i915_gem.c 123.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46

47 48 49 50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

53 54
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
55 56 57
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

58 59 60 61 62 63
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83 84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       10*HZ);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 157
		if (vma->pin_count)
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169 170
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172 173 174 175 176
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

194
		put_page(page);
195 196 197
		vaddr += PAGE_SIZE;
	}

198
	i915_gem_chipset_flush(to_i915(obj->base.dev));
199 200 201 202 203 204 205 206 207 208 209 210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228
	if (WARN_ON(ret)) {
229 230 231 232 233 234 235 236 237 238
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
239
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240
		char *vaddr = obj->phys_handle->vaddr;
241 242 243
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
258
				mark_page_accessed(page);
259
			put_page(page);
260 261
			vaddr += PAGE_SIZE;
		}
262
		obj->dirty = 0;
263 264
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

304 305 306 307 308
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
309
	int ret;
310 311 312 313 314 315 316 317 318 319 320 321 322 323

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
324 325 326 327 328
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
329 330 331
	if (ret)
		return ret;

332 333 334 335 336 337
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
338 339 340
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
341 342 343 344 345 346 347 348 349
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
350
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
351
	int ret = 0;
352 353 354 355 356 357 358

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
359

360
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
361 362 363 364 365 366 367 368 369 370
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
371 372 373 374
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
375 376
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378
	i915_gem_chipset_flush(to_i915(dev));
379 380

out:
381
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
382
	return ret;
383 384
}

385 386
void *i915_gem_object_alloc(struct drm_device *dev)
{
387
	struct drm_i915_private *dev_priv = to_i915(dev);
388
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
389 390 391 392
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
393
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
394
	kmem_cache_free(dev_priv->objects, obj);
395 396
}

397 398 399 400 401
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
402
{
403
	struct drm_i915_gem_object *obj;
404 405
	int ret;
	u32 handle;
406

407
	size = roundup(size, PAGE_SIZE);
408 409
	if (size == 0)
		return -EINVAL;
410 411

	/* Allocate the new object */
412
	obj = i915_gem_object_create(dev, size);
413 414
	if (IS_ERR(obj))
		return PTR_ERR(obj);
415

416
	ret = drm_gem_handle_create(file, &obj->base, &handle);
417
	/* drop reference from allocate - handle holds it now */
418
	i915_gem_object_put_unlocked(obj);
419 420
	if (ret)
		return ret;
421

422
	*handle_p = handle;
423 424 425
	return 0;
}

426 427 428 429 430 431
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
432
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
433 434
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
435
			       args->size, &args->handle);
436 437 438 439
}

/**
 * Creates a new mm object and returns a handle to it.
440 441 442
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
443 444 445 446 447 448
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

518
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
519 520
		return -EINVAL;

521 522 523 524
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

543 544 545
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
546
static int
547 548 549 550 551 552 553
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

554
	if (unlikely(page_do_bit17_swizzling))
555 556 557 558 559 560 561 562 563 564 565
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

566
	return ret ? -EFAULT : 0;
567 568
}

569 570 571 572
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
573
	if (unlikely(swizzled)) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

591 592 593 594 595 596 597 598 599 600 601 602
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
603 604 605
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
606 607 608 609 610 611 612 613 614 615 616

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

617
	return ret ? - EFAULT : 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
647
	struct drm_i915_private *dev_priv = to_i915(dev);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

756
static int
757 758 759 760
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
761
{
762
	char __user *user_data;
763
	ssize_t remain;
764
	loff_t offset;
765
	int shmem_page_offset, page_length, ret = 0;
766
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
767
	int prefaulted = 0;
768
	int needs_clflush = 0;
769
	struct sg_page_iter sg_iter;
770

771
	if (!i915_gem_object_has_struct_page(obj))
772 773
		return -ENODEV;

774
	user_data = u64_to_user_ptr(args->data_ptr);
775 776
	remain = args->size;

777
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
778

779
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
780 781 782
	if (ret)
		return ret;

783
	offset = args->offset;
784

785 786
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
787
		struct page *page = sg_page_iter_page(&sg_iter);
788 789 790 791

		if (remain <= 0)
			break;

792 793 794 795 796
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
797
		shmem_page_offset = offset_in_page(offset);
798 799 800 801
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
810 811 812

		mutex_unlock(&dev->struct_mutex);

813
		if (likely(!i915.prefault_disable) && !prefaulted) {
814
			ret = fault_in_multipages_writeable(user_data, remain);
815 816 817 818 819 820 821
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
822

823 824 825
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
826

827
		mutex_lock(&dev->struct_mutex);
828 829

		if (ret)
830 831
			goto out;

832
next_page:
833
		remain -= page_length;
834
		user_data += page_length;
835 836 837
		offset += page_length;
	}

838
out:
839 840
	i915_gem_object_unpin_pages(obj);

841 842 843
	return ret;
}

844 845
/**
 * Reads data from the object referenced by handle.
846 847 848
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
849 850 851 852 853
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
854
		     struct drm_file *file)
855 856
{
	struct drm_i915_gem_pread *args = data;
857
	struct drm_i915_gem_object *obj;
858
	int ret = 0;
859

860 861 862 863
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
864
		       u64_to_user_ptr(args->data_ptr),
865 866 867
		       args->size))
		return -EFAULT;

868
	ret = i915_mutex_lock_interruptible(dev);
869
	if (ret)
870
		return ret;
871

872 873
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
874 875
		ret = -ENOENT;
		goto unlock;
876
	}
877

878
	/* Bounds check source.  */
879 880
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
881
		ret = -EINVAL;
882
		goto out;
C
Chris Wilson 已提交
883 884
	}

C
Chris Wilson 已提交
885 886
	trace_i915_gem_object_pread(obj, args->offset, args->size);

887
	ret = i915_gem_shmem_pread(dev, obj, args, file);
888

889 890 891 892 893
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

894
out:
895
	i915_gem_object_put(obj);
896
unlock:
897
	mutex_unlock(&dev->struct_mutex);
898
	return ret;
899 900
}

901 902
/* This is the fast write path which cannot handle
 * page faults in the source data
903
 */
904 905 906 907 908 909

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
910
{
911 912
	void __iomem *vaddr_atomic;
	void *vaddr;
913
	unsigned long unwritten;
914

P
Peter Zijlstra 已提交
915
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
916 917 918
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
919
						      user_data, length);
P
Peter Zijlstra 已提交
920
	io_mapping_unmap_atomic(vaddr_atomic);
921
	return unwritten;
922 923
}

924 925 926
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
927
 * @i915: i915 device private data
928 929 930
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
931
 */
932
static int
933
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
934
			 struct drm_i915_gem_object *obj,
935
			 struct drm_i915_gem_pwrite *args,
936
			 struct drm_file *file)
937
{
938
	struct i915_ggtt *ggtt = &i915->ggtt;
939
	struct drm_device *dev = obj->base.dev;
940 941
	struct drm_mm_node node;
	uint64_t remain, offset;
942
	char __user *user_data;
943
	int ret;
944 945 946 947
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
948

949
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
965 966 967
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
968
	}
D
Daniel Vetter 已提交
969 970 971 972 973

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

974
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
975
	obj->dirty = true;
976

977 978 979 980
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
981 982
		/* Operation in this page
		 *
983 984 985
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
986
		 */
987 988 989 990 991 992 993 994 995 996 997 998 999
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1000
		/* If we get a fault while copying data, then (presumably) our
1001 1002
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1003 1004
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1005
		 */
1006
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1007
				    page_offset, user_data, page_length)) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1020
		}
1021

1022 1023 1024
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1025 1026
	}

1027
out_flush:
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1041
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1042
out_unpin:
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1053
out:
1054
	return ret;
1055 1056
}

1057 1058 1059 1060
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1061
static int
1062 1063 1064 1065 1066
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1067
{
1068
	char *vaddr;
1069
	int ret;
1070

1071
	if (unlikely(page_do_bit17_swizzling))
1072
		return -EINVAL;
1073

1074 1075 1076 1077
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1078 1079
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1080 1081 1082 1083
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1084

1085
	return ret ? -EFAULT : 0;
1086 1087
}

1088 1089
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1090
static int
1091 1092 1093 1094 1095
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1096
{
1097 1098
	char *vaddr;
	int ret;
1099

