i915_gem.c 126.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46
static void
47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
49
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int engine);
50

51 52 53 54 55 56
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96 97 98
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       10*HZ);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

144
	WARN_ON(i915_verify_lists(dev));
145 146
	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161 162
		if (vma->pin_count)
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164 165
		if (vma->pin_count)
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174 175
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177 178 179 180 181
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

199
		put_page(page);
200 201 202
		vaddr += PAGE_SIZE;
	}

203
	i915_gem_chipset_flush(to_i915(obj->base.dev));
204 205 206 207 208 209 210 211 212 213 214 215 216

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
217

218 219 220 221 222 223 224 225 226 227 228 229 230
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
231

232
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
233
	if (WARN_ON(ret)) {
234 235 236 237 238 239 240 241 242 243
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
244
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
267
		obj->dirty = 0;
268 269
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

309 310 311 312 313
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
314
	int ret;
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
329 330 331 332 333
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
334 335 336
	if (ret)
		return ret;

337 338 339 340 341 342
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
343 344 345
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
346 347 348 349 350 351 352 353 354
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
355
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
356
	int ret = 0;
357 358 359 360 361 362 363

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
364

365
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
366 367 368 369 370 371 372 373 374 375
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
376 377 378 379
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
380 381
	}

382
	drm_clflush_virt_range(vaddr, args->size);
383
	i915_gem_chipset_flush(to_i915(dev));
384 385

out:
386
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
387
	return ret;
388 389
}

390 391
void *i915_gem_object_alloc(struct drm_device *dev)
{
392
	struct drm_i915_private *dev_priv = to_i915(dev);
393
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
394 395 396 397
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
398
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
399
	kmem_cache_free(dev_priv->objects, obj);
400 401
}

402 403 404 405 406
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
407
{
408
	struct drm_i915_gem_object *obj;
409 410
	int ret;
	u32 handle;
411

412
	size = roundup(size, PAGE_SIZE);
413 414
	if (size == 0)
		return -EINVAL;
415 416

	/* Allocate the new object */
417
	obj = i915_gem_object_create(dev, size);
418 419
	if (IS_ERR(obj))
		return PTR_ERR(obj);
420

421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423
	i915_gem_object_put_unlocked(obj);
424 425
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, &args->handle);
441 442 443 444
}

/**
 * Creates a new mm object and returns a handle to it.
445 446 447
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
448 449 450 451 452 453
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
454

455
	return i915_gem_create(file, dev,
456
			       args->size, &args->handle);
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

485
static inline int
486 487
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

511 512 513 514 515 516 517 518 519 520 521 522
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

523
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
524 525
		return -EINVAL;

526 527 528 529
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

548 549 550
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
551
static int
552 553 554 555 556 557 558
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

559
	if (unlikely(page_do_bit17_swizzling))
560 561 562 563 564 565 566 567 568 569 570
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

571
	return ret ? -EFAULT : 0;
572 573
}

574 575 576 577
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
578
	if (unlikely(swizzled)) {
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

596 597 598 599 600 601 602 603 604 605 606 607
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
608 609 610
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
611 612 613 614 615 616 617 618 619 620 621

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

622
	return ret ? - EFAULT : 0;
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
652
	struct drm_i915_private *dev_priv = to_i915(dev);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

761
static int
762 763 764 765
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
766
{
767
	char __user *user_data;
768
	ssize_t remain;
769
	loff_t offset;
770
	int shmem_page_offset, page_length, ret = 0;
771
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
772
	int prefaulted = 0;
773
	int needs_clflush = 0;
774
	struct sg_page_iter sg_iter;
775

776
	if (!i915_gem_object_has_struct_page(obj))
777 778
		return -ENODEV;

779
	user_data = u64_to_user_ptr(args->data_ptr);
780 781
	remain = args->size;

782
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
783

784
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
785 786 787
	if (ret)
		return ret;

788
	offset = args->offset;
789

790 791
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
792
		struct page *page = sg_page_iter_page(&sg_iter);
793 794 795 796

		if (remain <= 0)
			break;

797 798 799 800 801
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
802
		shmem_page_offset = offset_in_page(offset);
803 804 805 806
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

807 808 809
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

810 811 812 813 814
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
815 816 817

		mutex_unlock(&dev->struct_mutex);

818
		if (likely(!i915.prefault_disable) && !prefaulted) {
819
			ret = fault_in_multipages_writeable(user_data, remain);
820 821 822 823 824 825 826
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
827

828 829 830
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
831

832
		mutex_lock(&dev->struct_mutex);
833 834

		if (ret)
835 836
			goto out;

837
next_page:
838
		remain -= page_length;
839
		user_data += page_length;
840 841 842
		offset += page_length;
	}

843
out:
844 845
	i915_gem_object_unpin_pages(obj);

846 847 848
	return ret;
}

849 850
/**
 * Reads data from the object referenced by handle.
851 852 853
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
854 855 856 857 858
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
859
		     struct drm_file *file)
860 861
{
	struct drm_i915_gem_pread *args = data;
862
	struct drm_i915_gem_object *obj;
863
	int ret = 0;
864

865 866 867 868
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
869
		       u64_to_user_ptr(args->data_ptr),
870 871 872
		       args->size))
		return -EFAULT;

873
	ret = i915_mutex_lock_interruptible(dev);
874
	if (ret)
875
		return ret;
876

877 878
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
879 880
		ret = -ENOENT;
		goto unlock;
881
	}
882

883
	/* Bounds check source.  */
884 885
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
886
		ret = -EINVAL;
887
		goto out;
C
Chris Wilson 已提交
888 889
	}

C
Chris Wilson 已提交
890 891
	trace_i915_gem_object_pread(obj, args->offset, args->size);

892
	ret = i915_gem_shmem_pread(dev, obj, args, file);
893

894 895 896 897 898
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

899
out:
900
	i915_gem_object_put(obj);
901
unlock:
902
	mutex_unlock(&dev->struct_mutex);
903
	return ret;
904 905
}

906 907
/* This is the fast write path which cannot handle
 * page faults in the source data
908
 */
909 910 911 912 913 914

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
915
{
916 917
	void __iomem *vaddr_atomic;
	void *vaddr;
918
	unsigned long unwritten;
919

P
Peter Zijlstra 已提交
920
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
921 922 923
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
924
						      user_data, length);
P
Peter Zijlstra 已提交
925
	io_mapping_unmap_atomic(vaddr_atomic);
926
	return unwritten;
927 928
}

929 930 931
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
932
 * @i915: i915 device private data
933 934 935
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
936
 */
937
static int
938
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
939
			 struct drm_i915_gem_object *obj,
940
			 struct drm_i915_gem_pwrite *args,
941
			 struct drm_file *file)
942
{
943
	struct i915_ggtt *ggtt = &i915->ggtt;
944
	struct drm_device *dev = obj->base.dev;
945 946
	struct drm_mm_node node;
	uint64_t remain, offset;
947
	char __user *user_data;
948
	int ret;
949 950 951 952
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
953

954
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
970 971 972
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
973
	}
D
Daniel Vetter 已提交
974 975 976 977 978

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

979
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
980
	obj->dirty = true;
981

982 983 984 985
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
986 987
		/* Operation in this page
		 *
988 989 990
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
991
		 */
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1005
		/* If we get a fault while copying data, then (presumably) our
1006 1007
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1008 1009
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1010
		 */
1011
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1012
				    page_offset, user_data, page_length)) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1025
		}
1026

1027 1028 1029
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1030 1031
	}

1032
out_flush:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1046
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1047
out_unpin:
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1058
out:
1059
	return ret;
1060 1061
}

1062 1063 1064 1065
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1066
static int
1067 1068 1069 1070 1071
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1072
{
1073
	char *vaddr;
1074
	int ret;
1075

1076
	if (unlikely(page_do_bit17_swizzling))
1077
		return -EINVAL;
1078

1079 1080 1081 1082
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1083 1084
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1085 1086 1087 1088
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1089

1090
	return ret ? -EFAULT : 0;
1091 1092
}

1093 1094
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1095
static int
1096 1097 1098 1099 1100
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1101
{
1102 1103
	char *vaddr;
	int ret;
1104

1105
	vaddr = kmap(page);
1106
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1107 1108 1109
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1110 1111
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1112 1113
						user_data,
						page_length);
1114 1115 1116 1117 1118
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1119 1120 1121
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1122
	kunmap(page);
1123

