交
5899 5900
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5901 5902 5903 5904 5905
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5906
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5907 5908
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5909
		if (!state_filter || (p->state & state_filter))
5910
			sched_show_task(p);
L
Linus Torvalds 已提交
5911 5912
	} while_each_thread(g, p);

5913 5914
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5915 5916 5917
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5918
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5919 5920 5921
	/*
	 * Only show locks if all tasks are dumped:
	 */
5922
	if (!state_filter)
I
Ingo Molnar 已提交
5923
		debug_show_all_locks();
L
Linus Torvalds 已提交
5924 5925
}

I
Ingo Molnar 已提交
5926 5927
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5928
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5929 5930
}

5931 5932 5933 5934 5935 5936 5937 5938
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5939
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5940
{
5941
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5942 5943
	unsigned long flags;

5944
	raw_spin_lock_irqsave(&rq->lock, flags);
5945

I
Ingo Molnar 已提交
5946
	__sched_fork(idle);
5947
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5948 5949
	idle->se.exec_start = sched_clock();

5950
	do_set_cpus_allowed(idle, cpumask_of(cpu));
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5962
	__set_task_cpu(idle, cpu);
5963
	rcu_read_unlock();
L
Linus Torvalds 已提交
5964 5965

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5966 5967
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
5968
#endif
5969
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5970 5971

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5972
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
5973

I
Ingo Molnar 已提交
5974 5975 5976 5977
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5978
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
5979 5980 5981 5982 5983 5984 5985
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5986
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5987
 */
5988
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5989

I
Ingo Molnar 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5999
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
6000
{
6001
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
6016

6017 6018
	return factor;
}
I
Ingo Molnar 已提交
6019

6020 6021 6022
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
6023

6024 6025 6026 6027 6028 6029 6030
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
6031

6032 6033 6034
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
6035 6036
}

L
Linus Torvalds 已提交
6037
#ifdef CONFIG_SMP
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
	else {
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
	}
}

L
Linus Torvalds 已提交
6048 6049 6050
/*
 * This is how migration works:
 *
6051 6052 6053 6054 6055 6056
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
6057
 *    it and puts it into the right queue.
6058 6059
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
6060 6061 6062 6063 6064 6065 6066 6067
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6068
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6069 6070
 * call is not atomic; no spinlocks may be held.
 */
6071
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6072 6073
{
	unsigned long flags;
6074
	struct rq *rq;
6075
	unsigned int dest_cpu;
6076
	int ret = 0;
L
Linus Torvalds 已提交
6077 6078

	rq = task_rq_lock(p, &flags);
6079

6080 6081 6082
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

6083
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
6084 6085 6086 6087
		ret = -EINVAL;
		goto out;
	}

6088
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6089 6090 6091 6092
		ret = -EINVAL;
		goto out;
	}

6093
	do_set_cpus_allowed(p, new_mask);
6094

L
Linus Torvalds 已提交
6095
	/* Can the task run on the task's current CPU? If so, we're done */
6096
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6097 6098
		goto out;

6099
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6100
	if (p->on_rq) {
6101
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
6102
		/* Need help from migration thread: drop lock and wait. */
6103
		task_rq_unlock(rq, p, &flags);
6104
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
6105 6106 6107 6108
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
6109
	task_rq_unlock(rq, p, &flags);
6110

L
Linus Torvalds 已提交
6111 6112
	return ret;
}
6113
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6114 6115

/*
I
Ingo Molnar 已提交
6116
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6117 6118 6119 6120 6121 6122
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6123 6124
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6125
 */
6126
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6127
{
6128
	struct rq *rq_dest, *rq_src;
6129
	int ret = 0;
L
Linus Torvalds 已提交
6130

6131
	if (unlikely(!cpu_active(dest_cpu)))
6132
		return ret;
L
Linus Torvalds 已提交
6133 6134 6135 6136

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

6137
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
6138 6139 6140
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6141
		goto done;
L
Linus Torvalds 已提交
6142
	/* Affinity changed (again). */
6143
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6144
		goto fail;
L
Linus Torvalds 已提交
6145

6146 6147 6148 6149
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
6150
	if (p->on_rq) {
6151
		deactivate_task(rq_src, p, 0);
6152
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6153
		activate_task(rq_dest, p, 0);
6154
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6155
	}
L
Linus Torvalds 已提交
6156
done:
6157
	ret = 1;
L
Linus Torvalds 已提交
6158
fail:
L
Linus Torvalds 已提交
6159
	double_rq_unlock(rq_src, rq_dest);
6160
	raw_spin_unlock(&p->pi_lock);
6161
	return ret;
L
Linus Torvalds 已提交
6162 6163 6164
}

/*
6165 6166 6167
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
6168
 */
6169
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
6170
{
6171
	struct migration_arg *arg = data;
6172

6173 6174 6175 6176
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
6177
	local_irq_disable();
6178
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6179
	local_irq_enable();
L
Linus Torvalds 已提交
6180
	return 0;
6181 6182
}

L
Linus Torvalds 已提交
6183
#ifdef CONFIG_HOTPLUG_CPU
6184

6185
/*
6186 6187
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6188
 */
6189
void idle_task_exit(void)
L
Linus Torvalds 已提交
6190
{
6191
	struct mm_struct *mm = current->active_mm;
6192

6193
	BUG_ON(cpu_online(smp_processor_id()));
6194

6195 6196 6197
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6198 6199 6200 6201 6202 6203 6204 6205 6206
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6207
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6208
{
6209
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6210 6211 6212 6213 6214

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6215
/*
6216
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6217
 */
6218
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6219
{
6220 6221
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6222 6223
}

6224
/*
6225 6226 6227 6228 6229 6230
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6231
 */
6232
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6233
{
6234
	struct rq *rq = cpu_rq(dead_cpu);
6235 6236
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6237 6238

	/*
6239 6240 6241 6242 6243 6244 6245
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6246
	 */
6247
	rq->stop = NULL;
6248

I
Ingo Molnar 已提交
6249
	for ( ; ; ) {
6250 6251 6252 6253 6254
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6255
			break;
6256

6257
		next = pick_next_task(rq);
6258
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6259
		next->sched_class->put_prev_task(rq, next);
6260

6261 6262 6263 6264 6265 6266 6267
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6268
	}
6269

6270
	rq->stop = stop;
6271
}
6272

L
Linus Torvalds 已提交
6273 6274
#endif /* CONFIG_HOTPLUG_CPU */

6275 6276 6277
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6278 6279
	{
		.procname	= "sched_domain",
6280
		.mode		= 0555,
6281
	},
6282
	{}
6283 6284 6285
};

static struct ctl_table sd_ctl_root[] = {
6286 6287
	{
		.procname	= "kernel",
6288
		.mode		= 0555,
6289 6290
		.child		= sd_ctl_dir,
	},
6291
	{}
6292 6293 6294 6295 6296
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6297
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6298 6299 6300 6301

	return entry;
}

6302 6303
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6304
	struct ctl_table *entry;
6305

