i915_gem.c 132.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63 64
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65

66 67 68 69 70 71
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

72 73 74 75 76 77 78 79
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

80 81 82 83 84 85 86 87
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
88
	obj->fence_dirty = false;
89 90 91
	obj->fence_reg = I915_FENCE_REG_NONE;
}

92 93 94 95
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101 102 103 104
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
105
	spin_lock(&dev_priv->mm.object_stat_lock);
106 107
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
108
	spin_unlock(&dev_priv->mm.object_stat_lock);
109 110
}

111
static int
112
i915_gem_wait_for_error(struct i915_gpu_error *error)
113 114 115
{
	int ret;

116 117
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
118
	if (EXIT_COND)
119 120
		return 0;

121 122 123 124 125
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
126 127 128
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
129 130 131 132
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
133
		return ret;
134
	}
135
#undef EXIT_COND
136

137
	return 0;
138 139
}

140
int i915_mutex_lock_interruptible(struct drm_device *dev)
141
{
142
	struct drm_i915_private *dev_priv = dev->dev_private;
143 144
	int ret;

145
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 147 148 149 150 151 152
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

153
	WARN_ON(i915_verify_lists(dev));
154 155
	return 0;
}
156

157
static inline bool
158
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159
{
160
	return i915_gem_obj_bound_any(obj) && !obj->active;
161 162
}

J
Jesse Barnes 已提交
163 164
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
165
		    struct drm_file *file)
J
Jesse Barnes 已提交
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
J
Jesse Barnes 已提交
168
	struct drm_i915_gem_init *args = data;
169

170 171 172
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

173 174 175
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
176

177 178 179 180
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
181
	mutex_lock(&dev->struct_mutex);
182 183
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
				  args->gtt_end);
184
	dev_priv->gtt.mappable_end = args->gtt_end;
185 186
	mutex_unlock(&dev->struct_mutex);

187
	return 0;
188 189
}

190 191
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192
			    struct drm_file *file)
193
{
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct drm_i915_gem_get_aperture *args = data;
196 197
	struct drm_i915_gem_object *obj;
	size_t pinned;
198

199
	pinned = 0;
200
	mutex_lock(&dev->struct_mutex);
201
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
202
		if (i915_gem_obj_is_pinned(obj))
203
			pinned += i915_gem_obj_ggtt_size(obj);
204
	mutex_unlock(&dev->struct_mutex);
205

206
	args->aper_size = dev_priv->gtt.base.total;
207
	args->aper_available_size = args->aper_size - pinned;
208

209 210 211
	return 0;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
{
	drm_dma_handle_t *phys = obj->phys_handle;

	if (!phys)
		return;

	if (obj->madv == I915_MADV_WILLNEED) {
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
		char *vaddr = phys->vaddr;
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
			struct page *page = shmem_read_mapping_page(mapping, i);
			if (!IS_ERR(page)) {
				char *dst = kmap_atomic(page);
				memcpy(dst, vaddr, PAGE_SIZE);
				drm_clflush_virt_range(dst, PAGE_SIZE);
				kunmap_atomic(dst);

				set_page_dirty(page);
				mark_page_accessed(page);
				page_cache_release(page);
			}
			vaddr += PAGE_SIZE;
		}
		i915_gem_chipset_flush(obj->base.dev);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
	drm_pci_free(obj->base.dev, phys);
	obj->phys_handle = NULL;
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
	struct address_space *mapping;
	char *vaddr;
	int i;

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	vaddr = phys->vaddr;
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
#endif
	mapping = file_inode(obj->base.filp)->i_mapping;
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page)) {
#ifdef CONFIG_X86
			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
			drm_pci_free(obj->base.dev, phys);
			return PTR_ERR(page);
		}

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		kunmap_atomic(src);

		mark_page_accessed(page);
		page_cache_release(page);

		vaddr += PAGE_SIZE;
	}

	obj->phys_handle = phys;
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

	i915_gem_chipset_flush(dev);
	return 0;
}

334 335 336
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
337
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 339 340 341 342 343 344 345
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

346 347 348 349 350
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
351
{
352
	struct drm_i915_gem_object *obj;
353 354
	int ret;
	u32 handle;
355

356
	size = roundup(size, PAGE_SIZE);
357 358
	if (size == 0)
		return -EINVAL;
359 360

	/* Allocate the new object */
361
	obj = i915_gem_alloc_object(dev, size);
362 363 364
	if (obj == NULL)
		return -ENOMEM;

365
	ret = drm_gem_handle_create(file, &obj->base, &handle);
366
	/* drop reference from allocate - handle holds it now */
367 368 369
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
370

371
	*handle_p = handle;
372 373 374
	return 0;
}

375 376 377 378 379 380
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
381
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 383 384 385 386 387 388 389 390 391 392 393 394
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
395

396 397 398 399
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

426
static inline int
427 428
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
477 478

		i915_gem_object_retire(obj);
479 480 481 482 483 484 485 486 487 488 489
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

490 491 492
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
493
static int
494 495 496 497 498 499 500
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

501
	if (unlikely(page_do_bit17_swizzling))
502 503 504 505 506 507 508 509 510 511 512
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

513
	return ret ? -EFAULT : 0;
514 515
}

516 517 518 519
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
520
	if (unlikely(swizzled)) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

538 539 540 541 542 543 544 545 546 547 548 549
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
550 551 552
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
553 554 555 556 557 558 559 560 561 562 563

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

564
	return ret ? - EFAULT : 0;
565 566
}

567
static int
568 569 570 571
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
572
{
573
	char __user *user_data;
574
	ssize_t remain;
575
	loff_t offset;
576
	int shmem_page_offset, page_length, ret = 0;
577
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578
	int prefaulted = 0;
579
	int needs_clflush = 0;
580
	struct sg_page_iter sg_iter;
581

V
Ville Syrjälä 已提交
582
	user_data = to_user_ptr(args->data_ptr);
583 584
	remain = args->size;

585
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586

587
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 589 590
	if (ret)
		return ret;

591
	offset = args->offset;
592

593 594
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
595
		struct page *page = sg_page_iter_page(&sg_iter);
596 597 598 599

		if (remain <= 0)
			break;

600 601 602 603 604
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
605
		shmem_page_offset = offset_in_page(offset);
606 607 608 609
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

610 611 612
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

613 614 615 616 617
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
618 619 620

		mutex_unlock(&dev->struct_mutex);

621
		if (likely(!i915.prefault_disable) && !prefaulted) {
622
			ret = fault_in_multipages_writeable(user_data, remain);
623 624 625 626 627 628 629
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
630

631 632 633
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
634

635
		mutex_lock(&dev->struct_mutex);
636 637

		if (ret)
638 639
			goto out;

640
next_page:
641
		remain -= page_length;
642
		user_data += page_length;
643 644 645
		offset += page_length;
	}

646
out:
647 648
	i915_gem_object_unpin_pages(obj);

649 650 651
	return ret;
}

652 653 654 655 656 657 658
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659
		     struct drm_file *file)
660 661
{
	struct drm_i915_gem_pread *args = data;
662
	struct drm_i915_gem_object *obj;
663
	int ret = 0;
664

665 666 667 668
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
669
		       to_user_ptr(args->data_ptr),
670 671 672
		       args->size))
		return -EFAULT;

673
	ret = i915_mutex_lock_interruptible(dev);
674
	if (ret)
675
		return ret;
676

677
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678
	if (&obj->base == NULL) {
679 680
		ret = -ENOENT;
		goto unlock;
681
	}
682

683
	/* Bounds check source.  */
684 685
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
686
		ret = -EINVAL;
687
		goto out;
C
Chris Wilson 已提交
688 689
	}

690 691 692 693 694 695 696 697
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
698 699
	trace_i915_gem_object_pread(obj, args->offset, args->size);

700
	ret = i915_gem_shmem_pread(dev, obj, args, file);
701

702
out:
703
	drm_gem_object_unreference(&obj->base);
704
unlock:
705
	mutex_unlock(&dev->struct_mutex);
706
	return ret;
707 708
}

709 710
/* This is the fast write path which cannot handle
 * page faults in the source data
711
 */
712 713 714 715 716 717

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
718
{
719 720
	void __iomem *vaddr_atomic;
	void *vaddr;
721
	unsigned long unwritten;
722

P
Peter Zijlstra 已提交
723
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 725 726
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727
						      user_data, length);
P
Peter Zijlstra 已提交
728
	io_mapping_unmap_atomic(vaddr_atomic);
729
	return unwritten;
730 731
}

732 733 734 735
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
736
static int
737 738
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
739
			 struct drm_i915_gem_pwrite *args,
740
			 struct drm_file *file)
741
{
742
	struct drm_i915_private *dev_priv = dev->dev_private;
743
	ssize_t remain;
744
	loff_t offset, page_base;
745
	char __user *user_data;
D
Daniel Vetter 已提交
746 747
	int page_offset, page_length, ret;

748
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
749 750 751 752 753 754 755 756 757 758
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
759

V
Ville Syrjälä 已提交
760
	user_data = to_user_ptr(args->data_ptr);
761 762
	remain = args->size;

763
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 765 766 767

	while (remain > 0) {
		/* Operation in this page
		 *
768 769 770
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
771
		 */
772 773
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
774 775 776 777 778
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
779 780
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
781
		 */
B
Ben Widawsky 已提交
782
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
783 784 785 786
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
787

788 789 790
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
791 792
	}

D
Daniel Vetter 已提交
793
out_unpin:
B
Ben Widawsky 已提交
794
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
795
out:
796
	return ret;
797 798
}

799 800 801 802
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
803
static int
804 805 806 807 808
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
809
{
810
	char *vaddr;
811
	int ret;
812