1124
	return ret ? -EFAULT : 0;
1125 1126 1127
}

static int
1128 1129 1130 1131
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1132 1133
{
	ssize_t remain;
1134 1135
	loff_t offset;
	char __user *user_data;
1136
	int shmem_page_offset, page_length, ret = 0;
1137
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1138
	int hit_slowpath = 0;
1139 1140
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1141
	struct sg_page_iter sg_iter;
1142

1143
	user_data = u64_to_user_ptr(args->data_ptr);
1144 1145
	remain = args->size;

1146
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1147

1148 1149 1150 1151
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1152 1153 1154 1155 1156
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1157
		needs_clflush_after = cpu_write_needs_clflush(obj);
1158
	}
1159 1160 1161 1162 1163
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1164

1165 1166 1167 1168
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1169
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1170

1171 1172
	i915_gem_object_pin_pages(obj);

1173
	offset = args->offset;
1174
	obj->dirty = 1;
1175

1176 1177
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1178
		struct page *page = sg_page_iter_page(&sg_iter);
1179
		int partial_cacheline_write;
1180

1181 1182 1183
		if (remain <= 0)
			break;

1184 1185 1186 1187 1188
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1189
		shmem_page_offset = offset_in_page(offset);
1190 1191 1192 1193 1194

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1195 1196 1197 1198 1199 1200 1201
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1202 1203 1204
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1205 1206 1207 1208 1209 1210
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1211 1212 1213

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1214 1215 1216 1217
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1218

1219
		mutex_lock(&dev->struct_mutex);
1220 1221

		if (ret)
1222 1223
			goto out;

1224
next_page:
1225
		remain -= page_length;
1226
		user_data += page_length;
1227
		offset += page_length;
1228 1229
	}

1230
out:
1231 1232
	i915_gem_object_unpin_pages(obj);

1233
	if (hit_slowpath) {
1234 1235 1236 1237 1238 1239 1240
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1241
			if (i915_gem_clflush_object(obj, obj->pin_display))
1242
				needs_clflush_after = true;
1243
		}
1244
	}
1245

1246
	if (needs_clflush_after)
1247
		i915_gem_chipset_flush(to_i915(dev));
1248 1249
	else
		obj->cache_dirty = true;
1250

1251
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1252
	return ret;
1253 1254 1255 1256
}

/**
 * Writes data to the object referenced by handle.
1257 1258 1259
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1260 1261 1262 1263 1264
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1265
		      struct drm_file *file)
1266
{
1267
	struct drm_i915_private *dev_priv = to_i915(dev);
1268
	struct drm_i915_gem_pwrite *args = data;
1269
	struct drm_i915_gem_object *obj;
1270 1271 1272 1273 1274 1275
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1276
		       u64_to_user_ptr(args->data_ptr),
1277 1278 1279
		       args->size))
		return -EFAULT;

1280
	if (likely(!i915.prefault_disable)) {
1281
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1282 1283 1284 1285
						   args->size);
		if (ret)
			return -EFAULT;
	}
1286

1287 1288
	intel_runtime_pm_get(dev_priv);

1289
	ret = i915_mutex_lock_interruptible(dev);
1290
	if (ret)
1291
		goto put_rpm;
1292

1293 1294
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1295 1296
		ret = -ENOENT;
		goto unlock;
1297
	}
1298

1299
	/* Bounds check destination. */
1300 1301
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1302
		ret = -EINVAL;
1303
		goto out;
C
Chris Wilson 已提交
1304 1305
	}

C
Chris Wilson 已提交
1306 1307
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1308
	ret = -EFAULT;
1309 1310 1311 1312 1313 1314
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1315 1316
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1317
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1318 1319 1320
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1321
	}
1322

1323
	if (ret == -EFAULT || ret == -ENOSPC) {
1324 1325
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1326
		else if (i915_gem_object_has_struct_page(obj))
1327
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1328 1329
		else
			ret = -ENODEV;
1330
	}
1331

1332
out:
1333
	i915_gem_object_put(obj);
1334
unlock:
1335
	mutex_unlock(&dev->struct_mutex);
1336 1337 1338
put_rpm:
	intel_runtime_pm_put(dev_priv);

1339 1340 1341
	return ret;
}

1342 1343 1344
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1345 1346
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1347
 */
1348
int
1349 1350 1351
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1352
	struct reservation_object *resv;
1353
	int ret, i;
1354

1355 1356 1357 1358 1359
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1360

1361
			i = obj->last_write_req->engine->id;
1362 1363 1364 1365 1366 1367
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1368
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1369 1370 1371 1372 1373 1374 1375 1376 1377
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1378
		GEM_BUG_ON(obj->active);
1379 1380
	}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1391 1392 1393 1394 1395 1396 1397
	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1398
	int idx = req->engine->id;
1399

1400 1401
	if (obj->last_read_req[idx] == req)
		i915_gem_object_retire__read(obj, idx);
1402 1403 1404
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1405
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1406
		i915_gem_request_retire_upto(req);
1407 1408
}

1409 1410 1411 1412 1413
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1414
					    struct intel_rps_client *rps,
1415 1416 1417
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1418
	struct drm_i915_private *dev_priv = to_i915(dev);
1419
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1420
	int ret, i, n = 0;
1421 1422 1423 1424

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1425
	if (!obj->active)
1426 1427
		return 0;

1428 1429 1430 1431 1432 1433 1434
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

1435
		requests[n++] = i915_gem_request_get(req);
1436
	} else {
1437
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1438 1439 1440 1441 1442 1443
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

1444
			requests[n++] = i915_gem_request_get(req);
1445 1446 1447
		}
	}

1448
	mutex_unlock(&dev->struct_mutex);
1449
	ret = 0;
1450
	for (i = 0; ret == 0 && i < n; i++)
1451
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1452 1453
	mutex_lock(&dev->struct_mutex);

1454 1455 1456
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
1457
		i915_gem_request_put(requests[i]);
1458 1459 1460
	}

	return ret;
1461 1462
}

1463 1464 1465 1466 1467 1468
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1469 1470 1471 1472 1473 1474 1475
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1476
/**
1477 1478
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1479 1480 1481
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1482 1483 1484
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1485
			  struct drm_file *file)
1486 1487
{
	struct drm_i915_gem_set_domain *args = data;
1488
	struct drm_i915_gem_object *obj;
1489 1490
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1491 1492
	int ret;

1493
	/* Only handle setting domains to types used by the CPU. */
1494
	if (write_domain & I915_GEM_GPU_DOMAINS)
1495 1496
		return -EINVAL;

1497
	if (read_domains & I915_GEM_GPU_DOMAINS)
1498 1499 1500 1501 1502 1503 1504 1505
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1506
	ret = i915_mutex_lock_interruptible(dev);
1507
	if (ret)
1508
		return ret;
1509

1510 1511
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1512 1513
		ret = -ENOENT;
		goto unlock;
1514
	}
1515

1516 1517 1518 1519
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1520
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1521
							  to_rps_client(file),
1522
							  !write_domain);
1523 1524 1525
	if (ret)
		goto unref;

1526
	if (read_domains & I915_GEM_DOMAIN_GTT)
1527
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1528
	else
1529
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1530

1531
	if (write_domain != 0)
1532
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1533

1534
unref:
1535
	i915_gem_object_put(obj);
1536
unlock:
1537 1538 1539 1540 1541 1542
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1543 1544 1545
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1546 1547 1548
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1549
			 struct drm_file *file)
1550 1551
{
	struct drm_i915_gem_sw_finish *args = data;
1552
	struct drm_i915_gem_object *obj;
1553 1554
	int ret = 0;

1555
	ret = i915_mutex_lock_interruptible(dev);
1556
	if (ret)
1557
		return ret;
1558

1559 1560
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1561 1562
		ret = -ENOENT;
		goto unlock;
1563 1564 1565
	}

	/* Pinned buffers may be scanout, so flush the cache */
1566
	if (obj->pin_display)
1567
		i915_gem_object_flush_cpu_write_domain(obj);
1568

1569
	i915_gem_object_put(obj);
1570
unlock:
1571 1572 1573 1574 1575
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1576 1577 1578 1579 1580
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1581 1582 1583
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1594 1595 1596
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1597
		    struct drm_file *file)
1598 1599
{
	struct drm_i915_gem_mmap *args = data;
1600
	struct drm_i915_gem_object *obj;
1601 1602
	unsigned long addr;

1603 1604 1605
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1606
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1607 1608
		return -ENODEV;

1609 1610
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1611
		return -ENOENT;
1612

1613 1614 1615
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1616
	if (!obj->base.filp) {
1617
		i915_gem_object_put_unlocked(obj);
1618 1619 1620
		return -EINVAL;
	}