6306 6307 6308
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6309
	 * will always be set. In the lowest directory the names are
6310 6311 6312
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6313 6314
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6315 6316 6317
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6318 6319 6320 6321 6322

	kfree(*tablep);
	*tablep = NULL;
}

6323
static void
6324
set_table_entry(struct ctl_table *entry,
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6338
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6339

6340 6341 6342
	if (table == NULL)
		return NULL;

6343
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6344
		sizeof(long), 0644, proc_doulongvec_minmax);
6345
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6346
		sizeof(long), 0644, proc_doulongvec_minmax);
6347
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6348
		sizeof(int), 0644, proc_dointvec_minmax);
6349
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6350
		sizeof(int), 0644, proc_dointvec_minmax);
6351
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6352
		sizeof(int), 0644, proc_dointvec_minmax);
6353
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6354
		sizeof(int), 0644, proc_dointvec_minmax);
6355
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6356
		sizeof(int), 0644, proc_dointvec_minmax);
6357
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6358
		sizeof(int), 0644, proc_dointvec_minmax);
6359
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6360
		sizeof(int), 0644, proc_dointvec_minmax);
6361
	set_table_entry(&table[9], "cache_nice_tries",
6362 6363
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6364
	set_table_entry(&table[10], "flags", &sd->flags,
6365
		sizeof(int), 0644, proc_dointvec_minmax);
6366 6367 6368
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6369 6370 6371 6372

	return table;
}

6373
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6374 6375 6376 6377 6378 6379 6380 6381 6382
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6383 6384
	if (table == NULL)
		return NULL;
6385 6386 6387 6388 6389

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6390
		entry->mode = 0555;
6391 6392 6393 6394 6395 6396 6397 6398
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6399
static void register_sched_domain_sysctl(void)
6400
{
6401
	int i, cpu_num = num_possible_cpus();
6402 6403 6404
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6405 6406 6407
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6408 6409 6410
	if (entry == NULL)
		return;

6411
	for_each_possible_cpu(i) {
6412 6413
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6414
		entry->mode = 0555;
6415
		entry->child = sd_alloc_ctl_cpu_table(i);
6416
		entry++;
6417
	}
6418 6419

	WARN_ON(sd_sysctl_header);
6420 6421
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6422

6423
/* may be called multiple times per register */
6424 6425
static void unregister_sched_domain_sysctl(void)
{
6426 6427
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6428
	sd_sysctl_header = NULL;
6429 6430
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6431
}
6432
#else
6433 6434 6435 6436
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6437 6438 6439 6440
{
}
#endif

6441 6442 6443 6444 6445
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6446
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6466
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6467 6468 6469 6470
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6471 6472 6473 6474
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6475 6476
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6477
{
6478
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6479
	unsigned long flags;
6480
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6481

6482
	switch (action & ~CPU_TASKS_FROZEN) {
6483

L
Linus Torvalds 已提交
6484
	case CPU_UP_PREPARE:
6485
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6486
		break;
6487

L
Linus Torvalds 已提交
6488
	case CPU_ONLINE:
6489
		/* Update our root-domain */
6490
		raw_spin_lock_irqsave(&rq->lock, flags);
6491
		if (rq->rd) {
6492
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6493 6494

			set_rq_online(rq);
6495
		}
6496
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6497
		break;
6498

L
Linus Torvalds 已提交
6499
#ifdef CONFIG_HOTPLUG_CPU
6500
	case CPU_DYING:
6501
		sched_ttwu_pending();
G
Gregory Haskins 已提交
6502
		/* Update our root-domain */
6503
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6504
		if (rq->rd) {
6505
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6506
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6507
		}
6508 6509
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6510
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6511 6512 6513

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6514
		break;
L
Linus Torvalds 已提交
6515 6516
#endif
	}
6517 6518 6519

	update_max_interval();

L
Linus Torvalds 已提交
6520 6521 6522
	return NOTIFY_OK;
}

6523 6524 6525
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6526
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6527
 */
6528
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6529
	.notifier_call = migration_call,
6530
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6531 6532
};

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6558
static int __init migration_init(void)
L
Linus Torvalds 已提交
6559 6560
{
	void *cpu = (void *)(long)smp_processor_id();
6561
	int err;
6562

6563
	/* Initialize migration for the boot CPU */
6564 6565
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6566 6567
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6568

6569 6570 6571 6572
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6573
	return 0;
L
Linus Torvalds 已提交
6574
}
6575
early_initcall(migration_init);
L
Linus Torvalds 已提交
6576 6577 6578
#endif

#ifdef CONFIG_SMP
6579

6580 6581
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6582
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6583

6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6594
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6595
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6596
{
I
Ingo Molnar 已提交
6597
	struct sched_group *group = sd->groups;
6598
	char str[256];
L
Linus Torvalds 已提交
6599

R
Rusty Russell 已提交
6600
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6601
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6602 6603 6604 6605

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6606
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6607
		if (sd->parent)
P
Peter Zijlstra 已提交
6608 6609
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6610
		return -1;
N
Nick Piggin 已提交
6611 6612
	}

P
Peter Zijlstra 已提交
6613
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6614

6615
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6616 6617
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6618
	}
6619
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6620 6621
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6622
	}
L
Linus Torvalds 已提交
6623

I
Ingo Molnar 已提交
6624
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6625
	do {
I
Ingo Molnar 已提交
6626
		if (!group) {
P
Peter Zijlstra 已提交
6627 6628
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6629 6630 6631
			break;
		}

6632
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
6633 6634 6635
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6636 6637
			break;
		}
L
Linus Torvalds 已提交
6638

6639
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6640 6641
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6642 6643
			break;
		}
L
Linus Torvalds 已提交
6644

6645
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6646 6647
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6648 6649
			break;
		}
L
Linus Torvalds 已提交
6650

6651
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6652

R
Rusty Russell 已提交
6653
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6654

P
Peter Zijlstra 已提交
6655
		printk(KERN_CONT " %s", str);
6656
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
6657
			printk(KERN_CONT " (cpu_power = %d)",
6658
				group->sgp->power);
6659
		}
L
Linus Torvalds 已提交
6660

I
Ingo Molnar 已提交
6661 6662
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6663
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6664

6665
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6666
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6667

6668 6669
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6670 6671
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6672 6673
	return 0;
}
L
Linus Torvalds 已提交
6674

I
Ingo Molnar 已提交
6675 6676 6677
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6678

6679 6680 6681
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6682 6683 6684 6685
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6686

