i915_gem.c 125.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46
static void
47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
49
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int engine);
50

51 52 53 54 55 56
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96 97 98
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       10*HZ);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

144
	WARN_ON(i915_verify_lists(dev));
145 146
	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161 162
		if (vma->pin_count)
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164 165
		if (vma->pin_count)
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174 175
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177 178 179 180 181
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

199
		put_page(page);
200 201 202
		vaddr += PAGE_SIZE;
	}

203
	i915_gem_chipset_flush(to_i915(obj->base.dev));
204 205 206 207 208 209 210 211 212 213 214 215 216

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
217

218 219 220 221 222 223 224 225 226 227 228 229 230
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
231

232
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
233
	if (WARN_ON(ret)) {
234 235 236 237 238 239 240 241 242 243
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
244
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
267
		obj->dirty = 0;
268 269
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

309 310 311 312 313
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
314
	int ret;
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
329 330 331 332 333
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
334 335 336
	if (ret)
		return ret;

337 338 339 340 341 342
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
343 344 345
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
346 347 348 349 350 351 352 353 354
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
355
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
356
	int ret = 0;
357 358 359 360 361 362 363

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
364

365
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
366 367 368 369 370 371 372 373 374 375
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
376 377 378 379
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
380 381
	}

382
	drm_clflush_virt_range(vaddr, args->size);
383
	i915_gem_chipset_flush(to_i915(dev));
384 385

out:
386
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
387
	return ret;
388 389
}

390 391
void *i915_gem_object_alloc(struct drm_device *dev)
{
392
	struct drm_i915_private *dev_priv = to_i915(dev);
393
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
394 395 396 397
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
398
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
399
	kmem_cache_free(dev_priv->objects, obj);
400 401
}

402 403 404 405 406
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
407
{
408
	struct drm_i915_gem_object *obj;
409 410
	int ret;
	u32 handle;
411

412
	size = roundup(size, PAGE_SIZE);
413 414
	if (size == 0)
		return -EINVAL;
415 416

	/* Allocate the new object */
417
	obj = i915_gem_object_create(dev, size);
418 419
	if (IS_ERR(obj))
		return PTR_ERR(obj);
420

421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423
	i915_gem_object_put_unlocked(obj);
424 425
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, &args->handle);
441 442 443 444
}

/**
 * Creates a new mm object and returns a handle to it.
445 446 447
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
448 449 450 451 452 453
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
454

455
	return i915_gem_create(file, dev,
456
			       args->size, &args->handle);
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

485
static inline int
486 487
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

511 512 513 514 515 516 517 518 519 520 521 522
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

523
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
524 525
		return -EINVAL;

526 527 528 529
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

548 549 550
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
551
static int
552 553 554 555 556 557 558
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

559
	if (unlikely(page_do_bit17_swizzling))
560 561 562 563 564 565 566 567 568 569 570
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

571
	return ret ? -EFAULT : 0;
572 573
}

574 575 576 577
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
578
	if (unlikely(swizzled)) {
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

596 597 598 599 600 601 602 603 604 605 606 607
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
608 609 610
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
611 612 613 614 615 616 617 618 619 620 621

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

622
	return ret ? - EFAULT : 0;
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
652
	struct drm_i915_private *dev_priv = to_i915(dev);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

761
static int
762 763 764 765
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
766
{
767
	char __user *user_data;
768
	ssize_t remain;
769
	loff_t offset;
770
	int shmem_page_offset, page_length, ret = 0;
771
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
772
	int prefaulted = 0;
773
	int needs_clflush = 0;
774
	struct sg_page_iter sg_iter;
775

776
	if (!i915_gem_object_has_struct_page(obj))
777 778
		return -ENODEV;

779
	user_data = u64_to_user_ptr(args->data_ptr);
780 781
	remain = args->size;

782
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
783

784
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
785 786 787
	if (ret)
		return ret;

788
	offset = args->offset;
789

790 791
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
792
		struct page *page = sg_page_iter_page(&sg_iter);
793 794 795 796

		if (remain <= 0)
			break;

797 798 799 800 801
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
802
		shmem_page_offset = offset_in_page(offset);
803 804 805 806
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

807 808 809
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

810 811 812 813 814
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
815 816 817

		mutex_unlock(&dev->struct_mutex);

818
		if (likely(!i915.prefault_disable) && !prefaulted) {
819
			ret = fault_in_multipages_writeable(user_data, remain);
820 821 822 823 824 825 826
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
827

828 829 830
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
831

832
		mutex_lock(&dev->struct_mutex);
833 834

		if (ret)
835 836
			goto out;

837
next_page:
838
		remain -= page_length;
839
		user_data += page_length;
840 841 842
		offset += page_length;
	}

843
out:
844 845
	i915_gem_object_unpin_pages(obj);

846 847 848
	return ret;
}

849 850
/**
 * Reads data from the object referenced by handle.
851 852 853
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
854 855 856 857 858
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
859
		     struct drm_file *file)
860 861
{
	struct drm_i915_gem_pread *args = data;
862
	struct drm_i915_gem_object *obj;
863
	int ret = 0;
864

865 866 867 868
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
869
		       u64_to_user_ptr(args->data_ptr),
870 871 872
		       args->size))
		return -EFAULT;

873
	ret = i915_mutex_lock_interruptible(dev);
874
	if (ret)
875
		return ret;
876

877 878
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
879 880
		ret = -ENOENT;
		goto unlock;
881
	}
882

883
	/* Bounds check source.  */
884 885
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
886
		ret = -EINVAL;
887
		goto out;
C
Chris Wilson 已提交
888 889
	}

C
Chris Wilson 已提交
890 891
	trace_i915_gem_object_pread(obj, args->offset, args->size);

892
	ret = i915_gem_shmem_pread(dev, obj, args, file);
893

894 895 896 897 898
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

899
out:
900
	i915_gem_object_put(obj);
901
unlock:
902
	mutex_unlock(&dev->struct_mutex);
903
	return ret;
904 905
}

906 907
/* This is the fast write path which cannot handle
 * page faults in the source data
908
 */
909 910 911 912 913 914

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
915
{
916 917
	void __iomem *vaddr_atomic;
	void *vaddr;
918
	unsigned long unwritten;
919

P
Peter Zijlstra 已提交
920
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
921 922 923
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
924
						      user_data, length);
P
Peter Zijlstra 已提交
925
	io_mapping_unmap_atomic(vaddr_atomic);
926
	return unwritten;
927 928
}

929 930 931
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
932
 * @i915: i915 device private data
933 934 935
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
936
 */
937
static int
938
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
939
			 struct drm_i915_gem_object *obj,
940
			 struct drm_i915_gem_pwrite *args,
941
			 struct drm_file *file)
942
{
943
	struct i915_ggtt *ggtt = &i915->ggtt;
944
	struct drm_device *dev = obj->base.dev;
945 946
	struct drm_mm_node node;
	uint64_t remain, offset;
947
	char __user *user_data;
948
	int ret;
949 950 951 952
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
953

954
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
970 971 972
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
973
	}
D
Daniel Vetter 已提交
974 975 976 977 978

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

979
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
980
	obj->dirty = true;
981

982 983 984 985
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
986 987
		/* Operation in this page
		 *
988 989 990
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
991
		 */
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1005
		/* If we get a fault while copying data, then (presumably) our
1006 1007
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1008 1009
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1010
		 */
1011
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1012
				    page_offset, user_data, page_length)) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1025
		}
1026

1027 1028 1029
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1030 1031
	}

1032
out_flush:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1046
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1047
out_unpin:
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1058
out:
1059
	return ret;
1060 1061
}

1062 1063 1064 1065
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1066
static int
1067 1068 1069 1070 1071
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1072
{
1073
	char *vaddr;
1074
	int ret;
1075

1076
	if (unlikely(page_do_bit17_swizzling))
1077
		return -EINVAL;
1078

1079 1080 1081 1082
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1083 1084
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1085 1086 1087 1088
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1089

1090
	return ret ? -EFAULT : 0;
1091 1092
}

1093 1094
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1095
static int
1096 1097 1098 1099 1100
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1101
{
1102 1103
	char *vaddr;
	int ret;
1104

1105
	vaddr = kmap(page);
1106
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1107 1108 1109
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1110 1111
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1112 1113
						user_data,
						page_length);
1114 1115 1116 1117 1118
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1119 1120 1121
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1122
	kunmap(page);
1123

1124
	return ret ? -EFAULT : 0;
1125 1126 1127
}

static int
1128 1129 1130 1131
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1132 1133
{
	ssize_t remain;
1134 1135
	loff_t offset;
	char __user *user_data;
1136
	int shmem_page_offset, page_length, ret = 0;
1137
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1138
	int hit_slowpath = 0;
1139 1140
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1141
	struct sg_page_iter sg_iter;
1142

