i915_gem.c 133.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
52
				struct drm_i915_gem_pwrite *args,
53
				struct drm_file *file);
54

55 56 57 58 59 60
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

61
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
62
					     struct shrink_control *sc);
63
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
64
					    struct shrink_control *sc);
65 66 67
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
68 69
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
70

71 72 73 74 75 76
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

77 78 79 80 81 82 83 84
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

85 86 87 88 89 90 91 92
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
93
	obj->fence_dirty = false;
94 95 96
	obj->fence_reg = I915_FENCE_REG_NONE;
}

97 98 99 100
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
101
	spin_lock(&dev_priv->mm.object_stat_lock);
102 103
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
104
	spin_unlock(&dev_priv->mm.object_stat_lock);
105 106 107 108 109
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
110
	spin_lock(&dev_priv->mm.object_stat_lock);
111 112
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
113
	spin_unlock(&dev_priv->mm.object_stat_lock);
114 115
}

116
static int
117
i915_gem_wait_for_error(struct i915_gpu_error *error)
118 119 120
{
	int ret;

121 122
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
123
	if (EXIT_COND)
124 125
		return 0;

126 127 128 129 130
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
131 132 133
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
134 135 136 137
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
138
		return ret;
139
	}
140
#undef EXIT_COND
141

142
	return 0;
143 144
}

145
int i915_mutex_lock_interruptible(struct drm_device *dev)
146
{
147
	struct drm_i915_private *dev_priv = dev->dev_private;
148 149
	int ret;

150
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 152 153 154 155 156 157
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

158
	WARN_ON(i915_verify_lists(dev));
159 160
	return 0;
}
161

162
static inline bool
163
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164
{
165
	return i915_gem_obj_bound_any(obj) && !obj->active;
166 167
}

J
Jesse Barnes 已提交
168 169
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
170
		    struct drm_file *file)
J
Jesse Barnes 已提交
171
{
172
	struct drm_i915_private *dev_priv = dev->dev_private;
J
Jesse Barnes 已提交
173
	struct drm_i915_gem_init *args = data;
174

175 176 177
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

178 179 180
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
181

182 183 184 185
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
186
	mutex_lock(&dev->struct_mutex);
187 188
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
				  args->gtt_end);
189
	dev_priv->gtt.mappable_end = args->gtt_end;
190 191
	mutex_unlock(&dev->struct_mutex);

192
	return 0;
193 194
}

195 196
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197
			    struct drm_file *file)
198
{
199
	struct drm_i915_private *dev_priv = dev->dev_private;
200
	struct drm_i915_gem_get_aperture *args = data;
201 202
	struct drm_i915_gem_object *obj;
	size_t pinned;
203

204
	pinned = 0;
205
	mutex_lock(&dev->struct_mutex);
206
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
207
		if (i915_gem_obj_is_pinned(obj))
208
			pinned += i915_gem_obj_ggtt_size(obj);
209
	mutex_unlock(&dev->struct_mutex);
210

211
	args->aper_size = dev_priv->gtt.base.total;
212
	args->aper_available_size = args->aper_size - pinned;
213

214 215 216
	return 0;
}

217 218 219
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
220
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 222 223 224 225 226 227 228
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

229 230 231 232 233
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
234
{
235
	struct drm_i915_gem_object *obj;
236 237
	int ret;
	u32 handle;
238

239
	size = roundup(size, PAGE_SIZE);
240 241
	if (size == 0)
		return -EINVAL;
242 243

	/* Allocate the new object */
244
	obj = i915_gem_alloc_object(dev, size);
245 246 247
	if (obj == NULL)
		return -ENOMEM;

248
	ret = drm_gem_handle_create(file, &obj->base, &handle);
249
	/* drop reference from allocate - handle holds it now */
250 251 252
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
253

254
	*handle_p = handle;
255 256 257
	return 0;
}

258 259 260 261 262 263
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
264
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 266 267 268 269 270 271 272 273 274 275 276 277
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
278

279 280 281 282
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

309
static inline int
310 311
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
360 361

		i915_gem_object_retire(obj);
362 363 364 365 366 367 368 369 370 371 372
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

373 374 375
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
376
static int
377 378 379 380 381 382 383
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

384
	if (unlikely(page_do_bit17_swizzling))
385 386 387 388 389 390 391 392 393 394 395
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

396
	return ret ? -EFAULT : 0;
397 398
}

399 400 401 402
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
403
	if (unlikely(swizzled)) {
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

421 422 423 424 425 426 427 428 429 430 431 432
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
433 434 435
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
436 437 438 439 440 441 442 443 444 445 446

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

447
	return ret ? - EFAULT : 0;
448 449
}

450
static int
451 452 453 454
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
455
{
456
	char __user *user_data;
457
	ssize_t remain;
458
	loff_t offset;
459
	int shmem_page_offset, page_length, ret = 0;
460
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
461
	int prefaulted = 0;
462
	int needs_clflush = 0;
463
	struct sg_page_iter sg_iter;
464

V
Ville Syrjälä 已提交
465
	user_data = to_user_ptr(args->data_ptr);
466 467
	remain = args->size;

468
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
469

470
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
471 472 473
	if (ret)
		return ret;

474
	offset = args->offset;
475

476 477
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
478
		struct page *page = sg_page_iter_page(&sg_iter);
479 480 481 482

		if (remain <= 0)
			break;

483 484 485 486 487
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
488
		shmem_page_offset = offset_in_page(offset);
489 490 491 492
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

493 494 495
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

496 497 498 499 500
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
501 502 503

		mutex_unlock(&dev->struct_mutex);

504
		if (likely(!i915.prefault_disable) && !prefaulted) {
505
			ret = fault_in_multipages_writeable(user_data, remain);
506 507 508 509 510 511 512
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
513

514 515 516
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
517

518
		mutex_lock(&dev->struct_mutex);
519 520

		if (ret)
521 522
			goto out;

523
next_page:
524
		remain -= page_length;
525
		user_data += page_length;
526 527 528
		offset += page_length;
	}

529
out:
530 531
	i915_gem_object_unpin_pages(obj);

532 533 534
	return ret;
}

535 536 537 538 539 540 541
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
542
		     struct drm_file *file)
543 544
{
	struct drm_i915_gem_pread *args = data;
545
	struct drm_i915_gem_object *obj;
546
	int ret = 0;
547

548 549 550 551
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
552
		       to_user_ptr(args->data_ptr),
553 554 555
		       args->size))
		return -EFAULT;

556
	ret = i915_mutex_lock_interruptible(dev);
557
	if (ret)
558
		return ret;
559

560
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
561
	if (&obj->base == NULL) {
562 563
		ret = -ENOENT;
		goto unlock;
564
	}
565

566
	/* Bounds check source.  */
567 568
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
569
		ret = -EINVAL;
570
		goto out;
C
Chris Wilson 已提交
571 572
	}

573 574 575 576 577 578 579 580
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
581 582
	trace_i915_gem_object_pread(obj, args->offset, args->size);

583
	ret = i915_gem_shmem_pread(dev, obj, args, file);
584

585
out:
586
	drm_gem_object_unreference(&obj->base);
587
unlock:
588
	mutex_unlock(&dev->struct_mutex);
589
	return ret;
590 591
}

592 593
/* This is the fast write path which cannot handle
 * page faults in the source data
594
 */
595 596 597 598 599 600

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
601
{
602 603
	void __iomem *vaddr_atomic;
	void *vaddr;
604
	unsigned long unwritten;
605

P
Peter Zijlstra 已提交
606
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
607 608 609
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
610
						      user_data, length);
P
Peter Zijlstra 已提交
611
	io_mapping_unmap_atomic(vaddr_atomic);
612
	return unwritten;
613 614
}