1100
	vaddr = kmap(page);
1101
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1102 1103 1104
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1105 1106
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1107 1108
						user_data,
						page_length);
1109 1110 1111 1112 1113
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1114 1115 1116
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1117
	kunmap(page);
1118

1119
	return ret ? -EFAULT : 0;
1120 1121 1122
}

static int
1123 1124 1125 1126
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1127 1128
{
	ssize_t remain;
1129 1130
	loff_t offset;
	char __user *user_data;
1131
	int shmem_page_offset, page_length, ret = 0;
1132
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1133
	int hit_slowpath = 0;
1134 1135
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1136
	struct sg_page_iter sg_iter;
1137

1138
	user_data = u64_to_user_ptr(args->data_ptr);
1139 1140
	remain = args->size;

1141
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1142

1143 1144 1145 1146
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1147 1148 1149 1150 1151
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1152
		needs_clflush_after = cpu_write_needs_clflush(obj);
1153
	}
1154 1155 1156 1157 1158
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1159

1160 1161 1162 1163
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1164
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1165

1166 1167
	i915_gem_object_pin_pages(obj);

1168
	offset = args->offset;
1169
	obj->dirty = 1;
1170

1171 1172
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1173
		struct page *page = sg_page_iter_page(&sg_iter);
1174
		int partial_cacheline_write;
1175

1176 1177 1178
		if (remain <= 0)
			break;

1179 1180 1181 1182 1183
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1184
		shmem_page_offset = offset_in_page(offset);
1185 1186 1187 1188 1189

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1190 1191 1192 1193 1194 1195 1196
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1197 1198 1199
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1200 1201 1202 1203 1204 1205
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1206 1207 1208

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1209 1210 1211 1212
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1213

1214
		mutex_lock(&dev->struct_mutex);
1215 1216

		if (ret)
1217 1218
			goto out;

1219
next_page:
1220
		remain -= page_length;
1221
		user_data += page_length;
1222
		offset += page_length;
1223 1224
	}

1225
out:
1226 1227
	i915_gem_object_unpin_pages(obj);

1228
	if (hit_slowpath) {
1229 1230 1231 1232 1233 1234 1235
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1236
			if (i915_gem_clflush_object(obj, obj->pin_display))
1237
				needs_clflush_after = true;
1238
		}
1239
	}
1240

1241
	if (needs_clflush_after)
1242
		i915_gem_chipset_flush(to_i915(dev));
1243 1244
	else
		obj->cache_dirty = true;
1245

1246
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1247
	return ret;
1248 1249 1250 1251
}

/**
 * Writes data to the object referenced by handle.
1252 1253 1254
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1255 1256 1257 1258 1259
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1260
		      struct drm_file *file)
1261
{
1262
	struct drm_i915_private *dev_priv = to_i915(dev);
1263
	struct drm_i915_gem_pwrite *args = data;
1264
	struct drm_i915_gem_object *obj;
1265 1266 1267 1268 1269 1270
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1271
		       u64_to_user_ptr(args->data_ptr),
1272 1273 1274
		       args->size))
		return -EFAULT;

1275
	if (likely(!i915.prefault_disable)) {
1276
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1277 1278 1279 1280
						   args->size);
		if (ret)
			return -EFAULT;
	}
1281

1282 1283
	intel_runtime_pm_get(dev_priv);

1284
	ret = i915_mutex_lock_interruptible(dev);
1285
	if (ret)
1286
		goto put_rpm;
1287

1288 1289
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1290 1291
		ret = -ENOENT;
		goto unlock;
1292
	}
1293

1294
	/* Bounds check destination. */
1295 1296
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1297
		ret = -EINVAL;
1298
		goto out;
C
Chris Wilson 已提交
1299 1300
	}

C
Chris Wilson 已提交
1301 1302
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1303
	ret = -EFAULT;
1304 1305 1306 1307 1308 1309
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1310 1311
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1312
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1313 1314 1315
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1316
	}
1317

1318
	if (ret == -EFAULT || ret == -ENOSPC) {
1319 1320
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1321
		else if (i915_gem_object_has_struct_page(obj))
1322
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1323 1324
		else
			ret = -ENODEV;
1325
	}
1326

1327
out:
1328
	i915_gem_object_put(obj);
1329
unlock:
1330
	mutex_unlock(&dev->struct_mutex);
1331 1332 1333
put_rpm:
	intel_runtime_pm_put(dev_priv);

1334 1335 1336
	return ret;
}

1337 1338 1339
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1340 1341
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1342
 */
1343
int
1344 1345 1346
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1347
	struct reservation_object *resv;
C
Chris Wilson 已提交
1348 1349 1350
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1351

C
Chris Wilson 已提交
1352 1353 1354 1355 1356
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1357
	} else {
C
Chris Wilson 已提交
1358 1359 1360
		active_mask = 1;
		active = &obj->last_write;
	}
1361

C
Chris Wilson 已提交
1362
	for_each_active(active_mask, idx) {
1363 1364
		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
C
Chris Wilson 已提交
1365 1366
		if (ret)
			return ret;
1367 1368
	}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1379 1380 1381
	return 0;
}

1382 1383 1384 1385 1386
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1387
					    struct intel_rps_client *rps,
1388 1389 1390
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1391
	struct drm_i915_private *dev_priv = to_i915(dev);
1392
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1393 1394
	struct i915_gem_active *active;
	unsigned long active_mask;
1395
	int ret, i, n = 0;
1396 1397 1398 1399

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1400 1401
	active_mask = obj->active;
	if (!active_mask)
1402 1403
		return 0;

C
Chris Wilson 已提交
1404 1405
	if (!readonly) {
		active = obj->last_read;
1406
	} else {
C
Chris Wilson 已提交
1407 1408 1409
		active_mask = 1;
		active = &obj->last_write;
	}
1410

C
Chris Wilson 已提交
1411 1412
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1413

C
Chris Wilson 已提交
1414 1415 1416
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1417
			requests[n++] = req;
1418 1419
	}

1420
	mutex_unlock(&dev->struct_mutex);
1421
	ret = 0;
1422
	for (i = 0; ret == 0 && i < n; i++)
1423
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1424 1425
	mutex_lock(&dev->struct_mutex);

1426
	for (i = 0; i < n; i++)
1427
		i915_gem_request_put(requests[i]);
1428 1429

	return ret;
1430 1431
}

1432 1433 1434 1435 1436 1437
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1438 1439 1440 1441 1442 1443 1444
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1445
/**
1446 1447
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1448 1449 1450
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1451 1452 1453
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1454
			  struct drm_file *file)
1455 1456
{
	struct drm_i915_gem_set_domain *args = data;
1457
	struct drm_i915_gem_object *obj;
1458 1459
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1460 1461
	int ret;

1462
	/* Only handle setting domains to types used by the CPU. */
1463
	if (write_domain & I915_GEM_GPU_DOMAINS)
1464 1465
		return -EINVAL;

1466
	if (read_domains & I915_GEM_GPU_DOMAINS)
1467 1468 1469 1470 1471 1472 1473 1474
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1475
	ret = i915_mutex_lock_interruptible(dev);
1476
	if (ret)
1477
		return ret;
1478

1479 1480
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1481 1482
		ret = -ENOENT;
		goto unlock;
1483
	}
1484

1485 1486 1487 1488
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1489
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1490
							  to_rps_client(file),
1491
							  !write_domain);
1492 1493 1494
	if (ret)
		goto unref;

1495
	if (read_domains & I915_GEM_DOMAIN_GTT)
1496
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1497
	else
1498
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1499

1500
	if (write_domain != 0)
1501
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1502

1503
unref:
1504
	i915_gem_object_put(obj);
1505
unlock:
1506 1507 1508 1509 1510 1511
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1512 1513 1514
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1515 1516 1517
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1518
			 struct drm_file *file)
1519 1520
{
	struct drm_i915_gem_sw_finish *args = data;
1521
	struct drm_i915_gem_object *obj;
1522 1523
	int ret = 0;

1524
	ret = i915_mutex_lock_interruptible(dev);
1525
	if (ret)
1526
		return ret;
1527

1528 1529
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1530 1531
		ret = -ENOENT;
		goto unlock;
1532 1533 1534
	}

	/* Pinned buffers may be scanout, so flush the cache */
1535
	if (obj->pin_display)
1536
		i915_gem_object_flush_cpu_write_domain(obj);
1537