1621
	addr = vm_mmap(obj->base.filp, 0, args->size,
1622 1623
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1624 1625 1626 1627
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1628
		if (down_write_killable(&mm->mmap_sem)) {
1629
			i915_gem_object_put_unlocked(obj);
1630 1631
			return -EINTR;
		}
1632 1633 1634 1635 1636 1637 1638
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1639 1640

		/* This may race, but that's ok, it only gets set */
1641
		WRITE_ONCE(obj->has_wc_mmap, true);
1642
	}
1643
	i915_gem_object_put_unlocked(obj);
1644 1645 1646 1647 1648 1649 1650 1651
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1652 1653
/**
 * i915_gem_fault - fault a page into the GTT
1654 1655
 * @vma: VMA in question
 * @vmf: fault info
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1670 1671
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1672 1673
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1674
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1675 1676 1677
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1678
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1679

1680 1681
	intel_runtime_pm_get(dev_priv);

1682 1683 1684 1685
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1686 1687 1688
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1689

C
Chris Wilson 已提交
1690 1691
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1692 1693 1694 1695 1696 1697 1698 1699 1700
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1701 1702
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1703
		ret = -EFAULT;
1704 1705 1706
		goto unlock;
	}

1707
	/* Use a partial view if the object is bigger than the aperture. */
1708
	if (obj->base.size >= ggtt->mappable_end &&
1709
	    obj->tiling_mode == I915_TILING_NONE) {
1710
		static const unsigned int chunk_size = 256; // 1 MiB
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1724 1725
	if (ret)
		goto unlock;
1726

1727 1728 1729
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1730

1731
	ret = i915_gem_object_get_fence(obj);
1732
	if (ret)
1733
		goto unpin;
1734

1735
	/* Finally, remap it using the new GTT offset */
1736
	pfn = ggtt->mappable_base +
1737
		i915_gem_obj_ggtt_offset_view(obj, &view);
1738
	pfn >>= PAGE_SHIFT;
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1749

1750 1751
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1752 1753 1754 1755 1756
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1778
unpin:
1779
	i915_gem_object_ggtt_unpin_view(obj, &view);
1780
unlock:
1781
	mutex_unlock(&dev->struct_mutex);
1782
out:
1783
	switch (ret) {
1784
	case -EIO:
1785 1786 1787 1788 1789 1790 1791
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1792 1793 1794
			ret = VM_FAULT_SIGBUS;
			break;
		}
1795
	case -EAGAIN:
D
Daniel Vetter 已提交
1796 1797 1798 1799
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1800
		 */
1801 1802
	case 0:
	case -ERESTARTSYS:
1803
	case -EINTR:
1804 1805 1806 1807 1808
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1809 1810
		ret = VM_FAULT_NOPAGE;
		break;
1811
	case -ENOMEM:
1812 1813
		ret = VM_FAULT_OOM;
		break;
1814
	case -ENOSPC:
1815
	case -EFAULT:
1816 1817
		ret = VM_FAULT_SIGBUS;
		break;
1818
	default:
1819
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1820 1821
		ret = VM_FAULT_SIGBUS;
		break;
1822
	}
1823 1824 1825

	intel_runtime_pm_put(dev_priv);
	return ret;
1826 1827
}

1828 1829 1830 1831
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1832
 * Preserve the reservation of the mmapping with the DRM core code, but
1833 1834 1835 1836 1837 1838 1839 1840 1841
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1842
void
1843
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1844
{
1845 1846 1847 1848 1849 1850
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1851 1852
	if (!obj->fault_mappable)
		return;
1853

1854 1855
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1866
	obj->fault_mappable = false;
1867 1868
}

1869 1870 1871 1872 1873 1874 1875 1876 1877
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1878
uint32_t
1879
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1880
{
1881
	uint32_t gtt_size;
1882 1883

	if (INTEL_INFO(dev)->gen >= 4 ||
1884 1885
	    tiling_mode == I915_TILING_NONE)
		return size;
1886 1887

	/* Previous chips need a power-of-two fence region when tiling */
1888
	if (IS_GEN3(dev))
1889
		gtt_size = 1024*1024;
1890
	else
1891
		gtt_size = 512*1024;
1892

1893 1894
	while (gtt_size < size)
		gtt_size <<= 1;
1895

1896
	return gtt_size;
1897 1898
}

1899 1900
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1901 1902 1903 1904
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1905 1906
 *
 * Return the required GTT alignment for an object, taking into account
1907
 * potential fence register mapping.
1908
 */
1909 1910 1911
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1912 1913 1914 1915 1916
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1917
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1918
	    tiling_mode == I915_TILING_NONE)
1919 1920
		return 4096;

1921 1922 1923 1924
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1925
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1926 1927
}

1928 1929
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1930
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1931 1932
	int ret;

1933 1934
	dev_priv->mm.shrinker_no_lock_stealing = true;

1935 1936
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1937
		goto out;
1938 1939 1940 1941 1942 1943 1944 1945

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1946 1947 1948 1949 1950
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1951 1952
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1953
		goto out;
1954 1955

	i915_gem_shrink_all(dev_priv);
1956 1957 1958 1959 1960
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1961 1962 1963 1964 1965 1966 1967
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1968
int
1969 1970
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1971
		  uint32_t handle,
1972
		  uint64_t *offset)
1973
{
1974
	struct drm_i915_gem_object *obj;
1975 1976
	int ret;

1977
	ret = i915_mutex_lock_interruptible(dev);
1978
	if (ret)
1979
		return ret;
1980

1981 1982
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1983 1984 1985
		ret = -ENOENT;
		goto unlock;
	}
1986

1987
	if (obj->madv != I915_MADV_WILLNEED) {
1988
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1989
		ret = -EFAULT;
1990
		goto out;
1991 1992
	}

1993 1994 1995
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1996

1997
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1998

1999
out:
2000
	i915_gem_object_put(obj);
2001
unlock:
2002
	mutex_unlock(&dev->struct_mutex);
2003
	return ret;
2004 2005
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2027
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2028 2029
}

D
Daniel Vetter 已提交
2030 2031 2032
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2033
{
2034
	i915_gem_object_free_mmap_offset(obj);
2035

2036 2037
	if (obj->base.filp == NULL)
		return;
2038

D
Daniel Vetter 已提交
2039 2040 2041 2042 2043
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2044
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2045 2046
	obj->madv = __I915_MADV_PURGED;
}
2047

2048 2049 2050
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2051
{
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2066 2067
}

2068
static void
2069
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2070
{
2071 2072
	struct sgt_iter sgt_iter;
	struct page *page;
2073
	int ret;
2074

2075
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2076

C
Chris Wilson 已提交
2077
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2078
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2079 2080 2081
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2082
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2083 2084 2085
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2086 2087
	i915_gem_gtt_finish_object(obj);

2088
	if (i915_gem_object_needs_bit17_swizzle(obj))
2089 2090
		i915_gem_object_save_bit_17_swizzle(obj);

2091 2092
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2093

2094
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2095
		if (obj->dirty)
2096
			set_page_dirty(page);
2097

2098
		if (obj->madv == I915_MADV_WILLNEED)
2099
			mark_page_accessed(page);
2100

2101
		put_page(page);
2102
	}
2103
	obj->dirty = 0;
2104

2105 2106
	sg_free_table(obj->pages);
	kfree(obj->pages);
2107
}
C
Chris Wilson 已提交
2108

2109
int
2110 2111 2112 2113
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2114
	if (obj->pages == NULL)
2115 2116
		return 0;

2117 2118 2119
	if (obj->pages_pin_count)
		return -EBUSY;

2120
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2121

2122 2123 2124
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2125
	list_del(&obj->global_list);
2126

2127
	if (obj->mapping) {
2128 2129 2130 2131
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2132 2133 2134
		obj->mapping = NULL;
	}

2135
	ops->put_pages(obj);
2136
	obj->pages = NULL;
2137

2138
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2139 2140 2141 2142

	return 0;
}

2143
static int
C
Chris Wilson 已提交
2144
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2145
{
2146
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2147 2148
	int page_count, i;
	struct address_space *mapping;
2149 2150
	struct sg_table *st;
	struct scatterlist *sg;
2151
	struct sgt_iter sgt_iter;
2152
	struct page *page;
2153
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2154
	int ret;
C
Chris Wilson 已提交
2155
	gfp_t gfp;
2156

C
Chris Wilson 已提交
2157 2158 2159 2160 2161 2162 2163
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2164 2165 2166 2167
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2168
	page_count = obj->base.size / PAGE_SIZE;
2169 2170
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2171
		return -ENOMEM;
2172
	}
2173