615 616 617 618
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
619
static int
620 621
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
622
			 struct drm_i915_gem_pwrite *args,
623
			 struct drm_file *file)
624
{
625
	struct drm_i915_private *dev_priv = dev->dev_private;
626
	ssize_t remain;
627
	loff_t offset, page_base;
628
	char __user *user_data;
D
Daniel Vetter 已提交
629 630
	int page_offset, page_length, ret;

631
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
632 633 634 635 636 637 638 639 640 641
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
642

V
Ville Syrjälä 已提交
643
	user_data = to_user_ptr(args->data_ptr);
644 645
	remain = args->size;

646
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
647 648 649 650

	while (remain > 0) {
		/* Operation in this page
		 *
651 652 653
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
654
		 */
655 656
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
657 658 659 660 661
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
662 663
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
664
		 */
B
Ben Widawsky 已提交
665
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
666 667 668 669
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
670

671 672 673
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
674 675
	}

D
Daniel Vetter 已提交
676
out_unpin:
B
Ben Widawsky 已提交
677
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
678
out:
679
	return ret;
680 681
}

682 683 684 685
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
686
static int
687 688 689 690 691
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
692
{
693
	char *vaddr;
694
	int ret;
695

696
	if (unlikely(page_do_bit17_swizzling))
697
		return -EINVAL;
698

699 700 701 702
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
703 704
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
705 706 707 708
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
709

710
	return ret ? -EFAULT : 0;
711 712
}

713 714
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
715
static int
716 717 718 719 720
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
721
{
722 723
	char *vaddr;
	int ret;
724

725
	vaddr = kmap(page);
726
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
727 728 729
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
730 731
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
732 733
						user_data,
						page_length);
734 735 736 737 738
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
739 740 741
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
742
	kunmap(page);
743

744
	return ret ? -EFAULT : 0;
745 746 747
}

static int
748 749 750 751
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
752 753
{
	ssize_t remain;
754 755
	loff_t offset;
	char __user *user_data;
756
	int shmem_page_offset, page_length, ret = 0;
757
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
758
	int hit_slowpath = 0;
759 760
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
761
	struct sg_page_iter sg_iter;
762

V
Ville Syrjälä 已提交
763
	user_data = to_user_ptr(args->data_ptr);
764 765
	remain = args->size;

766
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
767

768 769 770 771 772
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
773
		needs_clflush_after = cpu_write_needs_clflush(obj);
774 775 776
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
777 778

		i915_gem_object_retire(obj);
779
	}
780 781 782 783 784
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
785

786 787 788 789 790 791
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

792
	offset = args->offset;
793
	obj->dirty = 1;
794

795 796
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
797
		struct page *page = sg_page_iter_page(&sg_iter);
798
		int partial_cacheline_write;
799

800 801 802
		if (remain <= 0)
			break;

803 804 805 806 807
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
808
		shmem_page_offset = offset_in_page(offset);
809 810 811 812 813

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

814 815 816 817 818 819 820
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

821 822 823
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

824 825 826 827 828 829
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
830 831 832

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
833 834 835 836
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
837

838
		mutex_lock(&dev->struct_mutex);
839 840

		if (ret)
841 842
			goto out;

843
next_page:
844
		remain -= page_length;
845
		user_data += page_length;
846
		offset += page_length;
847 848
	}

849
out:
850 851
	i915_gem_object_unpin_pages(obj);

852
	if (hit_slowpath) {
853 854 855 856 857 858 859
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
860 861
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
862
		}
863
	}
864

865
	if (needs_clflush_after)
866
		i915_gem_chipset_flush(dev);
867

868
	return ret;
869 870 871 872 873 874 875 876 877
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
878
		      struct drm_file *file)
879 880
{
	struct drm_i915_gem_pwrite *args = data;
881
	struct drm_i915_gem_object *obj;
882 883 884 885 886 887
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
888
		       to_user_ptr(args->data_ptr),
889 890 891
		       args->size))
		return -EFAULT;

892
	if (likely(!i915.prefault_disable)) {
893 894 895 896 897
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
898

899
	ret = i915_mutex_lock_interruptible(dev);
900
	if (ret)
901
		return ret;
902

903
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
904
	if (&obj->base == NULL) {
905 906
		ret = -ENOENT;
		goto unlock;
907
	}
908

909
	/* Bounds check destination. */
910 911
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
912
		ret = -EINVAL;
913
		goto out;
C
Chris Wilson 已提交
914 915
	}

916 917 918 919 920 921 922 923
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
924 925
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
926
	ret = -EFAULT;
927 928 929 930 931 932
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
933
	if (obj->phys_obj) {
934
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
935 936 937
		goto out;
	}

938 939 940
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
941
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
942 943 944
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
945
	}
946

947
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
948
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
949

950
out:
951
	drm_gem_object_unreference(&obj->base);
952
unlock:
953
	mutex_unlock(&dev->struct_mutex);
954 955 956
	return ret;
}

957
int
958
i915_gem_check_wedge(struct i915_gpu_error *error,
959 960
		     bool interruptible)
{
961
	if (i915_reset_in_progress(error)) {
962 963 964 965 966
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

967 968
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
969 970 971 972 973 974 975 976 977 978 979 980 981
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
982
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
983 984 985 986 987 988
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
989
	if (seqno == ring->outstanding_lazy_seqno)
990
		ret = i915_add_request(ring, NULL);
991 992 993 994

	return ret;
}

995 996 997 998 999 1000
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1001
		       struct intel_engine_cs *ring)
1002 1003 1004 1005
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1006 1007 1008 1009 1010 1011 1012 1013
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1014 1015 1016 1017
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1018
 * @reset_counter: reset sequence associated with the given seqno
1019 1020 1021
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1022 1023 1024 1025 1026 1027 1028
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1029 1030 1031
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1032
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1033
			unsigned reset_counter,
1034 1035 1036
			bool interruptible,
			struct timespec *timeout,
			struct drm_i915_file_private *file_priv)
1037
{
1038
	struct drm_device *dev = ring->dev;
1039
	struct drm_i915_private *dev_priv = dev->dev_private;
1040 1041
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1042 1043
	struct timespec before, now;
	DEFINE_WAIT(wait);
1044
	unsigned long timeout_expire;
1045 1046
	int ret;

1047
	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1048

1049 1050 1051
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1052
	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1053

1054
	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1055 1056 1057 1058 1059 1060 1061
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1062
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1063 1064
		return -ENODEV;

1065 1066
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1067
	getrawmonotonic(&before);
1068 1069
	for (;;) {
		struct timer_list timer;
1070

1071 1072
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1073

1074 1075
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1076 1077 1078 1079 1080 1081 1082 1083
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1084

1085 1086 1087 1088
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1089

1090 1091 1092 1093 1094
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1095
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1096 1097 1098 1099 1100 1101
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1102 1103
			unsigned long expire;

1104
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1105
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1106 1107 1108
			mod_timer(&timer, expire);
		}

1109
		io_schedule();
1110 1111 1112 1113 1114 1115

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1116
	getrawmonotonic(&now);
1117
	trace_i915_gem_request_wait_end(ring, seqno);
1118

1119 1120
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1121 1122

	finish_wait(&ring->irq_queue, &wait);
1123 1124 1125 1126

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
1127 1128
		if (!timespec_valid(timeout)) /* i.e. negative time remains */
			set_normalized_timespec(timeout, 0, 0);
1129 1130
	}

1131
	return ret;
1132 1133 1134 1135 1136 1137 1138
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1139
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1140 1141 1142 1143 1144 1145 1146 1147 1148
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1149
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1150 1151 1152 1153 1154 1155 1156
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1157 1158
	return __wait_seqno(ring, seqno,
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1159
			    interruptible, NULL, NULL);
1160 1161
}