1538
	i915_gem_object_put(obj);
1539
unlock:
1540 1541 1542 1543 1544
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1545 1546 1547 1548 1549
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1550 1551 1552
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1563 1564 1565
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1566
		    struct drm_file *file)
1567 1568
{
	struct drm_i915_gem_mmap *args = data;
1569
	struct drm_i915_gem_object *obj;
1570 1571
	unsigned long addr;

1572 1573 1574
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1575
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1576 1577
		return -ENODEV;

1578 1579
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1580
		return -ENOENT;
1581

1582 1583 1584
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1585
	if (!obj->base.filp) {
1586
		i915_gem_object_put_unlocked(obj);
1587 1588 1589
		return -EINVAL;
	}

1590
	addr = vm_mmap(obj->base.filp, 0, args->size,
1591 1592
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1593 1594 1595 1596
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1597
		if (down_write_killable(&mm->mmap_sem)) {
1598
			i915_gem_object_put_unlocked(obj);
1599 1600
			return -EINTR;
		}
1601 1602 1603 1604 1605 1606 1607
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1608 1609

		/* This may race, but that's ok, it only gets set */
1610
		WRITE_ONCE(obj->has_wc_mmap, true);
1611
	}
1612
	i915_gem_object_put_unlocked(obj);
1613 1614 1615 1616 1617 1618 1619 1620
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1621 1622
/**
 * i915_gem_fault - fault a page into the GTT
1623 1624
 * @vma: VMA in question
 * @vmf: fault info
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1639 1640
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1641 1642
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1643
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1644 1645 1646
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1647
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1648

1649 1650
	intel_runtime_pm_get(dev_priv);

1651 1652 1653 1654
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1655 1656 1657
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1658

C
Chris Wilson 已提交
1659 1660
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1661 1662 1663 1664 1665 1666 1667 1668 1669
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1670 1671
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1672
		ret = -EFAULT;
1673 1674 1675
		goto unlock;
	}

1676
	/* Use a partial view if the object is bigger than the aperture. */
1677
	if (obj->base.size >= ggtt->mappable_end &&
1678
	    obj->tiling_mode == I915_TILING_NONE) {
1679
		static const unsigned int chunk_size = 256; // 1 MiB
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1693 1694
	if (ret)
		goto unlock;
1695

1696 1697 1698
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1699

1700
	ret = i915_gem_object_get_fence(obj);
1701
	if (ret)
1702
		goto unpin;
1703

1704
	/* Finally, remap it using the new GTT offset */
1705
	pfn = ggtt->mappable_base +
1706
		i915_gem_obj_ggtt_offset_view(obj, &view);
1707
	pfn >>= PAGE_SHIFT;
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1718

1719 1720
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1721 1722 1723 1724 1725
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1747
unpin:
1748
	i915_gem_object_ggtt_unpin_view(obj, &view);
1749
unlock:
1750
	mutex_unlock(&dev->struct_mutex);
1751
out:
1752
	switch (ret) {
1753
	case -EIO:
1754 1755 1756 1757 1758 1759 1760
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1761 1762 1763
			ret = VM_FAULT_SIGBUS;
			break;
		}
1764
	case -EAGAIN:
D
Daniel Vetter 已提交
1765 1766 1767 1768
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1769
		 */
1770 1771
	case 0:
	case -ERESTARTSYS:
1772
	case -EINTR:
1773 1774 1775 1776 1777
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1778 1779
		ret = VM_FAULT_NOPAGE;
		break;
1780
	case -ENOMEM:
1781 1782
		ret = VM_FAULT_OOM;
		break;
1783
	case -ENOSPC:
1784
	case -EFAULT:
1785 1786
		ret = VM_FAULT_SIGBUS;
		break;
1787
	default:
1788
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1789 1790
		ret = VM_FAULT_SIGBUS;
		break;
1791
	}
1792 1793 1794

	intel_runtime_pm_put(dev_priv);
	return ret;
1795 1796
}

1797 1798 1799 1800
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1801
 * Preserve the reservation of the mmapping with the DRM core code, but
1802 1803 1804 1805 1806 1807 1808 1809 1810
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1811
void
1812
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1813
{
1814 1815 1816 1817 1818 1819
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1820 1821
	if (!obj->fault_mappable)
		return;
1822

1823 1824
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1835
	obj->fault_mappable = false;
1836 1837
}

1838 1839 1840 1841 1842 1843 1844 1845 1846
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1847
uint32_t
1848
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1849
{
1850
	uint32_t gtt_size;
1851 1852

	if (INTEL_INFO(dev)->gen >= 4 ||
1853 1854
	    tiling_mode == I915_TILING_NONE)
		return size;
1855 1856

	/* Previous chips need a power-of-two fence region when tiling */
1857
	if (IS_GEN3(dev))
1858
		gtt_size = 1024*1024;
1859
	else
1860
		gtt_size = 512*1024;
1861

1862 1863
	while (gtt_size < size)
		gtt_size <<= 1;
1864

1865
	return gtt_size;
1866 1867
}

1868 1869
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1870 1871 1872 1873
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1874 1875
 *
 * Return the required GTT alignment for an object, taking into account
1876
 * potential fence register mapping.
1877
 */
1878 1879 1880
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1881 1882 1883 1884 1885
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1886
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1887
	    tiling_mode == I915_TILING_NONE)
1888 1889
		return 4096;

1890 1891 1892 1893
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1894
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1895 1896
}

1897 1898
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1899
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1900 1901
	int ret;

1902 1903
	dev_priv->mm.shrinker_no_lock_stealing = true;

1904 1905
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1906
		goto out;
1907 1908 1909 1910 1911 1912 1913 1914

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1915 1916 1917 1918 1919
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1920 1921
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1922
		goto out;
1923 1924

	i915_gem_shrink_all(dev_priv);
1925 1926 1927 1928 1929
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1930 1931 1932 1933 1934 1935 1936
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1937
int
1938 1939
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1940
		  uint32_t handle,
1941
		  uint64_t *offset)
1942
{
1943
	struct drm_i915_gem_object *obj;
1944 1945
	int ret;

1946
	ret = i915_mutex_lock_interruptible(dev);
1947
	if (ret)
1948
		return ret;
1949

1950 1951
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1952 1953 1954
		ret = -ENOENT;
		goto unlock;
	}
1955

1956
	if (obj->madv != I915_MADV_WILLNEED) {
1957
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1958
		ret = -EFAULT;
1959
		goto out;
1960 1961
	}

1962 1963 1964
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1965

1966
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1967

1968
out:
1969
	i915_gem_object_put(obj);
1970
unlock:
1971
	mutex_unlock(&dev->struct_mutex);
1972
	return ret;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1996
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1997 1998
}

D
Daniel Vetter 已提交
1999 2000 2001
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2002
{
2003
	i915_gem_object_free_mmap_offset(obj);
2004

2005 2006
	if (obj->base.filp == NULL)
		return;
2007

D
Daniel Vetter 已提交
2008 2009 2010 2011 2012
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2013
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2014 2015
	obj->madv = __I915_MADV_PURGED;
}
2016

2017 2018 2019
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2020
{
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2035 2036
}

2037
static void
2038
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2039
{
2040 2041
	struct sgt_iter sgt_iter;
	struct page *page;
2042
	int ret;
2043

2044
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2045

C
Chris Wilson 已提交
2046
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2047
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2048 2049 2050
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2051
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2052 2053 2054
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2055 2056
	i915_gem_gtt_finish_object(obj);

2057
	if (i915_gem_object_needs_bit17_swizzle(obj))
2058 2059
		i915_gem_object_save_bit_17_swizzle(obj);

2060 2061
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2062

2063
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2064
		if (obj->dirty)
2065
			set_page_dirty(page);
2066

2067
		if (obj->madv == I915_MADV_WILLNEED)
2068
			mark_page_accessed(page);
2069

2070
		put_page(page);
2071
	}
2072
	obj->dirty = 0;
2073

2074 2075
	sg_free_table(obj->pages);
	kfree(obj->pages);
2076
}
C
Chris Wilson 已提交
2077

2078
int
2079 2080 2081 2082
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2083
	if (obj->pages == NULL)
2084 2085
		return 0;

2086 2087 2088
	if (obj->pages_pin_count)
		return -EBUSY;