813
	if (unlikely(page_do_bit17_swizzling))
814
		return -EINVAL;
815

816 817 818 819
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
820 821
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
822 823 824 825
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
826

827
	return ret ? -EFAULT : 0;
828 829
}

830 831
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
832
static int
833 834 835 836 837
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
838
{
839 840
	char *vaddr;
	int ret;
841

842
	vaddr = kmap(page);
843
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 845 846
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
847 848
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 850
						user_data,
						page_length);
851 852 853 854 855
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
856 857 858
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
859
	kunmap(page);
860

861
	return ret ? -EFAULT : 0;
862 863 864
}

static int
865 866 867 868
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
869 870
{
	ssize_t remain;
871 872
	loff_t offset;
	char __user *user_data;
873
	int shmem_page_offset, page_length, ret = 0;
874
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875
	int hit_slowpath = 0;
876 877
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
878
	struct sg_page_iter sg_iter;
879

V
Ville Syrjälä 已提交
880
	user_data = to_user_ptr(args->data_ptr);
881 882
	remain = args->size;

883
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885 886 887 888 889
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
890
		needs_clflush_after = cpu_write_needs_clflush(obj);
891 892 893
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
894 895

		i915_gem_object_retire(obj);
896
	}
897 898 899 900 901
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
902

903 904 905 906 907 908
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

909
	offset = args->offset;
910
	obj->dirty = 1;
911

912 913
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
914
		struct page *page = sg_page_iter_page(&sg_iter);
915
		int partial_cacheline_write;
916

917 918 919
		if (remain <= 0)
			break;

920 921 922 923 924
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
925
		shmem_page_offset = offset_in_page(offset);
926 927 928 929 930

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

931 932 933 934 935 936 937
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

938 939 940
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

941 942 943 944 945 946
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
947 948 949

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
950 951 952 953
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
954

955
		mutex_lock(&dev->struct_mutex);
956 957

		if (ret)
958 959
			goto out;

960
next_page:
961
		remain -= page_length;
962
		user_data += page_length;
963
		offset += page_length;
964 965
	}

966
out:
967 968
	i915_gem_object_unpin_pages(obj);

969
	if (hit_slowpath) {
970 971 972 973 974 975 976
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 978
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
979
		}
980
	}
981

982
	if (needs_clflush_after)
983
		i915_gem_chipset_flush(dev);
984

985
	return ret;
986 987 988 989 990 991 992 993 994
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995
		      struct drm_file *file)
996 997
{
	struct drm_i915_gem_pwrite *args = data;
998
	struct drm_i915_gem_object *obj;
999 1000 1001 1002 1003 1004
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1005
		       to_user_ptr(args->data_ptr),
1006 1007 1008
		       args->size))
		return -EFAULT;

1009
	if (likely(!i915.prefault_disable)) {
1010 1011 1012 1013 1014
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1015

1016
	ret = i915_mutex_lock_interruptible(dev);
1017
	if (ret)
1018
		return ret;
1019

1020
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021
	if (&obj->base == NULL) {
1022 1023
		ret = -ENOENT;
		goto unlock;
1024
	}
1025

1026
	/* Bounds check destination. */
1027 1028
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1029
		ret = -EINVAL;
1030
		goto out;
C
Chris Wilson 已提交
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1041 1042
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1043
	ret = -EFAULT;
1044 1045 1046 1047 1048 1049
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1050 1051
	if (obj->phys_handle) {
		ret = i915_gem_phys_pwrite(obj, args, file);
1052 1053 1054
		goto out;
	}

1055 1056 1057
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1058
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1059 1060 1061
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1062
	}
1063

1064
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
1065
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066

1067
out:
1068
	drm_gem_object_unreference(&obj->base);
1069
unlock:
1070
	mutex_unlock(&dev->struct_mutex);
1071 1072 1073
	return ret;
}

1074
int
1075
i915_gem_check_wedge(struct i915_gpu_error *error,
1076 1077
		     bool interruptible)
{
1078
	if (i915_reset_in_progress(error)) {
1079 1080 1081 1082 1083
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1084 1085
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1098
int
1099
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 1101 1102 1103 1104 1105
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1106
	if (seqno == ring->outstanding_lazy_seqno)
1107
		ret = i915_add_request(ring, NULL);
1108 1109 1110 1111

	return ret;
}

1112 1113 1114 1115 1116 1117
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1118
		       struct intel_engine_cs *ring)
1119 1120 1121 1122
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1123 1124 1125 1126 1127 1128 1129 1130
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1131 1132 1133 1134
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1135
 * @reset_counter: reset sequence associated with the given seqno
1136 1137 1138
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1139 1140 1141 1142 1143 1144 1145
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1146 1147 1148
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1149
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150
			unsigned reset_counter,
1151 1152 1153
			bool interruptible,
			struct timespec *timeout,
			struct drm_i915_file_private *file_priv)
1154
{
1155
	struct drm_device *dev = ring->dev;
1156
	struct drm_i915_private *dev_priv = dev->dev_private;
1157 1158
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 1160
	struct timespec before, now;
	DEFINE_WAIT(wait);
1161
	unsigned long timeout_expire;
1162 1163
	int ret;

1164
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1165

1166 1167 1168
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1169
	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170

1171
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172 1173 1174 1175 1176 1177 1178
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1179
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 1181
		return -ENODEV;

1182 1183
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1184
	getrawmonotonic(&before);
1185 1186
	for (;;) {
		struct timer_list timer;
1187

1188 1189
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190

1191 1192
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1193 1194 1195 1196 1197 1198 1199 1200
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1201

1202 1203 1204 1205
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1206

1207 1208 1209 1210 1211
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1212
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 1214 1215 1216 1217 1218
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1219 1220
			unsigned long expire;

1221
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 1224 1225
			mod_timer(&timer, expire);
		}

1226
		io_schedule();
1227 1228 1229 1230 1231 1232

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1233
	getrawmonotonic(&now);
1234
	trace_i915_gem_request_wait_end(ring, seqno);
1235

1236 1237
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1238 1239

	finish_wait(&ring->irq_queue, &wait);
1240 1241 1242 1243

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
1244 1245
		if (!timespec_valid(timeout)) /* i.e. negative time remains */
			set_normalized_timespec(timeout, 0, 0);
1246 1247
	}

1248
	return ret;
1249 1250 1251 1252 1253 1254 1255
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1256
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1266
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 1268 1269 1270 1271 1272 1273
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1274 1275
	return __wait_seqno(ring, seqno,
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1276
			    interruptible, NULL, NULL);
1277 1278
}

1279 1280
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281
				     struct intel_engine_cs *ring)
1282
{
1283 1284
	if (!obj->active)
		return 0;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1298 1299 1300 1301 1302 1303 1304 1305
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1306
	struct intel_engine_cs *ring = obj->ring;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1318
	return i915_gem_object_wait_rendering__tail(obj, ring);
1319 1320
}

1321 1322 1323 1324 1325
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326
					    struct drm_i915_file_private *file_priv,
1327 1328 1329 1330
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1331
	struct intel_engine_cs *ring = obj->ring;
1332
	unsigned reset_counter;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1343
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 1345 1346 1347 1348 1349 1350
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1351
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352
	mutex_unlock(&dev->struct_mutex);
1353
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354
	mutex_lock(&dev->struct_mutex);
1355 1356
	if (ret)
		return ret;
1357

1358
	return i915_gem_object_wait_rendering__tail(obj, ring);
1359 1360
}

1361
/**
1362 1363
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1364 1365 1366
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367
			  struct drm_file *file)
1368 1369
{
	struct drm_i915_gem_set_domain *args = data;
1370
	struct drm_i915_gem_object *obj;
1371 1372
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1373 1374
	int ret;

1375
	/* Only handle setting domains to types used by the CPU. */
1376
	if (write_domain & I915_GEM_GPU_DOMAINS)
1377 1378
		return -EINVAL;

1379
	if (read_domains & I915_GEM_GPU_DOMAINS)
1380 1381 1382 1383 1384 1385 1386 1387
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1388
	ret = i915_mutex_lock_interruptible(dev);
1389
	if (ret)
1390
		return ret;
1391

1392
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393
	if (&obj->base == NULL) {
1394 1395
		ret = -ENOENT;
		goto unlock;
1396
	}
1397

1398 1399 1400 1401
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1402 1403 1404
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1405 1406 1407
	if (ret)
		goto unref;

1408 1409
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410 1411 1412 1413 1414 1415 1416

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1417
	} else {
1418
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1419 1420
	}

1421
unref:
1422
	drm_gem_object_unreference(&obj->base);
1423
unlock:
1424 1425 1426 1427 1428 1429 1430 1431 1432
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1433
			 struct drm_file *file)
1434 1435
{
	struct drm_i915_gem_sw_finish *args = data;
1436
	struct drm_i915_gem_object *obj;
1437 1438
	int ret = 0;

1439
	ret = i915_mutex_lock_interruptible(dev);
1440
	if (ret)
1441
		return ret;
1442

1443
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1444
	if (&obj->base == NULL) {
1445 1446
		ret = -ENOENT;
		goto unlock;
1447 1448 1449
	}

	/* Pinned buffers may be scanout, so flush the cache */
1450 1451
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1452

1453
	drm_gem_object_unreference(&obj->base);
1454
unlock:
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1468
		    struct drm_file *file)
1469 1470 1471 1472 1473
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1474
	obj = drm_gem_object_lookup(dev, file, args->handle);
1475
	if (obj == NULL)
1476
		return -ENOENT;
1477

1478 1479 1480 1481 1482 1483 1484 1485
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1486
	addr = vm_mmap(obj->filp, 0, args->size,
1487 1488
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1489
	drm_gem_object_unreference_unlocked(obj);
1490 1491 1492 1493 1494 1495 1496 1497
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1516 1517
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1518
	struct drm_i915_private *dev_priv = dev->dev_private;
1519 1520 1521
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1522
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523