1162 1163
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1164
				     struct intel_engine_cs *ring)
1165
{
1166 1167
	if (!obj->active)
		return 0;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1181 1182 1183 1184 1185 1186 1187 1188
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1189
	struct intel_engine_cs *ring = obj->ring;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1201
	return i915_gem_object_wait_rendering__tail(obj, ring);
1202 1203
}

1204 1205 1206 1207 1208
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1209
					    struct drm_i915_file_private *file_priv,
1210 1211 1212 1213
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1214
	struct intel_engine_cs *ring = obj->ring;
1215
	unsigned reset_counter;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1226
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1227 1228 1229 1230 1231 1232 1233
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1234
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1235
	mutex_unlock(&dev->struct_mutex);
1236
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1237
	mutex_lock(&dev->struct_mutex);
1238 1239
	if (ret)
		return ret;
1240

1241
	return i915_gem_object_wait_rendering__tail(obj, ring);
1242 1243
}

1244
/**
1245 1246
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1247 1248 1249
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1250
			  struct drm_file *file)
1251 1252
{
	struct drm_i915_gem_set_domain *args = data;
1253
	struct drm_i915_gem_object *obj;
1254 1255
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1256 1257
	int ret;

1258
	/* Only handle setting domains to types used by the CPU. */
1259
	if (write_domain & I915_GEM_GPU_DOMAINS)
1260 1261
		return -EINVAL;

1262
	if (read_domains & I915_GEM_GPU_DOMAINS)
1263 1264 1265 1266 1267 1268 1269 1270
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1271
	ret = i915_mutex_lock_interruptible(dev);
1272
	if (ret)
1273
		return ret;
1274

1275
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1276
	if (&obj->base == NULL) {
1277 1278
		ret = -ENOENT;
		goto unlock;
1279
	}
1280

1281 1282 1283 1284
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1285 1286 1287
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1288 1289 1290
	if (ret)
		goto unref;

1291 1292
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1293 1294 1295 1296 1297 1298 1299

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1300
	} else {
1301
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1302 1303
	}

1304
unref:
1305
	drm_gem_object_unreference(&obj->base);
1306
unlock:
1307 1308 1309 1310 1311 1312 1313 1314 1315
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1316
			 struct drm_file *file)
1317 1318
{
	struct drm_i915_gem_sw_finish *args = data;
1319
	struct drm_i915_gem_object *obj;
1320 1321
	int ret = 0;

1322
	ret = i915_mutex_lock_interruptible(dev);
1323
	if (ret)
1324
		return ret;
1325

1326
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1327
	if (&obj->base == NULL) {
1328 1329
		ret = -ENOENT;
		goto unlock;
1330 1331 1332
	}

	/* Pinned buffers may be scanout, so flush the cache */
1333 1334
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1335

1336
	drm_gem_object_unreference(&obj->base);
1337
unlock:
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1351
		    struct drm_file *file)
1352 1353 1354 1355 1356
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1357
	obj = drm_gem_object_lookup(dev, file, args->handle);
1358
	if (obj == NULL)
1359
		return -ENOENT;
1360

1361 1362 1363 1364 1365 1366 1367 1368
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1369
	addr = vm_mmap(obj->filp, 0, args->size,
1370 1371
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1372
	drm_gem_object_unreference_unlocked(obj);
1373 1374 1375 1376 1377 1378 1379 1380
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1399 1400
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1401
	struct drm_i915_private *dev_priv = dev->dev_private;
1402 1403 1404
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1405
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1406

1407 1408
	intel_runtime_pm_get(dev_priv);

1409 1410 1411 1412
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1413 1414 1415
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1416

C
Chris Wilson 已提交
1417 1418
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1419 1420 1421 1422 1423 1424 1425 1426 1427
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1428 1429 1430 1431 1432 1433
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
		ret = -EINVAL;
		goto unlock;
	}

1434
	/* Now bind it into the GTT if needed */
1435
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1436 1437
	if (ret)
		goto unlock;
1438

1439 1440 1441
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1442

1443
	ret = i915_gem_object_get_fence(obj);
1444
	if (ret)
1445
		goto unpin;
1446

1447 1448
	obj->fault_mappable = true;

1449 1450 1451
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
	pfn += page_offset;
1452 1453 1454

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1455
unpin:
B
Ben Widawsky 已提交
1456
	i915_gem_object_ggtt_unpin(obj);
1457
unlock:
1458
	mutex_unlock(&dev->struct_mutex);
1459
out:
1460
	switch (ret) {
1461
	case -EIO:
1462 1463 1464
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
1465 1466 1467 1468
		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
			ret = VM_FAULT_SIGBUS;
			break;
		}
1469
	case -EAGAIN:
D
Daniel Vetter 已提交
1470 1471 1472 1473
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1474
		 */
1475 1476
	case 0:
	case -ERESTARTSYS:
1477
	case -EINTR:
1478 1479 1480 1481 1482
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1483 1484
		ret = VM_FAULT_NOPAGE;
		break;
1485
	case -ENOMEM:
1486 1487
		ret = VM_FAULT_OOM;
		break;
1488
	case -ENOSPC:
1489
	case -EFAULT:
1490 1491
		ret = VM_FAULT_SIGBUS;
		break;
1492
	default:
1493
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1494 1495
		ret = VM_FAULT_SIGBUS;
		break;
1496
	}
1497 1498 1499

	intel_runtime_pm_put(dev_priv);
	return ret;
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct i915_vma *vma;

	/*
	 * Only the global gtt is relevant for gtt memory mappings, so restrict
	 * list traversal to objects bound into the global address space. Note
	 * that the active list should be empty, but better safe than sorry.
	 */
	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
		i915_gem_release_mmap(vma->obj);
	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
		i915_gem_release_mmap(vma->obj);
}

1518 1519 1520 1521
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1522
 * Preserve the reservation of the mmapping with the DRM core code, but
1523 1524 1525 1526 1527 1528 1529 1530 1531
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1532
void
1533
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1534
{
1535 1536
	if (!obj->fault_mappable)
		return;
1537

1538 1539
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1540
	obj->fault_mappable = false;
1541 1542
}

1543
uint32_t
1544
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1545
{
1546
	uint32_t gtt_size;
1547 1548

	if (INTEL_INFO(dev)->gen >= 4 ||
1549 1550
	    tiling_mode == I915_TILING_NONE)
		return size;
1551 1552 1553

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1554
		gtt_size = 1024*1024;
1555
	else
1556
		gtt_size = 512*1024;
1557

1558 1559
	while (gtt_size < size)
		gtt_size <<= 1;
1560

1561
	return gtt_size;
1562 1563
}

1564 1565 1566 1567 1568
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1569
 * potential fence register mapping.
1570
 */
1571 1572 1573
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1574 1575 1576 1577 1578
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1579
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1580
	    tiling_mode == I915_TILING_NONE)
1581 1582
		return 4096;

1583 1584 1585 1586
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1587
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1588 1589
}

1590 1591 1592 1593 1594
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1595
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1596 1597
		return 0;

1598 1599
	dev_priv->mm.shrinker_no_lock_stealing = true;

1600 1601
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1602
		goto out;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1614
		goto out;
1615 1616

	i915_gem_shrink_all(dev_priv);
1617 1618 1619 1620 1621
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1622 1623 1624 1625 1626 1627 1628
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1629
int
1630 1631 1632 1633
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1634
{
1635
	struct drm_i915_private *dev_priv = dev->dev_private;
1636
	struct drm_i915_gem_object *obj;
1637 1638
	int ret;

1639
	ret = i915_mutex_lock_interruptible(dev);
1640
	if (ret)
1641
		return ret;
1642

1643
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1644
	if (&obj->base == NULL) {
1645 1646 1647
		ret = -ENOENT;
		goto unlock;
	}
1648