2089
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2090

2091 2092 2093
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2094
	list_del(&obj->global_list);
2095

2096
	if (obj->mapping) {
2097 2098 2099 2100
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2101 2102 2103
		obj->mapping = NULL;
	}

2104
	ops->put_pages(obj);
2105
	obj->pages = NULL;
2106

2107
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2108 2109 2110 2111

	return 0;
}

2112
static int
C
Chris Wilson 已提交
2113
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2114
{
2115
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2116 2117
	int page_count, i;
	struct address_space *mapping;
2118 2119
	struct sg_table *st;
	struct scatterlist *sg;
2120
	struct sgt_iter sgt_iter;
2121
	struct page *page;
2122
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2123
	int ret;
C
Chris Wilson 已提交
2124
	gfp_t gfp;
2125

C
Chris Wilson 已提交
2126 2127 2128 2129 2130 2131 2132
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2133 2134 2135 2136
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2137
	page_count = obj->base.size / PAGE_SIZE;
2138 2139
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2140
		return -ENOMEM;
2141
	}
2142

2143 2144 2145 2146 2147
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2148
	mapping = file_inode(obj->base.filp)->i_mapping;
2149
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2150
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2151 2152 2153
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2154 2155
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2156 2157 2158 2159 2160
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2161 2162 2163 2164 2165 2166 2167 2168
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2169
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2170 2171
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2172
				goto err_pages;
I
Imre Deak 已提交
2173
			}
C
Chris Wilson 已提交
2174
		}
2175 2176 2177 2178 2179 2180 2181 2182
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2183 2184 2185 2186 2187 2188 2189 2190 2191
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2192 2193 2194

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2195
	}
2196 2197 2198 2199
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2200 2201
	obj->pages = st;

I
Imre Deak 已提交
2202 2203 2204 2205
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2206
	if (i915_gem_object_needs_bit17_swizzle(obj))
2207 2208
		i915_gem_object_do_bit_17_swizzle(obj);

2209 2210 2211 2212
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2213 2214 2215
	return 0;

err_pages:
2216
	sg_mark_end(sg);
2217 2218
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2219 2220
	sg_free_table(st);
	kfree(st);
2221 2222 2223 2224 2225 2226 2227 2228 2229

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2230 2231 2232 2233
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2246
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2247 2248 2249
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2250
	if (obj->pages)
2251 2252
		return 0;

2253
	if (obj->madv != I915_MADV_WILLNEED) {
2254
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2255
		return -EFAULT;
2256 2257
	}

2258 2259
	BUG_ON(obj->pages_pin_count);

2260 2261 2262 2263
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2264
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2265 2266 2267 2268

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2269
	return 0;
2270 2271
}

2272 2273 2274 2275 2276
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2277 2278
	struct sgt_iter sgt_iter;
	struct page *page;
2279 2280
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2281 2282 2283 2284 2285 2286 2287
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2288 2289 2290 2291 2292 2293
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2294

2295 2296
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2297 2298 2299 2300 2301 2302

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2303 2304
	if (pages != stack_pages)
		drm_free_large(pages);
2305 2306 2307 2308 2309

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2322 2323 2324
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2325 2326 2327 2328 2329 2330 2331 2332
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2333
void i915_vma_move_to_active(struct i915_vma *vma,
2334
			     struct drm_i915_gem_request *req)
2335
{
2336
	struct drm_i915_gem_object *obj = vma->obj;
2337
	struct intel_engine_cs *engine;
2338

2339
	engine = i915_gem_request_get_engine(req);
2340 2341

	/* Add a reference if we're newly entering the active list. */
2342
	if (obj->active == 0)
2343
		i915_gem_object_get(obj);
2344
	obj->active |= intel_engine_flag(engine);
2345

2346
	i915_gem_active_set(&obj->last_read[engine->id], req);
2347

2348
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2349 2350
}

2351
static void
2352 2353
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2354
{
2355 2356
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2357

2358
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2359 2360
}

2361
static void
2362 2363
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2364
{
2365 2366 2367
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2368
	struct i915_vma *vma;
2369

2370
	GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2371

2372
	obj->active &= ~(1 << idx);
2373 2374
	if (obj->active)
		return;
2375

2376 2377 2378 2379
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2380
	list_move_tail(&obj->global_list, &request->i915->mm.bound_list);
2381

2382 2383 2384
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2385
	}
2386

2387
	i915_gem_object_put(obj);
2388 2389
}

2390
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2391
{
2392
	unsigned long elapsed;
2393

2394
	if (ctx->hang_stats.banned)
2395 2396
		return true;

2397
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2398 2399
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2400 2401
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2402 2403 2404 2405 2406
	}

	return false;
}

2407
static void i915_set_reset_status(struct i915_gem_context *ctx,
2408
				  const bool guilty)
2409
{
2410
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2411 2412

	if (guilty) {
2413
		hs->banned = i915_context_is_banned(ctx);
2414 2415 2416 2417
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2418 2419 2420
	}
}

2421
struct drm_i915_gem_request *
2422
i915_gem_find_active_request(struct intel_engine_cs *engine)
2423
{
2424 2425
	struct drm_i915_gem_request *request;

2426 2427 2428 2429 2430 2431 2432 2433
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2434
	list_for_each_entry(request, &engine->request_list, link) {
2435
		if (i915_gem_request_completed(request))
2436
			continue;
2437

2438
		return request;
2439
	}
2440 2441 2442 2443

	return NULL;
}

2444
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2445 2446 2447 2448
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2449
	request = i915_gem_find_active_request(engine);
2450 2451 2452
	if (request == NULL)
		return;

2453
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2454

2455
	i915_set_reset_status(request->ctx, ring_hung);
2456
	list_for_each_entry_continue(request, &engine->request_list, link)
2457
		i915_set_reset_status(request->ctx, false);
2458
}
2459

2460
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2461
{
2462
	struct intel_ring *ring;
2463

2464 2465 2466 2467
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2468
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2469

2470 2471 2472 2473 2474 2475
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2476
	if (i915.enable_execlists) {
2477 2478
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2479

2480
		intel_execlists_cancel_requests(engine);
2481 2482
	}

2483 2484 2485 2486 2487 2488 2489
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2490
	if (!list_empty(&engine->request_list)) {
2491 2492
		struct drm_i915_gem_request *request;

2493 2494
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2495
					  link);
2496

2497
		i915_gem_request_retire_upto(request);
2498
	}
2499 2500 2501 2502 2503 2504 2505 2506

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2507 2508 2509
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2510
	}
2511

2512
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2513 2514
}

2515
void i915_gem_reset(struct drm_device *dev)
2516
{
2517
	struct drm_i915_private *dev_priv = to_i915(dev);
2518
	struct intel_engine_cs *engine;
2519

2520 2521 2522 2523 2524
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2525
	for_each_engine(engine, dev_priv)
2526
		i915_gem_reset_engine_status(engine);
2527

2528
	for_each_engine(engine, dev_priv)
2529
		i915_gem_reset_engine_cleanup(engine);
2530
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2531

2532 2533
	i915_gem_context_reset(dev);

2534
	i915_gem_restore_fences(dev);
2535 2536 2537 2538
}

/**
 * This function clears the request list as sequence numbers are passed.
2539
 * @engine: engine to retire requests on
2540
 */
2541
void
2542
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2543
{
2544
	while (!list_empty(&engine->request_list)) {
2545 2546
		struct drm_i915_gem_request *request;

2547
		request = list_first_entry(&engine->request_list,
2548
					   struct drm_i915_gem_request,
2549
					   link);
2550

2551
		if (!i915_gem_request_completed(request))
2552 2553
			break;

2554
		i915_gem_request_retire_upto(request);
2555
	}
2556 2557
}

2558
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2559
{
2560
	struct intel_engine_cs *engine;
2561

2562
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2563 2564 2565 2566 2567

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2568

2569
	for_each_engine(engine, dev_priv) {
2570
		i915_gem_retire_requests_ring(engine);
2571 2572
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2573 2574
	}

2575
	if (dev_priv->gt.active_engines == 0)
2576 2577 2578
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2579 2580
}

2581
static void
2582 2583
i915_gem_retire_work_handler(struct work_struct *work)
{
2584
	struct drm_i915_private *dev_priv =
2585
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2586
	struct drm_device *dev = &dev_priv->drm;
2587