1143
	user_data = u64_to_user_ptr(args->data_ptr);
1144 1145
	remain = args->size;

1146
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1147

1148 1149 1150 1151
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1152 1153 1154 1155 1156
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1157
		needs_clflush_after = cpu_write_needs_clflush(obj);
1158
	}
1159 1160 1161 1162 1163
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1164

1165 1166 1167 1168
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1169
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1170

1171 1172
	i915_gem_object_pin_pages(obj);

1173
	offset = args->offset;
1174
	obj->dirty = 1;
1175

1176 1177
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1178
		struct page *page = sg_page_iter_page(&sg_iter);
1179
		int partial_cacheline_write;
1180

1181 1182 1183
		if (remain <= 0)
			break;

1184 1185 1186 1187 1188
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1189
		shmem_page_offset = offset_in_page(offset);
1190 1191 1192 1193 1194

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1195 1196 1197 1198 1199 1200 1201
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1202 1203 1204
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1205 1206 1207 1208 1209 1210
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1211 1212 1213

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1214 1215 1216 1217
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1218

1219
		mutex_lock(&dev->struct_mutex);
1220 1221

		if (ret)
1222 1223
			goto out;

1224
next_page:
1225
		remain -= page_length;
1226
		user_data += page_length;
1227
		offset += page_length;
1228 1229
	}

1230
out:
1231 1232
	i915_gem_object_unpin_pages(obj);

1233
	if (hit_slowpath) {
1234 1235 1236 1237 1238 1239 1240
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1241
			if (i915_gem_clflush_object(obj, obj->pin_display))
1242
				needs_clflush_after = true;
1243
		}
1244
	}
1245

1246
	if (needs_clflush_after)
1247
		i915_gem_chipset_flush(to_i915(dev));
1248 1249
	else
		obj->cache_dirty = true;
1250

1251
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1252
	return ret;
1253 1254 1255 1256
}

/**
 * Writes data to the object referenced by handle.
1257 1258 1259
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1260 1261 1262 1263 1264
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1265
		      struct drm_file *file)
1266
{
1267
	struct drm_i915_private *dev_priv = to_i915(dev);
1268
	struct drm_i915_gem_pwrite *args = data;
1269
	struct drm_i915_gem_object *obj;
1270 1271 1272 1273 1274 1275
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1276
		       u64_to_user_ptr(args->data_ptr),
1277 1278 1279
		       args->size))
		return -EFAULT;

1280
	if (likely(!i915.prefault_disable)) {
1281
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1282 1283 1284 1285
						   args->size);
		if (ret)
			return -EFAULT;
	}
1286

1287 1288
	intel_runtime_pm_get(dev_priv);

1289
	ret = i915_mutex_lock_interruptible(dev);
1290
	if (ret)
1291
		goto put_rpm;
1292

1293 1294
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1295 1296
		ret = -ENOENT;
		goto unlock;
1297
	}
1298

1299
	/* Bounds check destination. */
1300 1301
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1302
		ret = -EINVAL;
1303
		goto out;
C
Chris Wilson 已提交
1304 1305
	}

C
Chris Wilson 已提交
1306 1307
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1308
	ret = -EFAULT;
1309 1310 1311 1312 1313 1314
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1315 1316
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1317
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1318 1319 1320
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1321
	}
1322

1323
	if (ret == -EFAULT || ret == -ENOSPC) {
1324 1325
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1326
		else if (i915_gem_object_has_struct_page(obj))
1327
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1328 1329
		else
			ret = -ENODEV;
1330
	}
1331

1332
out:
1333
	i915_gem_object_put(obj);
1334
unlock:
1335
	mutex_unlock(&dev->struct_mutex);
1336 1337 1338
put_rpm:
	intel_runtime_pm_put(dev_priv);

1339 1340 1341
	return ret;
}

C
Chris Wilson 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int idx = req->engine->id;

	if (i915_gem_active_peek(&obj->last_read[idx],
				 &obj->base.dev->struct_mutex) == req)
		i915_gem_object_retire__read(obj, idx);
	else if (i915_gem_active_peek(&obj->last_write,
				      &obj->base.dev->struct_mutex) == req)
		i915_gem_object_retire__write(obj);

	if (!i915_reset_in_progress(&req->i915->gpu_error))
		i915_gem_request_retire_upto(req);
}

1359 1360 1361
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1362 1363
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1364
 */
1365
int
1366 1367 1368
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1369
	struct reservation_object *resv;
C
Chris Wilson 已提交
1370 1371 1372
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1373

C
Chris Wilson 已提交
1374 1375 1376 1377 1378
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1379
	} else {
C
Chris Wilson 已提交
1380 1381 1382
		active_mask = 1;
		active = &obj->last_write;
	}
1383

C
Chris Wilson 已提交
1384 1385
	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
1386

C
Chris Wilson 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

		ret = i915_wait_request(request);
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, request);
1397 1398
	}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1409 1410 1411
	return 0;
}

1412 1413 1414 1415 1416
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1417
					    struct intel_rps_client *rps,
1418 1419 1420
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1421
	struct drm_i915_private *dev_priv = to_i915(dev);
1422
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1423 1424
	struct i915_gem_active *active;
	unsigned long active_mask;
1425
	int ret, i, n = 0;
1426 1427 1428 1429

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1430 1431
	active_mask = obj->active;
	if (!active_mask)
1432 1433
		return 0;

C
Chris Wilson 已提交
1434 1435
	if (!readonly) {
		active = obj->last_read;
1436
	} else {
C
Chris Wilson 已提交
1437 1438 1439
		active_mask = 1;
		active = &obj->last_write;
	}
1440

C
Chris Wilson 已提交
1441 1442
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1443

C
Chris Wilson 已提交
1444 1445 1446
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1447
			requests[n++] = req;
1448 1449
	}

1450
	mutex_unlock(&dev->struct_mutex);
1451
	ret = 0;
1452
	for (i = 0; ret == 0 && i < n; i++)
1453
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1454 1455
	mutex_lock(&dev->struct_mutex);

1456 1457 1458
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
1459
		i915_gem_request_put(requests[i]);
1460 1461 1462
	}

	return ret;
1463 1464
}

1465 1466 1467 1468 1469 1470
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1471 1472 1473 1474 1475 1476 1477
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1478
/**
1479 1480
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1481 1482 1483
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1484 1485 1486
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1487
			  struct drm_file *file)
1488 1489
{
	struct drm_i915_gem_set_domain *args = data;
1490
	struct drm_i915_gem_object *obj;
1491 1492
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1493 1494
	int ret;

1495
	/* Only handle setting domains to types used by the CPU. */
1496
	if (write_domain & I915_GEM_GPU_DOMAINS)
1497 1498
		return -EINVAL;

1499
	if (read_domains & I915_GEM_GPU_DOMAINS)
1500 1501 1502 1503 1504 1505 1506 1507
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1508
	ret = i915_mutex_lock_interruptible(dev);
1509
	if (ret)
1510
		return ret;
1511

1512 1513
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1514 1515
		ret = -ENOENT;
		goto unlock;
1516
	}
1517

1518 1519 1520 1521
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1522
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1523
							  to_rps_client(file),
1524
							  !write_domain);
1525 1526 1527
	if (ret)
		goto unref;

1528
	if (read_domains & I915_GEM_DOMAIN_GTT)
1529
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1530
	else
1531
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1532

1533
	if (write_domain != 0)
1534
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1535

1536
unref:
1537
	i915_gem_object_put(obj);
1538
unlock:
1539 1540 1541 1542 1543 1544
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1545 1546 1547
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1548 1549 1550
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1551
			 struct drm_file *file)
1552 1553
{
	struct drm_i915_gem_sw_finish *args = data;
1554
	struct drm_i915_gem_object *obj;
1555 1556
	int ret = 0;

1557
	ret = i915_mutex_lock_interruptible(dev);
1558
	if (ret)
1559
		return ret;
1560

1561 1562
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1563 1564
		ret = -ENOENT;
		goto unlock;
1565 1566 1567
	}

	/* Pinned buffers may be scanout, so flush the cache */
1568
	if (obj->pin_display)
1569
		i915_gem_object_flush_cpu_write_domain(obj);
1570

1571
	i915_gem_object_put(obj);
1572
unlock:
1573 1574 1575 1576 1577
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1578 1579 1580 1581 1582
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1583 1584 1585
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1596 1597 1598
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1599
		    struct drm_file *file)
1600 1601
{
	struct drm_i915_gem_mmap *args = data;
1602
	struct drm_i915_gem_object *obj;
1603 1604
	unsigned long addr;