I
Ingo Molnar 已提交
6687 6688 6689
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
6690
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
6691
			break;
L
Linus Torvalds 已提交
6692 6693
		level++;
		sd = sd->parent;
6694
		if (!sd)
I
Ingo Molnar 已提交
6695 6696
			break;
	}
L
Linus Torvalds 已提交
6697
}
6698
#else /* !CONFIG_SCHED_DEBUG */
6699
# define sched_domain_debug(sd, cpu) do { } while (0)
6700
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6701

6702
static int sd_degenerate(struct sched_domain *sd)
6703
{
6704
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6705 6706 6707 6708 6709 6710
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6711 6712 6713
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6714 6715 6716 6717 6718
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6719
	if (sd->flags & (SD_WAKE_AFFINE))
6720 6721 6722 6723 6724
		return 0;

	return 1;
}

6725 6726
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6727 6728 6729 6730 6731 6732
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6733
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6734 6735 6736 6737 6738 6739 6740
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6741 6742 6743
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6744 6745
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6746 6747 6748 6749 6750 6751 6752
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6753
static void free_rootdomain(struct rcu_head *rcu)
6754
{
6755
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6756

6757
	cpupri_cleanup(&rd->cpupri);
6758 6759 6760 6761 6762 6763
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6764 6765
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6766
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6767 6768
	unsigned long flags;

6769
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6770 6771

	if (rq->rd) {
I
Ingo Molnar 已提交
6772
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6773

6774
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6775
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6776

6777
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6778

I
Ingo Molnar 已提交
6779 6780 6781 6782 6783 6784 6785
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6786 6787 6788 6789 6790
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6791
	cpumask_set_cpu(rq->cpu, rd->span);
6792
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6793
		set_rq_online(rq);
G
Gregory Haskins 已提交
6794

6795
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6796 6797

	if (old_rd)
6798
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6799 6800
}

6801
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6802 6803 6804
{
	memset(rd, 0, sizeof(*rd));

6805
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6806
		goto out;
6807
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6808
		goto free_span;
6809
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6810
		goto free_online;
6811

6812
	if (cpupri_init(&rd->cpupri) != 0)
6813
		goto free_rto_mask;
6814
	return 0;
6815

6816 6817
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6818 6819 6820 6821
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6822
out:
6823
	return -ENOMEM;
G
Gregory Haskins 已提交
6824 6825 6826 6827
}

static void init_defrootdomain(void)
{
6828
	init_rootdomain(&def_root_domain);
6829

G
Gregory Haskins 已提交
6830 6831 6832
	atomic_set(&def_root_domain.refcount, 1);
}

6833
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6834 6835 6836 6837 6838 6839 6840
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6841
	if (init_rootdomain(rd) != 0) {
6842 6843 6844
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6845 6846 6847 6848

	return rd;
}

6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

6868 6869 6870
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6871 6872 6873 6874 6875 6876 6877 6878

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6879
		kfree(sd->groups->sgp);
6880
		kfree(sd->groups);
6881
	}
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
6896
/*
I
Ingo Molnar 已提交
6897
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6898 6899
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6900 6901
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6902
{
6903
	struct rq *rq = cpu_rq(cpu);
6904 6905 6906
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6907
	for (tmp = sd; tmp; ) {
6908 6909 6910
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6911

6912
		if (sd_parent_degenerate(tmp, parent)) {
6913
			tmp->parent = parent->parent;
6914 6915
			if (parent->parent)
				parent->parent->child = tmp;
6916
			destroy_sched_domain(parent, cpu);
6917 6918
		} else
			tmp = tmp->parent;
6919 6920
	}

6921
	if (sd && sd_degenerate(sd)) {
6922
		tmp = sd;
6923
		sd = sd->parent;
6924
		destroy_sched_domain(tmp, cpu);
6925 6926 6927
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6928

6929
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6930

G
Gregory Haskins 已提交
6931
	rq_attach_root(rq, rd);
6932
	tmp = rq->sd;
N
Nick Piggin 已提交
6933
	rcu_assign_pointer(rq->sd, sd);
6934
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
6935 6936 6937
}

/* cpus with isolated domains */
6938
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6939 6940 6941 6942

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6943
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6944
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6945 6946 6947
	return 1;
}

I
Ingo Molnar 已提交
6948
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6949

6950
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6951

6952
#ifdef CONFIG_NUMA
6953

6954 6955 6956 6957 6958
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6959
 * Find the next node to include in a given scheduling domain. Simply
6960 6961 6962 6963
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6964
static int find_next_best_node(int node, nodemask_t *used_nodes)
6965
{
6966
	int i, n, val, min_val, best_node = -1;
6967 6968 6969

	min_val = INT_MAX;

6970
	for (i = 0; i < nr_node_ids; i++) {
6971
		/* Start at @node */
6972
		n = (node + i) % nr_node_ids;
6973 6974 6975 6976 6977

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6978
		if (node_isset(n, *used_nodes))
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6990 6991
	if (best_node != -1)
		node_set(best_node, *used_nodes);
6992 6993 6994 6995 6996 6997
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6998
 * @span: resulting cpumask
6999
 *
I
Ingo Molnar 已提交
7000
 * Given a node, construct a good cpumask for its sched_domain to span. It
7001 7002 7003
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7004
static void sched_domain_node_span(int node, struct cpumask *span)
7005
{
7006
	nodemask_t used_nodes;
7007
	int i;
7008

7009
	cpumask_clear(span);
7010
	nodes_clear(used_nodes);
7011

7012
	cpumask_or(span, span, cpumask_of_node(node));
7013
	node_set(node, used_nodes);
7014 7015

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7016
		int next_node = find_next_best_node(node, &used_nodes);
7017 7018
		if (next_node < 0)
			break;
7019
		cpumask_or(span, span, cpumask_of_node(next_node));
7020 7021
	}
}
7022 7023 7024 7025 7026 7027 7028 7029 7030

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
7031 7032 7033 7034 7035

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
7036
#endif /* CONFIG_NUMA */
7037

7038 7039 7040 7041 7042
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

7043
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7044

7045 7046 7047
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
7048
	struct sched_group_power **__percpu sgp;
7049 7050
};

7051
struct s_data {
7052
	struct sched_domain ** __percpu sd;
7053 7054 7055
	struct root_domain	*rd;
};

7056 7057
enum s_alloc {
	sa_rootdomain,
7058
	sa_sd,
7059
	sa_sd_storage,
7060 7061 7062
	sa_none,
};

7063 7064 7065
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7066 7067
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

7068 7069
#define SDTL_OVERLAP	0x01

7070
struct sched_domain_topology_level {
7071 7072
	sched_domain_init_f init;
	sched_domain_mask_f mask;
7073
	int		    flags;
7074
	struct sd_data      data;
7075 7076
};