2588
	/* Come back later if the device is busy... */
2589
	if (mutex_trylock(&dev->struct_mutex)) {
2590
		i915_gem_retire_requests(dev_priv);
2591
		mutex_unlock(&dev->struct_mutex);
2592
	}
2593 2594 2595 2596 2597

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2598 2599
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2600 2601
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2602
				   round_jiffies_up_relative(HZ));
2603
	}
2604
}
2605

2606 2607 2608 2609
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2610
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2611
	struct drm_device *dev = &dev_priv->drm;
2612
	struct intel_engine_cs *engine;
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2635

2636
	for_each_engine(engine, dev_priv)
2637
		i915_gem_batch_pool_fini(&engine->batch_pool);
2638

2639 2640 2641
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2642

2643 2644 2645 2646
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2647
	stuck_engines = intel_kick_waiters(dev_priv);
2648 2649 2650
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2651

2652 2653 2654 2655 2656
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2657

2658 2659 2660 2661
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2662
	}
2663 2664
}

2665 2666
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2667 2668 2669
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2694
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2695 2696
	int i, n = 0;
	int ret;
2697

2698 2699 2700
	if (args->flags != 0)
		return -EINVAL;

2701 2702 2703 2704
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2705 2706
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2707 2708 2709 2710
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2711
	if (!obj->active)
2712
		goto out;
2713

2714
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2715
		struct drm_i915_gem_request *req;
2716

2717 2718
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2719 2720
		if (req)
			requests[n++] = req;
2721 2722
	}

2723 2724
out:
	i915_gem_object_put(obj);
2725 2726
	mutex_unlock(&dev->struct_mutex);

2727 2728
	for (i = 0; i < n; i++) {
		if (ret == 0)
2729
			ret = __i915_wait_request(requests[i], true,
2730
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2731
						  to_rps_client(file));
2732
		i915_gem_request_put(requests[i]);
2733
	}
2734
	return ret;
2735 2736
}

2737
static int
2738
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2739
		       struct drm_i915_gem_request *from)
2740 2741 2742
{
	int ret;

2743
	if (to->engine == from->engine)
2744 2745
		return 0;

2746
	if (!i915.semaphores) {
2747 2748
		ret = __i915_wait_request(from,
					  from->i915->mm.interruptible,
2749
					  NULL,
2750
					  NO_WAITBOOST);
2751 2752 2753
		if (ret)
			return ret;
	} else {
2754
		int idx = intel_engine_sync_index(from->engine, to->engine);
2755
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2756 2757
			return 0;

2758
		trace_i915_gem_ring_sync_to(to, from);
2759
		ret = to->engine->semaphore.sync_to(to, from);
2760 2761 2762
		if (ret)
			return ret;

2763
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2764 2765 2766 2767 2768
	}

	return 0;
}

2769 2770 2771 2772
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2773
 * @to: request we are wishing to use
2774 2775
 *
 * This code is meant to abstract object synchronization with the GPU.
2776 2777 2778
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2779 2780 2781 2782 2783 2784 2785
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2786 2787 2788
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2789 2790
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2791
		     struct drm_i915_gem_request *to)
2792
{
C
Chris Wilson 已提交
2793 2794 2795
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2796

C
Chris Wilson 已提交
2797
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2798

C
Chris Wilson 已提交
2799 2800 2801
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2802

C
Chris Wilson 已提交
2803 2804
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2805
	} else {
C
Chris Wilson 已提交
2806 2807
		active_mask = 1;
		active = &obj->last_write;
2808
	}
C
Chris Wilson 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2819
		ret = __i915_gem_object_sync(to, request);
2820 2821 2822
		if (ret)
			return ret;
	}
2823

2824
	return 0;
2825 2826
}

2827 2828 2829 2830 2831 2832 2833
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2834 2835 2836
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2859
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2860
{
2861
	struct drm_i915_gem_object *obj = vma->obj;
2862
	int ret;
2863

2864
	if (list_empty(&vma->obj_link))
2865 2866
		return 0;

2867 2868 2869 2870
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2871

B
Ben Widawsky 已提交
2872
	if (vma->pin_count)
2873
		return -EBUSY;
2874

2875 2876
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2877

2878 2879 2880 2881 2882
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
2883

2884
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2885
		i915_gem_object_finish_gtt(obj);
2886

2887 2888 2889 2890
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2891 2892

		__i915_vma_iounmap(vma);
2893
	}
2894

2895
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2896

2897
	vma->vm->unbind_vma(vma);
2898
	vma->bound = 0;
2899

2900
	list_del_init(&vma->vm_link);
2901
	if (vma->is_ggtt) {
2902 2903 2904 2905 2906 2907
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2908
		vma->ggtt_view.pages = NULL;
2909
	}
2910

B
Ben Widawsky 已提交
2911 2912 2913 2914
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2915
	 * no more VMAs exist. */
2916 2917 2918
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2919

2920 2921 2922 2923 2924 2925
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2926
	return 0;
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

2939
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2940
{
2941
	struct intel_engine_cs *engine;
2942
	int ret;
2943

2944
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2945

2946
	for_each_engine(engine, dev_priv) {
2947 2948 2949
		if (engine->last_context == NULL)
			continue;

2950
		ret = intel_engine_idle(engine);
2951 2952 2953
		if (ret)
			return ret;
	}
2954

2955
	return 0;
2956 2957
}

2958
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2959 2960
				     unsigned long cache_level)
{
2961
	struct drm_mm_node *gtt_space = &vma->node;
2962 2963
	struct drm_mm_node *other;

2964 2965 2966 2967 2968 2969
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2970
	 */
2971
	if (vma->vm->mm.color_adjust == NULL)
2972 2973
		return true;

2974
	if (!drm_mm_node_allocated(gtt_space))
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2991
/**
2992 2993
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
2994 2995 2996 2997 2998
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
2999
 */
3000
static struct i915_vma *
3001 3002
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3003
			   const struct i915_ggtt_view *ggtt_view,
3004
			   unsigned alignment,
3005
			   uint64_t flags)
3006
{
3007
	struct drm_device *dev = obj->base.dev;
3008 3009
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3010
	u32 fence_alignment, unfenced_alignment;
3011 3012
	u32 search_flag, alloc_flag;
	u64 start, end;
3013
	u64 size, fence_size;
B
Ben Widawsky 已提交
3014
	struct i915_vma *vma;
3015
	int ret;
3016

3017 3018 3019 3020 3021
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3052

3053 3054 3055
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3056
		end = min_t(u64, end, ggtt->mappable_end);
3057
	if (flags & PIN_ZONE_4G)
3058
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3059

3060
	if (alignment == 0)
3061
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3062
						unfenced_alignment;
3063
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3064 3065 3066
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3067
		return ERR_PTR(-EINVAL);
3068 3069
	}

3070 3071 3072
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3073
	 */
3074
	if (size > end) {
3075
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3076 3077
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3078
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3079
			  end);
3080
		return ERR_PTR(-E2BIG);
3081 3082
	}

3083
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3084
	if (ret)
3085
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3086

3087 3088
	i915_gem_object_pin_pages(obj);

3089 3090 3091
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3092
	if (IS_ERR(vma))
3093
		goto err_unpin;
B
Ben Widawsky 已提交
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3113
	} else {
3114 3115 3116 3117 3118 3119 3120
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3121

3122
search_free:
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3136

3137 3138
			goto err_free_vma;
		}
3139
	}
3140
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3141
		ret = -EINVAL;
3142
		goto err_remove_node;
3143 3144
	}

3145
	trace_i915_vma_bind(vma, flags);
3146
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3147
	if (ret)
I
Imre Deak 已提交
3148
		goto err_remove_node;
3149

3150
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3151
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3152
	obj->bind_count++;
3153

3154
	return vma;
B
Ben Widawsky 已提交
3155

3156
err_remove_node:
3157
	drm_mm_remove_node(&vma->node);
3158
err_free_vma:
B
Ben Widawsky 已提交
3159
	i915_gem_vma_destroy(vma);
3160
	vma = ERR_PTR(ret);
3161
err_unpin:
B
Ben Widawsky 已提交
3162
	i915_gem_object_unpin_pages(obj);
3163
	return vma;
3164 3165
}

3166
bool
3167 3168
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3169 3170 3171 3172 3173
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3174
	if (obj->pages == NULL)
3175
		return false;
3176