1605 1606 1607
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1608
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1609 1610
		return -ENODEV;

1611 1612
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1613
		return -ENOENT;
1614

1615 1616 1617
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1618
	if (!obj->base.filp) {
1619
		i915_gem_object_put_unlocked(obj);
1620 1621 1622
		return -EINVAL;
	}

1623
	addr = vm_mmap(obj->base.filp, 0, args->size,
1624 1625
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1626 1627 1628 1629
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1630
		if (down_write_killable(&mm->mmap_sem)) {
1631
			i915_gem_object_put_unlocked(obj);
1632 1633
			return -EINTR;
		}
1634 1635 1636 1637 1638 1639 1640
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1641 1642

		/* This may race, but that's ok, it only gets set */
1643
		WRITE_ONCE(obj->has_wc_mmap, true);
1644
	}
1645
	i915_gem_object_put_unlocked(obj);
1646 1647 1648 1649 1650 1651 1652 1653
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1654 1655
/**
 * i915_gem_fault - fault a page into the GTT
1656 1657
 * @vma: VMA in question
 * @vmf: fault info
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1672 1673
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1674 1675
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1676
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1677 1678 1679
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1680
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1681

1682 1683
	intel_runtime_pm_get(dev_priv);

1684 1685 1686 1687
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1688 1689 1690
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1691

C
Chris Wilson 已提交
1692 1693
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1694 1695 1696 1697 1698 1699 1700 1701 1702
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1703 1704
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1705
		ret = -EFAULT;
1706 1707 1708
		goto unlock;
	}

1709
	/* Use a partial view if the object is bigger than the aperture. */
1710
	if (obj->base.size >= ggtt->mappable_end &&
1711
	    obj->tiling_mode == I915_TILING_NONE) {
1712
		static const unsigned int chunk_size = 256; // 1 MiB
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1726 1727
	if (ret)
		goto unlock;
1728

1729 1730 1731
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1732

1733
	ret = i915_gem_object_get_fence(obj);
1734
	if (ret)
1735
		goto unpin;
1736

1737
	/* Finally, remap it using the new GTT offset */
1738
	pfn = ggtt->mappable_base +
1739
		i915_gem_obj_ggtt_offset_view(obj, &view);
1740
	pfn >>= PAGE_SHIFT;
1741

1742 1743 1744 1745 1746 1747 1748 1749 1750
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1751

1752 1753
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1754 1755 1756 1757 1758
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1780
unpin:
1781
	i915_gem_object_ggtt_unpin_view(obj, &view);
1782
unlock:
1783
	mutex_unlock(&dev->struct_mutex);
1784
out:
1785
	switch (ret) {
1786
	case -EIO:
1787 1788 1789 1790 1791 1792 1793
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1794 1795 1796
			ret = VM_FAULT_SIGBUS;
			break;
		}
1797
	case -EAGAIN:
D
Daniel Vetter 已提交
1798 1799 1800 1801
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1802
		 */
1803 1804
	case 0:
	case -ERESTARTSYS:
1805
	case -EINTR:
1806 1807 1808 1809 1810
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1811 1812
		ret = VM_FAULT_NOPAGE;
		break;
1813
	case -ENOMEM:
1814 1815
		ret = VM_FAULT_OOM;
		break;
1816
	case -ENOSPC:
1817
	case -EFAULT:
1818 1819
		ret = VM_FAULT_SIGBUS;
		break;
1820
	default:
1821
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1822 1823
		ret = VM_FAULT_SIGBUS;
		break;
1824
	}
1825 1826 1827

	intel_runtime_pm_put(dev_priv);
	return ret;
1828 1829
}

1830 1831 1832 1833
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1834
 * Preserve the reservation of the mmapping with the DRM core code, but
1835 1836 1837 1838 1839 1840 1841 1842 1843
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1844
void
1845
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1846
{
1847 1848 1849 1850 1851 1852
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1853 1854
	if (!obj->fault_mappable)
		return;
1855

1856 1857
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1868
	obj->fault_mappable = false;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1880
uint32_t
1881
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1882
{
1883
	uint32_t gtt_size;
1884 1885

	if (INTEL_INFO(dev)->gen >= 4 ||
1886 1887
	    tiling_mode == I915_TILING_NONE)
		return size;
1888 1889

	/* Previous chips need a power-of-two fence region when tiling */
1890
	if (IS_GEN3(dev))
1891
		gtt_size = 1024*1024;
1892
	else
1893
		gtt_size = 512*1024;
1894

1895 1896
	while (gtt_size < size)
		gtt_size <<= 1;
1897

1898
	return gtt_size;
1899 1900
}

1901 1902
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1903 1904 1905 1906
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1907 1908
 *
 * Return the required GTT alignment for an object, taking into account
1909
 * potential fence register mapping.
1910
 */
1911 1912 1913
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1914 1915 1916 1917 1918
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1919
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1920
	    tiling_mode == I915_TILING_NONE)
1921 1922
		return 4096;

1923 1924 1925 1926
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1927
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1928 1929
}

1930 1931
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1932
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1933 1934
	int ret;

1935 1936
	dev_priv->mm.shrinker_no_lock_stealing = true;

1937 1938
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1939
		goto out;
1940 1941 1942 1943 1944 1945 1946 1947

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1948 1949 1950 1951 1952
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1953 1954
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1955
		goto out;
1956 1957

	i915_gem_shrink_all(dev_priv);
1958 1959 1960 1961 1962
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1963 1964 1965 1966 1967 1968 1969
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1970
int
1971 1972
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1973
		  uint32_t handle,
1974
		  uint64_t *offset)
1975
{
1976
	struct drm_i915_gem_object *obj;
1977 1978
	int ret;

1979
	ret = i915_mutex_lock_interruptible(dev);
1980
	if (ret)
1981
		return ret;
1982

1983 1984
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1985 1986 1987
		ret = -ENOENT;
		goto unlock;
	}
1988

1989
	if (obj->madv != I915_MADV_WILLNEED) {
1990
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1991
		ret = -EFAULT;
1992
		goto out;
1993 1994
	}

1995 1996 1997
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1998

1999
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2000

2001
out:
2002
	i915_gem_object_put(obj);
2003
unlock:
2004
	mutex_unlock(&dev->struct_mutex);
2005
	return ret;
2006 2007
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2029
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2030 2031
}

D
Daniel Vetter 已提交
2032 2033 2034
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2035
{
2036
	i915_gem_object_free_mmap_offset(obj);
2037

2038 2039
	if (obj->base.filp == NULL)
		return;
2040

D
Daniel Vetter 已提交
2041 2042 2043 2044 2045
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2046
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2047 2048
	obj->madv = __I915_MADV_PURGED;
}
2049

2050 2051 2052
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2053
{
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2068 2069
}

2070
static void
2071
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2072
{
2073 2074
	struct sgt_iter sgt_iter;
	struct page *page;
2075
	int ret;
2076

2077
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2078

C
Chris Wilson 已提交
2079
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2080
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2081 2082 2083
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2084
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2085 2086 2087
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2088 2089
	i915_gem_gtt_finish_object(obj);

2090
	if (i915_gem_object_needs_bit17_swizzle(obj))
2091 2092
		i915_gem_object_save_bit_17_swizzle(obj);

2093 2094
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2095

2096
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2097
		if (obj->dirty)
2098
			set_page_dirty(page);
2099

2100
		if (obj->madv == I915_MADV_WILLNEED)
2101
			mark_page_accessed(page);
2102

2103
		put_page(page);
2104
	}
2105
	obj->dirty = 0;
2106

2107 2108
	sg_free_table(obj->pages);
	kfree(obj->pages);
2109
}
C
Chris Wilson 已提交
2110

2111
int
2112 2113 2114 2115
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2116
	if (obj->pages == NULL)
2117 2118
		return 0;

2119 2120 2121
	if (obj->pages_pin_count)
		return -EBUSY;

2122
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2123

2124 2125 2126
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2127
	list_del(&obj->global_list);
2128

2129
	if (obj->mapping) {
2130 2131 2132 2133
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2134 2135 2136
		obj->mapping = NULL;
	}

2137
	ops->put_pages(obj);
2138
	obj->pages = NULL;
2139

2140
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2141 2142 2143 2144

	return 0;
}

2145
static int
C
Chris Wilson 已提交
2146
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2147
{
2148
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2149 2150
	int page_count, i;
	struct address_space *mapping;
2151 2152
	struct sg_table *st;
	struct scatterlist *sg;
2153
	struct sgt_iter sgt_iter;
2154
	struct page *page;
2155
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2156
	int ret;
C
Chris Wilson 已提交
2157
	gfp_t gfp;
2158