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
				GFP_KERNEL, cpu_to_node(i));

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

7135
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
7136
{
7137 7138
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
7139

7140 7141
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
7142

7143
	if (sg) {
7144
		*sg = *per_cpu_ptr(sdd->sg, cpu);
7145
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7146
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7147
	}
7148 7149

	return cpu;
7150 7151
}

7152
/*
7153 7154 7155
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
7156 7157
 *
 * Assumes the sched_domain tree is fully constructed
7158
 */
7159 7160
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
7161
{
7162 7163 7164
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
7165
	struct cpumask *covered;
7166
	int i;
7167

7168 7169 7170 7171 7172 7173
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

7174 7175 7176
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

7177
	cpumask_clear(covered);
7178

7179 7180 7181 7182
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
7183

7184 7185
		if (cpumask_test_cpu(i, covered))
			continue;
7186

7187
		cpumask_clear(sched_group_cpus(sg));
7188
		sg->sgp->power = 0;
7189

7190 7191 7192
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
7193

7194 7195 7196
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
7197

7198 7199 7200 7201 7202 7203 7204
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
7205 7206

	return 0;
7207
}
7208

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
7221
	struct sched_group *sg = sd->groups;
7222

7223 7224 7225 7226 7227 7228
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
7229

7230 7231
	if (cpu != group_first_cpu(sg))
		return;
7232

7233
	update_group_power(sd, cpu);
7234 7235
}

7236 7237 7238 7239 7240
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7241 7242 7243 7244 7245 7246
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7247 7248 7249 7250 7251 7252 7253 7254 7255
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7269 7270 7271
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7272

7273
static int default_relax_domain_level = -1;
7274
int sched_domain_level_max;
7275 7276 7277

static int __init setup_relax_domain_level(char *str)
{
7278 7279 7280
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
7281
	if (val < sched_domain_level_max)
7282 7283
		default_relax_domain_level = val;

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7302
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7303 7304
	} else {
		/* turn on idle balance on this domain */
7305
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7306 7307 7308
	}
}

7309 7310 7311
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

7312 7313 7314 7315 7316
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
7317 7318
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7319 7320
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7321
	case sa_sd_storage:
7322
		__sdt_free(cpu_map); /* fall through */
7323 7324 7325 7326
	case sa_none:
		break;
	}
}
7327

7328 7329 7330
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7331 7332
	memset(d, 0, sizeof(*d));

7333 7334
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
7335 7336 7337
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7338
	d->rd = alloc_rootdomain();
7339
	if (!d->rd)
7340
		return sa_sd;
7341 7342
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7343

7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

7356
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7357
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
7358 7359

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7360
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
7361 7362
}

7363 7364
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
7365
{
7366
	return topology_thread_cpumask(cpu);
7367
}
7368
#endif
7369

7370 7371 7372
/*
 * Topology list, bottom-up.
 */
7373
static struct sched_domain_topology_level default_topology[] = {
7374 7375
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
7376
#endif
7377
#ifdef CONFIG_SCHED_MC
7378
	{ sd_init_MC, cpu_coregroup_mask, },
7379
#endif
7380 7381 7382 7383 7384
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
7385
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7386
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
7387
#endif
7388 7389 7390 7391 7392
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

7409 7410 7411 7412
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

7413 7414 7415
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
7416
			struct sched_group_power *sgp;
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
7431 7432 7433 7434 7435 7436 7437

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
7453 7454 7455
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
7456
			kfree(*per_cpu_ptr(sdd->sd, j));
7457
			kfree(*per_cpu_ptr(sdd->sg, j));
7458
			kfree(*per_cpu_ptr(sdd->sgp, j));
7459 7460 7461
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
7462
		free_percpu(sdd->sgp);
7463 7464 7465
	}
}

7466 7467
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
7468
		struct sched_domain_attr *attr, struct sched_domain *child,
7469 7470
		int cpu)
{
7471
	struct sched_domain *sd = tl->init(tl, cpu);
7472
	if (!sd)
7473
		return child;
7474 7475 7476

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7477 7478 7479
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7480
		child->parent = sd;
7481
	}
7482
	sd->child = child;
7483 7484 7485 7486

	return sd;
}

7487 7488 7489 7490
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7491 7492
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7493 7494
{
	enum s_alloc alloc_state = sa_none;
7495
	struct sched_domain *sd;
7496
	struct s_data d;
7497
	int i, ret = -ENOMEM;
7498

7499 7500 7501
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7502

7503
	/* Set up domains for cpus specified by the cpu_map. */
7504
	for_each_cpu(i, cpu_map) {
7505 7506
		struct sched_domain_topology_level *tl;

7507
		sd = NULL;
7508
		for (tl = sched_domain_topology; tl->init; tl++) {
7509
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7510 7511
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7512 7513
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7514
		}
7515

7516 7517 7518
		while (sd->child)
			sd = sd->child;

7519
		*per_cpu_ptr(d.sd, i) = sd;
7520 7521 7522 7523 7524 7525
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7526 7527 7528 7529 7530 7531 7532
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7533
		}
7534
	}
7535

L
Linus Torvalds 已提交
7536
	/* Calculate CPU power for physical packages and nodes */
7537 7538 7539
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7540

7541 7542
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7543
			init_sched_groups_power(i, sd);
7544
		}
7545
	}
7546

L
Linus Torvalds 已提交
7547
	/* Attach the domains */
7548
	rcu_read_lock();
7549
	for_each_cpu(i, cpu_map) {
7550
		sd = *per_cpu_ptr(d.sd, i);
7551
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7552
	}
7553
	rcu_read_unlock();
7554

7555
	ret = 0;
7556
error:
7557
	__free_domain_allocs(&d, alloc_state, cpu_map);
7558
	return ret;
L
Linus Torvalds 已提交
7559
}
P
Paul Jackson 已提交
7560

7561
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7562
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7563 7564
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7565 7566 7567

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7568 7569
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7570
 */
7571
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7572

7573 7574 7575 7576 7577 7578
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7579
{
7580
	return 0;
7581 7582
}

7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7608
/*
I
Ingo Molnar 已提交
7609
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7610 7611
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7612
 */
7613
static int init_sched_domains(const struct cpumask *cpu_map)
7614
{
7615 7616
	int err;

7617
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7618
	ndoms_cur = 1;
7619
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7620
	if (!doms_cur)
7621 7622
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7623
	dattr_cur = NULL;
7624
	err = build_sched_domains(doms_cur[0], NULL);
7625
	register_sched_domain_sysctl();
7626 7627

	return err;
7628 7629 7630 7631 7632 7633
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7634
static void detach_destroy_domains(const struct cpumask *cpu_map)
7635 7636 7637
{
	int i;