B
Ben Widawsky 已提交
1649
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1650
		ret = -E2BIG;
1651
		goto out;
1652 1653
	}

1654
	if (obj->madv != I915_MADV_WILLNEED) {
1655
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1656
		ret = -EFAULT;
1657
		goto out;
1658 1659
	}

1660 1661 1662
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1663

1664
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1665

1666
out:
1667
	drm_gem_object_unreference(&obj->base);
1668
unlock:
1669
	mutex_unlock(&dev->struct_mutex);
1670
	return ret;
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1697 1698 1699 1700 1701 1702
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1703 1704 1705
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1706
{
1707
	i915_gem_object_free_mmap_offset(obj);
1708

1709 1710
	if (obj->base.filp == NULL)
		return;
1711

D
Daniel Vetter 已提交
1712 1713 1714 1715 1716
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1717
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1718 1719
	obj->madv = __I915_MADV_PURGED;
}
1720

1721 1722 1723
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1724
{
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1739 1740
}

1741
static void
1742
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1743
{
1744 1745
	struct sg_page_iter sg_iter;
	int ret;
1746

1747
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1748

C
Chris Wilson 已提交
1749 1750 1751 1752 1753 1754
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1755
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1756 1757 1758
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1759
	if (i915_gem_object_needs_bit17_swizzle(obj))
1760 1761
		i915_gem_object_save_bit_17_swizzle(obj);

1762 1763
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1764

1765
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1766
		struct page *page = sg_page_iter_page(&sg_iter);
1767

1768
		if (obj->dirty)
1769
			set_page_dirty(page);
1770

1771
		if (obj->madv == I915_MADV_WILLNEED)
1772
			mark_page_accessed(page);
1773

1774
		page_cache_release(page);
1775
	}
1776
	obj->dirty = 0;
1777

1778 1779
	sg_free_table(obj->pages);
	kfree(obj->pages);
1780
}
C
Chris Wilson 已提交
1781

1782
int
1783 1784 1785 1786
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1787
	if (obj->pages == NULL)
1788 1789
		return 0;

1790 1791 1792
	if (obj->pages_pin_count)
		return -EBUSY;

1793
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
1794

1795 1796 1797
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
1798
	list_del(&obj->global_list);
1799

1800
	ops->put_pages(obj);
1801
	obj->pages = NULL;
1802

1803
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
1804 1805 1806 1807

	return 0;
}

1808
static unsigned long
1809 1810
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
		  bool purgeable_only)
C
Chris Wilson 已提交
1811
{
1812 1813
	struct list_head still_in_list;
	struct drm_i915_gem_object *obj;
1814
	unsigned long count = 0;
C
Chris Wilson 已提交
1815

1816
	/*
1817
	 * As we may completely rewrite the (un)bound list whilst unbinding
1818 1819 1820
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
1834
	 */
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	INIT_LIST_HEAD(&still_in_list);
	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
		obj = list_first_entry(&dev_priv->mm.unbound_list,
				       typeof(*obj), global_list);
		list_move_tail(&obj->global_list, &still_in_list);

		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

		drm_gem_object_reference(&obj->base);

		if (i915_gem_object_put_pages(obj) == 0)
			count += obj->base.size >> PAGE_SHIFT;

		drm_gem_object_unreference(&obj->base);
	}
	list_splice(&still_in_list, &dev_priv->mm.unbound_list);

	INIT_LIST_HEAD(&still_in_list);
1854
	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1855
		struct i915_vma *vma, *v;
1856

1857 1858
		obj = list_first_entry(&dev_priv->mm.bound_list,
				       typeof(*obj), global_list);
1859
		list_move_tail(&obj->global_list, &still_in_list);
1860

1861 1862 1863
		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

1864 1865
		drm_gem_object_reference(&obj->base);

1866 1867 1868
		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
			if (i915_vma_unbind(vma))
				break;
1869

1870
		if (i915_gem_object_put_pages(obj) == 0)
C
Chris Wilson 已提交
1871
			count += obj->base.size >> PAGE_SHIFT;
1872 1873

		drm_gem_object_unreference(&obj->base);
C
Chris Wilson 已提交
1874
	}
1875
	list_splice(&still_in_list, &dev_priv->mm.bound_list);
C
Chris Wilson 已提交
1876 1877 1878 1879

	return count;
}

1880
static unsigned long
1881 1882 1883 1884 1885
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	return __i915_gem_shrink(dev_priv, target, true);
}

1886
static unsigned long
C
Chris Wilson 已提交
1887 1888 1889
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
1890
	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
D
Daniel Vetter 已提交
1891 1892
}

1893
static int
C
Chris Wilson 已提交
1894
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1895
{
C
Chris Wilson 已提交
1896
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1897 1898
	int page_count, i;
	struct address_space *mapping;
1899 1900
	struct sg_table *st;
	struct scatterlist *sg;
1901
	struct sg_page_iter sg_iter;
1902
	struct page *page;
1903
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
1904
	gfp_t gfp;
1905

C
Chris Wilson 已提交
1906 1907 1908 1909 1910 1911 1912
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1913 1914 1915 1916
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

1917
	page_count = obj->base.size / PAGE_SIZE;
1918 1919
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
1920
		return -ENOMEM;
1921
	}
1922

1923 1924 1925 1926 1927
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
1928
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
1929
	gfp = mapping_gfp_mask(mapping);
1930
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
1931
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1932 1933 1934
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
1945
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
C
Chris Wilson 已提交
1946 1947 1948 1949 1950 1951 1952
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

1953
			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
1954 1955
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1956 1957 1958 1959 1960 1961 1962 1963
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
1973 1974 1975

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1976
	}
1977 1978 1979 1980
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
1981 1982
	obj->pages = st;

1983
	if (i915_gem_object_needs_bit17_swizzle(obj))
1984 1985 1986 1987 1988
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
1989 1990
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1991
		page_cache_release(sg_page_iter_page(&sg_iter));
1992 1993
	sg_free_table(st);
	kfree(st);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2007 2008
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2023
	if (obj->pages)
2024 2025
		return 0;

2026
	if (obj->madv != I915_MADV_WILLNEED) {
2027
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2028
		return -EFAULT;
2029 2030
	}

2031 2032
	BUG_ON(obj->pages_pin_count);

2033 2034 2035 2036
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2037
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2038
	return 0;
2039 2040
}

B
Ben Widawsky 已提交
2041
static void
2042
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2043
			       struct intel_engine_cs *ring)
2044
{
2045
	struct drm_device *dev = obj->base.dev;
2046
	struct drm_i915_private *dev_priv = dev->dev_private;
2047
	u32 seqno = intel_ring_get_seqno(ring);
2048

2049
	BUG_ON(ring == NULL);
2050 2051 2052 2053
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2054
	obj->ring = ring;
2055 2056

	/* Add a reference if we're newly entering the active list. */
2057 2058 2059
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2060
	}
2061

2062
	list_move_tail(&obj->ring_list, &ring->active_list);
2063

2064
	obj->last_read_seqno = seqno;
2065

2066
	if (obj->fenced_gpu_access) {
2067 2068
		obj->last_fenced_seqno = seqno;

2069 2070 2071 2072 2073 2074 2075 2076
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
2077 2078 2079
	}
}

B
Ben Widawsky 已提交
2080
void i915_vma_move_to_active(struct i915_vma *vma,
2081
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2082 2083 2084 2085 2086
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2087 2088
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2089
{
B
Ben Widawsky 已提交
2090
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2091 2092
	struct i915_address_space *vm;
	struct i915_vma *vma;
2093

2094
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2095
	BUG_ON(!obj->active);
2096

2097 2098 2099 2100 2101
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2102

2103
	list_del_init(&obj->ring_list);
2104 2105
	obj->ring = NULL;

2106 2107 2108 2109 2110
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2111 2112 2113 2114 2115 2116
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2117
}
2118