C
Chris Wilson 已提交
2159 2160 2161 2162 2163 2164 2165
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2166 2167 2168 2169
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2170
	page_count = obj->base.size / PAGE_SIZE;
2171 2172
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2173
		return -ENOMEM;
2174
	}
2175

2176 2177 2178 2179 2180
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2181
	mapping = file_inode(obj->base.filp)->i_mapping;
2182
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2183
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2184 2185 2186
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2187 2188
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2189 2190 2191 2192 2193
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2194 2195 2196 2197 2198 2199 2200 2201
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2202
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2203 2204
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2205
				goto err_pages;
I
Imre Deak 已提交
2206
			}
C
Chris Wilson 已提交
2207
		}
2208 2209 2210 2211 2212 2213 2214 2215
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2216 2217 2218 2219 2220 2221 2222 2223 2224
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2225 2226 2227

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2228
	}
2229 2230 2231 2232
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2233 2234
	obj->pages = st;

I
Imre Deak 已提交
2235 2236 2237 2238
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2239
	if (i915_gem_object_needs_bit17_swizzle(obj))
2240 2241
		i915_gem_object_do_bit_17_swizzle(obj);

2242 2243 2244 2245
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2246 2247 2248
	return 0;

err_pages:
2249
	sg_mark_end(sg);
2250 2251
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2252 2253
	sg_free_table(st);
	kfree(st);
2254 2255 2256 2257 2258 2259 2260 2261 2262

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2263 2264 2265 2266
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2267 2268
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2279
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2280 2281 2282
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2283
	if (obj->pages)
2284 2285
		return 0;

2286
	if (obj->madv != I915_MADV_WILLNEED) {
2287
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2288
		return -EFAULT;
2289 2290
	}

2291 2292
	BUG_ON(obj->pages_pin_count);

2293 2294 2295 2296
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2297
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2298 2299 2300 2301

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2302
	return 0;
2303 2304
}

2305 2306 2307 2308 2309
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2310 2311
	struct sgt_iter sgt_iter;
	struct page *page;
2312 2313
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2314 2315 2316 2317 2318 2319 2320
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2321 2322 2323 2324 2325 2326
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2327

2328 2329
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2330 2331 2332 2333 2334 2335

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2336 2337
	if (pages != stack_pages)
		drm_free_large(pages);
2338 2339 2340 2341 2342

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2355 2356 2357
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2358 2359 2360 2361 2362 2363 2364 2365
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2366
void i915_vma_move_to_active(struct i915_vma *vma,
2367
			     struct drm_i915_gem_request *req)
2368
{
2369
	struct drm_i915_gem_object *obj = vma->obj;
2370
	struct intel_engine_cs *engine;
2371

2372
	engine = i915_gem_request_get_engine(req);
2373 2374

	/* Add a reference if we're newly entering the active list. */
2375
	if (obj->active == 0)
2376
		i915_gem_object_get(obj);
2377
	obj->active |= intel_engine_flag(engine);
2378

2379
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2380
	i915_gem_active_set(&obj->last_read[engine->id], req);
2381

2382
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2383 2384
}

2385 2386
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2387
{
2388
	GEM_BUG_ON(!i915_gem_active_isset(&obj->last_write));
2389 2390 2391
	GEM_BUG_ON(!(obj->active &
		     intel_engine_flag(i915_gem_active_get_engine(&obj->last_write,
								  &obj->base.dev->struct_mutex))));
2392

2393
	i915_gem_active_set(&obj->last_write, NULL);
2394
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2395 2396
}

2397
static void
2398
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int idx)
2399
{
2400
	struct intel_engine_cs *engine;
2401
	struct i915_vma *vma;
2402

2403
	GEM_BUG_ON(!i915_gem_active_isset(&obj->last_read[idx]));
2404
	GEM_BUG_ON(!(obj->active & (1 << idx)));
2405

2406
	list_del_init(&obj->engine_list[idx]);
2407
	i915_gem_active_set(&obj->last_read[idx], NULL);
2408

2409 2410
	engine = i915_gem_active_get_engine(&obj->last_write,
					    &obj->base.dev->struct_mutex);
2411
	if (engine && engine->id == idx)
2412 2413
		i915_gem_object_retire__write(obj);

2414
	obj->active &= ~(1 << idx);
2415 2416
	if (obj->active)
		return;
2417

2418 2419 2420 2421 2422 2423 2424
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2425 2426 2427
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2428
	}
2429

2430
	i915_gem_active_set(&obj->last_fence, NULL);
2431
	i915_gem_object_put(obj);
2432 2433
}

2434
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2435
{
2436
	unsigned long elapsed;
2437

2438
	if (ctx->hang_stats.banned)
2439 2440
		return true;

2441
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2442 2443
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2444 2445
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2446 2447 2448 2449 2450
	}

	return false;
}

2451
static void i915_set_reset_status(struct i915_gem_context *ctx,
2452
				  const bool guilty)
2453
{
2454
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2455 2456

	if (guilty) {
2457
		hs->banned = i915_context_is_banned(ctx);
2458 2459 2460 2461
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2462 2463 2464
	}
}

2465
struct drm_i915_gem_request *
2466
i915_gem_find_active_request(struct intel_engine_cs *engine)
2467
{
2468 2469
	struct drm_i915_gem_request *request;

2470 2471 2472 2473 2474 2475 2476 2477
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2478
	list_for_each_entry(request, &engine->request_list, link) {
2479
		if (i915_gem_request_completed(request))
2480
			continue;
2481

2482
		return request;
2483
	}
2484 2485 2486 2487

	return NULL;
}

2488
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2489 2490 2491 2492
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2493
	request = i915_gem_find_active_request(engine);
2494 2495 2496
	if (request == NULL)
		return;

2497
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2498

2499
	i915_set_reset_status(request->ctx, ring_hung);
2500
	list_for_each_entry_continue(request, &engine->request_list, link)
2501
		i915_set_reset_status(request->ctx, false);
2502
}
2503

2504
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2505
{
2506
	struct intel_ring *ring;
2507

2508
	while (!list_empty(&engine->active_list)) {
2509
		struct drm_i915_gem_object *obj;
2510

2511
		obj = list_first_entry(&engine->active_list,
2512
				       struct drm_i915_gem_object,
2513
				       engine_list[engine->id]);
2514

2515
		i915_gem_object_retire__read(obj, engine->id);
2516
	}
2517

2518 2519 2520 2521
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2522
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2523

2524 2525 2526 2527 2528 2529
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2530
	if (i915.enable_execlists) {
2531 2532
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2533

2534
		intel_execlists_cancel_requests(engine);
2535 2536
	}

2537 2538 2539 2540 2541 2542 2543
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2544
	if (!list_empty(&engine->request_list)) {
2545 2546
		struct drm_i915_gem_request *request;

2547 2548
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2549
					  link);
2550

2551
		i915_gem_request_retire_upto(request);
2552
	}
2553 2554 2555 2556 2557 2558 2559 2560

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2561 2562 2563
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2564
	}
2565

2566
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2567 2568
}

2569
void i915_gem_reset(struct drm_device *dev)
2570
{
2571
	struct drm_i915_private *dev_priv = to_i915(dev);
2572
	struct intel_engine_cs *engine;
2573

2574 2575 2576 2577 2578
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2579
	for_each_engine(engine, dev_priv)
2580
		i915_gem_reset_engine_status(engine);
2581

2582
	for_each_engine(engine, dev_priv)
2583
		i915_gem_reset_engine_cleanup(engine);
2584
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2585

2586 2587
	i915_gem_context_reset(dev);

2588
	i915_gem_restore_fences(dev);
2589 2590

	WARN_ON(i915_verify_lists(dev));
2591 2592 2593 2594
}

/**
 * This function clears the request list as sequence numbers are passed.
2595
 * @engine: engine to retire requests on
2596
 */
2597
void
2598
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2599
{
2600
	WARN_ON(i915_verify_lists(engine->dev));
2601

2602 2603 2604 2605
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2606
	 */
2607
	while (!list_empty(&engine->request_list)) {
2608 2609
		struct drm_i915_gem_request *request;

2610
		request = list_first_entry(&engine->request_list,
2611
					   struct drm_i915_gem_request,
2612
					   link);
2613

2614
		if (!i915_gem_request_completed(request))
2615 2616
			break;

2617
		i915_gem_request_retire_upto(request);
2618
	}
2619

2620 2621 2622 2623
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2624
	while (!list_empty(&engine->active_list)) {
2625 2626
		struct drm_i915_gem_object *obj;