1524 1525
	intel_runtime_pm_get(dev_priv);

1526 1527 1528 1529
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1530 1531 1532
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1533

C
Chris Wilson 已提交
1534 1535
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1536 1537 1538 1539 1540 1541 1542 1543 1544
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1545 1546
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1547
		ret = -EFAULT;
1548 1549 1550
		goto unlock;
	}

1551
	/* Now bind it into the GTT if needed */
1552
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1553 1554
	if (ret)
		goto unlock;
1555

1556 1557 1558
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1559

1560
	ret = i915_gem_object_get_fence(obj);
1561
	if (ret)
1562
		goto unpin;
1563

1564
	/* Finally, remap it using the new GTT offset */
1565 1566
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1567

1568
	if (!obj->fault_mappable) {
1569 1570 1571
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1572 1573
		int i;

1574
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1587
unpin:
B
Ben Widawsky 已提交
1588
	i915_gem_object_ggtt_unpin(obj);
1589
unlock:
1590
	mutex_unlock(&dev->struct_mutex);
1591
out:
1592
	switch (ret) {
1593
	case -EIO:
1594 1595 1596
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
1597 1598 1599 1600
		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
			ret = VM_FAULT_SIGBUS;
			break;
		}
1601
	case -EAGAIN:
D
Daniel Vetter 已提交
1602 1603 1604 1605
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1606
		 */
1607 1608
	case 0:
	case -ERESTARTSYS:
1609
	case -EINTR:
1610 1611 1612 1613 1614
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1615 1616
		ret = VM_FAULT_NOPAGE;
		break;
1617
	case -ENOMEM:
1618 1619
		ret = VM_FAULT_OOM;
		break;
1620
	case -ENOSPC:
1621
	case -EFAULT:
1622 1623
		ret = VM_FAULT_SIGBUS;
		break;
1624
	default:
1625
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1626 1627
		ret = VM_FAULT_SIGBUS;
		break;
1628
	}
1629 1630 1631

	intel_runtime_pm_put(dev_priv);
	return ret;
1632 1633
}

1634 1635 1636 1637
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1638
 * Preserve the reservation of the mmapping with the DRM core code, but
1639 1640 1641 1642 1643 1644 1645 1646 1647
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1648
void
1649
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1650
{
1651 1652
	if (!obj->fault_mappable)
		return;
1653

1654 1655
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1656
	obj->fault_mappable = false;
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1668
uint32_t
1669
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1670
{
1671
	uint32_t gtt_size;
1672 1673

	if (INTEL_INFO(dev)->gen >= 4 ||
1674 1675
	    tiling_mode == I915_TILING_NONE)
		return size;
1676 1677 1678

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1679
		gtt_size = 1024*1024;
1680
	else
1681
		gtt_size = 512*1024;
1682

1683 1684
	while (gtt_size < size)
		gtt_size <<= 1;
1685

1686
	return gtt_size;
1687 1688
}

1689 1690 1691 1692 1693
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1694
 * potential fence register mapping.
1695
 */
1696 1697 1698
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1699 1700 1701 1702 1703
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1704
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1705
	    tiling_mode == I915_TILING_NONE)
1706 1707
		return 4096;

1708 1709 1710 1711
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1712
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1713 1714
}

1715 1716 1717 1718 1719
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1720
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1721 1722
		return 0;

1723 1724
	dev_priv->mm.shrinker_no_lock_stealing = true;

1725 1726
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1727
		goto out;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1739
		goto out;
1740 1741

	i915_gem_shrink_all(dev_priv);
1742 1743 1744 1745 1746
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1747 1748 1749 1750 1751 1752 1753
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1754
int
1755 1756 1757 1758
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1759
{
1760
	struct drm_i915_private *dev_priv = dev->dev_private;
1761
	struct drm_i915_gem_object *obj;
1762 1763
	int ret;

1764
	ret = i915_mutex_lock_interruptible(dev);
1765
	if (ret)
1766
		return ret;
1767

1768
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1769
	if (&obj->base == NULL) {
1770 1771 1772
		ret = -ENOENT;
		goto unlock;
	}
1773

B
Ben Widawsky 已提交
1774
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1775
		ret = -E2BIG;
1776
		goto out;
1777 1778
	}

1779
	if (obj->madv != I915_MADV_WILLNEED) {
1780
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1781
		ret = -EFAULT;
1782
		goto out;
1783 1784
	}

1785 1786 1787
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1788

1789
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1790

1791
out:
1792
	drm_gem_object_unreference(&obj->base);
1793
unlock:
1794
	mutex_unlock(&dev->struct_mutex);
1795
	return ret;
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1822 1823 1824 1825 1826 1827
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1828 1829 1830
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1831
{
1832
	i915_gem_object_free_mmap_offset(obj);
1833

1834 1835
	if (obj->base.filp == NULL)
		return;
1836

D
Daniel Vetter 已提交
1837 1838 1839 1840 1841
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1842
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1843 1844
	obj->madv = __I915_MADV_PURGED;
}
1845

1846 1847 1848
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1849
{
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1864 1865
}

1866
static void
1867
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1868
{
1869 1870
	struct sg_page_iter sg_iter;
	int ret;
1871

1872
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1873

C
Chris Wilson 已提交
1874 1875 1876 1877 1878 1879
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1880
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1881 1882 1883
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1884
	if (i915_gem_object_needs_bit17_swizzle(obj))
1885 1886
		i915_gem_object_save_bit_17_swizzle(obj);

1887 1888
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1889

1890
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1891
		struct page *page = sg_page_iter_page(&sg_iter);
1892

1893
		if (obj->dirty)
1894
			set_page_dirty(page);
1895

1896
		if (obj->madv == I915_MADV_WILLNEED)
1897
			mark_page_accessed(page);
1898

1899
		page_cache_release(page);
1900
	}
1901
	obj->dirty = 0;
1902

1903 1904
	sg_free_table(obj->pages);
	kfree(obj->pages);
1905
}
C
Chris Wilson 已提交
1906

1907
int
1908 1909 1910 1911
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1912
	if (obj->pages == NULL)
1913 1914
		return 0;

1915 1916 1917
	if (obj->pages_pin_count)
		return -EBUSY;

1918
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
1919

1920 1921 1922
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
1923
	list_del(&obj->global_list);
1924

1925
	ops->put_pages(obj);
1926
	obj->pages = NULL;
1927

1928
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
1929 1930 1931 1932

	return 0;
}

1933
static unsigned long
1934 1935
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
		  bool purgeable_only)
C
Chris Wilson 已提交
1936
{
1937 1938
	struct list_head still_in_list;
	struct drm_i915_gem_object *obj;
1939
	unsigned long count = 0;
C
Chris Wilson 已提交
1940

1941
	/*
1942
	 * As we may completely rewrite the (un)bound list whilst unbinding
1943 1944 1945
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
1959
	 */
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	INIT_LIST_HEAD(&still_in_list);
	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
		obj = list_first_entry(&dev_priv->mm.unbound_list,
				       typeof(*obj), global_list);
		list_move_tail(&obj->global_list, &still_in_list);

		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

		drm_gem_object_reference(&obj->base);

		if (i915_gem_object_put_pages(obj) == 0)
			count += obj->base.size >> PAGE_SHIFT;

		drm_gem_object_unreference(&obj->base);
	}
	list_splice(&still_in_list, &dev_priv->mm.unbound_list);

	INIT_LIST_HEAD(&still_in_list);
1979
	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1980
		struct i915_vma *vma, *v;
1981

1982 1983
		obj = list_first_entry(&dev_priv->mm.bound_list,
				       typeof(*obj), global_list);
1984
		list_move_tail(&obj->global_list, &still_in_list);
1985

1986 1987 1988
		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

1989 1990
		drm_gem_object_reference(&obj->base);

1991 1992 1993
		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
			if (i915_vma_unbind(vma))
				break;
1994

1995
		if (i915_gem_object_put_pages(obj) == 0)
C
Chris Wilson 已提交
1996
			count += obj->base.size >> PAGE_SHIFT;
1997 1998

		drm_gem_object_unreference(&obj->base);
C
Chris Wilson 已提交
1999
	}
2000
	list_splice(&still_in_list, &dev_priv->mm.bound_list);
C
Chris Wilson 已提交
2001 2002 2003 2004

	return count;
}

2005
static unsigned long
2006 2007 2008 2009 2010
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	return __i915_gem_shrink(dev_priv, target, true);
}

2011
static unsigned long
C
Chris Wilson 已提交
2012 2013 2014
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2015
	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
D
Daniel Vetter 已提交
2016 2017
}

2018
static int
C
Chris Wilson 已提交
2019
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2020
{
C
Chris Wilson 已提交
2021
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022 2023
	int page_count, i;
	struct address_space *mapping;
2024 2025
	struct sg_table *st;
	struct scatterlist *sg;
2026
	struct sg_page_iter sg_iter;
2027
	struct page *page;
2028
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2029
	gfp_t gfp;
2030

C
Chris Wilson 已提交
2031 2032 2033 2034 2035 2036 2037
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2038 2039 2040 2041
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2042
	page_count = obj->base.size / PAGE_SIZE;
2043 2044
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2045
		return -ENOMEM;
2046
	}
2047

2048 2049 2050 2051 2052
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2053
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2054
	gfp = mapping_gfp_mask(mapping);
2055
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2056
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2057 2058 2059
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2071
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2072 2073 2074
			if (IS_ERR(page))
				goto err_pages;
		}
2075 2076 2077 2078 2079 2080 2081 2082
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2083 2084 2085 2086 2087 2088 2089 2090 2091
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2092 2093 2094