7638
	rcu_read_lock();
7639
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7640
		cpu_attach_domain(NULL, &def_root_domain, i);
7641
	rcu_read_unlock();
7642 7643
}

7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7660 7661
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7662
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7663 7664 7665
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7666
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7667 7668 7669
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7670 7671 7672
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7673 7674 7675 7676 7677 7678
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7679
 *
7680
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7681 7682
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7683
 *
P
Paul Jackson 已提交
7684 7685
 * Call with hotplug lock held
 */
7686
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7687
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7688
{
7689
	int i, j, n;
7690
	int new_topology;
P
Paul Jackson 已提交
7691

7692
	mutex_lock(&sched_domains_mutex);
7693

7694 7695 7696
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7697 7698 7699
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7700
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7701 7702 7703

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7704
		for (j = 0; j < n && !new_topology; j++) {
7705
			if (cpumask_equal(doms_cur[i], doms_new[j])
7706
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7707 7708 7709
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7710
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7711 7712 7713 7714
match1:
		;
	}

7715 7716
	if (doms_new == NULL) {
		ndoms_cur = 0;
7717
		doms_new = &fallback_doms;
7718
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7719
		WARN_ON_ONCE(dattr_new);
7720 7721
	}

P
Paul Jackson 已提交
7722 7723
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7724
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7725
			if (cpumask_equal(doms_new[i], doms_cur[j])
7726
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7727 7728 7729
				goto match2;
		}
		/* no match - add a new doms_new */
7730
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7731 7732 7733 7734 7735
match2:
		;
	}

	/* Remember the new sched domains */
7736 7737
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7738
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7739
	doms_cur = doms_new;
7740
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7741
	ndoms_cur = ndoms_new;
7742 7743

	register_sched_domain_sysctl();
7744

7745
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7746 7747
}

7748
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7749
static void reinit_sched_domains(void)
7750
{
7751
	get_online_cpus();
7752 7753 7754 7755

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7756
	rebuild_sched_domains();
7757
	put_online_cpus();
7758 7759 7760 7761
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7762
	unsigned int level = 0;
7763

7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7775 7776 7777
		return -EINVAL;

	if (smt)
7778
		sched_smt_power_savings = level;
7779
	else
7780
		sched_mc_power_savings = level;
7781

7782
	reinit_sched_domains();
7783

7784
	return count;
7785 7786 7787
}

#ifdef CONFIG_SCHED_MC
7788
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7789
					   struct sysdev_class_attribute *attr,
7790
					   char *page)
7791 7792 7793
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7794
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7795
					    struct sysdev_class_attribute *attr,
7796
					    const char *buf, size_t count)
7797 7798 7799
{
	return sched_power_savings_store(buf, count, 0);
}
7800 7801 7802
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7803 7804 7805
#endif

#ifdef CONFIG_SCHED_SMT
7806
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7807
					    struct sysdev_class_attribute *attr,
7808
					    char *page)
7809 7810 7811
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7812
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7813
					     struct sysdev_class_attribute *attr,
7814
					     const char *buf, size_t count)
7815 7816 7817
{
	return sched_power_savings_store(buf, count, 1);
}
7818 7819
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7820 7821 7822
		   sched_smt_power_savings_store);
#endif

7823
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7839
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7840

L
Linus Torvalds 已提交
7841
/*
7842 7843 7844
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7845
 */
7846 7847
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7848
{
7849
	switch (action & ~CPU_TASKS_FROZEN) {
7850
	case CPU_ONLINE:
7851
	case CPU_DOWN_FAILED:
7852
		cpuset_update_active_cpus();
7853
		return NOTIFY_OK;
7854 7855 7856 7857
	default:
		return NOTIFY_DONE;
	}
}
7858

7859 7860
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7861 7862 7863 7864 7865
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7866 7867 7868 7869 7870 7871 7872
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7873
{
P
Peter Zijlstra 已提交
7874 7875
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7876 7877
	switch (action) {
	case CPU_DOWN_PREPARE:
7878
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7879
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7880 7881 7882
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7883
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7884
	case CPU_ONLINE:
7885
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7886
		enable_runtime(cpu_rq(cpu));
7887 7888
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7889 7890 7891 7892 7893 7894 7895
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7896 7897 7898
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7899
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7900

7901
	get_online_cpus();
7902
	mutex_lock(&sched_domains_mutex);
7903
	init_sched_domains(cpu_active_mask);
7904 7905 7906
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7907
	mutex_unlock(&sched_domains_mutex);
7908
	put_online_cpus();
7909

7910 7911
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7912 7913 7914 7915

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7916
	init_hrtick();
7917 7918

	/* Move init over to a non-isolated CPU */
7919
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7920
		BUG();
I
Ingo Molnar 已提交
7921
	sched_init_granularity();
7922
	free_cpumask_var(non_isolated_cpus);
7923

7924
	init_sched_rt_class();
L
Linus Torvalds 已提交
7925 7926 7927 7928
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7929
	sched_init_granularity();
L
Linus Torvalds 已提交
7930 7931 7932
}
#endif /* CONFIG_SMP */

7933 7934
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7935 7936 7937 7938 7939 7940 7941
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7942
static void init_cfs_rq(struct cfs_rq *cfs_rq)
I
Ingo Molnar 已提交
7943 7944
{
	cfs_rq->tasks_timeline = RB_ROOT;
7945
	INIT_LIST_HEAD(&cfs_rq->tasks);
P
Peter Zijlstra 已提交
7946
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
P
Peter Zijlstra 已提交
7947 7948 7949
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
I
Ingo Molnar 已提交
7950 7951
}

P
Peter Zijlstra 已提交
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7965
#if defined CONFIG_SMP
7966 7967
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7968 7969
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7970
	plist_head_init(&rt_rq->pushable_tasks);
P
Peter Zijlstra 已提交
7971 7972 7973 7974
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7975
	rt_rq->rt_runtime = 0;
7976
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7977 7978
}

P
Peter Zijlstra 已提交
7979
#ifdef CONFIG_FAIR_GROUP_SCHED
7980
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7981
				struct sched_entity *se, int cpu,
7982
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7983
{
7984
	struct rq *rq = cpu_rq(cpu);
7985

P
Peter Zijlstra 已提交
7986
	cfs_rq->tg = tg;
7987 7988 7989 7990 7991
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
#endif
P
Peter Zijlstra 已提交
7992

7993
	tg->cfs_rq[cpu] = cfs_rq;
P
Peter Zijlstra 已提交
7994
	tg->se[cpu] = se;
7995

7996
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
7997 7998 7999
	if (!se)
		return;

8000 8001 8002 8003 8004
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8005
	se->my_q = cfs_rq;
8006
	update_load_set(&se->load, 0);
8007
	se->parent = parent;
P
Peter Zijlstra 已提交
8008
}
8009
#endif
P
Peter Zijlstra 已提交
8010