3177 3178 3179 3180
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3181
	if (obj->stolen || obj->phys_handle)
3182
		return false;
3183

3184 3185 3186 3187 3188 3189 3190 3191
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3192 3193
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3194
		return false;
3195
	}
3196

C
Chris Wilson 已提交
3197
	trace_i915_gem_object_clflush(obj);
3198
	drm_clflush_sg(obj->pages);
3199
	obj->cache_dirty = false;
3200 3201

	return true;
3202 3203 3204 3205
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3206
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3207
{
C
Chris Wilson 已提交
3208 3209
	uint32_t old_write_domain;

3210
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3211 3212
		return;

3213
	/* No actual flushing is required for the GTT write domain.  Writes
3214 3215
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3216 3217 3218 3219
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3220
	 */
3221 3222
	wmb();

3223 3224
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3225

3226
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3227

C
Chris Wilson 已提交
3228
	trace_i915_gem_object_change_domain(obj,
3229
					    obj->base.read_domains,
C
Chris Wilson 已提交
3230
					    old_write_domain);
3231 3232 3233 3234
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3235
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3236
{
C
Chris Wilson 已提交
3237
	uint32_t old_write_domain;
3238

3239
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3240 3241
		return;

3242
	if (i915_gem_clflush_object(obj, obj->pin_display))
3243
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3244

3245 3246
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3247

3248
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3249

C
Chris Wilson 已提交
3250
	trace_i915_gem_object_change_domain(obj,
3251
					    obj->base.read_domains,
C
Chris Wilson 已提交
3252
					    old_write_domain);
3253 3254
}

3255 3256
/**
 * Moves a single object to the GTT read, and possibly write domain.
3257 3258
 * @obj: object to act on
 * @write: ask for write access or read only
3259 3260 3261 3262
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3263
int
3264
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3265
{
3266 3267 3268
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3269
	uint32_t old_write_domain, old_read_domains;
3270
	struct i915_vma *vma;
3271
	int ret;
3272

3273
	ret = i915_gem_object_wait_rendering(obj, !write);
3274 3275 3276
	if (ret)
		return ret;

3277 3278 3279
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3292
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3293

3294 3295 3296 3297 3298 3299 3300
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3301 3302
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3303

3304 3305 3306
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3307 3308
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3309
	if (write) {
3310 3311 3312
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3313 3314
	}

C
Chris Wilson 已提交
3315 3316 3317 3318
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3319
	/* And bump the LRU for this access */
3320 3321
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3322
		list_move_tail(&vma->vm_link,
3323
			       &ggtt->base.inactive_list);
3324

3325 3326 3327
	return 0;
}

3328 3329
/**
 * Changes the cache-level of an object across all VMA.
3330 3331
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3343 3344 3345
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3346
	struct i915_vma *vma;
3347
	int ret = 0;
3348 3349

	if (obj->cache_level == cache_level)
3350
		goto out;
3351

3352 3353 3354 3355 3356
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3357 3358
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3359 3360 3361 3362 3363 3364 3365 3366
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3379 3380
	}

3381 3382 3383 3384 3385 3386 3387
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3388
	if (obj->bind_count) {
3389 3390 3391 3392
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3393
		ret = i915_gem_object_wait_rendering(obj, false);
3394 3395 3396
		if (ret)
			return ret;

3397
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3414 3415 3416
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3417 3418 3419 3420 3421 3422 3423 3424
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3425 3426
		}

3427
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3428 3429 3430 3431 3432 3433 3434
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3435 3436
	}

3437
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3438 3439 3440
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3441
out:
3442 3443 3444 3445
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3446
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3447
		if (i915_gem_clflush_object(obj, true))
3448
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3449 3450 3451 3452 3453
	}

	return 0;
}

B
Ben Widawsky 已提交
3454 3455
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3456
{
B
Ben Widawsky 已提交
3457
	struct drm_i915_gem_caching *args = data;
3458 3459
	struct drm_i915_gem_object *obj;

3460 3461
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3462
		return -ENOENT;
3463

3464 3465 3466 3467 3468 3469
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3470 3471 3472 3473
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3474 3475 3476 3477
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3478

3479
	i915_gem_object_put_unlocked(obj);
3480
	return 0;
3481 3482
}

B
Ben Widawsky 已提交
3483 3484
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3485
{
3486
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3487
	struct drm_i915_gem_caching *args = data;
3488 3489 3490 3491
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3492 3493
	switch (args->caching) {
	case I915_CACHING_NONE:
3494 3495
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3496
	case I915_CACHING_CACHED:
3497 3498 3499 3500 3501 3502
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3503
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3504 3505
			return -ENODEV;

3506 3507
		level = I915_CACHE_LLC;
		break;
3508 3509 3510
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3511 3512 3513 3514
	default:
		return -EINVAL;
	}

3515 3516
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3517 3518
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3519
		goto rpm_put;
B
Ben Widawsky 已提交
3520

3521 3522
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3523 3524 3525 3526 3527 3528
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3529
	i915_gem_object_put(obj);
3530 3531
unlock:
	mutex_unlock(&dev->struct_mutex);
3532 3533 3534
rpm_put:
	intel_runtime_pm_put(dev_priv);

3535 3536 3537
	return ret;
}

3538
/*
3539 3540 3541
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3542 3543
 */
int
3544 3545
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3546
				     const struct i915_ggtt_view *view)
3547
{
3548
	u32 old_read_domains, old_write_domain;
3549 3550
	int ret;

3551 3552 3553
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3554
	obj->pin_display++;
3555

3556 3557 3558 3559 3560 3561 3562 3563 3564
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3565 3566
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3567
	if (ret)
3568
		goto err_unpin_display;
3569

3570 3571 3572 3573
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3574 3575 3576
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3577
	if (ret)
3578
		goto err_unpin_display;
3579

3580
	i915_gem_object_flush_cpu_write_domain(obj);
3581

3582
	old_write_domain = obj->base.write_domain;
3583
	old_read_domains = obj->base.read_domains;
3584 3585 3586 3587

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3588
	obj->base.write_domain = 0;
3589
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3590 3591 3592

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3593
					    old_write_domain);
3594 3595

	return 0;
3596 3597

err_unpin_display:
3598
	obj->pin_display--;
3599 3600 3601 3602
	return ret;
}

void
3603 3604
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3605
{
3606 3607 3608
	if (WARN_ON(obj->pin_display == 0))
		return;

3609 3610
	i915_gem_object_ggtt_unpin_view(obj, view);

3611
	obj->pin_display--;
3612 3613
}

3614 3615
/**
 * Moves a single object to the CPU read, and possibly write domain.
3616 3617
 * @obj: object to act on
 * @write: requesting write or read-only access
3618 3619 3620 3621
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3622
int
3623
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3624
{
C
Chris Wilson 已提交
3625
	uint32_t old_write_domain, old_read_domains;
3626 3627
	int ret;

3628
	ret = i915_gem_object_wait_rendering(obj, !write);
3629 3630 3631
	if (ret)
		return ret;

3632 3633 3634
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3635
	i915_gem_object_flush_gtt_write_domain(obj);
3636

3637 3638
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3639

3640
	/* Flush the CPU cache if it's still invalid. */
3641
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3642
		i915_gem_clflush_object(obj, false);
3643

3644
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3645 3646 3647 3648 3649
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3650
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3651 3652 3653 3654 3655

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3656 3657
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3658
	}
3659

C
Chris Wilson 已提交
3660 3661 3662 3663
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3664 3665 3666
	return 0;
}

3667 3668 3669
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3670 3671 3672 3673
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3674 3675 3676
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3677
static int
3678
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3679
{
3680
	struct drm_i915_private *dev_priv = to_i915(dev);
3681
	struct drm_i915_file_private *file_priv = file->driver_priv;
3682
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3683
	struct drm_i915_gem_request *request, *target = NULL;
3684
	int ret;
3685

3686 3687 3688 3689
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3690 3691 3692
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3693

3694
	spin_lock(&file_priv->mm.lock);
3695
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3696 3697
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3698

3699 3700 3701 3702 3703 3704 3705
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3706
		target = request;
3707
	}
3708
	if (target)
3709
		i915_gem_request_get(target);
3710
	spin_unlock(&file_priv->mm.lock);
3711