2174 2175 2176 2177 2178
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2179
	mapping = file_inode(obj->base.filp)->i_mapping;
2180
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2181
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2182 2183 2184
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2185 2186
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2187 2188 2189 2190 2191
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2192 2193 2194 2195 2196 2197 2198 2199
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2200
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2201 2202
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2203
				goto err_pages;
I
Imre Deak 已提交
2204
			}
C
Chris Wilson 已提交
2205
		}
2206 2207 2208 2209 2210 2211 2212 2213
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2223 2224 2225

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2226
	}
2227 2228 2229 2230
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2231 2232
	obj->pages = st;

I
Imre Deak 已提交
2233 2234 2235 2236
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2237
	if (i915_gem_object_needs_bit17_swizzle(obj))
2238 2239
		i915_gem_object_do_bit_17_swizzle(obj);

2240 2241 2242 2243
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2244 2245 2246
	return 0;

err_pages:
2247
	sg_mark_end(sg);
2248 2249
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2250 2251
	sg_free_table(st);
	kfree(st);
2252 2253 2254 2255 2256 2257 2258 2259 2260

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2261 2262 2263 2264
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2265 2266
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2277
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2278 2279 2280
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2281
	if (obj->pages)
2282 2283
		return 0;

2284
	if (obj->madv != I915_MADV_WILLNEED) {
2285
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2286
		return -EFAULT;
2287 2288
	}

2289 2290
	BUG_ON(obj->pages_pin_count);

2291 2292 2293 2294
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2295
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2296 2297 2298 2299

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2300
	return 0;
2301 2302
}

2303 2304 2305 2306 2307
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2308 2309
	struct sgt_iter sgt_iter;
	struct page *page;
2310 2311
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2312 2313 2314 2315 2316 2317 2318
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2319 2320 2321 2322 2323 2324
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2325

2326 2327
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2328 2329 2330 2331 2332 2333

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2334 2335
	if (pages != stack_pages)
		drm_free_large(pages);
2336 2337 2338 2339 2340

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2353 2354 2355
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2356 2357 2358 2359 2360 2361 2362 2363
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2364
void i915_vma_move_to_active(struct i915_vma *vma,
2365
			     struct drm_i915_gem_request *req)
2366
{
2367
	struct drm_i915_gem_object *obj = vma->obj;
2368
	struct intel_engine_cs *engine;
2369

2370
	engine = i915_gem_request_get_engine(req);
2371 2372

	/* Add a reference if we're newly entering the active list. */
2373
	if (obj->active == 0)
2374
		i915_gem_object_get(obj);
2375
	obj->active |= intel_engine_flag(engine);
2376

2377
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2378
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2379

2380
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2381 2382
}

2383 2384
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2385
{
2386 2387
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2388 2389

	i915_gem_request_assign(&obj->last_write_req, NULL);
2390
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2391 2392
}

2393
static void
2394
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int idx)
2395
{
2396
	struct i915_vma *vma;
2397

2398 2399
	GEM_BUG_ON(obj->last_read_req[idx] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << idx)));
2400

2401 2402
	list_del_init(&obj->engine_list[idx]);
	i915_gem_request_assign(&obj->last_read_req[idx], NULL);
2403

2404
	if (obj->last_write_req && obj->last_write_req->engine->id == idx)
2405 2406
		i915_gem_object_retire__write(obj);

2407
	obj->active &= ~(1 << idx);
2408 2409
	if (obj->active)
		return;
2410

2411 2412 2413 2414 2415 2416 2417
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2418 2419 2420
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2421
	}
2422

2423
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2424
	i915_gem_object_put(obj);
2425 2426
}

2427
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2428
{
2429
	unsigned long elapsed;
2430

2431
	if (ctx->hang_stats.banned)
2432 2433
		return true;

2434
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2435 2436
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2437 2438
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2439 2440 2441 2442 2443
	}

	return false;
}

2444
static void i915_set_reset_status(struct i915_gem_context *ctx,
2445
				  const bool guilty)
2446
{
2447
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2448 2449

	if (guilty) {
2450
		hs->banned = i915_context_is_banned(ctx);
2451 2452 2453 2454
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2455 2456 2457
	}
}

2458
struct drm_i915_gem_request *
2459
i915_gem_find_active_request(struct intel_engine_cs *engine)
2460
{
2461 2462
	struct drm_i915_gem_request *request;

2463 2464 2465 2466 2467 2468 2469 2470
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2471
	list_for_each_entry(request, &engine->request_list, list) {
2472
		if (i915_gem_request_completed(request))
2473
			continue;
2474

2475
		return request;
2476
	}
2477 2478 2479 2480

	return NULL;
}

2481
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2482 2483 2484 2485
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2486
	request = i915_gem_find_active_request(engine);
2487 2488 2489
	if (request == NULL)
		return;

2490
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2491

2492
	i915_set_reset_status(request->ctx, ring_hung);
2493
	list_for_each_entry_continue(request, &engine->request_list, list)
2494
		i915_set_reset_status(request->ctx, false);
2495
}
2496

2497
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2498
{
2499
	struct intel_ring *ring;
2500

2501
	while (!list_empty(&engine->active_list)) {
2502
		struct drm_i915_gem_object *obj;
2503

2504
		obj = list_first_entry(&engine->active_list,
2505
				       struct drm_i915_gem_object,
2506
				       engine_list[engine->id]);
2507

2508
		i915_gem_object_retire__read(obj, engine->id);
2509
	}
2510

2511 2512 2513 2514
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2515
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2516

2517 2518 2519 2520 2521 2522
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2523
	if (i915.enable_execlists) {
2524 2525
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2526

2527
		intel_execlists_cancel_requests(engine);
2528 2529
	}

2530 2531 2532 2533 2534 2535 2536
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2537
	if (!list_empty(&engine->request_list)) {
2538 2539
		struct drm_i915_gem_request *request;

2540 2541 2542
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
					  list);
2543

2544
		i915_gem_request_retire_upto(request);
2545
	}
2546 2547 2548 2549 2550 2551 2552 2553

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2554 2555 2556
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2557
	}
2558

2559
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2560 2561
}

2562
void i915_gem_reset(struct drm_device *dev)
2563
{
2564
	struct drm_i915_private *dev_priv = to_i915(dev);
2565
	struct intel_engine_cs *engine;
2566

2567 2568 2569 2570 2571
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2572
	for_each_engine(engine, dev_priv)
2573
		i915_gem_reset_engine_status(engine);
2574

2575
	for_each_engine(engine, dev_priv)
2576
		i915_gem_reset_engine_cleanup(engine);
2577
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2578

2579 2580
	i915_gem_context_reset(dev);

2581
	i915_gem_restore_fences(dev);
2582 2583

	WARN_ON(i915_verify_lists(dev));
2584 2585 2586 2587
}

/**
 * This function clears the request list as sequence numbers are passed.
2588
 * @engine: engine to retire requests on
2589
 */
2590
void
2591
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2592
{
2593
	WARN_ON(i915_verify_lists(engine->dev));
2594

2595 2596 2597 2598
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2599
	 */
2600
	while (!list_empty(&engine->request_list)) {
2601 2602
		struct drm_i915_gem_request *request;

2603
		request = list_first_entry(&engine->request_list,
2604 2605 2606
					   struct drm_i915_gem_request,
					   list);

2607
		if (!i915_gem_request_completed(request))
2608 2609
			break;

2610
		i915_gem_request_retire_upto(request);
2611
	}
2612

2613 2614 2615 2616
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2617
	while (!list_empty(&engine->active_list)) {
2618 2619
		struct drm_i915_gem_object *obj;

2620 2621
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2622
				       engine_list[engine->id]);
2623

2624
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2625 2626
			break;

2627
		i915_gem_object_retire__read(obj, engine->id);
2628 2629
	}

2630
	WARN_ON(i915_verify_lists(engine->dev));
2631 2632
}

2633
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2634
{
2635
	struct intel_engine_cs *engine;
2636

2637
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2638 2639 2640 2641 2642

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2643

2644
	for_each_engine(engine, dev_priv) {
2645
		i915_gem_retire_requests_ring(engine);
2646 2647
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2648 2649
	}

2650
	if (dev_priv->gt.active_engines == 0)
2651 2652 2653
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2654 2655
}

2656
static void
2657 2658
i915_gem_retire_work_handler(struct work_struct *work)
{
2659
	struct drm_i915_private *dev_priv =
2660
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2661
	struct drm_device *dev = &dev_priv->drm;
2662