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2095
	}
2096 2097 2098 2099
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2100 2101
	obj->pages = st;

2102
	if (i915_gem_object_needs_bit17_swizzle(obj))
2103 2104 2105 2106 2107
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
2108 2109
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2110
		page_cache_release(sg_page_iter_page(&sg_iter));
2111 2112
	sg_free_table(st);
	kfree(st);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2142
	if (obj->pages)
2143 2144
		return 0;

2145
	if (obj->madv != I915_MADV_WILLNEED) {
2146
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2147
		return -EFAULT;
2148 2149
	}

2150 2151
	BUG_ON(obj->pages_pin_count);

2152 2153 2154 2155
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2156
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2157
	return 0;
2158 2159
}

B
Ben Widawsky 已提交
2160
static void
2161
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2162
			       struct intel_engine_cs *ring)
2163
{
2164
	u32 seqno = intel_ring_get_seqno(ring);
2165

2166
	BUG_ON(ring == NULL);
2167 2168 2169 2170
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2171
	obj->ring = ring;
2172 2173

	/* Add a reference if we're newly entering the active list. */
2174 2175 2176
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2177
	}
2178

2179
	list_move_tail(&obj->ring_list, &ring->active_list);
2180

2181
	obj->last_read_seqno = seqno;
2182 2183
}

B
Ben Widawsky 已提交
2184
void i915_vma_move_to_active(struct i915_vma *vma,
2185
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2186 2187 2188 2189 2190
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2191 2192
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2193
{
B
Ben Widawsky 已提交
2194
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 2196
	struct i915_address_space *vm;
	struct i915_vma *vma;
2197

2198
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2199
	BUG_ON(!obj->active);
2200

2201 2202 2203 2204 2205
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2206

2207 2208
	intel_fb_obj_flush(obj, true);

2209
	list_del_init(&obj->ring_list);
2210 2211
	obj->ring = NULL;

2212 2213 2214 2215 2216
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2217 2218 2219 2220 2221

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2222
}
2223

2224 2225 2226
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2227
	struct intel_engine_cs *ring = obj->ring;
2228 2229 2230 2231 2232 2233 2234 2235 2236

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2237
static int
2238
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2239
{
2240
	struct drm_i915_private *dev_priv = dev->dev_private;
2241
	struct intel_engine_cs *ring;
2242
	int ret, i, j;
2243

2244
	/* Carefully retire all requests without writing to the rings */
2245
	for_each_ring(ring, dev_priv, i) {
2246 2247 2248
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2249 2250
	}
	i915_gem_retire_requests(dev);
2251 2252

	/* Finally reset hw state */
2253
	for_each_ring(ring, dev_priv, i) {
2254
		intel_ring_init_seqno(ring, seqno);
2255

2256 2257
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2258
	}
2259

2260
	return 0;
2261 2262
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2289 2290
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2291
{
2292 2293 2294 2295
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2296
		int ret = i915_gem_init_seqno(dev, 0);
2297 2298
		if (ret)
			return ret;
2299

2300 2301
		dev_priv->next_seqno = 1;
	}
2302

2303
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2304
	return 0;
2305 2306
}

2307
int __i915_add_request(struct intel_engine_cs *ring,
2308
		       struct drm_file *file,
2309
		       struct drm_i915_gem_object *obj,
2310
		       u32 *out_seqno)
2311
{
2312
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2313
	struct drm_i915_gem_request *request;
2314
	u32 request_ring_position, request_start;
2315 2316
	int ret;

2317
	request_start = intel_ring_get_tail(ring->buffer);
2318 2319 2320 2321 2322 2323 2324
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2325 2326 2327
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
2328

2329 2330
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
2331
		return -ENOMEM;
2332

2333 2334 2335 2336 2337
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2338
	request_ring_position = intel_ring_get_tail(ring->buffer);
2339

2340
	ret = ring->add_request(ring);
2341
	if (ret)
2342
		return ret;
2343

2344
	request->seqno = intel_ring_get_seqno(ring);
2345
	request->ring = ring;
2346
	request->head = request_start;
2347
	request->tail = request_ring_position;
2348 2349 2350 2351 2352 2353 2354

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2355
	request->batch_obj = obj;
2356

2357 2358 2359 2360
	/* Hold a reference to the current context so that we can inspect
	 * it later in case a hangcheck error event fires.
	 */
	request->ctx = ring->last_context;
2361 2362 2363
	if (request->ctx)
		i915_gem_context_reference(request->ctx);

2364
	request->emitted_jiffies = jiffies;
2365
	list_add_tail(&request->list, &ring->request_list);
2366
	request->file_priv = NULL;
2367

C
Chris Wilson 已提交
2368 2369 2370
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2371
		spin_lock(&file_priv->mm.lock);
2372
		request->file_priv = file_priv;
2373
		list_add_tail(&request->client_list,
2374
			      &file_priv->mm.request_list);
2375
		spin_unlock(&file_priv->mm.lock);
2376
	}
2377

2378
	trace_i915_gem_request_add(ring, request->seqno);
2379
	ring->outstanding_lazy_seqno = 0;
2380
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2381

2382
	if (!dev_priv->ums.mm_suspended) {
2383 2384
		i915_queue_hangcheck(ring->dev);

2385 2386 2387 2388 2389
		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
		intel_mark_busy(dev_priv->dev);
B
Ben Gamari 已提交
2390
	}
2391

2392
	if (out_seqno)
2393
		*out_seqno = request->seqno;
2394
	return 0;
2395 2396
}

2397 2398
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2399
{
2400
	struct drm_i915_file_private *file_priv = request->file_priv;
2401

2402 2403
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2404

2405
	spin_lock(&file_priv->mm.lock);
2406 2407
	list_del(&request->client_list);
	request->file_priv = NULL;
2408
	spin_unlock(&file_priv->mm.lock);
2409 2410
}

2411
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2412
				   const struct intel_context *ctx)
2413
{
2414
	unsigned long elapsed;
2415

2416 2417 2418
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2419 2420 2421
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2422
		if (!i915_gem_context_is_default(ctx)) {
2423
			DRM_DEBUG("context hanging too fast, banning!\n");
2424
			return true;
2425 2426 2427
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2428
			return true;
2429
		}
2430 2431 2432 2433 2434
	}

	return false;
}

2435
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2436
				  struct intel_context *ctx,
2437
				  const bool guilty)
2438
{
2439 2440 2441 2442
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2443

2444 2445 2446
	hs = &ctx->hang_stats;

	if (guilty) {
2447
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2448 2449 2450 2451
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2452 2453 2454
	}
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

	if (request->ctx)
		i915_gem_context_unreference(request->ctx);

	kfree(request);
}

2466
struct drm_i915_gem_request *
2467
i915_gem_find_active_request(struct intel_engine_cs *ring)
2468
{
2469
	struct drm_i915_gem_request *request;
2470 2471 2472
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2473 2474 2475 2476

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2477

2478
		return request;
2479
	}
2480 2481 2482 2483 2484

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2485
				       struct intel_engine_cs *ring)
2486 2487 2488 2489
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2490
	request = i915_gem_find_active_request(ring);
2491 2492 2493 2494 2495 2496

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2497
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2498 2499

	list_for_each_entry_continue(request, &ring->request_list, list)
2500
		i915_set_reset_status(dev_priv, request->ctx, false);
2501
}
2502

2503
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2504
					struct intel_engine_cs *ring)
2505
{
2506
	while (!list_empty(&ring->active_list)) {
2507
		struct drm_i915_gem_object *obj;
2508

2509 2510 2511
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2512

2513
		i915_gem_object_move_to_inactive(obj);
2514
	}
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2532 2533 2534 2535 2536

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2537 2538
}

2539
void i915_gem_restore_fences(struct drm_device *dev)
2540 2541 2542 2543
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2544
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2545
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2546

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2557 2558 2559
	}
}

2560
void i915_gem_reset(struct drm_device *dev)
2561
{
2562
	struct drm_i915_private *dev_priv = dev->dev_private;
2563
	struct intel_engine_cs *ring;
2564
	int i;
2565

2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2574
	for_each_ring(ring, dev_priv, i)
2575
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2576

2577 2578
	i915_gem_context_reset(dev);

2579
	i915_gem_restore_fences(dev);
2580 2581 2582 2583 2584
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2585
void
2586
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2587 2588 2589
{
	uint32_t seqno;

C
Chris Wilson 已提交
2590
	if (list_empty(&ring->request_list))
2591 2592
		return;

C
Chris Wilson 已提交
2593
	WARN_ON(i915_verify_lists(ring->dev));
2594

2595
	seqno = ring->get_seqno(ring, true);
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2615
	while (!list_empty(&ring->request_list)) {
2616 2617
		struct drm_i915_gem_request *request;

2618
		request = list_first_entry(&ring->request_list,
2619 2620 2621
					   struct drm_i915_gem_request,
					   list);

2622
		if (!i915_seqno_passed(seqno, request->seqno))
2623 2624
			break;

C
Chris Wilson 已提交
2625
		trace_i915_gem_request_retire(ring, request->seqno);
2626 2627 2628 2629 2630
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2631
		ring->buffer->last_retired_head = request->tail;
2632

2633
		i915_gem_free_request(request);
2634
	}
2635

C
Chris Wilson 已提交
2636 2637
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2638
		ring->irq_put(ring);
C
Chris Wilson 已提交
2639
		ring->trace_irq_seqno = 0;
2640
	}
2641

C
Chris Wilson 已提交
2642
	WARN_ON(i915_verify_lists(ring->dev));
2643 2644
}

2645
bool
2646 2647
i915_gem_retire_requests(struct drm_device *dev)
{
2648
	struct drm_i915_private *dev_priv = dev->dev_private;
2649
	struct intel_engine_cs *ring;
2650
	bool idle = true;
2651
	int i;
2652