2119 2120 2121
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2122
	struct intel_engine_cs *ring = obj->ring;
2123 2124 2125 2126 2127 2128 2129 2130 2131

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2132
static int
2133
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2134
{
2135
	struct drm_i915_private *dev_priv = dev->dev_private;
2136
	struct intel_engine_cs *ring;
2137
	int ret, i, j;
2138

2139
	/* Carefully retire all requests without writing to the rings */
2140
	for_each_ring(ring, dev_priv, i) {
2141 2142 2143
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2144 2145
	}
	i915_gem_retire_requests(dev);
2146 2147

	/* Finally reset hw state */
2148
	for_each_ring(ring, dev_priv, i) {
2149
		intel_ring_init_seqno(ring, seqno);
2150

2151 2152
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2153
	}
2154

2155
	return 0;
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2184 2185
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2186
{
2187 2188 2189 2190
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2191
		int ret = i915_gem_init_seqno(dev, 0);
2192 2193
		if (ret)
			return ret;
2194

2195 2196
		dev_priv->next_seqno = 1;
	}
2197

2198
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2199
	return 0;
2200 2201
}

2202
int __i915_add_request(struct intel_engine_cs *ring,
2203
		       struct drm_file *file,
2204
		       struct drm_i915_gem_object *obj,
2205
		       u32 *out_seqno)
2206
{
2207
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2208
	struct drm_i915_gem_request *request;
2209
	u32 request_ring_position, request_start;
2210 2211
	int ret;

2212
	request_start = intel_ring_get_tail(ring);
2213 2214 2215 2216 2217 2218 2219
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2220 2221 2222
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
2223

2224 2225
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
2226
		return -ENOMEM;
2227

2228 2229 2230 2231 2232 2233 2234
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

2235
	ret = ring->add_request(ring);
2236
	if (ret)
2237
		return ret;
2238

2239
	request->seqno = intel_ring_get_seqno(ring);
2240
	request->ring = ring;
2241
	request->head = request_start;
2242
	request->tail = request_ring_position;
2243 2244 2245 2246 2247 2248 2249

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2250
	request->batch_obj = obj;
2251

2252 2253 2254 2255
	/* Hold a reference to the current context so that we can inspect
	 * it later in case a hangcheck error event fires.
	 */
	request->ctx = ring->last_context;
2256 2257 2258
	if (request->ctx)
		i915_gem_context_reference(request->ctx);

2259
	request->emitted_jiffies = jiffies;
2260
	list_add_tail(&request->list, &ring->request_list);
2261
	request->file_priv = NULL;
2262

C
Chris Wilson 已提交
2263 2264 2265
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2266
		spin_lock(&file_priv->mm.lock);
2267
		request->file_priv = file_priv;
2268
		list_add_tail(&request->client_list,
2269
			      &file_priv->mm.request_list);
2270
		spin_unlock(&file_priv->mm.lock);
2271
	}
2272

2273
	trace_i915_gem_request_add(ring, request->seqno);
2274
	ring->outstanding_lazy_seqno = 0;
2275
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2276

2277
	if (!dev_priv->ums.mm_suspended) {
2278 2279
		i915_queue_hangcheck(ring->dev);

2280 2281 2282 2283 2284
		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
		intel_mark_busy(dev_priv->dev);
B
Ben Gamari 已提交
2285
	}
2286

2287
	if (out_seqno)
2288
		*out_seqno = request->seqno;
2289
	return 0;
2290 2291
}

2292 2293
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2294
{
2295
	struct drm_i915_file_private *file_priv = request->file_priv;
2296

2297 2298
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2299

2300
	spin_lock(&file_priv->mm.lock);
2301 2302
	list_del(&request->client_list);
	request->file_priv = NULL;
2303
	spin_unlock(&file_priv->mm.lock);
2304 2305
}

2306
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2307
				   const struct i915_hw_context *ctx)
2308
{
2309
	unsigned long elapsed;
2310

2311 2312 2313
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2314 2315 2316
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2317
		if (!i915_gem_context_is_default(ctx)) {
2318
			DRM_DEBUG("context hanging too fast, banning!\n");
2319
			return true;
2320 2321 2322
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2323
			return true;
2324
		}
2325 2326 2327 2328 2329
	}

	return false;
}

2330 2331
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
				  struct i915_hw_context *ctx,
2332
				  const bool guilty)
2333
{
2334 2335 2336 2337
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2338

2339 2340 2341
	hs = &ctx->hang_stats;

	if (guilty) {
2342
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2343 2344 2345 2346
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2347 2348 2349
	}
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

	if (request->ctx)
		i915_gem_context_unreference(request->ctx);

	kfree(request);
}

2361
struct drm_i915_gem_request *
2362
i915_gem_find_active_request(struct intel_engine_cs *ring)
2363
{
2364
	struct drm_i915_gem_request *request;
2365 2366 2367
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2368 2369 2370 2371

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2372

2373
		return request;
2374
	}
2375 2376 2377 2378 2379

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2380
				       struct intel_engine_cs *ring)
2381 2382 2383 2384
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2385
	request = i915_gem_find_active_request(ring);
2386 2387 2388 2389 2390 2391

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2392
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2393 2394

	list_for_each_entry_continue(request, &ring->request_list, list)
2395
		i915_set_reset_status(dev_priv, request->ctx, false);
2396
}
2397

2398
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2399
					struct intel_engine_cs *ring)
2400
{
2401
	while (!list_empty(&ring->active_list)) {
2402
		struct drm_i915_gem_object *obj;
2403

2404 2405 2406
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2407

2408
		i915_gem_object_move_to_inactive(obj);
2409
	}
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2427 2428 2429 2430 2431

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2432 2433
}

2434
void i915_gem_restore_fences(struct drm_device *dev)
2435 2436 2437 2438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2439
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2440
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2452 2453 2454
	}
}

2455
void i915_gem_reset(struct drm_device *dev)
2456
{
2457
	struct drm_i915_private *dev_priv = dev->dev_private;
2458
	struct intel_engine_cs *ring;
2459
	int i;
2460

2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2469
	for_each_ring(ring, dev_priv, i)
2470
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2471

2472 2473
	i915_gem_context_reset(dev);

2474
	i915_gem_restore_fences(dev);
2475 2476 2477 2478 2479
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2480
void
2481
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2482 2483 2484
{
	uint32_t seqno;

C
Chris Wilson 已提交
2485
	if (list_empty(&ring->request_list))
2486 2487
		return;

C
Chris Wilson 已提交
2488
	WARN_ON(i915_verify_lists(ring->dev));
2489

2490
	seqno = ring->get_seqno(ring, true);
2491

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2510
	while (!list_empty(&ring->request_list)) {
2511 2512
		struct drm_i915_gem_request *request;

2513
		request = list_first_entry(&ring->request_list,
2514 2515 2516
					   struct drm_i915_gem_request,
					   list);

2517
		if (!i915_seqno_passed(seqno, request->seqno))
2518 2519
			break;

C
Chris Wilson 已提交
2520
		trace_i915_gem_request_retire(ring, request->seqno);
2521 2522 2523 2524 2525
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2526
		ring->buffer->last_retired_head = request->tail;
2527

2528
		i915_gem_free_request(request);
2529
	}
2530

C
Chris Wilson 已提交
2531 2532
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2533
		ring->irq_put(ring);
C
Chris Wilson 已提交
2534
		ring->trace_irq_seqno = 0;
2535
	}
2536

C
Chris Wilson 已提交
2537
	WARN_ON(i915_verify_lists(ring->dev));
2538 2539
}

2540
bool
2541 2542
i915_gem_retire_requests(struct drm_device *dev)
{
2543
	struct drm_i915_private *dev_priv = dev->dev_private;
2544
	struct intel_engine_cs *ring;
2545
	bool idle = true;
2546
	int i;
2547