2663
	/* Come back later if the device is busy... */
2664
	if (mutex_trylock(&dev->struct_mutex)) {
2665
		i915_gem_retire_requests(dev_priv);
2666
		mutex_unlock(&dev->struct_mutex);
2667
	}
2668 2669 2670 2671 2672

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2673 2674
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2675 2676
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2677
				   round_jiffies_up_relative(HZ));
2678
	}
2679
}
2680

2681 2682 2683 2684
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2685
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2686
	struct drm_device *dev = &dev_priv->drm;
2687
	struct intel_engine_cs *engine;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2710

2711
	for_each_engine(engine, dev_priv)
2712
		i915_gem_batch_pool_fini(&engine->batch_pool);
2713

2714 2715 2716
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2717

2718 2719 2720 2721
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2722
	stuck_engines = intel_kick_waiters(dev_priv);
2723 2724 2725
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2726

2727 2728 2729 2730 2731
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2732

2733 2734 2735 2736
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2737
	}
2738 2739
}

2740 2741 2742 2743
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
2744
 * @obj: object to flush
2745 2746 2747 2748
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2749
	int i;
2750 2751 2752

	if (!obj->active)
		return 0;
2753

2754
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2755
		struct drm_i915_gem_request *req;
2756

2757 2758 2759 2760
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

2761
		if (i915_gem_request_completed(req))
2762
			i915_gem_object_retire__read(obj, i);
2763 2764 2765 2766 2767
	}

	return 0;
}

2768 2769
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2770 2771 2772
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2797
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2798 2799
	int i, n = 0;
	int ret;
2800

2801 2802 2803
	if (args->flags != 0)
		return -EINVAL;

2804 2805 2806 2807
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2808 2809
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2810 2811 2812 2813
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2814 2815
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2816 2817 2818
	if (ret)
		goto out;

2819
	if (!obj->active)
2820
		goto out;
2821 2822

	/* Do this after OLR check to make sure we make forward progress polling
2823
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2824
	 */
2825
	if (args->timeout_ns == 0) {
2826 2827 2828 2829
		ret = -ETIME;
		goto out;
	}

2830
	i915_gem_object_put(obj);
2831

2832
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2833 2834 2835
		if (obj->last_read_req[i] == NULL)
			continue;

2836
		req[n++] = i915_gem_request_get(obj->last_read_req[i]);
2837 2838
	}

2839 2840
	mutex_unlock(&dev->struct_mutex);

2841 2842
	for (i = 0; i < n; i++) {
		if (ret == 0)
2843
			ret = __i915_wait_request(req[i], true,
2844
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2845
						  to_rps_client(file));
2846
		i915_gem_request_put(req[i]);
2847
	}
2848
	return ret;
2849 2850

out:
2851
	i915_gem_object_put(obj);
2852 2853 2854 2855
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2856 2857
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
2858 2859
		       struct drm_i915_gem_request *to,
		       struct drm_i915_gem_request *from)
2860 2861 2862
{
	int ret;

2863
	if (to->engine == from->engine)
2864 2865
		return 0;

2866
	if (i915_gem_request_completed(from))
2867 2868
		return 0;

2869
	if (!i915.semaphores) {
2870 2871
		ret = __i915_wait_request(from,
					  from->i915->mm.interruptible,
2872
					  NULL,
2873
					  NO_WAITBOOST);
2874 2875 2876
		if (ret)
			return ret;

2877
		i915_gem_object_retire_request(obj, from);
2878
	} else {
2879
		int idx = intel_engine_sync_index(from->engine, to->engine);
2880
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2881 2882
			return 0;

2883
		trace_i915_gem_ring_sync_to(to, from);
2884
		ret = to->engine->semaphore.sync_to(to, from);
2885 2886 2887
		if (ret)
			return ret;

2888
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2889 2890 2891 2892 2893
	}

	return 0;
}

2894 2895 2896 2897
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2898
 * @to: request we are wishing to use
2899 2900
 *
 * This code is meant to abstract object synchronization with the GPU.
2901 2902 2903
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2904 2905 2906 2907 2908 2909 2910
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2911 2912 2913
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2914 2915
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2916
		     struct drm_i915_gem_request *to)
2917
{
2918
	const bool readonly = obj->base.pending_write_domain == 0;
2919
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2920
	int ret, i, n;
2921

2922
	if (!obj->active)
2923 2924
		return 0;

2925 2926 2927 2928 2929
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
2930
		for (i = 0; i < I915_NUM_ENGINES; i++)
2931 2932 2933 2934
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
2935
		ret = __i915_gem_object_sync(obj, to, req[i]);
2936 2937 2938
		if (ret)
			return ret;
	}
2939

2940
	return 0;
2941 2942
}

2943 2944 2945 2946 2947 2948 2949
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2950 2951 2952
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2975
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2976
{
2977
	struct drm_i915_gem_object *obj = vma->obj;
2978
	int ret;
2979

2980
	if (list_empty(&vma->obj_link))
2981 2982
		return 0;

2983 2984 2985 2986
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2987

B
Ben Widawsky 已提交
2988
	if (vma->pin_count)
2989
		return -EBUSY;
2990

2991 2992
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2993

2994 2995 2996 2997 2998
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
2999

3000
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3001
		i915_gem_object_finish_gtt(obj);
3002

3003 3004 3005 3006
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3007 3008

		__i915_vma_iounmap(vma);
3009
	}
3010

3011
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3012

3013
	vma->vm->unbind_vma(vma);
3014
	vma->bound = 0;
3015

3016
	list_del_init(&vma->vm_link);
3017
	if (vma->is_ggtt) {
3018 3019 3020 3021 3022 3023
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3024
		vma->ggtt_view.pages = NULL;
3025
	}
3026

B
Ben Widawsky 已提交
3027 3028 3029 3030
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3031
	 * no more VMAs exist. */
3032 3033 3034
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3035

3036 3037 3038 3039 3040 3041
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3042
	return 0;
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3055
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3056
{
3057
	struct intel_engine_cs *engine;
3058
	int ret;
3059

3060
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3061

3062
	for_each_engine(engine, dev_priv) {
3063 3064 3065
		if (engine->last_context == NULL)
			continue;

3066
		ret = intel_engine_idle(engine);
3067 3068 3069
		if (ret)
			return ret;
	}
3070

3071
	WARN_ON(i915_verify_lists(dev));
3072
	return 0;
3073 3074
}

3075
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3076 3077
				     unsigned long cache_level)
{
3078
	struct drm_mm_node *gtt_space = &vma->node;
3079 3080
	struct drm_mm_node *other;

3081 3082 3083 3084 3085 3086
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3087
	 */
3088
	if (vma->vm->mm.color_adjust == NULL)
3089 3090
		return true;

3091
	if (!drm_mm_node_allocated(gtt_space))
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3108
/**
3109 3110
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3111 3112 3113 3114 3115
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3116
 */
3117
static struct i915_vma *
3118 3119
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3120
			   const struct i915_ggtt_view *ggtt_view,
3121
			   unsigned alignment,
3122
			   uint64_t flags)
3123
{
3124
	struct drm_device *dev = obj->base.dev;
3125 3126
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3127
	u32 fence_alignment, unfenced_alignment;
3128 3129
	u32 search_flag, alloc_flag;
	u64 start, end;
3130
	u64 size, fence_size;
B
Ben Widawsky 已提交
3131
	struct i915_vma *vma;
3132
	int ret;
3133

3134 3135 3136 3137 3138
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3169

3170 3171 3172
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3173
		end = min_t(u64, end, ggtt->mappable_end);
3174
	if (flags & PIN_ZONE_4G)
3175
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3176

3177
	if (alignment == 0)
3178
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3179
						unfenced_alignment;
3180
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3181 3182 3183
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3184
		return ERR_PTR(-EINVAL);
3185 3186
	}

3187 3188 3189
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3190
	 */
3191
	if (size > end) {
3192
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3193 3194
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3195
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3196
			  end);
3197
		return ERR_PTR(-E2BIG);
3198 3199
	}

3200
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3201
	if (ret)
3202
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3203

3204 3205
	i915_gem_object_pin_pages(obj);

3206 3207 3208
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3209
	if (IS_ERR(vma))
3210
		goto err_unpin;
B
Ben Widawsky 已提交
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3230
	} else {
3231 3232 3233 3234 3235 3236 3237
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3238

3239
search_free:
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3253

3254 3255
			goto err_free_vma;
		}
3256
	}
3257
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3258
		ret = -EINVAL;
3259
		goto err_remove_node;
3260 3261
	}