2653
	for_each_ring(ring, dev_priv, i) {
2654
		i915_gem_retire_requests_ring(ring);
2655 2656 2657 2658 2659 2660 2661 2662 2663
		idle &= list_empty(&ring->request_list);
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2664 2665
}

2666
static void
2667 2668
i915_gem_retire_work_handler(struct work_struct *work)
{
2669 2670 2671
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2672
	bool idle;
2673

2674
	/* Come back later if the device is busy... */
2675 2676 2677 2678
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2679
	}
2680
	if (!idle)
2681 2682
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2683
}
2684

2685 2686 2687 2688 2689 2690 2691
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2705
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2706 2707 2708 2709 2710 2711 2712 2713 2714
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2740
	struct drm_i915_private *dev_priv = dev->dev_private;
2741 2742
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2743
	struct intel_engine_cs *ring = NULL;
2744
	struct timespec timeout_stack, *timeout = NULL;
2745
	unsigned reset_counter;
2746 2747 2748
	u32 seqno = 0;
	int ret = 0;

2749 2750 2751 2752
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2764 2765
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2766 2767 2768 2769
	if (ret)
		goto out;

	if (obj->active) {
2770
		seqno = obj->last_read_seqno;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2786
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2787 2788
	mutex_unlock(&dev->struct_mutex);

2789
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2790
	if (timeout)
2791
		args->timeout_ns = timespec_to_ns(timeout);
2792 2793 2794 2795 2796 2797 2798 2799
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2812 2813
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2814
		     struct intel_engine_cs *to)
2815
{
2816
	struct intel_engine_cs *from = obj->ring;
2817 2818 2819 2820 2821 2822
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2823
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2824
		return i915_gem_object_wait_rendering(obj, false);
2825 2826 2827

	idx = intel_ring_sync_index(from, to);

2828
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2829 2830
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2831
	if (seqno <= from->semaphore.sync_seqno[idx])
2832 2833
		return 0;

2834 2835 2836
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2837

2838
	trace_i915_gem_ring_sync_to(from, to, seqno);
2839
	ret = to->semaphore.sync_to(to, from, seqno);
2840
	if (!ret)
2841 2842 2843 2844
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2845
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2846

2847
	return ret;
2848 2849
}

2850 2851 2852 2853 2854 2855 2856
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2857 2858 2859
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2860 2861 2862
	/* Wait for any direct GTT access to complete */
	mb();

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2874
int i915_vma_unbind(struct i915_vma *vma)
2875
{
2876
	struct drm_i915_gem_object *obj = vma->obj;
2877
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2878
	int ret;
2879

2880
	if (list_empty(&vma->vma_link))
2881 2882
		return 0;

2883 2884 2885 2886
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2887

B
Ben Widawsky 已提交
2888
	if (vma->pin_count)
2889
		return -EBUSY;
2890

2891 2892
	BUG_ON(obj->pages == NULL);

2893
	ret = i915_gem_object_finish_gpu(obj);
2894
	if (ret)
2895 2896 2897 2898 2899 2900
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2901 2902
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
2903

2904 2905 2906 2907 2908
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2909

2910
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2911

2912 2913
	vma->unbind_vma(vma);

2914
	list_del_init(&vma->mm_list);
2915
	if (i915_is_ggtt(vma->vm))
2916
		obj->map_and_fenceable = false;
2917

B
Ben Widawsky 已提交
2918 2919 2920 2921
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2922
	 * no more VMAs exist. */
2923 2924
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
2925
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2926
	}
2927

2928 2929 2930 2931 2932 2933
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2934
	return 0;
2935 2936
}

2937
int i915_gpu_idle(struct drm_device *dev)
2938
{
2939
	struct drm_i915_private *dev_priv = dev->dev_private;
2940
	struct intel_engine_cs *ring;
2941
	int ret, i;
2942 2943

	/* Flush everything onto the inactive list. */
2944
	for_each_ring(ring, dev_priv, i) {
2945
		ret = i915_switch_context(ring, ring->default_context);
2946 2947 2948
		if (ret)
			return ret;

2949
		ret = intel_ring_idle(ring);
2950 2951 2952
		if (ret)
			return ret;
	}
2953

2954
	return 0;
2955 2956
}

2957 2958
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2959
{
2960
	struct drm_i915_private *dev_priv = dev->dev_private;
2961 2962
	int fence_reg;
	int fence_pitch_shift;
2963

2964 2965 2966 2967 2968 2969 2970 2971
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

2986
	if (obj) {
2987
		u32 size = i915_gem_obj_ggtt_size(obj);
2988
		uint64_t val;
2989

2990
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2991
				 0xfffff000) << 32;
2992
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2993
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2994 2995 2996
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3007 3008
}

3009 3010
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3011
{
3012
	struct drm_i915_private *dev_priv = dev->dev_private;
3013
	u32 val;
3014

3015
	if (obj) {
3016
		u32 size = i915_gem_obj_ggtt_size(obj);
3017 3018
		int pitch_val;
		int tile_width;
3019

3020
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3021
		     (size & -size) != size ||
3022 3023 3024
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3035
		val = i915_gem_obj_ggtt_offset(obj);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3051 3052
}

3053 3054
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3055
{
3056
	struct drm_i915_private *dev_priv = dev->dev_private;
3057 3058
	uint32_t val;

3059
	if (obj) {
3060
		u32 size = i915_gem_obj_ggtt_size(obj);
3061
		uint32_t pitch_val;
3062

3063
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3064
		     (size & -size) != size ||
3065 3066 3067
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3068

3069 3070
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3071

3072
		val = i915_gem_obj_ggtt_offset(obj);
3073 3074 3075 3076 3077 3078 3079
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3080

3081 3082 3083 3084
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3085 3086 3087 3088 3089
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3090 3091 3092
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3093 3094 3095 3096 3097 3098 3099 3100
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3101 3102 3103 3104
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3105
	switch (INTEL_INFO(dev)->gen) {
3106
	case 8:
3107
	case 7:
3108
	case 6:
3109 3110 3111 3112
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3113
	default: BUG();
3114
	}
3115 3116 3117 3118 3119 3120

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3133
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134 3135 3136
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3137 3138

	if (enable) {
3139
		obj->fence_reg = reg;
3140 3141 3142 3143 3144 3145 3146
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3147
	obj->fence_dirty = false;
3148 3149
}

3150
static int
3151
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3152
{
3153
	if (obj->last_fenced_seqno) {
3154
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3155 3156
		if (ret)
			return ret;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3167
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3168
	struct drm_i915_fence_reg *fence;
3169 3170
	int ret;

3171
	ret = i915_gem_object_wait_fence(obj);
3172 3173 3174
	if (ret)
		return ret;

3175 3176
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3177

3178 3179
	fence = &dev_priv->fence_regs[obj->fence_reg];

3180 3181 3182
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3183
	i915_gem_object_fence_lost(obj);
3184
	i915_gem_object_update_fence(obj, fence, false);
3185 3186 3187 3188 3189

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3190
i915_find_fence_reg(struct drm_device *dev)
3191 3192
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3193
	struct drm_i915_fence_reg *reg, *avail;
3194
	int i;
3195 3196

	/* First try to find a free reg */
3197
	avail = NULL;
3198 3199 3200
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3201
			return reg;
3202

3203
		if (!reg->pin_count)
3204
			avail = reg;
3205 3206
	}

3207
	if (avail == NULL)
3208
		goto deadlock;
3209 3210

	/* None available, try to steal one or wait for a user to finish */
3211
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3212
		if (reg->pin_count)
3213 3214
			continue;

C
Chris Wilson 已提交
3215
		return reg;
3216 3217
	}

3218 3219 3220 3221 3222 3223
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3224 3225
}

3226
/**
3227
 * i915_gem_object_get_fence - set up fencing for an object
3228 3229 3230 3231 3232 3233 3234 3235 3236
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3237 3238
 *
 * For an untiled surface, this removes any existing fence.
3239
 */
3240
int
3241
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3242
{
3243
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3244
	struct drm_i915_private *dev_priv = dev->dev_private;
3245
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3246
	struct drm_i915_fence_reg *reg;
3247
	int ret;
3248

3249 3250 3251
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3252
	if (obj->fence_dirty) {
3253
		ret = i915_gem_object_wait_fence(obj);
3254 3255 3256
		if (ret)
			return ret;
	}
3257

3258
	/* Just update our place in the LRU if our fence is getting reused. */
3259 3260
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3261
		if (!obj->fence_dirty) {
3262 3263 3264 3265 3266
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3267 3268 3269
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3270
		reg = i915_find_fence_reg(dev);
3271 3272
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3273

3274 3275 3276
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3277
			ret = i915_gem_object_wait_fence(old);
3278 3279 3280
			if (ret)
				return ret;

3281
			i915_gem_object_fence_lost(old);
3282
		}
3283
	} else
3284 3285
		return 0;

3286 3287
	i915_gem_object_update_fence(obj, reg, enable);

3288
	return 0;
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
3299
	 * crossing memory domains and dying.
3300 3301 3302 3303
	 */
	if (HAS_LLC(dev))
		return true;

3304
	if (!drm_mm_node_allocated(gtt_space))
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

3328
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3329 3330 3331 3332 3333 3334 3335 3336
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3337 3338
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3349 3350
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

3361 3362 3363
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3364
static struct i915_vma *
3365 3366 3367
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3368
			   uint64_t flags)
3369
{
3370
	struct drm_device *dev = obj->base.dev;
3371
	struct drm_i915_private *dev_priv = dev->dev_private;
3372
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3373 3374 3375
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3376
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3377
	struct i915_vma *vma;
3378
	int ret;
3379