2548
	for_each_ring(ring, dev_priv, i) {
2549
		i915_gem_retire_requests_ring(ring);
2550 2551 2552 2553 2554 2555 2556 2557 2558
		idle &= list_empty(&ring->request_list);
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2559 2560
}

2561
static void
2562 2563
i915_gem_retire_work_handler(struct work_struct *work)
{
2564 2565 2566
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2567
	bool idle;
2568

2569
	/* Come back later if the device is busy... */
2570 2571 2572 2573
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2574
	}
2575
	if (!idle)
2576 2577
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2578
}
2579

2580 2581 2582 2583 2584 2585 2586
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2587 2588
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2600
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2601 2602 2603 2604 2605 2606 2607 2608 2609
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2635
	struct drm_i915_private *dev_priv = dev->dev_private;
2636 2637
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2638
	struct intel_engine_cs *ring = NULL;
2639
	struct timespec timeout_stack, *timeout = NULL;
2640
	unsigned reset_counter;
2641 2642 2643
	u32 seqno = 0;
	int ret = 0;

2644 2645 2646 2647
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2659 2660
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2661 2662 2663 2664
	if (ret)
		goto out;

	if (obj->active) {
2665
		seqno = obj->last_read_seqno;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2681
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2682 2683
	mutex_unlock(&dev->struct_mutex);

2684
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2685
	if (timeout)
2686
		args->timeout_ns = timespec_to_ns(timeout);
2687 2688 2689 2690 2691 2692 2693 2694
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2707 2708
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2709
		     struct intel_engine_cs *to)
2710
{
2711
	struct intel_engine_cs *from = obj->ring;
2712 2713 2714 2715 2716 2717
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2718
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2719
		return i915_gem_object_wait_rendering(obj, false);
2720 2721 2722

	idx = intel_ring_sync_index(from, to);

2723
	seqno = obj->last_read_seqno;
2724
	if (seqno <= from->semaphore.sync_seqno[idx])
2725 2726
		return 0;

2727 2728 2729
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2730

2731
	trace_i915_gem_ring_sync_to(from, to, seqno);
2732
	ret = to->semaphore.sync_to(to, from, seqno);
2733
	if (!ret)
2734 2735 2736 2737
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2738
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2739

2740
	return ret;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2750 2751 2752
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2753 2754 2755
	/* Wait for any direct GTT access to complete */
	mb();

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2767
int i915_vma_unbind(struct i915_vma *vma)
2768
{
2769
	struct drm_i915_gem_object *obj = vma->obj;
2770
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771
	int ret;
2772

2773
	if (list_empty(&vma->vma_link))
2774 2775
		return 0;

2776 2777 2778 2779
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2780

B
Ben Widawsky 已提交
2781
	if (vma->pin_count)
2782
		return -EBUSY;
2783

2784 2785
	BUG_ON(obj->pages == NULL);

2786
	ret = i915_gem_object_finish_gpu(obj);
2787
	if (ret)
2788 2789 2790 2791 2792 2793
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2794 2795
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
2796

2797 2798 2799 2800 2801
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2802

2803
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2804

2805 2806
	vma->unbind_vma(vma);

2807
	i915_gem_gtt_finish_object(obj);
2808

2809
	list_del_init(&vma->mm_list);
2810
	/* Avoid an unnecessary call to unbind on rebind. */
2811 2812
	if (i915_is_ggtt(vma->vm))
		obj->map_and_fenceable = true;
2813

B
Ben Widawsky 已提交
2814 2815 2816 2817
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2818
	 * no more VMAs exist. */
B
Ben Widawsky 已提交
2819 2820
	if (list_empty(&obj->vma_list))
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2821

2822 2823 2824 2825 2826 2827
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2828
	return 0;
2829 2830
}

2831
int i915_gpu_idle(struct drm_device *dev)
2832
{
2833
	struct drm_i915_private *dev_priv = dev->dev_private;
2834
	struct intel_engine_cs *ring;
2835
	int ret, i;
2836 2837

	/* Flush everything onto the inactive list. */
2838
	for_each_ring(ring, dev_priv, i) {
2839
		ret = i915_switch_context(ring, ring->default_context);
2840 2841 2842
		if (ret)
			return ret;

2843
		ret = intel_ring_idle(ring);
2844 2845 2846
		if (ret)
			return ret;
	}
2847

2848
	return 0;
2849 2850
}

2851 2852
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2853
{
2854
	struct drm_i915_private *dev_priv = dev->dev_private;
2855 2856
	int fence_reg;
	int fence_pitch_shift;
2857

2858 2859 2860 2861 2862 2863 2864 2865
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

2880
	if (obj) {
2881
		u32 size = i915_gem_obj_ggtt_size(obj);
2882
		uint64_t val;
2883

2884
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2885
				 0xfffff000) << 32;
2886
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2887
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2888 2889 2890
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
2891

2892 2893 2894 2895 2896 2897 2898 2899 2900
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
2901 2902
}

2903 2904
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2905
{
2906
	struct drm_i915_private *dev_priv = dev->dev_private;
2907
	u32 val;
2908

2909
	if (obj) {
2910
		u32 size = i915_gem_obj_ggtt_size(obj);
2911 2912
		int pitch_val;
		int tile_width;
2913

2914
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2915
		     (size & -size) != size ||
2916 2917 2918
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

2929
		val = i915_gem_obj_ggtt_offset(obj);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2945 2946
}

2947 2948
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2949
{
2950
	struct drm_i915_private *dev_priv = dev->dev_private;
2951 2952
	uint32_t val;

2953
	if (obj) {
2954
		u32 size = i915_gem_obj_ggtt_size(obj);
2955
		uint32_t pitch_val;
2956

2957
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2958
		     (size & -size) != size ||
2959 2960 2961
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
2962

2963 2964
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2965

2966
		val = i915_gem_obj_ggtt_offset(obj);
2967 2968 2969 2970 2971 2972 2973
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2974

2975 2976 2977 2978
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

2979 2980 2981 2982 2983
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

2984 2985 2986
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
2987 2988 2989 2990 2991 2992 2993 2994
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

2995 2996 2997 2998
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

2999
	switch (INTEL_INFO(dev)->gen) {
3000
	case 8:
3001
	case 7:
3002
	case 6:
3003 3004 3005 3006
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3007
	default: BUG();
3008
	}
3009 3010 3011 3012 3013 3014

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3015 3016
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3027
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3028 3029 3030
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 3032

	if (enable) {
3033
		obj->fence_reg = reg;
3034 3035 3036 3037 3038 3039 3040
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3041
	obj->fence_dirty = false;
3042 3043
}

3044
static int
3045
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3046
{
3047
	if (obj->last_fenced_seqno) {
3048
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3049 3050
		if (ret)
			return ret;
3051 3052 3053 3054

		obj->last_fenced_seqno = 0;
	}

3055
	obj->fenced_gpu_access = false;
3056 3057 3058 3059 3060 3061
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3062
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3063
	struct drm_i915_fence_reg *fence;
3064 3065
	int ret;

3066
	ret = i915_gem_object_wait_fence(obj);
3067 3068 3069
	if (ret)
		return ret;

3070 3071
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3072

3073 3074
	fence = &dev_priv->fence_regs[obj->fence_reg];

3075 3076 3077
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3078
	i915_gem_object_fence_lost(obj);
3079
	i915_gem_object_update_fence(obj, fence, false);
3080 3081 3082 3083 3084

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3085
i915_find_fence_reg(struct drm_device *dev)
3086 3087
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3088
	struct drm_i915_fence_reg *reg, *avail;
3089
	int i;
3090 3091

	/* First try to find a free reg */
3092
	avail = NULL;
3093 3094 3095
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3096
			return reg;
3097