2627 2628
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2629
				       engine_list[engine->id]);
2630

2631
		if (!list_empty(&i915_gem_active_peek(&obj->last_read[engine->id],
2632
						      &obj->base.dev->struct_mutex)->link))
2633 2634
			break;

2635
		i915_gem_object_retire__read(obj, engine->id);
2636 2637
	}

2638
	WARN_ON(i915_verify_lists(engine->dev));
2639 2640
}

2641
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2642
{
2643
	struct intel_engine_cs *engine;
2644

2645
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2646 2647 2648 2649 2650

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2651

2652
	for_each_engine(engine, dev_priv) {
2653
		i915_gem_retire_requests_ring(engine);
2654 2655
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2656 2657
	}

2658
	if (dev_priv->gt.active_engines == 0)
2659 2660 2661
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2662 2663
}

2664
static void
2665 2666
i915_gem_retire_work_handler(struct work_struct *work)
{
2667
	struct drm_i915_private *dev_priv =
2668
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2669
	struct drm_device *dev = &dev_priv->drm;
2670

2671
	/* Come back later if the device is busy... */
2672
	if (mutex_trylock(&dev->struct_mutex)) {
2673
		i915_gem_retire_requests(dev_priv);
2674
		mutex_unlock(&dev->struct_mutex);
2675
	}
2676 2677 2678 2679 2680

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2681 2682
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2683 2684
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2685
				   round_jiffies_up_relative(HZ));
2686
	}
2687
}
2688

2689 2690 2691 2692
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2693
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2694
	struct drm_device *dev = &dev_priv->drm;
2695
	struct intel_engine_cs *engine;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2718

2719
	for_each_engine(engine, dev_priv)
2720
		i915_gem_batch_pool_fini(&engine->batch_pool);
2721

2722 2723 2724
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2725

2726 2727 2728 2729
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2730
	stuck_engines = intel_kick_waiters(dev_priv);
2731 2732 2733
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2734

2735 2736 2737 2738 2739
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2740

2741 2742 2743 2744
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2745
	}
2746 2747
}

2748 2749
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2750 2751 2752
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2777
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2778 2779
	int i, n = 0;
	int ret;
2780

2781 2782 2783
	if (args->flags != 0)
		return -EINVAL;

2784 2785 2786 2787
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2788 2789
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2790 2791 2792 2793
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2794
	if (!obj->active)
2795
		goto out;
2796

2797
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2798
		struct drm_i915_gem_request *req;
2799

2800 2801
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2802 2803
		if (req)
			requests[n++] = req;
2804 2805
	}

2806 2807
out:
	i915_gem_object_put(obj);
2808 2809
	mutex_unlock(&dev->struct_mutex);

2810 2811
	for (i = 0; i < n; i++) {
		if (ret == 0)
2812
			ret = __i915_wait_request(requests[i], true,
2813
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2814
						  to_rps_client(file));
2815
		i915_gem_request_put(requests[i]);
2816
	}
2817
	return ret;
2818 2819
}

2820 2821
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
2822 2823
		       struct drm_i915_gem_request *to,
		       struct drm_i915_gem_request *from)
2824 2825 2826
{
	int ret;

2827
	if (to->engine == from->engine)
2828 2829
		return 0;

2830
	if (i915_gem_request_completed(from))
2831 2832
		return 0;

2833
	if (!i915.semaphores) {
2834 2835
		ret = __i915_wait_request(from,
					  from->i915->mm.interruptible,
2836
					  NULL,
2837
					  NO_WAITBOOST);
2838 2839 2840
		if (ret)
			return ret;

2841
		i915_gem_object_retire_request(obj, from);
2842
	} else {
2843
		int idx = intel_engine_sync_index(from->engine, to->engine);
2844
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2845 2846
			return 0;

2847
		trace_i915_gem_ring_sync_to(to, from);
2848
		ret = to->engine->semaphore.sync_to(to, from);
2849 2850 2851
		if (ret)
			return ret;

2852
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2853 2854 2855 2856 2857
	}

	return 0;
}

2858 2859 2860 2861
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2862
 * @to: request we are wishing to use
2863 2864
 *
 * This code is meant to abstract object synchronization with the GPU.
2865 2866 2867
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2868 2869 2870 2871 2872 2873 2874
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2875 2876 2877
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2878 2879
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2880
		     struct drm_i915_gem_request *to)
2881
{
C
Chris Wilson 已提交
2882 2883 2884
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2885

C
Chris Wilson 已提交
2886
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2887

C
Chris Wilson 已提交
2888 2889 2890
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2891

C
Chris Wilson 已提交
2892 2893
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2894
	} else {
C
Chris Wilson 已提交
2895 2896
		active_mask = 1;
		active = &obj->last_write;
2897
	}
C
Chris Wilson 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

		ret = __i915_gem_object_sync(obj, to, request);
2909 2910 2911
		if (ret)
			return ret;
	}
2912

2913
	return 0;
2914 2915
}

2916 2917 2918 2919 2920 2921 2922
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2923 2924 2925
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2948
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2949
{
2950
	struct drm_i915_gem_object *obj = vma->obj;
2951
	int ret;
2952

2953
	if (list_empty(&vma->obj_link))
2954 2955
		return 0;

2956 2957 2958 2959
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2960

B
Ben Widawsky 已提交
2961
	if (vma->pin_count)
2962
		return -EBUSY;
2963

2964 2965
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2966

2967 2968 2969 2970 2971
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
2972

2973
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2974
		i915_gem_object_finish_gtt(obj);
2975

2976 2977 2978 2979
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2980 2981

		__i915_vma_iounmap(vma);
2982
	}
2983

2984
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2985

2986
	vma->vm->unbind_vma(vma);
2987
	vma->bound = 0;
2988

2989
	list_del_init(&vma->vm_link);
2990
	if (vma->is_ggtt) {
2991 2992 2993 2994 2995 2996
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2997
		vma->ggtt_view.pages = NULL;
2998
	}
2999

B
Ben Widawsky 已提交
3000 3001 3002 3003
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3004
	 * no more VMAs exist. */
3005 3006 3007
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3008

3009 3010 3011 3012 3013 3014
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3015
	return 0;
3016 3017
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3028
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3029
{
3030
	struct intel_engine_cs *engine;
3031
	int ret;
3032

3033
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3034

3035
	for_each_engine(engine, dev_priv) {
3036 3037 3038
		if (engine->last_context == NULL)
			continue;

3039
		ret = intel_engine_idle(engine);
3040 3041 3042
		if (ret)
			return ret;
	}
3043

3044
	WARN_ON(i915_verify_lists(dev));
3045
	return 0;
3046 3047
}

3048
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3049 3050
				     unsigned long cache_level)
{
3051
	struct drm_mm_node *gtt_space = &vma->node;
3052 3053
	struct drm_mm_node *other;

3054 3055 3056 3057 3058 3059
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3060
	 */
3061
	if (vma->vm->mm.color_adjust == NULL)
3062 3063
		return true;

3064
	if (!drm_mm_node_allocated(gtt_space))
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3081
/**
3082 3083
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3084 3085 3086 3087 3088
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3089
 */
3090
static struct i915_vma *
3091 3092
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3093
			   const struct i915_ggtt_view *ggtt_view,
3094
			   unsigned alignment,
3095
			   uint64_t flags)
3096
{
3097
	struct drm_device *dev = obj->base.dev;
3098 3099
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3100
	u32 fence_alignment, unfenced_alignment;
3101 3102
	u32 search_flag, alloc_flag;
	u64 start, end;
3103
	u64 size, fence_size;
B
Ben Widawsky 已提交
3104
	struct i915_vma *vma;
3105
	int ret;
3106

3107 3108 3109 3110 3111
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3142

3143 3144 3145
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3146
		end = min_t(u64, end, ggtt->mappable_end);
3147
	if (flags & PIN_ZONE_4G)
3148
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3149

3150
	if (alignment == 0)
3151
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3152
						unfenced_alignment;
3153
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3154 3155 3156
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3157
		return ERR_PTR(-EINVAL);
3158 3159
	}

3160 3161 3162
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3163
	 */
3164
	if (size > end) {
3165
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3166 3167
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3168
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3169
			  end);
3170
		return ERR_PTR(-E2BIG);
3171 3172
	}

3173
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3174
	if (ret)
3175
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3176

3177 3178
	i915_gem_object_pin_pages(obj);

3179 3180 3181
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3182
	if (IS_ERR(vma))
3183
		goto err_unpin;
B
Ben Widawsky 已提交
3184

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3203
	} else {
3204 3205 3206 3207 3208 3209 3210
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3211