3380 3381 3382 3383 3384
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3385
						     obj->tiling_mode, true);
3386
	unfenced_alignment =
3387
		i915_gem_get_gtt_alignment(dev,
3388 3389
					   obj->base.size,
					   obj->tiling_mode, false);
3390

3391
	if (alignment == 0)
3392
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3393
						unfenced_alignment;
3394
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3395
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3396
		return ERR_PTR(-EINVAL);
3397 3398
	}

3399
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3400

3401 3402 3403
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3404 3405
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3406
			  obj->base.size,
3407
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3408
			  end);
3409
		return ERR_PTR(-E2BIG);
3410 3411
	}

3412
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3413
	if (ret)
3414
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3415

3416 3417
	i915_gem_object_pin_pages(obj);

3418
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3419
	if (IS_ERR(vma))
3420
		goto err_unpin;
B
Ben Widawsky 已提交
3421

3422
search_free:
3423
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3424
						  size, alignment,
3425 3426
						  obj->cache_level,
						  start, end,
3427 3428
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3429
	if (ret) {
3430
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3431 3432 3433
					       obj->cache_level,
					       start, end,
					       flags);
3434 3435
		if (ret == 0)
			goto search_free;
3436

3437
		goto err_free_vma;
3438
	}
B
Ben Widawsky 已提交
3439
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3440
					      obj->cache_level))) {
B
Ben Widawsky 已提交
3441
		ret = -EINVAL;
3442
		goto err_remove_node;
3443 3444
	}

3445
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3446
	if (ret)
3447
		goto err_remove_node;
3448

3449
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3450
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3451

3452 3453
	if (i915_is_ggtt(vm)) {
		bool mappable, fenceable;
3454

3455 3456
		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);
3457

3458 3459
		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);
3460

3461
		obj->map_and_fenceable = mappable && fenceable;
3462
	}
3463

3464
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3465

3466
	trace_i915_vma_bind(vma, flags);
3467 3468 3469
	vma->bind_vma(vma, obj->cache_level,
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);

3470
	i915_gem_verify_gtt(dev);
3471
	return vma;
B
Ben Widawsky 已提交
3472

3473
err_remove_node:
3474
	drm_mm_remove_node(&vma->node);
3475
err_free_vma:
B
Ben Widawsky 已提交
3476
	i915_gem_vma_destroy(vma);
3477
	vma = ERR_PTR(ret);
3478
err_unpin:
B
Ben Widawsky 已提交
3479
	i915_gem_object_unpin_pages(obj);
3480
	return vma;
3481 3482
}

3483
bool
3484 3485
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3486 3487 3488 3489 3490
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3491
	if (obj->pages == NULL)
3492
		return false;
3493

3494 3495 3496 3497 3498
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
	if (obj->stolen)
3499
		return false;
3500

3501 3502 3503 3504 3505 3506 3507 3508
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3509
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3510
		return false;
3511

C
Chris Wilson 已提交
3512
	trace_i915_gem_object_clflush(obj);
3513
	drm_clflush_sg(obj->pages);
3514 3515

	return true;
3516 3517 3518 3519
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3520
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3521
{
C
Chris Wilson 已提交
3522 3523
	uint32_t old_write_domain;

3524
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3525 3526
		return;

3527
	/* No actual flushing is required for the GTT write domain.  Writes
3528 3529
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3530 3531 3532 3533
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3534
	 */
3535 3536
	wmb();

3537 3538
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3539

3540 3541
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3542
	trace_i915_gem_object_change_domain(obj,
3543
					    obj->base.read_domains,
C
Chris Wilson 已提交
3544
					    old_write_domain);
3545 3546 3547 3548
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3549 3550
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3551
{
C
Chris Wilson 已提交
3552
	uint32_t old_write_domain;
3553

3554
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3555 3556
		return;

3557 3558 3559
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3560 3561
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3562

3563 3564
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3565
	trace_i915_gem_object_change_domain(obj,
3566
					    obj->base.read_domains,
C
Chris Wilson 已提交
3567
					    old_write_domain);
3568 3569
}

3570 3571 3572 3573 3574 3575
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3576
int
3577
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3578
{
3579
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3580
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3581
	uint32_t old_write_domain, old_read_domains;
3582
	int ret;
3583

3584
	/* Not valid to be called on unbound objects. */
3585
	if (vma == NULL)
3586 3587
		return -EINVAL;

3588 3589 3590
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3591
	ret = i915_gem_object_wait_rendering(obj, !write);
3592 3593 3594
	if (ret)
		return ret;

3595
	i915_gem_object_retire(obj);
3596
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3597

3598 3599 3600 3601 3602 3603 3604
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3605 3606
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3607

3608 3609 3610
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3611 3612
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3613
	if (write) {
3614 3615 3616
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3617 3618
	}

3619 3620 3621
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3622 3623 3624 3625
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3626
	/* And bump the LRU for this access */
3627 3628 3629
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3630

3631 3632 3633
	return 0;
}

3634 3635 3636
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3637
	struct drm_device *dev = obj->base.dev;
3638
	struct i915_vma *vma, *next;
3639 3640 3641 3642 3643
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3644
	if (i915_gem_obj_is_pinned(obj)) {
3645 3646 3647 3648
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3649
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3650
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3651
			ret = i915_vma_unbind(vma);
3652 3653 3654
			if (ret)
				return ret;
		}
3655 3656
	}

3657
	if (i915_gem_obj_bound_any(obj)) {
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3668
		if (INTEL_INFO(dev)->gen < 6) {
3669 3670 3671 3672 3673
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3674
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3675 3676 3677
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3678 3679
	}

3680 3681 3682 3683 3684
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3685 3686 3687 3688 3689 3690 3691 3692
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3693
		i915_gem_object_retire(obj);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

3707
	i915_gem_verify_gtt(dev);
3708 3709 3710
	return 0;
}

B
Ben Widawsky 已提交
3711 3712
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3713
{
B
Ben Widawsky 已提交
3714
	struct drm_i915_gem_caching *args = data;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3728 3729 3730 3731 3732 3733
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3734 3735 3736 3737
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3738 3739 3740 3741
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3742 3743 3744 3745 3746 3747 3748

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3749 3750
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3751
{
B
Ben Widawsky 已提交
3752
	struct drm_i915_gem_caching *args = data;
3753 3754 3755 3756
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3757 3758
	switch (args->caching) {
	case I915_CACHING_NONE:
3759 3760
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3761
	case I915_CACHING_CACHED:
3762 3763
		level = I915_CACHE_LLC;
		break;
3764 3765 3766
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3767 3768 3769 3770
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3771 3772 3773 3774
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3789 3790
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3791 3792 3793 3794 3795 3796
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3808
	return vma->pin_count - !!obj->user_pin_count;
3809 3810
}

3811
/*
3812 3813 3814
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3815 3816
 */
int
3817 3818
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3819
				     struct intel_engine_cs *pipelined)
3820
{
3821
	u32 old_read_domains, old_write_domain;
3822
	bool was_pin_display;
3823 3824
	int ret;

3825
	if (pipelined != obj->ring) {
3826 3827
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3828 3829 3830
			return ret;
	}

3831 3832 3833
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3834
	was_pin_display = obj->pin_display;
3835 3836
	obj->pin_display = true;

3837 3838 3839 3840 3841 3842 3843 3844 3845
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3846 3847
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3848
	if (ret)
3849
		goto err_unpin_display;
3850

3851 3852 3853 3854
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3855
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3856
	if (ret)
3857
		goto err_unpin_display;
3858

3859
	i915_gem_object_flush_cpu_write_domain(obj, true);
3860

3861
	old_write_domain = obj->base.write_domain;
3862
	old_read_domains = obj->base.read_domains;
3863 3864 3865 3866

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3867
	obj->base.write_domain = 0;
3868
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3869 3870 3871

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3872
					    old_write_domain);
3873 3874

	return 0;
3875 3876

err_unpin_display:
3877 3878
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3879 3880 3881 3882 3883 3884
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3885
	i915_gem_object_ggtt_unpin(obj);
3886
	obj->pin_display = is_pin_display(obj);
3887 3888
}

3889
int
3890
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3891
{
3892 3893
	int ret;

3894
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3895 3896
		return 0;

3897
	ret = i915_gem_object_wait_rendering(obj, false);
3898 3899 3900
	if (ret)
		return ret;

3901 3902
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3903
	return 0;
3904 3905
}

3906 3907 3908 3909 3910 3911
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3912
int
3913
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3914
{
C
Chris Wilson 已提交
3915
	uint32_t old_write_domain, old_read_domains;
3916 3917
	int ret;

3918 3919 3920
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3921
	ret = i915_gem_object_wait_rendering(obj, !write);
3922 3923 3924
	if (ret)
		return ret;

3925
	i915_gem_object_retire(obj);
3926
	i915_gem_object_flush_gtt_write_domain(obj);
3927

3928 3929
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3930

3931
	/* Flush the CPU cache if it's still invalid. */
3932
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3933
		i915_gem_clflush_object(obj, false);
3934

3935
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3936 3937 3938 3939 3940
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3941
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3942 3943 3944 3945 3946

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3947 3948
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3949
	}
3950

3951 3952 3953
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3954 3955 3956 3957
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3958 3959 3960
	return 0;
}

3961 3962 3963
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3964 3965 3966 3967
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3968 3969 3970
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3971
static int
3972
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3973
{
3974 3975
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3976
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3977
	struct drm_i915_gem_request *request;
3978
	struct intel_engine_cs *ring = NULL;
3979
	unsigned reset_counter;
3980 3981
	u32 seqno = 0;
	int ret;
3982