8011
#ifdef CONFIG_RT_GROUP_SCHED
8012
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8013
		struct sched_rt_entity *rt_se, int cpu,
8014
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8015
{
8016 8017
	struct rq *rq = cpu_rq(cpu);

8018 8019 8020
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
P
Peter Zijlstra 已提交
8021 8022
	rt_rq->tg = tg;

8023
	tg->rt_rq[cpu] = rt_rq;
P
Peter Zijlstra 已提交
8024
	tg->rt_se[cpu] = rt_se;
8025

D
Dhaval Giani 已提交
8026 8027 8028
	if (!rt_se)
		return;

8029 8030 8031 8032 8033
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8034
	rt_se->my_q = rt_rq;
8035
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8036 8037 8038 8039
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8040 8041
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8042
	int i, j;
8043 8044 8045 8046 8047 8048 8049
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8050
#endif
8051
#ifdef CONFIG_CPUMASK_OFFSTACK
8052
	alloc_size += num_possible_cpus() * cpumask_size();
8053 8054
#endif
	if (alloc_size) {
8055
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8056 8057

#ifdef CONFIG_FAIR_GROUP_SCHED
8058
		root_task_group.se = (struct sched_entity **)ptr;
8059 8060
		ptr += nr_cpu_ids * sizeof(void **);

8061
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8062
		ptr += nr_cpu_ids * sizeof(void **);
8063

8064
#endif /* CONFIG_FAIR_GROUP_SCHED */
8065
#ifdef CONFIG_RT_GROUP_SCHED
8066
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8067 8068
		ptr += nr_cpu_ids * sizeof(void **);

8069
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8070 8071
		ptr += nr_cpu_ids * sizeof(void **);

8072
#endif /* CONFIG_RT_GROUP_SCHED */
8073 8074 8075 8076 8077 8078
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8079
	}
I
Ingo Molnar 已提交
8080

G
Gregory Haskins 已提交
8081 8082 8083 8084
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8085 8086 8087 8088
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8089
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8090
			global_rt_period(), global_rt_runtime());
8091
#endif /* CONFIG_RT_GROUP_SCHED */
8092

D
Dhaval Giani 已提交
8093
#ifdef CONFIG_CGROUP_SCHED
8094 8095
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8096
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8097
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8098

8099
	for_each_possible_cpu(i) {
8100
		struct rq *rq;
L
Linus Torvalds 已提交
8101 8102

		rq = cpu_rq(i);
8103
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8104
		rq->nr_running = 0;
8105 8106
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
8107
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
8108
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8109
#ifdef CONFIG_FAIR_GROUP_SCHED
8110
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8111
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8112
		/*
8113
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8114 8115 8116 8117
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8118
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8119 8120 8121
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8122
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8123 8124 8125
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8126
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8127
		 *
8128 8129
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8130
		 */
8131
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8132 8133 8134
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8135
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8136
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8137
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8138
#endif
L
Linus Torvalds 已提交
8139

I
Ingo Molnar 已提交
8140 8141
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8142 8143 8144

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8145
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8146
		rq->sd = NULL;
G
Gregory Haskins 已提交
8147
		rq->rd = NULL;
8148
		rq->cpu_power = SCHED_POWER_SCALE;
8149
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8150
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8151
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8152
		rq->push_cpu = 0;
8153
		rq->cpu = i;
8154
		rq->online = 0;
8155 8156
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8157
		rq_attach_root(rq, &def_root_domain);
8158 8159 8160 8161
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8162
#endif
P
Peter Zijlstra 已提交
8163
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8164 8165 8166
		atomic_set(&rq->nr_iowait, 0);
	}

8167
	set_load_weight(&init_task);
8168

8169 8170 8171 8172
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8173
#ifdef CONFIG_SMP
8174
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8175 8176
#endif

8177
#ifdef CONFIG_RT_MUTEXES
8178
	plist_head_init(&init_task.pi_waiters);
8179 8180
#endif

L
Linus Torvalds 已提交
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8194 8195 8196

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8197 8198 8199 8200
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8201

8202
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8203
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8204
#ifdef CONFIG_SMP
8205
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8206
#ifdef CONFIG_NO_HZ
8207 8208 8209 8210 8211
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8212
#endif
R
Rusty Russell 已提交
8213 8214 8215
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8216
#endif /* SMP */
8217

8218
	scheduler_running = 1;
L
Linus Torvalds 已提交
8219 8220
}

8221
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8222 8223
static inline int preempt_count_equals(int preempt_offset)
{
8224
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8225

A
Arnd Bergmann 已提交
8226
	return (nested == preempt_offset);
8227 8228
}

8229
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8230 8231 8232
{
	static unsigned long prev_jiffy;	/* ratelimiting */

8233 8234
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8235 8236 8237 8238 8239
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8240 8241 8242 8243 8244 8245 8246
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8247 8248 8249 8250 8251

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8252 8253 8254 8255 8256
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8257 8258
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8259 8260
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8261
	int on_rq;
8262

P
Peter Zijlstra 已提交
8263
	on_rq = p->on_rq;
8264 8265 8266 8267 8268 8269 8270
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8271 8272

	check_class_changed(rq, p, prev_class, old_prio);
8273 8274
}

L
Linus Torvalds 已提交
8275 8276
void normalize_rt_tasks(void)
{
8277
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8278
	unsigned long flags;
8279
	struct rq *rq;
L
Linus Torvalds 已提交
8280

8281
	read_lock_irqsave(&tasklist_lock, flags);
8282
	do_each_thread(g, p) {
8283 8284 8285 8286 8287 8288
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8289 8290
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8291 8292 8293
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8294
#endif
I
Ingo Molnar 已提交
8295 8296 8297 8298 8299 8300 8301 8302

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8303
			continue;
I
Ingo Molnar 已提交
8304
		}
L
Linus Torvalds 已提交
8305

8306
		raw_spin_lock(&p->pi_lock);
8307
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8308

8309
		normalize_task(rq, p);
8310

8311
		__task_rq_unlock(rq);
8312
		raw_spin_unlock(&p->pi_lock);
8313 8314
	} while_each_thread(g, p);

8315
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8316 8317 8318
}

#endif /* CONFIG_MAGIC_SYSRQ */
8319

8320
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8321
/*
8322
 * These functions are only useful for the IA64 MCA handling, or kdb.
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8337
struct task_struct *curr_task(int cpu)
8338 8339 8340 8341
{
	return cpu_curr(cpu);
}

8342 8343 8344
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8345 8346 8347 8348 8349 8350
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8351 8352
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8353 8354 8355 8356 8357 8358 8359
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8360
void set_curr_task(int cpu, struct task_struct *p)
8361 8362 8363 8364 8365
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8366