3262
	trace_i915_vma_bind(vma, flags);
3263
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3264
	if (ret)
I
Imre Deak 已提交
3265
		goto err_remove_node;
3266

3267
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3268
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3269
	obj->bind_count++;
3270

3271
	return vma;
B
Ben Widawsky 已提交
3272

3273
err_remove_node:
3274
	drm_mm_remove_node(&vma->node);
3275
err_free_vma:
B
Ben Widawsky 已提交
3276
	i915_gem_vma_destroy(vma);
3277
	vma = ERR_PTR(ret);
3278
err_unpin:
B
Ben Widawsky 已提交
3279
	i915_gem_object_unpin_pages(obj);
3280
	return vma;
3281 3282
}

3283
bool
3284 3285
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3286 3287 3288 3289 3290
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3291
	if (obj->pages == NULL)
3292
		return false;
3293

3294 3295 3296 3297
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3298
	if (obj->stolen || obj->phys_handle)
3299
		return false;
3300

3301 3302 3303 3304 3305 3306 3307 3308
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3309 3310
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3311
		return false;
3312
	}
3313

C
Chris Wilson 已提交
3314
	trace_i915_gem_object_clflush(obj);
3315
	drm_clflush_sg(obj->pages);
3316
	obj->cache_dirty = false;
3317 3318

	return true;
3319 3320 3321 3322
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3323
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3324
{
C
Chris Wilson 已提交
3325 3326
	uint32_t old_write_domain;

3327
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3328 3329
		return;

3330
	/* No actual flushing is required for the GTT write domain.  Writes
3331 3332
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3333 3334 3335 3336
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3337
	 */
3338 3339
	wmb();

3340 3341
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3342

3343
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3344

C
Chris Wilson 已提交
3345
	trace_i915_gem_object_change_domain(obj,
3346
					    obj->base.read_domains,
C
Chris Wilson 已提交
3347
					    old_write_domain);
3348 3349 3350 3351
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3352
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3353
{
C
Chris Wilson 已提交
3354
	uint32_t old_write_domain;
3355

3356
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3357 3358
		return;

3359
	if (i915_gem_clflush_object(obj, obj->pin_display))
3360
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3361

3362 3363
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3364

3365
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3366

C
Chris Wilson 已提交
3367
	trace_i915_gem_object_change_domain(obj,
3368
					    obj->base.read_domains,
C
Chris Wilson 已提交
3369
					    old_write_domain);
3370 3371
}

3372 3373
/**
 * Moves a single object to the GTT read, and possibly write domain.
3374 3375
 * @obj: object to act on
 * @write: ask for write access or read only
3376 3377 3378 3379
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3380
int
3381
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3382
{
3383 3384 3385
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3386
	uint32_t old_write_domain, old_read_domains;
3387
	struct i915_vma *vma;
3388
	int ret;
3389

3390
	ret = i915_gem_object_wait_rendering(obj, !write);
3391 3392 3393
	if (ret)
		return ret;

3394 3395 3396
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3409
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3410

3411 3412 3413 3414 3415 3416 3417
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3418 3419
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3420

3421 3422 3423
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3424 3425
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3426
	if (write) {
3427 3428 3429
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3430 3431
	}

C
Chris Wilson 已提交
3432 3433 3434 3435
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3436
	/* And bump the LRU for this access */
3437 3438
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3439
		list_move_tail(&vma->vm_link,
3440
			       &ggtt->base.inactive_list);
3441

3442 3443 3444
	return 0;
}

3445 3446
/**
 * Changes the cache-level of an object across all VMA.
3447 3448
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3460 3461 3462
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3463
	struct i915_vma *vma;
3464
	int ret = 0;
3465 3466

	if (obj->cache_level == cache_level)
3467
		goto out;
3468

3469 3470 3471 3472 3473
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3474 3475
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3476 3477 3478 3479 3480 3481 3482 3483
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3496 3497
	}

3498 3499 3500 3501 3502 3503 3504
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3505
	if (obj->bind_count) {
3506 3507 3508 3509
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3510
		ret = i915_gem_object_wait_rendering(obj, false);
3511 3512 3513
		if (ret)
			return ret;

3514
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3531 3532 3533
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3534 3535 3536 3537 3538 3539 3540 3541
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3542 3543
		}

3544
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3545 3546 3547 3548 3549 3550 3551
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3552 3553
	}

3554
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3555 3556 3557
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3558
out:
3559 3560 3561 3562
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3563
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3564
		if (i915_gem_clflush_object(obj, true))
3565
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3566 3567 3568 3569 3570
	}

	return 0;
}

B
Ben Widawsky 已提交
3571 3572
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3573
{
B
Ben Widawsky 已提交
3574
	struct drm_i915_gem_caching *args = data;
3575 3576
	struct drm_i915_gem_object *obj;

3577 3578
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3579
		return -ENOENT;
3580

3581 3582 3583 3584 3585 3586
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3587 3588 3589 3590
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3591 3592 3593 3594
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3595

3596
	i915_gem_object_put_unlocked(obj);
3597
	return 0;
3598 3599
}

B
Ben Widawsky 已提交
3600 3601
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3602
{
3603
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3604
	struct drm_i915_gem_caching *args = data;
3605 3606 3607 3608
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3609 3610
	switch (args->caching) {
	case I915_CACHING_NONE:
3611 3612
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3613
	case I915_CACHING_CACHED:
3614 3615 3616 3617 3618 3619
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3620
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3621 3622
			return -ENODEV;

3623 3624
		level = I915_CACHE_LLC;
		break;
3625 3626 3627
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3628 3629 3630 3631
	default:
		return -EINVAL;
	}

3632 3633
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3634 3635
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3636
		goto rpm_put;
B
Ben Widawsky 已提交
3637

3638 3639
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3640 3641 3642 3643 3644 3645
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3646
	i915_gem_object_put(obj);
3647 3648
unlock:
	mutex_unlock(&dev->struct_mutex);
3649 3650 3651
rpm_put:
	intel_runtime_pm_put(dev_priv);

3652 3653 3654
	return ret;
}

3655
/*
3656 3657 3658
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3659 3660
 */
int
3661 3662
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3663
				     const struct i915_ggtt_view *view)
3664
{
3665
	u32 old_read_domains, old_write_domain;
3666 3667
	int ret;

3668 3669 3670
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3671
	obj->pin_display++;
3672

3673 3674 3675 3676 3677 3678 3679 3680 3681
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3682 3683
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3684
	if (ret)
3685
		goto err_unpin_display;
3686

3687 3688 3689 3690
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3691 3692 3693
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3694
	if (ret)
3695
		goto err_unpin_display;
3696

3697
	i915_gem_object_flush_cpu_write_domain(obj);
3698

3699
	old_write_domain = obj->base.write_domain;
3700
	old_read_domains = obj->base.read_domains;
3701 3702 3703 3704

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3705
	obj->base.write_domain = 0;
3706
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3707 3708 3709

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3710
					    old_write_domain);
3711 3712

	return 0;
3713 3714

err_unpin_display:
3715
	obj->pin_display--;
3716 3717 3718 3719
	return ret;
}

void
3720 3721
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3722
{
3723 3724 3725
	if (WARN_ON(obj->pin_display == 0))
		return;

3726 3727
	i915_gem_object_ggtt_unpin_view(obj, view);

3728
	obj->pin_display--;
3729 3730
}

3731 3732
/**
 * Moves a single object to the CPU read, and possibly write domain.
3733 3734
 * @obj: object to act on
 * @write: requesting write or read-only access
3735 3736 3737 3738
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3739
int
3740
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3741
{
C
Chris Wilson 已提交
3742
	uint32_t old_write_domain, old_read_domains;
3743 3744
	int ret;

3745
	ret = i915_gem_object_wait_rendering(obj, !write);
3746 3747 3748
	if (ret)
		return ret;

3749 3750 3751
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3752
	i915_gem_object_flush_gtt_write_domain(obj);
3753

3754 3755
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3756

3757
	/* Flush the CPU cache if it's still invalid. */
3758
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3759
		i915_gem_clflush_object(obj, false);
3760

3761
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3762 3763 3764 3765 3766
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3767
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3768 3769 3770 3771 3772

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3773 3774
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3775
	}
3776

C
Chris Wilson 已提交
3777 3778 3779 3780
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3781 3782 3783
	return 0;
}

3784 3785 3786
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3787 3788 3789 3790
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3791 3792 3793
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3794
static int
3795
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3796
{
3797
	struct drm_i915_private *dev_priv = to_i915(dev);
3798
	struct drm_i915_file_private *file_priv = file->driver_priv;
3799
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3800
	struct drm_i915_gem_request *request, *target = NULL;
3801
	int ret;
3802