3983 3984 3985 3986 3987 3988 3989
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
3990

3991
	spin_lock(&file_priv->mm.lock);
3992
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3993 3994
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3995

3996 3997
		ring = request->ring;
		seqno = request->seqno;
3998
	}
3999
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4000
	spin_unlock(&file_priv->mm.lock);
4001

4002 4003
	if (seqno == 0)
		return 0;
4004

4005
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4006 4007
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4008 4009 4010 4011

	return ret;
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4031
int
4032
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4033
		    struct i915_address_space *vm,
4034
		    uint32_t alignment,
4035
		    uint64_t flags)
4036
{
4037
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4038
	struct i915_vma *vma;
4039 4040
	int ret;

4041 4042 4043
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4044
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4045
		return -EINVAL;
4046 4047 4048

	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4049 4050 4051
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4052
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4053
			WARN(vma->pin_count,
4054
			     "bo is already pinned with incorrect alignment:"
4055
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4056
			     " obj->map_and_fenceable=%d\n",
4057
			     i915_gem_obj_offset(obj, vm), alignment,
4058
			     !!(flags & PIN_MAPPABLE),
4059
			     obj->map_and_fenceable);
4060
			ret = i915_vma_unbind(vma);
4061 4062
			if (ret)
				return ret;
4063 4064

			vma = NULL;
4065 4066 4067
		}
	}

4068
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4069 4070 4071
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4072
	}
J
Jesse Barnes 已提交
4073

4074 4075
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4076

4077
	vma->pin_count++;
4078 4079
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4080 4081 4082 4083 4084

	return 0;
}

void
B
Ben Widawsky 已提交
4085
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4086
{
B
Ben Widawsky 已提交
4087
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4088

B
Ben Widawsky 已提交
4089 4090 4091 4092 4093
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4094
		obj->pin_mappable = false;
4095 4096
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4123 4124
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4125
		   struct drm_file *file)
4126 4127
{
	struct drm_i915_gem_pin *args = data;
4128
	struct drm_i915_gem_object *obj;
4129 4130
	int ret;

4131 4132 4133
	if (INTEL_INFO(dev)->gen >= 6)
		return -ENODEV;

4134 4135 4136
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4137

4138
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4139
	if (&obj->base == NULL) {
4140 4141
		ret = -ENOENT;
		goto unlock;
4142 4143
	}

4144
	if (obj->madv != I915_MADV_WILLNEED) {
4145
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4146
		ret = -EFAULT;
4147
		goto out;
4148 4149
	}

4150
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4151
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4152
			  args->handle);
4153 4154
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4155 4156
	}

4157 4158 4159 4160 4161
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4162
	if (obj->user_pin_count == 0) {
4163
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4164 4165
		if (ret)
			goto out;
4166 4167
	}

4168 4169 4170
	obj->user_pin_count++;
	obj->pin_filp = file;

4171
	args->offset = i915_gem_obj_ggtt_offset(obj);
4172
out:
4173
	drm_gem_object_unreference(&obj->base);
4174
unlock:
4175
	mutex_unlock(&dev->struct_mutex);
4176
	return ret;
4177 4178 4179 4180
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4181
		     struct drm_file *file)
4182 4183
{
	struct drm_i915_gem_pin *args = data;
4184
	struct drm_i915_gem_object *obj;
4185
	int ret;
4186

4187 4188 4189
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4190

4191
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4192
	if (&obj->base == NULL) {
4193 4194
		ret = -ENOENT;
		goto unlock;
4195
	}
4196

4197
	if (obj->pin_filp != file) {
4198
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4199
			  args->handle);
4200 4201
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4202
	}
4203 4204 4205
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4206
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4207
	}
4208

4209
out:
4210
	drm_gem_object_unreference(&obj->base);
4211
unlock:
4212
	mutex_unlock(&dev->struct_mutex);
4213
	return ret;
4214 4215 4216 4217
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218
		    struct drm_file *file)
4219 4220
{
	struct drm_i915_gem_busy *args = data;
4221
	struct drm_i915_gem_object *obj;
4222 4223
	int ret;

4224
	ret = i915_mutex_lock_interruptible(dev);
4225
	if (ret)
4226
		return ret;
4227

4228
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4229
	if (&obj->base == NULL) {
4230 4231
		ret = -ENOENT;
		goto unlock;
4232
	}
4233

4234 4235 4236 4237
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4238
	 */
4239
	ret = i915_gem_object_flush_active(obj);
4240

4241
	args->busy = obj->active;
4242 4243 4244 4245
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4246

4247
	drm_gem_object_unreference(&obj->base);
4248
unlock:
4249
	mutex_unlock(&dev->struct_mutex);
4250
	return ret;
4251 4252 4253 4254 4255 4256
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4257
	return i915_gem_ring_throttle(dev, file_priv);
4258 4259
}

4260 4261 4262 4263 4264
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
4265
	struct drm_i915_gem_object *obj;
4266
	int ret;
4267 4268 4269 4270 4271 4272 4273 4274 4275

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4276 4277 4278 4279
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4280
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281
	if (&obj->base == NULL) {
4282 4283
		ret = -ENOENT;
		goto unlock;
4284 4285
	}

B
Ben Widawsky 已提交
4286
	if (i915_gem_obj_is_pinned(obj)) {
4287 4288
		ret = -EINVAL;
		goto out;
4289 4290
	}

4291 4292
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4293

C
Chris Wilson 已提交
4294 4295
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4296 4297
		i915_gem_object_truncate(obj);

4298
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4299

4300
out:
4301
	drm_gem_object_unreference(&obj->base);
4302
unlock:
4303
	mutex_unlock(&dev->struct_mutex);
4304
	return ret;
4305 4306
}

4307 4308
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4309
{
4310
	INIT_LIST_HEAD(&obj->global_list);
4311
	INIT_LIST_HEAD(&obj->ring_list);
4312
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4313
	INIT_LIST_HEAD(&obj->vma_list);
4314

4315 4316
	obj->ops = ops;

4317 4318 4319 4320 4321 4322
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4323 4324 4325 4326 4327
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4328 4329
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4330
{
4331
	struct drm_i915_gem_object *obj;
4332
	struct address_space *mapping;
D
Daniel Vetter 已提交
4333
	gfp_t mask;
4334

4335
	obj = i915_gem_object_alloc(dev);
4336 4337
	if (obj == NULL)
		return NULL;
4338

4339
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4340
		i915_gem_object_free(obj);
4341 4342
		return NULL;
	}
4343

4344 4345 4346 4347 4348 4349 4350
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4351
	mapping = file_inode(obj->base.filp)->i_mapping;
4352
	mapping_set_gfp_mask(mapping, mask);
4353

4354
	i915_gem_object_init(obj, &i915_gem_object_ops);
4355

4356 4357
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4358

4359 4360
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4376 4377
	trace_i915_gem_object_create(obj);

4378
	return obj;
4379 4380
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4405
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4406
{
4407
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4408
	struct drm_device *dev = obj->base.dev;
4409
	struct drm_i915_private *dev_priv = dev->dev_private;
4410
	struct i915_vma *vma, *next;
4411

4412 4413
	intel_runtime_pm_get(dev_priv);

4414 4415
	trace_i915_gem_object_destroy(obj);

4416
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4417 4418 4419 4420
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4421 4422
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4423

4424 4425
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4426

4427
			WARN_ON(i915_vma_unbind(vma));
4428

4429 4430
			dev_priv->mm.interruptible = was_interruptible;
		}
4431 4432
	}

4433 4434
	i915_gem_object_detach_phys(obj);

B
Ben Widawsky 已提交
4435 4436 4437 4438 4439
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4440 4441
	WARN_ON(obj->frontbuffer_bits);

B
Ben Widawsky 已提交
4442 4443
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4444
	if (discard_backing_storage(obj))
4445
		obj->madv = I915_MADV_DONTNEED;
4446
	i915_gem_object_put_pages(obj);
4447
	i915_gem_object_free_mmap_offset(obj);
4448

4449 4450
	BUG_ON(obj->pages);

4451 4452
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4453

4454 4455 4456
	if (obj->ops->release)
		obj->ops->release(obj);

4457 4458
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4459

4460
	kfree(obj->bit_17);
4461
	i915_gem_object_free(obj);
4462 4463

	intel_runtime_pm_put(dev_priv);
4464 4465
}

4466
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4467
				     struct i915_address_space *vm)
4468 4469 4470 4471 4472 4473 4474 4475 4476
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4477 4478
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4479
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4480
	WARN_ON(vma->node.allocated);
4481 4482 4483 4484 4485

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4486 4487
	vm = vma->vm;

4488 4489
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4490

4491
	list_del(&vma->vma_link);
4492

B
Ben Widawsky 已提交
4493 4494 4495
	kfree(vma);
}

4496 4497 4498 4499
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4500
	struct intel_engine_cs *ring;
4501 4502 4503
	int i;

	for_each_ring(ring, dev_priv, i)
4504
		dev_priv->gt.stop_ring(ring);
4505 4506
}

4507
int
4508
i915_gem_suspend(struct drm_device *dev)
4509
{
4510
	struct drm_i915_private *dev_priv = dev->dev_private;
4511
	int ret = 0;
4512

4513
	mutex_lock(&dev->struct_mutex);
4514
	if (dev_priv->ums.mm_suspended)
4515
		goto err;
4516

4517
	ret = i915_gpu_idle(dev);
4518
	if (ret)
4519
		goto err;
4520

4521
	i915_gem_retire_requests(dev);
4522

4523
	/* Under UMS, be paranoid and evict. */
4524
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4525
		i915_gem_evict_everything(dev);
4526 4527

	i915_kernel_lost_context(dev);
4528
	i915_gem_stop_ringbuffers(dev);
4529

4530 4531 4532 4533 4534 4535 4536 4537 4538
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound ums.mm_suspended!
	 */
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
							     DRIVER_MODESET);
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4539
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4540
	flush_delayed_work(&dev_priv->mm.idle_work);
4541