3098
		if (!reg->pin_count)
3099
			avail = reg;
3100 3101
	}

3102
	if (avail == NULL)
3103
		goto deadlock;
3104 3105

	/* None available, try to steal one or wait for a user to finish */
3106
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3107
		if (reg->pin_count)
3108 3109
			continue;

C
Chris Wilson 已提交
3110
		return reg;
3111 3112
	}

3113 3114 3115 3116 3117 3118
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3119 3120
}

3121
/**
3122
 * i915_gem_object_get_fence - set up fencing for an object
3123 3124 3125 3126 3127 3128 3129 3130 3131
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3132 3133
 *
 * For an untiled surface, this removes any existing fence.
3134
 */
3135
int
3136
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3137
{
3138
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3139
	struct drm_i915_private *dev_priv = dev->dev_private;
3140
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3141
	struct drm_i915_fence_reg *reg;
3142
	int ret;
3143

3144 3145 3146
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3147
	if (obj->fence_dirty) {
3148
		ret = i915_gem_object_wait_fence(obj);
3149 3150 3151
		if (ret)
			return ret;
	}
3152

3153
	/* Just update our place in the LRU if our fence is getting reused. */
3154 3155
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3156
		if (!obj->fence_dirty) {
3157 3158 3159 3160 3161 3162
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
3163 3164
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3165

3166 3167 3168
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3169
			ret = i915_gem_object_wait_fence(old);
3170 3171 3172
			if (ret)
				return ret;

3173
			i915_gem_object_fence_lost(old);
3174
		}
3175
	} else
3176 3177
		return 0;

3178 3179
	i915_gem_object_update_fence(obj, reg, enable);

3180
	return 0;
3181 3182
}

3183 3184 3185 3186 3187 3188 3189 3190
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
3191
	 * crossing memory domains and dying.
3192 3193 3194 3195
	 */
	if (HAS_LLC(dev))
		return true;

3196
	if (!drm_mm_node_allocated(gtt_space))
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

3220
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3221 3222 3223 3224 3225 3226 3227 3228
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3229 3230
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3241 3242
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

3253 3254 3255
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3256
static struct i915_vma *
3257 3258 3259
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3260
			   unsigned flags)
3261
{
3262
	struct drm_device *dev = obj->base.dev;
3263
	struct drm_i915_private *dev_priv = dev->dev_private;
3264
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3265
	size_t gtt_max =
3266
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3267
	struct i915_vma *vma;
3268
	int ret;
3269

3270 3271 3272 3273 3274
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3275
						     obj->tiling_mode, true);
3276
	unfenced_alignment =
3277
		i915_gem_get_gtt_alignment(dev,
3278 3279
					   obj->base.size,
					   obj->tiling_mode, false);
3280

3281
	if (alignment == 0)
3282
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3283
						unfenced_alignment;
3284
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3285
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3286
		return ERR_PTR(-EINVAL);
3287 3288
	}

3289
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3290

3291 3292 3293
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3294
	if (obj->base.size > gtt_max) {
3295
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3296
			  obj->base.size,
3297
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3298
			  gtt_max);
3299
		return ERR_PTR(-E2BIG);
3300 3301
	}

3302
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3303
	if (ret)
3304
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3305

3306 3307
	i915_gem_object_pin_pages(obj);

3308
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3309
	if (IS_ERR(vma))
3310
		goto err_unpin;
B
Ben Widawsky 已提交
3311

3312
search_free:
3313
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3314
						  size, alignment,
3315
						  obj->cache_level, 0, gtt_max,
3316 3317
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3318
	if (ret) {
3319
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3320
					       obj->cache_level, flags);
3321 3322
		if (ret == 0)
			goto search_free;
3323

3324
		goto err_free_vma;
3325
	}
B
Ben Widawsky 已提交
3326
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3327
					      obj->cache_level))) {
B
Ben Widawsky 已提交
3328
		ret = -EINVAL;
3329
		goto err_remove_node;
3330 3331
	}

3332
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3333
	if (ret)
3334
		goto err_remove_node;
3335

3336
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3337
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3338

3339 3340
	if (i915_is_ggtt(vm)) {
		bool mappable, fenceable;
3341

3342 3343
		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);
3344

3345 3346
		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);
3347

3348
		obj->map_and_fenceable = mappable && fenceable;
3349
	}
3350

3351
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3352

3353
	trace_i915_vma_bind(vma, flags);
3354 3355 3356
	vma->bind_vma(vma, obj->cache_level,
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);

3357
	i915_gem_verify_gtt(dev);
3358
	return vma;
B
Ben Widawsky 已提交
3359

3360
err_remove_node:
3361
	drm_mm_remove_node(&vma->node);
3362
err_free_vma:
B
Ben Widawsky 已提交
3363
	i915_gem_vma_destroy(vma);
3364
	vma = ERR_PTR(ret);
3365
err_unpin:
B
Ben Widawsky 已提交
3366
	i915_gem_object_unpin_pages(obj);
3367
	return vma;
3368 3369
}

3370
bool
3371 3372
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3373 3374 3375 3376 3377
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3378
	if (obj->pages == NULL)
3379
		return false;
3380

3381 3382 3383 3384 3385
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
	if (obj->stolen)
3386
		return false;
3387

3388 3389 3390 3391 3392 3393 3394 3395
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3396
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3397
		return false;
3398

C
Chris Wilson 已提交
3399
	trace_i915_gem_object_clflush(obj);
3400
	drm_clflush_sg(obj->pages);
3401 3402

	return true;
3403 3404 3405 3406
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3407
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3408
{
C
Chris Wilson 已提交
3409 3410
	uint32_t old_write_domain;

3411
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3412 3413
		return;

3414
	/* No actual flushing is required for the GTT write domain.  Writes
3415 3416
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3417 3418 3419 3420
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3421
	 */
3422 3423
	wmb();

3424 3425
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3426 3427

	trace_i915_gem_object_change_domain(obj,
3428
					    obj->base.read_domains,
C
Chris Wilson 已提交
3429
					    old_write_domain);
3430 3431 3432 3433
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3434 3435
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3436
{
C
Chris Wilson 已提交
3437
	uint32_t old_write_domain;
3438

3439
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3440 3441
		return;

3442 3443 3444
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3445 3446
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3447 3448

	trace_i915_gem_object_change_domain(obj,
3449
					    obj->base.read_domains,
C
Chris Wilson 已提交
3450
					    old_write_domain);
3451 3452
}

3453 3454 3455 3456 3457 3458
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3459
int
3460
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3461
{
3462
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3463
	uint32_t old_write_domain, old_read_domains;
3464
	int ret;
3465

3466
	/* Not valid to be called on unbound objects. */
3467
	if (!i915_gem_obj_bound_any(obj))
3468 3469
		return -EINVAL;

3470 3471 3472
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3473
	ret = i915_gem_object_wait_rendering(obj, !write);
3474 3475 3476
	if (ret)
		return ret;

3477
	i915_gem_object_retire(obj);
3478
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3479

3480 3481 3482 3483 3484 3485 3486
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3487 3488
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3489

3490 3491 3492
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3493 3494
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3495
	if (write) {
3496 3497 3498
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3499 3500
	}

C
Chris Wilson 已提交
3501 3502 3503 3504
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3505
	/* And bump the LRU for this access */
B
Ben Widawsky 已提交
3506
	if (i915_gem_object_is_inactive(obj)) {
3507
		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
B
Ben Widawsky 已提交
3508 3509 3510 3511 3512
		if (vma)
			list_move_tail(&vma->mm_list,
				       &dev_priv->gtt.base.inactive_list);