3212
search_free:
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3226

3227 3228
			goto err_free_vma;
		}
3229
	}
3230
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3231
		ret = -EINVAL;
3232
		goto err_remove_node;
3233 3234
	}

3235
	trace_i915_vma_bind(vma, flags);
3236
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3237
	if (ret)
I
Imre Deak 已提交
3238
		goto err_remove_node;
3239

3240
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3241
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3242
	obj->bind_count++;
3243

3244
	return vma;
B
Ben Widawsky 已提交
3245

3246
err_remove_node:
3247
	drm_mm_remove_node(&vma->node);
3248
err_free_vma:
B
Ben Widawsky 已提交
3249
	i915_gem_vma_destroy(vma);
3250
	vma = ERR_PTR(ret);
3251
err_unpin:
B
Ben Widawsky 已提交
3252
	i915_gem_object_unpin_pages(obj);
3253
	return vma;
3254 3255
}

3256
bool
3257 3258
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3259 3260 3261 3262 3263
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3264
	if (obj->pages == NULL)
3265
		return false;
3266

3267 3268 3269 3270
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3271
	if (obj->stolen || obj->phys_handle)
3272
		return false;
3273

3274 3275 3276 3277 3278 3279 3280 3281
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3282 3283
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3284
		return false;
3285
	}
3286

C
Chris Wilson 已提交
3287
	trace_i915_gem_object_clflush(obj);
3288
	drm_clflush_sg(obj->pages);
3289
	obj->cache_dirty = false;
3290 3291

	return true;
3292 3293 3294 3295
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3296
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3297
{
C
Chris Wilson 已提交
3298 3299
	uint32_t old_write_domain;

3300
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3301 3302
		return;

3303
	/* No actual flushing is required for the GTT write domain.  Writes
3304 3305
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3306 3307 3308 3309
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3310
	 */
3311 3312
	wmb();

3313 3314
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3315

3316
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3317

C
Chris Wilson 已提交
3318
	trace_i915_gem_object_change_domain(obj,
3319
					    obj->base.read_domains,
C
Chris Wilson 已提交
3320
					    old_write_domain);
3321 3322 3323 3324
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3325
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3326
{
C
Chris Wilson 已提交
3327
	uint32_t old_write_domain;
3328

3329
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3330 3331
		return;

3332
	if (i915_gem_clflush_object(obj, obj->pin_display))
3333
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3334

3335 3336
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3337

3338
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3339

C
Chris Wilson 已提交
3340
	trace_i915_gem_object_change_domain(obj,
3341
					    obj->base.read_domains,
C
Chris Wilson 已提交
3342
					    old_write_domain);
3343 3344
}

3345 3346
/**
 * Moves a single object to the GTT read, and possibly write domain.
3347 3348
 * @obj: object to act on
 * @write: ask for write access or read only
3349 3350 3351 3352
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3353
int
3354
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3355
{
3356 3357 3358
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3359
	uint32_t old_write_domain, old_read_domains;
3360
	struct i915_vma *vma;
3361
	int ret;
3362

3363
	ret = i915_gem_object_wait_rendering(obj, !write);
3364 3365 3366
	if (ret)
		return ret;

3367 3368 3369
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3382
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3383

3384 3385 3386 3387 3388 3389 3390
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3391 3392
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3393

3394 3395 3396
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3397 3398
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3399
	if (write) {
3400 3401 3402
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3403 3404
	}

C
Chris Wilson 已提交
3405 3406 3407 3408
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3409
	/* And bump the LRU for this access */
3410 3411
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3412
		list_move_tail(&vma->vm_link,
3413
			       &ggtt->base.inactive_list);
3414

3415 3416 3417
	return 0;
}

3418 3419
/**
 * Changes the cache-level of an object across all VMA.
3420 3421
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3433 3434 3435
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3436
	struct i915_vma *vma;
3437
	int ret = 0;
3438 3439

	if (obj->cache_level == cache_level)
3440
		goto out;
3441

3442 3443 3444 3445 3446
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3447 3448
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3449 3450 3451 3452 3453 3454 3455 3456
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3469 3470
	}

3471 3472 3473 3474 3475 3476 3477
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3478
	if (obj->bind_count) {
3479 3480 3481 3482
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3483
		ret = i915_gem_object_wait_rendering(obj, false);
3484 3485 3486
		if (ret)
			return ret;

3487
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3504 3505 3506
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3507 3508 3509 3510 3511 3512 3513 3514
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3515 3516
		}

3517
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3518 3519 3520 3521 3522 3523 3524
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3525 3526
	}

3527
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3528 3529 3530
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3531
out:
3532 3533 3534 3535
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3536
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3537
		if (i915_gem_clflush_object(obj, true))
3538
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3539 3540 3541 3542 3543
	}

	return 0;
}

B
Ben Widawsky 已提交
3544 3545
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3546
{
B
Ben Widawsky 已提交
3547
	struct drm_i915_gem_caching *args = data;
3548 3549
	struct drm_i915_gem_object *obj;

3550 3551
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3552
		return -ENOENT;
3553

3554 3555 3556 3557 3558 3559
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3560 3561 3562 3563
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3564 3565 3566 3567
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3568

3569
	i915_gem_object_put_unlocked(obj);
3570
	return 0;
3571 3572
}

B
Ben Widawsky 已提交
3573 3574
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3575
{
3576
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3577
	struct drm_i915_gem_caching *args = data;
3578 3579 3580 3581
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3582 3583
	switch (args->caching) {
	case I915_CACHING_NONE:
3584 3585
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3586
	case I915_CACHING_CACHED:
3587 3588 3589 3590 3591 3592
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3593
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3594 3595
			return -ENODEV;

3596 3597
		level = I915_CACHE_LLC;
		break;
3598 3599 3600
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3601 3602 3603 3604
	default:
		return -EINVAL;
	}

3605 3606
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3607 3608
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3609
		goto rpm_put;
B
Ben Widawsky 已提交
3610

3611 3612
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3613 3614 3615 3616 3617 3618
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3619
	i915_gem_object_put(obj);
3620 3621
unlock:
	mutex_unlock(&dev->struct_mutex);
3622 3623 3624
rpm_put:
	intel_runtime_pm_put(dev_priv);

3625 3626 3627
	return ret;
}

3628
/*
3629 3630 3631
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3632 3633
 */
int
3634 3635
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3636
				     const struct i915_ggtt_view *view)
3637
{
3638
	u32 old_read_domains, old_write_domain;
3639 3640
	int ret;

3641 3642 3643
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3644
	obj->pin_display++;
3645

3646 3647 3648 3649 3650 3651 3652 3653 3654
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3655 3656
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3657
	if (ret)
3658
		goto err_unpin_display;
3659

3660 3661 3662 3663
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3664 3665 3666
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3667
	if (ret)
3668
		goto err_unpin_display;
3669

3670
	i915_gem_object_flush_cpu_write_domain(obj);
3671

3672
	old_write_domain = obj->base.write_domain;
3673
	old_read_domains = obj->base.read_domains;
3674 3675 3676 3677

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3678
	obj->base.write_domain = 0;
3679
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3680 3681 3682

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3683
					    old_write_domain);
3684 3685

	return 0;
3686 3687

err_unpin_display:
3688
	obj->pin_display--;
3689 3690 3691 3692
	return ret;
}

void
3693 3694
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3695
{
3696 3697 3698
	if (WARN_ON(obj->pin_display == 0))
		return;

3699 3700
	i915_gem_object_ggtt_unpin_view(obj, view);

3701
	obj->pin_display--;
3702 3703
}

3704 3705
/**
 * Moves a single object to the CPU read, and possibly write domain.
3706 3707
 * @obj: object to act on
 * @write: requesting write or read-only access
3708 3709 3710 3711
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3712
int
3713
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3714
{
C
Chris Wilson 已提交
3715
	uint32_t old_write_domain, old_read_domains;
3716 3717
	int ret;

3718
	ret = i915_gem_object_wait_rendering(obj, !write);
3719 3720 3721
	if (ret)
		return ret;

3722 3723 3724
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3725
	i915_gem_object_flush_gtt_write_domain(obj);
3726

3727 3728
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3729

3730
	/* Flush the CPU cache if it's still invalid. */
3731
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3732
		i915_gem_clflush_object(obj, false);
3733

3734
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3735 3736 3737 3738 3739
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3740
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3741 3742 3743 3744 3745

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3746 3747
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3748
	}
3749

C
Chris Wilson 已提交
3750 3751 3752 3753
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3754 3755 3756
	return 0;
}