4542
	return 0;
4543 4544 4545 4546

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4547 4548
}

4549
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4550
{
4551
	struct drm_device *dev = ring->dev;
4552
	struct drm_i915_private *dev_priv = dev->dev_private;
4553 4554
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4555
	int i, ret;
B
Ben Widawsky 已提交
4556

4557
	if (!HAS_L3_DPF(dev) || !remap_info)
4558
		return 0;
B
Ben Widawsky 已提交
4559

4560 4561 4562
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4563

4564 4565 4566 4567 4568
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4569
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4570 4571 4572
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4573 4574
	}

4575
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4576

4577
	return ret;
B
Ben Widawsky 已提交
4578 4579
}

4580 4581
void i915_gem_init_swizzling(struct drm_device *dev)
{
4582
	struct drm_i915_private *dev_priv = dev->dev_private;
4583

4584
	if (INTEL_INFO(dev)->gen < 5 ||
4585 4586 4587 4588 4589 4590
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4591 4592 4593
	if (IS_GEN5(dev))
		return;

4594 4595
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4596
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4597
	else if (IS_GEN7(dev))
4598
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4599 4600
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4601 4602
	else
		BUG();
4603
}
D
Daniel Vetter 已提交
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4621
int i915_gem_init_rings(struct drm_device *dev)
4622
{
4623
	struct drm_i915_private *dev_priv = dev->dev_private;
4624
	int ret;
4625

4626
	ret = intel_init_render_ring_buffer(dev);
4627
	if (ret)
4628
		return ret;
4629 4630

	if (HAS_BSD(dev)) {
4631
		ret = intel_init_bsd_ring_buffer(dev);
4632 4633
		if (ret)
			goto cleanup_render_ring;
4634
	}
4635

4636
	if (intel_enable_blt(dev)) {
4637 4638 4639 4640 4641
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4642 4643 4644 4645 4646 4647
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4648 4649 4650 4651 4652
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4653

4654
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4655
	if (ret)
4656
		goto cleanup_bsd2_ring;
4657 4658 4659

	return 0;

4660 4661
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4662 4663
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4677
	struct drm_i915_private *dev_priv = dev->dev_private;
4678
	int ret, i;
4679 4680 4681 4682

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4683
	if (dev_priv->ellc_size)
4684
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4685

4686 4687 4688
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4689

4690
	if (HAS_PCH_NOP(dev)) {
4691 4692 4693 4694 4695 4696 4697 4698 4699
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4700 4701
	}

4702 4703
	i915_gem_init_swizzling(dev);

4704
	ret = dev_priv->gt.init_rings(dev);
4705 4706 4707
	if (ret)
		return ret;

4708 4709 4710
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4711
	/*
4712 4713 4714 4715 4716
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4717
	 */
4718
	ret = i915_gem_context_enable(dev_priv);
4719
	if (ret && ret != -EIO) {
4720
		DRM_ERROR("Context enable failed %d\n", ret);
4721
		i915_gem_cleanup_ringbuffer(dev);
4722
	}
D
Daniel Vetter 已提交
4723

4724
	return ret;
4725 4726
}

4727 4728 4729 4730 4731
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4732 4733 4734
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4735
	mutex_lock(&dev->struct_mutex);
4736 4737 4738

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4739 4740 4741
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4742 4743 4744
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4745 4746 4747 4748 4749
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4750 4751 4752 4753 4754
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4755 4756
	}

4757
	i915_gem_init_userptr(dev);
4758
	i915_gem_init_global_gtt(dev);
4759

4760
	ret = i915_gem_context_init(dev);
4761 4762
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4763
		return ret;
4764
	}
4765

4766
	ret = i915_gem_init_hw(dev);
4767 4768 4769 4770 4771 4772 4773 4774
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4775
	}
4776
	mutex_unlock(&dev->struct_mutex);
4777

4778 4779 4780
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4781
	return ret;
4782 4783
}

4784 4785 4786
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4787
	struct drm_i915_private *dev_priv = dev->dev_private;
4788
	struct intel_engine_cs *ring;
4789
	int i;
4790

4791
	for_each_ring(ring, dev_priv, i)
4792
		dev_priv->gt.cleanup_ring(ring);
4793 4794
}

4795 4796 4797 4798
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4799
	struct drm_i915_private *dev_priv = dev->dev_private;
4800
	int ret;
4801

J
Jesse Barnes 已提交
4802 4803 4804
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4805
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4806
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4807
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4808 4809 4810
	}

	mutex_lock(&dev->struct_mutex);
4811
	dev_priv->ums.mm_suspended = 0;
4812

4813
	ret = i915_gem_init_hw(dev);
4814 4815
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4816
		return ret;
4817
	}
4818

4819
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4820

4821
	ret = drm_irq_install(dev, dev->pdev->irq);
4822 4823
	if (ret)
		goto cleanup_ringbuffer;
4824
	mutex_unlock(&dev->struct_mutex);
4825

4826
	return 0;
4827 4828 4829

cleanup_ringbuffer:
	i915_gem_cleanup_ringbuffer(dev);
4830
	dev_priv->ums.mm_suspended = 1;
4831 4832 4833
	mutex_unlock(&dev->struct_mutex);

	return ret;
4834 4835 4836 4837 4838 4839
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4840 4841 4842
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4843
	mutex_lock(&dev->struct_mutex);
4844
	drm_irq_uninstall(dev);
4845
	mutex_unlock(&dev->struct_mutex);
4846

4847
	return i915_gem_suspend(dev);
4848 4849 4850 4851 4852 4853 4854
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4855 4856 4857
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4858
	ret = i915_gem_suspend(dev);
4859 4860
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4861 4862
}

4863
static void
4864
init_ring_lists(struct intel_engine_cs *ring)
4865 4866 4867 4868 4869
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4870 4871
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4872
{
4873 4874
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4875 4876 4877 4878
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4879
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4880 4881
}

4882 4883 4884
void
i915_gem_load(struct drm_device *dev)
{
4885
	struct drm_i915_private *dev_priv = dev->dev_private;
4886 4887 4888 4889 4890 4891 4892
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4893

B
Ben Widawsky 已提交
4894 4895 4896
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4897
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4898 4899
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4900
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4901 4902
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4903
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4904
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4905 4906
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4907 4908
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4909
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4910

4911
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4912
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4913 4914
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4915 4916
	}

4917 4918
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4919
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4920 4921
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4922

4923 4924 4925
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4926 4927 4928 4929
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4930
	/* Initialize fence registers to zero */
4931 4932
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4933

4934
	i915_gem_detect_bit_6_swizzle(dev);
4935
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4936

4937 4938
	dev_priv->mm.interruptible = true;

4939 4940 4941 4942
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4943 4944 4945

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4946 4947

	mutex_init(&dev_priv->fb_tracking.lock);
4948
}
4949

4950
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4951
{
4952
	struct drm_i915_file_private *file_priv = file->driver_priv;
4953

4954 4955
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4956 4957 4958 4959
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4960
	spin_lock(&file_priv->mm.lock);
4961 4962 4963 4964 4965 4966 4967 4968 4969
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4970
	spin_unlock(&file_priv->mm.lock);
4971
}
4972

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4985
	int ret;
4986 4987 4988 4989 4990 4991 4992 4993 4994

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
4995
	file_priv->file = file;
4996 4997 4998 4999 5000 5001

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5002 5003 5004
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5005

5006
	return ret;
5007 5008
}

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5067
static unsigned long
5068
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5069
{
5070
	struct drm_i915_private *dev_priv =
5071
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5072
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5073
	struct drm_i915_gem_object *obj;
5074
	unsigned long count;
5075
	bool unlock;
5076

5077 5078
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5079

5080
	count = 0;
5081
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5082
		if (obj->pages_pin_count == 0)
5083
			count += obj->base.size >> PAGE_SHIFT;
5084 5085

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5086 5087
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5088
			count += obj->base.size >> PAGE_SHIFT;
5089
	}
5090

5091 5092
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5093

5094
	return count;
5095
}
5096 5097 5098 5099 5100 5101 5102 5103

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5104 5105
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5106 5107 5108 5109 5110 5111 5112
		vm = &dev_priv->gtt.base;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5113 5114
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5115 5116 5117 5118 5119 5120 5121 5122 5123
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5124
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5125 5126 5127 5128 5129 5130 5131
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5132
	struct i915_vma *vma;
5133

5134 5135
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5147 5148
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
		vm = &dev_priv->gtt.base;

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5160
static unsigned long
5161
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5162 5163
{
	struct drm_i915_private *dev_priv =
5164
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5165 5166
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5167
	bool unlock;
5168

5169 5170
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5171

5172 5173 5174 5175 5176
	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
	if (freed < sc->nr_to_scan)
		freed += __i915_gem_shrink(dev_priv,
					   sc->nr_to_scan - freed,
					   false);
5177 5178
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5179

5180 5181
	return freed;
}
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
	unsigned long pinned, bound, unbound, freed;
	bool was_interruptible;
	bool unlock;

5195
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5196
		schedule_timeout_killable(1);
5197 5198 5199
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	freed = i915_gem_shrink_all(dev_priv);

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
		freed, pinned);
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

	*(unsigned long *)ptr += freed;
	return NOTIFY_DONE;
}

5250 5251 5252 5253 5254
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5255
	if (vma->vm != i915_obj_to_ggtt(obj))
5256 5257 5258 5259
		return NULL;

	return vma;
}