8367 8368
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8383 8384
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8385 8386
{
	struct cfs_rq *cfs_rq;
8387
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8388 8389
	int i;

8390
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8391 8392
	if (!tg->cfs_rq)
		goto err;
8393
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8394 8395
	if (!tg->se)
		goto err;
8396 8397

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8398 8399

	for_each_possible_cpu(i) {
8400 8401
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8402 8403 8404
		if (!cfs_rq)
			goto err;

8405 8406
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8407
		if (!se)
8408
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8409

8410
		init_cfs_rq(cfs_rq);
8411
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8412 8413 8414 8415
	}

	return 1;

P
Peter Zijlstra 已提交
8416
err_free_rq:
8417
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8418
err:
8419 8420 8421 8422 8423
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8435
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8436
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8437
}
8438
#else /* !CONFIG_FAIR_GROUP_SCHED */
8439 8440 8441 8442
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8443 8444
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8445 8446 8447 8448 8449 8450 8451
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8452
#endif /* CONFIG_FAIR_GROUP_SCHED */
8453 8454

#ifdef CONFIG_RT_GROUP_SCHED
8455 8456 8457 8458
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8459 8460
	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);
8461

8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8473 8474
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8475 8476
{
	struct rt_rq *rt_rq;
8477
	struct sched_rt_entity *rt_se;
8478 8479
	int i;

8480
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8481 8482
	if (!tg->rt_rq)
		goto err;
8483
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8484 8485 8486
	if (!tg->rt_se)
		goto err;

8487 8488
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8489 8490

	for_each_possible_cpu(i) {
8491 8492
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8493 8494
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8495

8496 8497
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8498
		if (!rt_se)
8499
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8500

8501 8502
		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8503
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8504 8505
	}

8506 8507
	return 1;

P
Peter Zijlstra 已提交
8508
err_free_rq:
8509
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8510
err:
8511 8512
	return 0;
}
8513
#else /* !CONFIG_RT_GROUP_SCHED */
8514 8515 8516 8517
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8518 8519
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8520 8521 8522
{
	return 1;
}
8523
#endif /* CONFIG_RT_GROUP_SCHED */
8524

D
Dhaval Giani 已提交
8525
#ifdef CONFIG_CGROUP_SCHED
8526 8527 8528 8529
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8530
	autogroup_free(tg);
8531 8532 8533 8534
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8535
struct task_group *sched_create_group(struct task_group *parent)
8536 8537 8538 8539 8540 8541 8542 8543
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8544
	if (!alloc_fair_sched_group(tg, parent))
8545 8546
		goto err;

8547
	if (!alloc_rt_sched_group(tg, parent))
8548 8549
		goto err;

8550
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8551
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8552 8553 8554 8555 8556

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8557
	list_add_rcu(&tg->siblings, &parent->children);
8558
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8559

8560
	return tg;
S
Srivatsa Vaddagiri 已提交
8561 8562

err:
P
Peter Zijlstra 已提交
8563
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8564 8565 8566
	return ERR_PTR(-ENOMEM);
}

8567
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8568
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8569 8570
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8571
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8572 8573
}

8574
/* Destroy runqueue etc associated with a task group */
8575
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8576
{
8577
	unsigned long flags;
8578
	int i;
S
Srivatsa Vaddagiri 已提交
8579

8580 8581
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8582
		unregister_fair_sched_group(tg, i);
8583 8584

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8585
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8586
	list_del_rcu(&tg->siblings);
8587
	spin_unlock_irqrestore(&task_group_lock, flags);
8588 8589

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8590
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8591 8592
}

8593
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8594 8595 8596
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8597 8598
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8599 8600 8601 8602 8603 8604 8605
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8606
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8607
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8608

8609
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8610
		dequeue_task(rq, tsk, 0);
8611 8612
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8613

P
Peter Zijlstra 已提交
8614
#ifdef CONFIG_FAIR_GROUP_SCHED
8615 8616 8617
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8618
#endif
8619
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8620

8621 8622 8623
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8624
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8625

8626
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
8627
}
D
Dhaval Giani 已提交
8628
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8629

8630
#ifdef CONFIG_FAIR_GROUP_SCHED
8631 8632
static DEFINE_MUTEX(shares_mutex);

8633
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8634 8635
{
	int i;
8636
	unsigned long flags;
8637

8638 8639 8640 8641 8642 8643
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8644
	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8645

8646
	mutex_lock(&shares_mutex);
8647
	if (tg->shares == shares)
8648
		goto done;
S
Srivatsa Vaddagiri 已提交
8649

8650
	tg->shares = shares;
8651
	for_each_possible_cpu(i) {
8652 8653 8654 8655 8656 8657 8658
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8659
			update_cfs_shares(group_cfs_rq(se));
8660
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8661
	}
S
Srivatsa Vaddagiri 已提交
8662

8663
done:
8664
	mutex_unlock(&shares_mutex);
8665
	return 0;
S
Srivatsa Vaddagiri 已提交
8666 8667
}

8668 8669 8670 8671
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8672
#endif
8673

8674
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8675
/*
P
Peter Zijlstra 已提交
8676
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8677
 */
P
Peter Zijlstra 已提交
8678 8679 8680 8681 8682
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8683
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8684

P
Peter Zijlstra 已提交
8685
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8686 8687
}

P
Peter Zijlstra 已提交
8688 8689
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8690
{
P
Peter Zijlstra 已提交
8691
	struct task_struct *g, *p;
8692

P
Peter Zijlstra 已提交
8693 8694 8695 8696
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8697

P
Peter Zijlstra 已提交
8698 8699
	return 0;
}
8700

P
Peter Zijlstra 已提交
8701 8702 8703 8704 8705
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8706

P
Peter Zijlstra 已提交
8707 8708 8709 8710 8711 8712
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8713

P
Peter Zijlstra 已提交
8714 8715
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8716

P
Peter Zijlstra 已提交
8717 8718 8719
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8720 8721
	}

8722 8723 8724 8725 8726
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8727

8728 8729 8730
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8731 8732
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8733

P
Peter Zijlstra 已提交
8734
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8735

8736 8737 8738 8739 8740
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8741

8742 8743 8744
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8745 8746 8747
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8748

P
Peter Zijlstra 已提交
8749 8750 8751 8752
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8753

P
Peter Zijlstra 已提交
8754
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8755
	}
P
Peter Zijlstra 已提交
8756

P
Peter Zijlstra 已提交
8757 8758 8759 8760
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8761 8762
}

P
Peter Zijlstra 已提交
8763
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8764
{
P
Peter Zijlstra 已提交
8765 8766 8767 8768 8769 8770 8771
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8772 8773
}