3712
	if (target == NULL)
3713
		return 0;
3714

3715
	ret = __i915_wait_request(target, true, NULL, NULL);
3716
	i915_gem_request_put(target);
3717

3718 3719 3720
	return ret;
}

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3737 3738 3739 3740
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3741 3742 3743
	return false;
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3762
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3763 3764 3765 3766

	obj->map_and_fenceable = mappable && fenceable;
}

3767 3768 3769 3770 3771 3772
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3773
{
3774
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3775
	struct i915_vma *vma;
3776
	unsigned bound;
3777 3778
	int ret;

3779 3780 3781
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3782
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3783
		return -EINVAL;
3784

3785 3786 3787
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3788 3789 3790 3791 3792 3793
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3794
	if (vma) {
B
Ben Widawsky 已提交
3795 3796 3797
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3798
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3799
			WARN(vma->pin_count,
3800
			     "bo is already pinned in %s with incorrect alignment:"
3801
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3802
			     " obj->map_and_fenceable=%d\n",
3803
			     ggtt_view ? "ggtt" : "ppgtt",
3804 3805
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3806
			     alignment,
3807
			     !!(flags & PIN_MAPPABLE),
3808
			     obj->map_and_fenceable);
3809
			ret = i915_vma_unbind(vma);
3810 3811
			if (ret)
				return ret;
3812 3813

			vma = NULL;
3814 3815 3816
		}
	}

3817
	bound = vma ? vma->bound : 0;
3818
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3819 3820
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3821 3822
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3823 3824
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3825 3826 3827
		if (ret)
			return ret;
	}
3828

3829 3830
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3831
		__i915_vma_set_map_and_fenceable(vma);
3832 3833
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3834

3835
	vma->pin_count++;
3836 3837 3838
	return 0;
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3856 3857 3858 3859
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3860
	BUG_ON(!view);
3861

3862
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3863
				      alignment, flags | PIN_GLOBAL);
3864 3865
}

3866
void
3867 3868
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3869
{
3870
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3871

3872
	WARN_ON(vma->pin_count == 0);
3873
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3874

3875
	--vma->pin_count;
3876 3877 3878 3879
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3880
		    struct drm_file *file)
3881 3882
{
	struct drm_i915_gem_busy *args = data;
3883
	struct drm_i915_gem_object *obj;
3884 3885
	int ret;

3886
	ret = i915_mutex_lock_interruptible(dev);
3887
	if (ret)
3888
		return ret;
3889

3890 3891
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3892 3893
		ret = -ENOENT;
		goto unlock;
3894
	}
3895

3896 3897
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3898
	 * become non-busy without any further actions.
3899
	 */
3900 3901
	args->busy = 0;
	if (obj->active) {
3902
		struct drm_i915_gem_request *req;
3903 3904
		int i;

3905
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3906 3907
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3908
			if (req)
3909
				args->busy |= 1 << (16 + req->engine->exec_id);
3910
		}
3911 3912
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3913 3914
		if (req)
			args->busy |= req->engine->exec_id;
3915
	}
3916

3917
	i915_gem_object_put(obj);
3918
unlock:
3919
	mutex_unlock(&dev->struct_mutex);
3920
	return ret;
3921 3922 3923 3924 3925 3926
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3927
	return i915_gem_ring_throttle(dev, file_priv);
3928 3929
}

3930 3931 3932 3933
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3934
	struct drm_i915_private *dev_priv = to_i915(dev);
3935
	struct drm_i915_gem_madvise *args = data;
3936
	struct drm_i915_gem_object *obj;
3937
	int ret;
3938 3939 3940 3941 3942 3943 3944 3945 3946

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3947 3948 3949 3950
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3951 3952
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3953 3954
		ret = -ENOENT;
		goto unlock;
3955 3956
	}

B
Ben Widawsky 已提交
3957
	if (i915_gem_obj_is_pinned(obj)) {
3958 3959
		ret = -EINVAL;
		goto out;
3960 3961
	}

3962 3963 3964 3965 3966 3967 3968 3969 3970
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3971 3972
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3973

C
Chris Wilson 已提交
3974
	/* if the object is no longer attached, discard its backing storage */
3975
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3976 3977
		i915_gem_object_truncate(obj);

3978
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3979

3980
out:
3981
	i915_gem_object_put(obj);
3982
unlock:
3983
	mutex_unlock(&dev->struct_mutex);
3984
	return ret;
3985 3986
}

3987 3988
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3989
{
3990 3991
	int i;

3992
	INIT_LIST_HEAD(&obj->global_list);
3993
	for (i = 0; i < I915_NUM_ENGINES; i++)
3994 3995 3996 3997 3998
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3999
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4000
	INIT_LIST_HEAD(&obj->vma_list);
4001
	INIT_LIST_HEAD(&obj->batch_pool_link);
4002

4003 4004
	obj->ops = ops;

4005 4006 4007
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4008
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4009 4010
}

4011
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4012
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4013 4014 4015 4016
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4017
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4018
						  size_t size)
4019
{
4020
	struct drm_i915_gem_object *obj;
4021
	struct address_space *mapping;
D
Daniel Vetter 已提交
4022
	gfp_t mask;
4023
	int ret;
4024

4025
	obj = i915_gem_object_alloc(dev);
4026
	if (obj == NULL)
4027
		return ERR_PTR(-ENOMEM);
4028

4029 4030 4031
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4032

4033 4034 4035 4036 4037 4038 4039
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4040
	mapping = file_inode(obj->base.filp)->i_mapping;
4041
	mapping_set_gfp_mask(mapping, mask);
4042

4043
	i915_gem_object_init(obj, &i915_gem_object_ops);
4044

4045 4046
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4047

4048 4049
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4065 4066
	trace_i915_gem_object_create(obj);

4067
	return obj;
4068 4069 4070 4071 4072

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4073 4074
}

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4099
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4100
{
4101
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4102
	struct drm_device *dev = obj->base.dev;
4103
	struct drm_i915_private *dev_priv = to_i915(dev);
4104
	struct i915_vma *vma, *next;
4105

4106 4107
	intel_runtime_pm_get(dev_priv);

4108 4109
	trace_i915_gem_object_destroy(obj);

4110
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4111 4112 4113
		int ret;

		vma->pin_count = 0;
4114
		ret = __i915_vma_unbind_no_wait(vma);
4115 4116
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4117

4118 4119
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4120

4121
			WARN_ON(i915_vma_unbind(vma));
4122

4123 4124
			dev_priv->mm.interruptible = was_interruptible;
		}
4125
	}
4126
	GEM_BUG_ON(obj->bind_count);
4127

B
Ben Widawsky 已提交
4128 4129 4130 4131 4132
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4133 4134
	WARN_ON(obj->frontbuffer_bits);

4135 4136 4137 4138 4139
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4140 4141
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4142
	if (discard_backing_storage(obj))
4143
		obj->madv = I915_MADV_DONTNEED;
4144
	i915_gem_object_put_pages(obj);
4145

4146 4147
	BUG_ON(obj->pages);

4148 4149
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4150

4151 4152 4153
	if (obj->ops->release)
		obj->ops->release(obj);

4154 4155
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4156

4157
	kfree(obj->bit_17);
4158
	i915_gem_object_free(obj);
4159 4160

	intel_runtime_pm_put(dev_priv);
4161 4162
}

4163 4164
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4165 4166
{
	struct i915_vma *vma;
4167
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4168 4169
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4170
			return vma;
4171 4172 4173 4174 4175 4176 4177 4178
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4179

4180
	GEM_BUG_ON(!view);
4181

4182
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4183
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4184
			return vma;
4185 4186 4187
	return NULL;
}

B
Ben Widawsky 已提交
4188 4189 4190
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4191 4192 4193 4194 4195

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4196 4197
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4198

4199
	list_del(&vma->obj_link);
4200

4201
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4202 4203
}

4204
static void
4205
i915_gem_stop_engines(struct drm_device *dev)
4206
{
4207
	struct drm_i915_private *dev_priv = to_i915(dev);
4208
	struct intel_engine_cs *engine;
4209

4210
	for_each_engine(engine, dev_priv)
4211
		dev_priv->gt.stop_engine(engine);
4212 4213
}

4214
int
4215
i915_gem_suspend(struct drm_device *dev)
4216
{
4217
	struct drm_i915_private *dev_priv = to_i915(dev);
4218
	int ret = 0;
4219