3803 3804 3805 3806
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3807 3808 3809
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3810

3811
	spin_lock(&file_priv->mm.lock);
3812
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3813 3814
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3815

3816 3817 3818 3819 3820 3821 3822
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3823
		target = request;
3824
	}
3825
	if (target)
3826
		i915_gem_request_get(target);
3827
	spin_unlock(&file_priv->mm.lock);
3828

3829
	if (target == NULL)
3830
		return 0;
3831

3832
	ret = __i915_wait_request(target, true, NULL, NULL);
3833
	i915_gem_request_put(target);
3834

3835 3836 3837
	return ret;
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3854 3855 3856 3857
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3858 3859 3860
	return false;
}

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3879
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3880 3881 3882 3883

	obj->map_and_fenceable = mappable && fenceable;
}

3884 3885 3886 3887 3888 3889
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3890
{
3891
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3892
	struct i915_vma *vma;
3893
	unsigned bound;
3894 3895
	int ret;

3896 3897 3898
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3899
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3900
		return -EINVAL;
3901

3902 3903 3904
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3905 3906 3907 3908 3909 3910
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3911
	if (vma) {
B
Ben Widawsky 已提交
3912 3913 3914
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3915
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3916
			WARN(vma->pin_count,
3917
			     "bo is already pinned in %s with incorrect alignment:"
3918
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3919
			     " obj->map_and_fenceable=%d\n",
3920
			     ggtt_view ? "ggtt" : "ppgtt",
3921 3922
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3923
			     alignment,
3924
			     !!(flags & PIN_MAPPABLE),
3925
			     obj->map_and_fenceable);
3926
			ret = i915_vma_unbind(vma);
3927 3928
			if (ret)
				return ret;
3929 3930

			vma = NULL;
3931 3932 3933
		}
	}

3934
	bound = vma ? vma->bound : 0;
3935
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3936 3937
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3938 3939
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3940 3941
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3942 3943 3944
		if (ret)
			return ret;
	}
3945

3946 3947
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3948
		__i915_vma_set_map_and_fenceable(vma);
3949 3950
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3951

3952
	vma->pin_count++;
3953 3954 3955
	return 0;
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3973 3974 3975 3976
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3977
	BUG_ON(!view);
3978

3979
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3980
				      alignment, flags | PIN_GLOBAL);
3981 3982
}

3983
void
3984 3985
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3986
{
3987
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3988

3989
	WARN_ON(vma->pin_count == 0);
3990
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3991

3992
	--vma->pin_count;
3993 3994 3995 3996
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3997
		    struct drm_file *file)
3998 3999
{
	struct drm_i915_gem_busy *args = data;
4000
	struct drm_i915_gem_object *obj;
4001 4002
	int ret;

4003
	ret = i915_mutex_lock_interruptible(dev);
4004
	if (ret)
4005
		return ret;
4006

4007 4008
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
4009 4010
		ret = -ENOENT;
		goto unlock;
4011
	}
4012

4013 4014 4015 4016
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4017
	 */
4018
	ret = i915_gem_object_flush_active(obj);
4019 4020
	if (ret)
		goto unref;
4021

4022 4023 4024 4025
	args->busy = 0;
	if (obj->active) {
		int i;

4026
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4027 4028 4029 4030
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4031
				args->busy |= 1 << (16 + req->engine->exec_id);
4032 4033
		}
		if (obj->last_write_req)
4034
			args->busy |= obj->last_write_req->engine->exec_id;
4035
	}
4036

4037
unref:
4038
	i915_gem_object_put(obj);
4039
unlock:
4040
	mutex_unlock(&dev->struct_mutex);
4041
	return ret;
4042 4043 4044 4045 4046 4047
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4048
	return i915_gem_ring_throttle(dev, file_priv);
4049 4050
}

4051 4052 4053 4054
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4055
	struct drm_i915_private *dev_priv = to_i915(dev);
4056
	struct drm_i915_gem_madvise *args = data;
4057
	struct drm_i915_gem_object *obj;
4058
	int ret;
4059 4060 4061 4062 4063 4064 4065 4066 4067

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4068 4069 4070 4071
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4072 4073
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4074 4075
		ret = -ENOENT;
		goto unlock;
4076 4077
	}

B
Ben Widawsky 已提交
4078
	if (i915_gem_obj_is_pinned(obj)) {
4079 4080
		ret = -EINVAL;
		goto out;
4081 4082
	}

4083 4084 4085 4086 4087 4088 4089 4090 4091
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4092 4093
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4094

C
Chris Wilson 已提交
4095
	/* if the object is no longer attached, discard its backing storage */
4096
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4097 4098
		i915_gem_object_truncate(obj);

4099
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4100

4101
out:
4102
	i915_gem_object_put(obj);
4103
unlock:
4104
	mutex_unlock(&dev->struct_mutex);
4105
	return ret;
4106 4107
}

4108 4109
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4110
{
4111 4112
	int i;

4113
	INIT_LIST_HEAD(&obj->global_list);
4114
	for (i = 0; i < I915_NUM_ENGINES; i++)
4115
		INIT_LIST_HEAD(&obj->engine_list[i]);
4116
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4117
	INIT_LIST_HEAD(&obj->vma_list);
4118
	INIT_LIST_HEAD(&obj->batch_pool_link);
4119

4120 4121
	obj->ops = ops;

4122 4123 4124
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4125
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4126 4127
}

4128
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4129
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4130 4131 4132 4133
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4134
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4135
						  size_t size)
4136
{
4137
	struct drm_i915_gem_object *obj;
4138
	struct address_space *mapping;
D
Daniel Vetter 已提交
4139
	gfp_t mask;
4140
	int ret;
4141

4142
	obj = i915_gem_object_alloc(dev);
4143
	if (obj == NULL)
4144
		return ERR_PTR(-ENOMEM);
4145

4146 4147 4148
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4149

4150 4151 4152 4153 4154 4155 4156
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4157
	mapping = file_inode(obj->base.filp)->i_mapping;
4158
	mapping_set_gfp_mask(mapping, mask);
4159

4160
	i915_gem_object_init(obj, &i915_gem_object_ops);
4161

4162 4163
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4164

4165 4166
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4182 4183
	trace_i915_gem_object_create(obj);

4184
	return obj;
4185 4186 4187 4188 4189

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4190 4191
}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4216
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4217
{
4218
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4219
	struct drm_device *dev = obj->base.dev;
4220
	struct drm_i915_private *dev_priv = to_i915(dev);
4221
	struct i915_vma *vma, *next;
4222

4223 4224
	intel_runtime_pm_get(dev_priv);

4225 4226
	trace_i915_gem_object_destroy(obj);

4227
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4228 4229 4230
		int ret;

		vma->pin_count = 0;
4231
		ret = __i915_vma_unbind_no_wait(vma);
4232 4233
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4234

4235 4236
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4237

4238
			WARN_ON(i915_vma_unbind(vma));
4239

4240 4241
			dev_priv->mm.interruptible = was_interruptible;
		}
4242
	}
4243
	GEM_BUG_ON(obj->bind_count);
4244

B
Ben Widawsky 已提交
4245 4246 4247 4248 4249
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4250 4251
	WARN_ON(obj->frontbuffer_bits);

4252 4253 4254 4255 4256
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4257 4258
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4259
	if (discard_backing_storage(obj))
4260
		obj->madv = I915_MADV_DONTNEED;
4261
	i915_gem_object_put_pages(obj);
4262

4263 4264
	BUG_ON(obj->pages);

4265 4266
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4267

4268 4269 4270
	if (obj->ops->release)
		obj->ops->release(obj);

4271 4272
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4273

4274
	kfree(obj->bit_17);
4275
	i915_gem_object_free(obj);
4276 4277

	intel_runtime_pm_put(dev_priv);
4278 4279
}

4280 4281
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4282 4283
{
	struct i915_vma *vma;
4284
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4285 4286
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4287
			return vma;
4288 4289 4290 4291 4292 4293 4294 4295
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4296

4297
	GEM_BUG_ON(!view);
4298

4299
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4300
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4301
			return vma;
4302 4303 4304
	return NULL;
}

B
Ben Widawsky 已提交
4305 4306 4307
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4308 4309 4310 4311 4312

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4313 4314
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4315

4316
	list_del(&vma->obj_link);
4317

4318
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4319 4320
}

4321
static void
4322
i915_gem_stop_engines(struct drm_device *dev)
4323
{
4324
	struct drm_i915_private *dev_priv = to_i915(dev);
4325
	struct intel_engine_cs *engine;
4326