8774 8775
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8776
{
P
Peter Zijlstra 已提交
8777
	int i, err = 0;
P
Peter Zijlstra 已提交
8778 8779

	mutex_lock(&rt_constraints_mutex);
8780
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8781 8782
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8783
		goto unlock;
P
Peter Zijlstra 已提交
8784

8785
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8786 8787
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8788 8789 8790 8791

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8792
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8793
		rt_rq->rt_runtime = rt_runtime;
8794
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8795
	}
8796
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8797
unlock:
8798
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8799 8800 8801
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8802 8803
}

8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8816 8817 8818 8819
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8820
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8821 8822
		return -1;

8823
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8824 8825 8826
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8827 8828 8829 8830 8831 8832 8833 8834

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8835 8836 8837
	if (rt_period == 0)
		return -EINVAL;

8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8852
	u64 runtime, period;
8853 8854
	int ret = 0;

8855 8856 8857
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8858 8859 8860 8861 8862 8863 8864 8865
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8866

8867
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8868
	read_lock(&tasklist_lock);
8869
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8870
	read_unlock(&tasklist_lock);
8871 8872 8873 8874
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8885
#else /* !CONFIG_RT_GROUP_SCHED */
8886 8887
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8888 8889 8890
	unsigned long flags;
	int i;

8891 8892 8893
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8894 8895 8896 8897 8898 8899 8900
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8901
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8902 8903 8904
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8905
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8906
		rt_rq->rt_runtime = global_rt_runtime();
8907
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8908
	}
8909
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8910

8911 8912
	return 0;
}
8913
#endif /* CONFIG_RT_GROUP_SCHED */
8914 8915

int sched_rt_handler(struct ctl_table *table, int write,
8916
		void __user *buffer, size_t *lenp,
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8927
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8944

8945
#ifdef CONFIG_CGROUP_SCHED
8946 8947

/* return corresponding task_group object of a cgroup */
8948
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8949
{
8950 8951
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8952 8953 8954
}

static struct cgroup_subsys_state *
8955
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8956
{
8957
	struct task_group *tg, *parent;
8958

8959
	if (!cgrp->parent) {
8960
		/* This is early initialization for the top cgroup */
8961
		return &root_task_group.css;
8962 8963
	}

8964 8965
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8966 8967 8968 8969 8970 8971
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8972 8973
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8974
{
8975
	struct task_group *tg = cgroup_tg(cgrp);
8976 8977 8978 8979

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8980
static int
8981
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8982
{
8983
#ifdef CONFIG_RT_GROUP_SCHED
8984
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8985 8986
		return -EINVAL;
#else
8987 8988 8989
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8990
#endif
8991 8992
	return 0;
}
8993 8994

static void
8995
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8996 8997 8998 8999
{
	sched_move_task(tsk);
}

9000
static void
9001 9002
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9015
#ifdef CONFIG_FAIR_GROUP_SCHED
9016
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9017
				u64 shareval)
9018
{
9019
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9020 9021
}

9022
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9023
{
9024
	struct task_group *tg = cgroup_tg(cgrp);
9025

9026
	return (u64) scale_load_down(tg->shares);
9027
}
9028
#endif /* CONFIG_FAIR_GROUP_SCHED */
9029

9030
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9031
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9032
				s64 val)
P
Peter Zijlstra 已提交
9033
{
9034
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9035 9036
}

9037
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9038
{
9039
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9040
}
9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9052
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9053

9054
static struct cftype cpu_files[] = {
9055
#ifdef CONFIG_FAIR_GROUP_SCHED
9056 9057
	{
		.name = "shares",
9058 9059
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9060
	},
9061 9062
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9063
	{
P
Peter Zijlstra 已提交
9064
		.name = "rt_runtime_us",
9065 9066
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9067
	},
9068 9069
	{
		.name = "rt_period_us",
9070 9071
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9072
	},
9073
#endif
9074 9075 9076 9077
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9078
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9079 9080 9081
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9082 9083 9084
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
9085 9086
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
9087
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9088 9089
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9090 9091 9092
	.early_init	= 1,
};

9093
#endif	/* CONFIG_CGROUP_SCHED */
9094 9095 9096 9097 9098 9099 9100 9101 9102 9103

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9104
/* track cpu usage of a group of tasks and its child groups */
9105 9106 9107
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9108
	u64 __percpu *cpuusage;
9109
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9110
	struct cpuacct *parent;
9111 9112 9113 9114 9115
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9116
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9117
{
9118
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9131
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9132 9133
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9134
	int i;
9135 9136

	if (!ca)
9137
		goto out;
9138 9139

	ca->cpuusage = alloc_percpu(u64);
9140 9141 9142 9143 9144 9145
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9146

9147 9148 9149
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9150
	return &ca->css;
9151 9152 9153 9154 9155 9156 9157 9158 9159

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9160 9161 9162
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9163
static void
9164
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9165
{
9166
	struct cpuacct *ca = cgroup_ca(cgrp);
9167
	int i;
9168

9169 9170
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9171 9172 9173 9174
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9175 9176
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9177
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9178 9179 9180 9181 9182 9183
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9184
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9185
	data = *cpuusage;
9186
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9187 9188 9189 9190 9191 9192 9193 9194 9195
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9196
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9197 9198 9199 9200 9201

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9202
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9203
	*cpuusage = val;
9204
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9205 9206 9207 9208 9209
#else
	*cpuusage = val;
#endif
}

9210
/* return total cpu usage (in nanoseconds) of a group */
9211
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9212
{
9213
	struct cpuacct *ca = cgroup_ca(cgrp);
9214 9215 9216
	u64 totalcpuusage = 0;
	int i;

9217 9218
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9219 9220 9221 9222

	return totalcpuusage;
}

9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9235 9236
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9237 9238 9239 9240 9241

out:
	return err;
}

9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9276 9277 9278
static struct cftype files[] = {
	{
		.name = "usage",
9279 9280
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9281
	},
9282 9283 9284 9285
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9286 9287 9288 9289
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9290 9291
};

9292
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9293
{
9294
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9305
	int cpu;
9306

L
Li Zefan 已提交
9307
	if (unlikely(!cpuacct_subsys.active))
9308 9309
		return;

9310
	cpu = task_cpu(tsk);
9311 9312 9313

	rcu_read_lock();

9314 9315
	ca = task_ca(tsk);

9316
	for (; ca; ca = ca->parent) {
9317
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9318 9319
		*cpuusage += cputime;
	}
9320 9321

	rcu_read_unlock();
9322 9323
}

9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9341 9342 9343 9344 9345 9346 9347
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9348
	int batch = CPUACCT_BATCH;
9349 9350 9351 9352 9353 9354 9355 9356

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9357
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9358 9359 9360 9361 9362
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9363 9364 9365 9366 9367 9368 9369 9370
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9371