3757 3758 3759
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3760 3761 3762 3763
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3764 3765 3766
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3767
static int
3768
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3769
{
3770
	struct drm_i915_private *dev_priv = to_i915(dev);
3771
	struct drm_i915_file_private *file_priv = file->driver_priv;
3772
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3773
	struct drm_i915_gem_request *request, *target = NULL;
3774
	int ret;
3775

3776 3777 3778 3779
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3780 3781 3782
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3783

3784
	spin_lock(&file_priv->mm.lock);
3785
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3786 3787
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3788

3789 3790 3791 3792 3793 3794 3795
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3796
		target = request;
3797
	}
3798
	if (target)
3799
		i915_gem_request_get(target);
3800
	spin_unlock(&file_priv->mm.lock);
3801

3802
	if (target == NULL)
3803
		return 0;
3804

3805
	ret = __i915_wait_request(target, true, NULL, NULL);
3806
	i915_gem_request_put(target);
3807

3808 3809 3810
	return ret;
}

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3827 3828 3829 3830
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3831 3832 3833
	return false;
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3852
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3853 3854 3855 3856

	obj->map_and_fenceable = mappable && fenceable;
}

3857 3858 3859 3860 3861 3862
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3863
{
3864
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3865
	struct i915_vma *vma;
3866
	unsigned bound;
3867 3868
	int ret;

3869 3870 3871
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3872
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3873
		return -EINVAL;
3874

3875 3876 3877
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3878 3879 3880 3881 3882 3883
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3884
	if (vma) {
B
Ben Widawsky 已提交
3885 3886 3887
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3888
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3889
			WARN(vma->pin_count,
3890
			     "bo is already pinned in %s with incorrect alignment:"
3891
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3892
			     " obj->map_and_fenceable=%d\n",
3893
			     ggtt_view ? "ggtt" : "ppgtt",
3894 3895
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3896
			     alignment,
3897
			     !!(flags & PIN_MAPPABLE),
3898
			     obj->map_and_fenceable);
3899
			ret = i915_vma_unbind(vma);
3900 3901
			if (ret)
				return ret;
3902 3903

			vma = NULL;
3904 3905 3906
		}
	}

3907
	bound = vma ? vma->bound : 0;
3908
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3909 3910
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3911 3912
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3913 3914
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3915 3916 3917
		if (ret)
			return ret;
	}
3918

3919 3920
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3921
		__i915_vma_set_map_and_fenceable(vma);
3922 3923
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3924

3925
	vma->pin_count++;
3926 3927 3928
	return 0;
}

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3946 3947 3948 3949
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3950
	BUG_ON(!view);
3951

3952
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3953
				      alignment, flags | PIN_GLOBAL);
3954 3955
}

3956
void
3957 3958
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3959
{
3960
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3961

3962
	WARN_ON(vma->pin_count == 0);
3963
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3964

3965
	--vma->pin_count;
3966 3967 3968 3969
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3970
		    struct drm_file *file)
3971 3972
{
	struct drm_i915_gem_busy *args = data;
3973
	struct drm_i915_gem_object *obj;
3974 3975
	int ret;

3976
	ret = i915_mutex_lock_interruptible(dev);
3977
	if (ret)
3978
		return ret;
3979

3980 3981
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3982 3983
		ret = -ENOENT;
		goto unlock;
3984
	}
3985

3986 3987
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3988
	 * become non-busy without any further actions.
3989
	 */
3990 3991
	args->busy = 0;
	if (obj->active) {
3992
		struct drm_i915_gem_request *req;
3993 3994
		int i;

3995
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3996 3997
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3998
			if (req)
3999
				args->busy |= 1 << (16 + req->engine->exec_id);
4000
		}
4001 4002
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
4003 4004
		if (req)
			args->busy |= req->engine->exec_id;
4005
	}
4006

4007
	i915_gem_object_put(obj);
4008
unlock:
4009
	mutex_unlock(&dev->struct_mutex);
4010
	return ret;
4011 4012 4013 4014 4015 4016
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4017
	return i915_gem_ring_throttle(dev, file_priv);
4018 4019
}

4020 4021 4022 4023
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4024
	struct drm_i915_private *dev_priv = to_i915(dev);
4025
	struct drm_i915_gem_madvise *args = data;
4026
	struct drm_i915_gem_object *obj;
4027
	int ret;
4028 4029 4030 4031 4032 4033 4034 4035 4036

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4037 4038 4039 4040
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4041 4042
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4043 4044
		ret = -ENOENT;
		goto unlock;
4045 4046
	}

B
Ben Widawsky 已提交
4047
	if (i915_gem_obj_is_pinned(obj)) {
4048 4049
		ret = -EINVAL;
		goto out;
4050 4051
	}

4052 4053 4054 4055 4056 4057 4058 4059 4060
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4061 4062
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4063

C
Chris Wilson 已提交
4064
	/* if the object is no longer attached, discard its backing storage */
4065
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4066 4067
		i915_gem_object_truncate(obj);

4068
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4069

4070
out:
4071
	i915_gem_object_put(obj);
4072
unlock:
4073
	mutex_unlock(&dev->struct_mutex);
4074
	return ret;
4075 4076
}

4077 4078
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4079
{
4080 4081
	int i;

4082
	INIT_LIST_HEAD(&obj->global_list);
4083
	for (i = 0; i < I915_NUM_ENGINES; i++)
4084
		INIT_LIST_HEAD(&obj->engine_list[i]);
4085
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4086
	INIT_LIST_HEAD(&obj->vma_list);
4087
	INIT_LIST_HEAD(&obj->batch_pool_link);
4088

4089 4090
	obj->ops = ops;

4091 4092 4093
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4094
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4095 4096
}

4097
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4098
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4099 4100 4101 4102
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4103
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4104
						  size_t size)
4105
{
4106
	struct drm_i915_gem_object *obj;
4107
	struct address_space *mapping;
D
Daniel Vetter 已提交
4108
	gfp_t mask;
4109
	int ret;
4110

4111
	obj = i915_gem_object_alloc(dev);
4112
	if (obj == NULL)
4113
		return ERR_PTR(-ENOMEM);
4114

4115 4116 4117
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4118

4119 4120 4121 4122 4123 4124 4125
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4126
	mapping = file_inode(obj->base.filp)->i_mapping;
4127
	mapping_set_gfp_mask(mapping, mask);
4128

4129
	i915_gem_object_init(obj, &i915_gem_object_ops);
4130

4131 4132
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133

4134 4135
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4151 4152
	trace_i915_gem_object_create(obj);

4153
	return obj;
4154 4155 4156 4157 4158

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4159 4160
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4185
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4186
{
4187
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4188
	struct drm_device *dev = obj->base.dev;
4189
	struct drm_i915_private *dev_priv = to_i915(dev);
4190
	struct i915_vma *vma, *next;
4191

4192 4193
	intel_runtime_pm_get(dev_priv);

4194 4195
	trace_i915_gem_object_destroy(obj);

4196
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4197 4198 4199
		int ret;

		vma->pin_count = 0;
4200
		ret = __i915_vma_unbind_no_wait(vma);
4201 4202
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4203

4204 4205
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4206

4207
			WARN_ON(i915_vma_unbind(vma));
4208

4209 4210
			dev_priv->mm.interruptible = was_interruptible;
		}
4211
	}
4212
	GEM_BUG_ON(obj->bind_count);
4213

B
Ben Widawsky 已提交
4214 4215 4216 4217 4218
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4219 4220
	WARN_ON(obj->frontbuffer_bits);

4221 4222 4223 4224 4225
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4226 4227
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4228
	if (discard_backing_storage(obj))
4229
		obj->madv = I915_MADV_DONTNEED;
4230
	i915_gem_object_put_pages(obj);
4231

4232 4233
	BUG_ON(obj->pages);

4234 4235
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4236

4237 4238 4239
	if (obj->ops->release)
		obj->ops->release(obj);

4240 4241
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4242

4243
	kfree(obj->bit_17);
4244
	i915_gem_object_free(obj);
4245 4246

	intel_runtime_pm_put(dev_priv);
4247 4248
}

4249 4250
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4251 4252
{
	struct i915_vma *vma;
4253
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4254 4255
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4256
			return vma;
4257 4258 4259 4260 4261 4262 4263 4264
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4265

4266
	GEM_BUG_ON(!view);
4267

4268
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4269
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4270
			return vma;
4271 4272 4273
	return NULL;
}

B
Ben Widawsky 已提交
4274 4275 4276
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4277 4278 4279 4280 4281

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4282 4283
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4284

4285
	list_del(&vma->obj_link);
4286

4287
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4288 4289
}

4290
static void
4291
i915_gem_stop_engines(struct drm_device *dev)
4292
{
4293
	struct drm_i915_private *dev_priv = to_i915(dev);
4294
	struct intel_engine_cs *engine;
4295