4327
	for_each_engine(engine, dev_priv)
4328
		dev_priv->gt.stop_engine(engine);
4329 4330
}

4331
int
4332
i915_gem_suspend(struct drm_device *dev)
4333
{
4334
	struct drm_i915_private *dev_priv = to_i915(dev);
4335
	int ret = 0;
4336

4337 4338
	intel_suspend_gt_powersave(dev_priv);

4339
	mutex_lock(&dev->struct_mutex);
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4353
	ret = i915_gem_wait_for_idle(dev_priv);
4354
	if (ret)
4355
		goto err;
4356

4357
	i915_gem_retire_requests(dev_priv);
4358

4359 4360 4361 4362 4363
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4364
	i915_gem_stop_engines(dev);
4365
	i915_gem_context_lost(dev_priv);
4366 4367
	mutex_unlock(&dev->struct_mutex);

4368
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4369 4370
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4371

4372 4373 4374
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4375
	WARN_ON(dev_priv->gt.awake);
4376

4377
	return 0;
4378 4379 4380 4381

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4382 4383
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4401 4402
void i915_gem_init_swizzling(struct drm_device *dev)
{
4403
	struct drm_i915_private *dev_priv = to_i915(dev);
4404

4405
	if (INTEL_INFO(dev)->gen < 5 ||
4406 4407 4408 4409 4410 4411
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4412 4413 4414
	if (IS_GEN5(dev))
		return;

4415 4416
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4417
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4418
	else if (IS_GEN7(dev))
4419
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4420 4421
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4422 4423
	else
		BUG();
4424
}
D
Daniel Vetter 已提交
4425

4426 4427
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4428
	struct drm_i915_private *dev_priv = to_i915(dev);
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4453 4454 4455
int
i915_gem_init_hw(struct drm_device *dev)
{
4456
	struct drm_i915_private *dev_priv = to_i915(dev);
4457
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4458
	int ret;
4459

4460 4461 4462
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4463
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4464
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4465

4466 4467 4468
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4469

4470
	if (HAS_PCH_NOP(dev)) {
4471 4472 4473 4474 4475 4476 4477 4478 4479
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4480 4481
	}

4482 4483
	i915_gem_init_swizzling(dev);

4484 4485 4486 4487 4488 4489 4490 4491
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4492
	BUG_ON(!dev_priv->kernel_context);
4493

4494 4495 4496 4497 4498 4499 4500
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4501
	for_each_engine(engine, dev_priv) {
4502
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4503
		if (ret)
4504
			goto out;
D
Daniel Vetter 已提交
4505
	}
4506

4507 4508
	intel_mocs_init_l3cc_table(dev);

4509
	/* We can't enable contexts until all firmware is loaded */
4510 4511 4512
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4513

4514 4515
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4516
	return ret;
4517 4518
}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4540 4541
int i915_gem_init(struct drm_device *dev)
{
4542
	struct drm_i915_private *dev_priv = to_i915(dev);
4543 4544 4545
	int ret;

	mutex_lock(&dev->struct_mutex);
4546

4547
	if (!i915.enable_execlists) {
4548 4549
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4550
	} else {
4551 4552
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4553 4554
	}

4555 4556 4557 4558 4559 4560 4561 4562
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4563
	i915_gem_init_userptr(dev_priv);
4564 4565 4566 4567

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4568

4569
	ret = i915_gem_context_init(dev);
4570 4571
	if (ret)
		goto out_unlock;
4572

4573
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4574
	if (ret)
4575
		goto out_unlock;
4576

4577
	ret = i915_gem_init_hw(dev);
4578
	if (ret == -EIO) {
4579
		/* Allow engine initialisation to fail by marking the GPU as
4580 4581 4582 4583
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4584
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4585
		ret = 0;
4586
	}
4587 4588

out_unlock:
4589
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4590
	mutex_unlock(&dev->struct_mutex);
4591

4592
	return ret;
4593 4594
}

4595
void
4596
i915_gem_cleanup_engines(struct drm_device *dev)
4597
{
4598
	struct drm_i915_private *dev_priv = to_i915(dev);
4599
	struct intel_engine_cs *engine;
4600

4601
	for_each_engine(engine, dev_priv)
4602
		dev_priv->gt.cleanup_engine(engine);
4603 4604
}

4605
static void
4606
init_engine_lists(struct intel_engine_cs *engine)
4607
{
4608 4609
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4610 4611
}

4612 4613 4614
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4615
	struct drm_device *dev = &dev_priv->drm;
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4626
	if (intel_vgpu_active(dev_priv))
4627 4628 4629 4630 4631 4632 4633 4634 4635
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4636
void
4637
i915_gem_load_init(struct drm_device *dev)
4638
{
4639
	struct drm_i915_private *dev_priv = to_i915(dev);
4640 4641
	int i;

4642
	dev_priv->objects =
4643 4644 4645 4646
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4647 4648 4649 4650 4651
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4652 4653 4654 4655 4656
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4657

4658
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4659 4660
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4661
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4662 4663
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4664
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4665
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4666
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4667
			  i915_gem_retire_work_handler);
4668
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4669
			  i915_gem_idle_work_handler);
4670
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4671
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4672

4673 4674
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4675
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4676

4677
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4678

4679 4680
	dev_priv->mm.interruptible = true;

4681
	mutex_init(&dev_priv->fb_tracking.lock);
4682
}
4683

4684 4685 4686 4687 4688 4689 4690 4691 4692
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4721
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4722
{
4723
	struct drm_i915_file_private *file_priv = file->driver_priv;
4724
	struct drm_i915_gem_request *request;
4725 4726 4727 4728 4729

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4730
	spin_lock(&file_priv->mm.lock);
4731
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4732
		request->file_priv = NULL;
4733
	spin_unlock(&file_priv->mm.lock);
4734

4735
	if (!list_empty(&file_priv->rps.link)) {
4736
		spin_lock(&to_i915(dev)->rps.client_lock);
4737
		list_del(&file_priv->rps.link);
4738
		spin_unlock(&to_i915(dev)->rps.client_lock);
4739
	}
4740 4741 4742 4743 4744
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4745
	int ret;
4746 4747 4748 4749 4750 4751 4752 4753

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4754
	file_priv->dev_priv = to_i915(dev);
4755
	file_priv->file = file;
4756
	INIT_LIST_HEAD(&file_priv->rps.link);
4757 4758 4759 4760

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4761
	file_priv->bsd_engine = -1;
4762

4763 4764 4765
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4766

4767
	return ret;
4768 4769
}

4770 4771
/**
 * i915_gem_track_fb - update frontbuffer tracking
4772 4773 4774
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4775 4776 4777 4778
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4796
/* All the new VM stuff */
4797 4798
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4799
{
4800
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4801 4802
	struct i915_vma *vma;

4803
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4804

4805
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4806
		if (vma->is_ggtt &&
4807 4808 4809
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4810 4811
			return vma->node.start;
	}
4812

4813 4814
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4815 4816 4817
	return -1;
}

4818 4819
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4820 4821 4822
{
	struct i915_vma *vma;

4823
	list_for_each_entry(vma, &o->vma_list, obj_link)
4824
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4825 4826
			return vma->node.start;

4827
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4828 4829 4830 4831 4832 4833 4834 4835
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4836
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4837
		if (vma->is_ggtt &&
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4848
				  const struct i915_ggtt_view *view)
4849 4850 4851
{
	struct i915_vma *vma;

4852
	list_for_each_entry(vma, &o->vma_list, obj_link)
4853
		if (vma->is_ggtt &&
4854
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4855
		    drm_mm_node_allocated(&vma->node))
4856 4857 4858 4859 4860
			return true;

	return false;
}

4861
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4862 4863 4864
{
	struct i915_vma *vma;

4865
	GEM_BUG_ON(list_empty(&o->vma_list));
4866

4867
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4868
		if (vma->is_ggtt &&
4869
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4870
			return vma->node.size;
4871
	}
4872

4873 4874 4875
	return 0;
}

4876
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4877 4878
{
	struct i915_vma *vma;
4879
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4880 4881
		if (vma->pin_count > 0)
			return true;
4882

4883
	return false;
4884
}
4885

4886 4887 4888 4889 4890 4891 4892
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4893
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4894 4895 4896 4897 4898 4899 4900
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4911
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4912
	if (IS_ERR(obj))
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4926
	obj->dirty = 1;		/* Backing store is now out of date */
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4938
	i915_gem_object_put(obj);
4939 4940
	return ERR_PTR(ret);
}