4220 4221
	intel_suspend_gt_powersave(dev_priv);

4222
	mutex_lock(&dev->struct_mutex);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4236
	ret = i915_gem_wait_for_idle(dev_priv);
4237
	if (ret)
4238
		goto err;
4239

4240
	i915_gem_retire_requests(dev_priv);
4241

4242 4243 4244 4245 4246
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4247
	i915_gem_stop_engines(dev);
4248
	i915_gem_context_lost(dev_priv);
4249 4250
	mutex_unlock(&dev->struct_mutex);

4251
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4252 4253
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4254

4255 4256 4257
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4258
	WARN_ON(dev_priv->gt.awake);
4259

4260
	return 0;
4261 4262 4263 4264

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4265 4266
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4284 4285
void i915_gem_init_swizzling(struct drm_device *dev)
{
4286
	struct drm_i915_private *dev_priv = to_i915(dev);
4287

4288
	if (INTEL_INFO(dev)->gen < 5 ||
4289 4290 4291 4292 4293 4294
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4295 4296 4297
	if (IS_GEN5(dev))
		return;

4298 4299
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4300
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4301
	else if (IS_GEN7(dev))
4302
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4303 4304
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4305 4306
	else
		BUG();
4307
}
D
Daniel Vetter 已提交
4308

4309 4310
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4311
	struct drm_i915_private *dev_priv = to_i915(dev);
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4336 4337 4338
int
i915_gem_init_hw(struct drm_device *dev)
{
4339
	struct drm_i915_private *dev_priv = to_i915(dev);
4340
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4341
	int ret;
4342

4343 4344 4345
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4346
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4347
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4348

4349 4350 4351
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4352

4353
	if (HAS_PCH_NOP(dev)) {
4354 4355 4356 4357 4358 4359 4360 4361 4362
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4363 4364
	}

4365 4366
	i915_gem_init_swizzling(dev);

4367 4368 4369 4370 4371 4372 4373 4374
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4375
	BUG_ON(!dev_priv->kernel_context);
4376

4377 4378 4379 4380 4381 4382 4383
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4384
	for_each_engine(engine, dev_priv) {
4385
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4386
		if (ret)
4387
			goto out;
D
Daniel Vetter 已提交
4388
	}
4389

4390 4391
	intel_mocs_init_l3cc_table(dev);

4392
	/* We can't enable contexts until all firmware is loaded */
4393 4394 4395
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4396

4397 4398
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4399
	return ret;
4400 4401
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4423 4424
int i915_gem_init(struct drm_device *dev)
{
4425
	struct drm_i915_private *dev_priv = to_i915(dev);
4426 4427 4428
	int ret;

	mutex_lock(&dev->struct_mutex);
4429

4430
	if (!i915.enable_execlists) {
4431 4432
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4433
	} else {
4434 4435
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4436 4437
	}

4438 4439 4440 4441 4442 4443 4444 4445
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4446
	i915_gem_init_userptr(dev_priv);
4447 4448 4449 4450

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4451

4452
	ret = i915_gem_context_init(dev);
4453 4454
	if (ret)
		goto out_unlock;
4455

4456
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4457
	if (ret)
4458
		goto out_unlock;
4459

4460
	ret = i915_gem_init_hw(dev);
4461
	if (ret == -EIO) {
4462
		/* Allow engine initialisation to fail by marking the GPU as
4463 4464 4465 4466
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4467
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4468
		ret = 0;
4469
	}
4470 4471

out_unlock:
4472
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4473
	mutex_unlock(&dev->struct_mutex);
4474

4475
	return ret;
4476 4477
}

4478
void
4479
i915_gem_cleanup_engines(struct drm_device *dev)
4480
{
4481
	struct drm_i915_private *dev_priv = to_i915(dev);
4482
	struct intel_engine_cs *engine;
4483

4484
	for_each_engine(engine, dev_priv)
4485
		dev_priv->gt.cleanup_engine(engine);
4486 4487
}

4488
static void
4489
init_engine_lists(struct intel_engine_cs *engine)
4490
{
4491
	INIT_LIST_HEAD(&engine->request_list);
4492 4493
}

4494 4495 4496
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4497
	struct drm_device *dev = &dev_priv->drm;
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4508
	if (intel_vgpu_active(dev_priv))
4509 4510 4511 4512 4513 4514 4515 4516 4517
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4518
void
4519
i915_gem_load_init(struct drm_device *dev)
4520
{
4521
	struct drm_i915_private *dev_priv = to_i915(dev);
4522 4523
	int i;

4524
	dev_priv->objects =
4525 4526 4527 4528
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4529 4530 4531 4532 4533
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4534 4535 4536 4537 4538
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4539

4540
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4541 4542
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4543
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4544 4545
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4546
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4547
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4548
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4549
			  i915_gem_retire_work_handler);
4550
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4551
			  i915_gem_idle_work_handler);
4552
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4553
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4554

4555 4556
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4557
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4558

4559
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4560

4561 4562
	dev_priv->mm.interruptible = true;

4563
	mutex_init(&dev_priv->fb_tracking.lock);
4564
}
4565

4566 4567 4568 4569 4570 4571 4572 4573 4574
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4603
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4604
{
4605
	struct drm_i915_file_private *file_priv = file->driver_priv;
4606
	struct drm_i915_gem_request *request;
4607 4608 4609 4610 4611

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4612
	spin_lock(&file_priv->mm.lock);
4613
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4614
		request->file_priv = NULL;
4615
	spin_unlock(&file_priv->mm.lock);
4616

4617
	if (!list_empty(&file_priv->rps.link)) {
4618
		spin_lock(&to_i915(dev)->rps.client_lock);
4619
		list_del(&file_priv->rps.link);
4620
		spin_unlock(&to_i915(dev)->rps.client_lock);
4621
	}
4622 4623 4624 4625 4626
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4627
	int ret;
4628 4629 4630 4631 4632 4633 4634 4635

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4636
	file_priv->dev_priv = to_i915(dev);
4637
	file_priv->file = file;
4638
	INIT_LIST_HEAD(&file_priv->rps.link);
4639 4640 4641 4642

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4643
	file_priv->bsd_engine = -1;
4644

4645 4646 4647
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4648

4649
	return ret;
4650 4651
}

4652 4653
/**
 * i915_gem_track_fb - update frontbuffer tracking
4654 4655 4656
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4657 4658 4659 4660
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4678
/* All the new VM stuff */
4679 4680
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4681
{
4682
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4683 4684
	struct i915_vma *vma;

4685
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4686

4687
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4688
		if (vma->is_ggtt &&
4689 4690 4691
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4692 4693
			return vma->node.start;
	}
4694

4695 4696
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4697 4698 4699
	return -1;
}

4700 4701
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4702 4703 4704
{
	struct i915_vma *vma;

4705
	list_for_each_entry(vma, &o->vma_list, obj_link)
4706
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4707 4708
			return vma->node.start;

4709
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4710 4711 4712 4713 4714 4715 4716 4717
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4718
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4719
		if (vma->is_ggtt &&
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4730
				  const struct i915_ggtt_view *view)
4731 4732 4733
{
	struct i915_vma *vma;

4734
	list_for_each_entry(vma, &o->vma_list, obj_link)
4735
		if (vma->is_ggtt &&
4736
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4737
		    drm_mm_node_allocated(&vma->node))
4738 4739 4740 4741 4742
			return true;

	return false;
}

4743
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4744 4745 4746
{
	struct i915_vma *vma;

4747
	GEM_BUG_ON(list_empty(&o->vma_list));
4748

4749
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4750
		if (vma->is_ggtt &&
4751
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4752
			return vma->node.size;
4753
	}
4754

4755 4756 4757
	return 0;
}

4758
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4759 4760
{
	struct i915_vma *vma;
4761
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4762 4763
		if (vma->pin_count > 0)
			return true;
4764

4765
	return false;
4766
}
4767

4768 4769 4770 4771 4772 4773 4774
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4775
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4776 4777 4778 4779 4780 4781 4782
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4793
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4794
	if (IS_ERR(obj))
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4808
	obj->dirty = 1;		/* Backing store is now out of date */
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4820
	i915_gem_object_put(obj);
4821 4822
	return ERR_PTR(ret);
}