4296
	for_each_engine(engine, dev_priv)
4297
		dev_priv->gt.stop_engine(engine);
4298 4299
}

4300
int
4301
i915_gem_suspend(struct drm_device *dev)
4302
{
4303
	struct drm_i915_private *dev_priv = to_i915(dev);
4304
	int ret = 0;
4305

4306 4307
	intel_suspend_gt_powersave(dev_priv);

4308
	mutex_lock(&dev->struct_mutex);
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4322
	ret = i915_gem_wait_for_idle(dev_priv);
4323
	if (ret)
4324
		goto err;
4325

4326
	i915_gem_retire_requests(dev_priv);
4327

4328 4329 4330 4331 4332
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4333
	i915_gem_stop_engines(dev);
4334
	i915_gem_context_lost(dev_priv);
4335 4336
	mutex_unlock(&dev->struct_mutex);

4337
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4338 4339
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4340

4341 4342 4343
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4344
	WARN_ON(dev_priv->gt.awake);
4345

4346
	return 0;
4347 4348 4349 4350

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4351 4352
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4370 4371
void i915_gem_init_swizzling(struct drm_device *dev)
{
4372
	struct drm_i915_private *dev_priv = to_i915(dev);
4373

4374
	if (INTEL_INFO(dev)->gen < 5 ||
4375 4376 4377 4378 4379 4380
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4381 4382 4383
	if (IS_GEN5(dev))
		return;

4384 4385
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4386
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4387
	else if (IS_GEN7(dev))
4388
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4389 4390
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4391 4392
	else
		BUG();
4393
}
D
Daniel Vetter 已提交
4394

4395 4396
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4397
	struct drm_i915_private *dev_priv = to_i915(dev);
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4422 4423 4424
int
i915_gem_init_hw(struct drm_device *dev)
{
4425
	struct drm_i915_private *dev_priv = to_i915(dev);
4426
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4427
	int ret;
4428

4429 4430 4431
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4432
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4433
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4434

4435 4436 4437
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4438

4439
	if (HAS_PCH_NOP(dev)) {
4440 4441 4442 4443 4444 4445 4446 4447 4448
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4449 4450
	}

4451 4452
	i915_gem_init_swizzling(dev);

4453 4454 4455 4456 4457 4458 4459 4460
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4461
	BUG_ON(!dev_priv->kernel_context);
4462

4463 4464 4465 4466 4467 4468 4469
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4470
	for_each_engine(engine, dev_priv) {
4471
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4472
		if (ret)
4473
			goto out;
D
Daniel Vetter 已提交
4474
	}
4475

4476 4477
	intel_mocs_init_l3cc_table(dev);

4478
	/* We can't enable contexts until all firmware is loaded */
4479 4480 4481
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4482

4483 4484
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4485
	return ret;
4486 4487
}

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4509 4510
int i915_gem_init(struct drm_device *dev)
{
4511
	struct drm_i915_private *dev_priv = to_i915(dev);
4512 4513 4514
	int ret;

	mutex_lock(&dev->struct_mutex);
4515

4516
	if (!i915.enable_execlists) {
4517 4518
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4519
	} else {
4520 4521
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4522 4523
	}

4524 4525 4526 4527 4528 4529 4530 4531
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4532
	i915_gem_init_userptr(dev_priv);
4533 4534 4535 4536

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4537

4538
	ret = i915_gem_context_init(dev);
4539 4540
	if (ret)
		goto out_unlock;
4541

4542
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4543
	if (ret)
4544
		goto out_unlock;
4545

4546
	ret = i915_gem_init_hw(dev);
4547
	if (ret == -EIO) {
4548
		/* Allow engine initialisation to fail by marking the GPU as
4549 4550 4551 4552
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4553
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4554
		ret = 0;
4555
	}
4556 4557

out_unlock:
4558
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4559
	mutex_unlock(&dev->struct_mutex);
4560

4561
	return ret;
4562 4563
}

4564
void
4565
i915_gem_cleanup_engines(struct drm_device *dev)
4566
{
4567
	struct drm_i915_private *dev_priv = to_i915(dev);
4568
	struct intel_engine_cs *engine;
4569

4570
	for_each_engine(engine, dev_priv)
4571
		dev_priv->gt.cleanup_engine(engine);
4572 4573
}

4574
static void
4575
init_engine_lists(struct intel_engine_cs *engine)
4576
{
4577 4578
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4579 4580
}

4581 4582 4583
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4584
	struct drm_device *dev = &dev_priv->drm;
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4595
	if (intel_vgpu_active(dev_priv))
4596 4597 4598 4599 4600 4601 4602 4603 4604
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4605
void
4606
i915_gem_load_init(struct drm_device *dev)
4607
{
4608
	struct drm_i915_private *dev_priv = to_i915(dev);
4609 4610
	int i;

4611
	dev_priv->objects =
4612 4613 4614 4615
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4616 4617 4618 4619 4620
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4621 4622 4623 4624 4625
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4626

4627
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4628 4629
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4630
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4631 4632
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4633
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4634
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4635
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4636
			  i915_gem_retire_work_handler);
4637
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4638
			  i915_gem_idle_work_handler);
4639
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4640
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4641

4642 4643
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4644
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4645

4646
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4647

4648 4649
	dev_priv->mm.interruptible = true;

4650
	mutex_init(&dev_priv->fb_tracking.lock);
4651
}
4652

4653 4654 4655 4656 4657 4658 4659 4660 4661
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4690
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4691
{
4692
	struct drm_i915_file_private *file_priv = file->driver_priv;
4693
	struct drm_i915_gem_request *request;
4694 4695 4696 4697 4698

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4699
	spin_lock(&file_priv->mm.lock);
4700
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4701
		request->file_priv = NULL;
4702
	spin_unlock(&file_priv->mm.lock);
4703

4704
	if (!list_empty(&file_priv->rps.link)) {
4705
		spin_lock(&to_i915(dev)->rps.client_lock);
4706
		list_del(&file_priv->rps.link);
4707
		spin_unlock(&to_i915(dev)->rps.client_lock);
4708
	}
4709 4710 4711 4712 4713
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4714
	int ret;
4715 4716 4717 4718 4719 4720 4721 4722

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4723
	file_priv->dev_priv = to_i915(dev);
4724
	file_priv->file = file;
4725
	INIT_LIST_HEAD(&file_priv->rps.link);
4726 4727 4728 4729

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4730
	file_priv->bsd_engine = -1;
4731

4732 4733 4734
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4735

4736
	return ret;
4737 4738
}

4739 4740
/**
 * i915_gem_track_fb - update frontbuffer tracking
4741 4742 4743
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4744 4745 4746 4747
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4765
/* All the new VM stuff */
4766 4767
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4768
{
4769
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4770 4771
	struct i915_vma *vma;

4772
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4773

4774
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4775
		if (vma->is_ggtt &&
4776 4777 4778
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4779 4780
			return vma->node.start;
	}
4781

4782 4783
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4784 4785 4786
	return -1;
}

4787 4788
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4789 4790 4791
{
	struct i915_vma *vma;

4792
	list_for_each_entry(vma, &o->vma_list, obj_link)
4793
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4794 4795
			return vma->node.start;

4796
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4797 4798 4799 4800 4801 4802 4803 4804
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4805
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4806
		if (vma->is_ggtt &&
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4817
				  const struct i915_ggtt_view *view)
4818 4819 4820
{
	struct i915_vma *vma;

4821
	list_for_each_entry(vma, &o->vma_list, obj_link)
4822
		if (vma->is_ggtt &&
4823
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4824
		    drm_mm_node_allocated(&vma->node))
4825 4826 4827 4828 4829
			return true;

	return false;
}

4830
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4831 4832 4833
{
	struct i915_vma *vma;

4834
	GEM_BUG_ON(list_empty(&o->vma_list));
4835

4836
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4837
		if (vma->is_ggtt &&
4838
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4839
			return vma->node.size;
4840
	}
4841

4842 4843 4844
	return 0;
}

4845
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4846 4847
{
	struct i915_vma *vma;
4848
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4849 4850
		if (vma->pin_count > 0)
			return true;
4851

4852
	return false;
4853
}
4854

4855 4856 4857 4858 4859 4860 4861
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4862
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4863 4864 4865 4866 4867 4868 4869
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4880
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4881
	if (IS_ERR(obj))
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4895
	obj->dirty = 1;		/* Backing store is now out of date */
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4907
	i915_gem_object_put(obj);
4908 4909
	return ERR_PTR(ret);
}