	}
3513

3514 3515 3516
	return 0;
}

3517 3518 3519
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3520
	struct drm_device *dev = obj->base.dev;
3521
	struct i915_vma *vma, *next;
3522 3523 3524 3525 3526
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3527
	if (i915_gem_obj_is_pinned(obj)) {
3528 3529 3530 3531
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3532
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3533
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3534
			ret = i915_vma_unbind(vma);
3535 3536 3537
			if (ret)
				return ret;
		}
3538 3539
	}

3540
	if (i915_gem_obj_bound_any(obj)) {
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3551
		if (INTEL_INFO(dev)->gen < 6) {
3552 3553 3554 3555 3556
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3557
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3558 3559 3560
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3561 3562
	}

3563 3564 3565 3566 3567
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3568 3569 3570 3571 3572 3573 3574 3575
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3576
		i915_gem_object_retire(obj);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

3590
	i915_gem_verify_gtt(dev);
3591 3592 3593
	return 0;
}

B
Ben Widawsky 已提交
3594 3595
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3596
{
B
Ben Widawsky 已提交
3597
	struct drm_i915_gem_caching *args = data;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3611 3612 3613 3614 3615 3616
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3617 3618 3619 3620
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3621 3622 3623 3624
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3625 3626 3627 3628 3629 3630 3631

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3632 3633
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3634
{
B
Ben Widawsky 已提交
3635
	struct drm_i915_gem_caching *args = data;
3636 3637 3638 3639
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3640 3641
	switch (args->caching) {
	case I915_CACHING_NONE:
3642 3643
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3644
	case I915_CACHING_CACHED:
3645 3646
		level = I915_CACHE_LLC;
		break;
3647 3648 3649
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3650 3651 3652 3653
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3654 3655 3656 3657
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3672 3673
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3674 3675 3676 3677 3678 3679 3680 3681 3682
	struct i915_vma *vma;

	if (list_empty(&obj->vma_list))
		return false;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3694
	return vma->pin_count - !!obj->user_pin_count;
3695 3696
}

3697
/*
3698 3699 3700
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3701 3702
 */
int
3703 3704
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3705
				     struct intel_engine_cs *pipelined)
3706
{
3707
	u32 old_read_domains, old_write_domain;
3708
	bool was_pin_display;
3709 3710
	int ret;

3711
	if (pipelined != obj->ring) {
3712 3713
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3714 3715 3716
			return ret;
	}

3717 3718 3719
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3720
	was_pin_display = obj->pin_display;
3721 3722
	obj->pin_display = true;

3723 3724 3725 3726 3727 3728 3729 3730 3731
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3732 3733
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3734
	if (ret)
3735
		goto err_unpin_display;
3736

3737 3738 3739 3740
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3741
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3742
	if (ret)
3743
		goto err_unpin_display;
3744

3745
	i915_gem_object_flush_cpu_write_domain(obj, true);
3746

3747
	old_write_domain = obj->base.write_domain;
3748
	old_read_domains = obj->base.read_domains;
3749 3750 3751 3752

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3753
	obj->base.write_domain = 0;
3754
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755 3756 3757

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3758
					    old_write_domain);
3759 3760

	return 0;
3761 3762

err_unpin_display:
3763 3764
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3765 3766 3767 3768 3769 3770
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3771
	i915_gem_object_ggtt_unpin(obj);
3772
	obj->pin_display = is_pin_display(obj);
3773 3774
}

3775
int
3776
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3777
{
3778 3779
	int ret;

3780
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3781 3782
		return 0;

3783
	ret = i915_gem_object_wait_rendering(obj, false);
3784 3785 3786
	if (ret)
		return ret;

3787 3788
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3789
	return 0;
3790 3791
}

3792 3793 3794 3795 3796 3797
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3798
int
3799
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3800
{
C
Chris Wilson 已提交
3801
	uint32_t old_write_domain, old_read_domains;
3802 3803
	int ret;

3804 3805 3806
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3807
	ret = i915_gem_object_wait_rendering(obj, !write);
3808 3809 3810
	if (ret)
		return ret;

3811
	i915_gem_object_retire(obj);
3812
	i915_gem_object_flush_gtt_write_domain(obj);
3813

3814 3815
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3816

3817
	/* Flush the CPU cache if it's still invalid. */
3818
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3819
		i915_gem_clflush_object(obj, false);
3820

3821
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822 3823 3824 3825 3826
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3827
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828 3829 3830 3831 3832

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3833 3834
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835
	}
3836

C
Chris Wilson 已提交
3837 3838 3839 3840
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3841 3842 3843
	return 0;
}

3844 3845 3846
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3847 3848 3849 3850
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3851 3852 3853
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3854
static int
3855
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3856
{
3857 3858
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3859
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3860
	struct drm_i915_gem_request *request;
3861
	struct intel_engine_cs *ring = NULL;
3862
	unsigned reset_counter;
3863 3864
	u32 seqno = 0;
	int ret;
3865

3866 3867 3868 3869 3870 3871 3872
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
3873

3874
	spin_lock(&file_priv->mm.lock);
3875
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3876 3877
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3878

3879 3880
		ring = request->ring;
		seqno = request->seqno;
3881
	}
3882
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3883
	spin_unlock(&file_priv->mm.lock);
3884

3885 3886
	if (seqno == 0)
		return 0;
3887

3888
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3889 3890
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3891 3892 3893 3894

	return ret;
}

3895
int
3896
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
3897
		    struct i915_address_space *vm,
3898
		    uint32_t alignment,
3899
		    unsigned flags)
3900
{
3901
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3902
	struct i915_vma *vma;
3903 3904
	int ret;

3905 3906 3907
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3908
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3909
		return -EINVAL;
3910 3911 3912

	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
3913 3914 3915
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3916 3917
		if ((alignment &&
		     vma->node.start & (alignment - 1)) ||
3918
		    (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
B
Ben Widawsky 已提交
3919
			WARN(vma->pin_count,
3920
			     "bo is already pinned with incorrect alignment:"
3921
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3922
			     " obj->map_and_fenceable=%d\n",
3923
			     i915_gem_obj_offset(obj, vm), alignment,
3924
			     flags & PIN_MAPPABLE,
3925
			     obj->map_and_fenceable);
3926
			ret = i915_vma_unbind(vma);
3927 3928
			if (ret)
				return ret;
3929 3930

			vma = NULL;
3931 3932 3933
		}
	}

3934
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3935 3936 3937
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3938
	}
J
Jesse Barnes 已提交
3939

3940 3941
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3942

3943
	vma->pin_count++;
3944 3945
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
3946 3947 3948 3949 3950

	return 0;
}

void
B
Ben Widawsky 已提交
3951
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3952
{
B
Ben Widawsky 已提交
3953
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3954

B
Ben Widawsky 已提交
3955 3956 3957 3958 3959
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
3960
		obj->pin_mappable = false;
3961 3962
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

3989 3990
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3991
		   struct drm_file *file)
3992 3993
{
	struct drm_i915_gem_pin *args = data;
3994
	struct drm_i915_gem_object *obj;
3995 3996
	int ret;

3997 3998 3999
	if (INTEL_INFO(dev)->gen >= 6)
		return -ENODEV;

4000 4001 4002
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4003

4004
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4005
	if (&obj->base == NULL) {
4006 4007
		ret = -ENOENT;
		goto unlock;
4008 4009
	}

4010
	if (obj->madv != I915_MADV_WILLNEED) {
4011
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4012
		ret = -EFAULT;
4013
		goto out;
4014 4015
	}

4016
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4017
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4018
			  args->handle);
4019 4020
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4021 4022
	}

4023 4024 4025 4026 4027
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4028
	if (obj->user_pin_count == 0) {
4029
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4030 4031
		if (ret)
			goto out;
4032 4033
	}

4034 4035 4036
	obj->user_pin_count++;
	obj->pin_filp = file;

4037
	args->offset = i915_gem_obj_ggtt_offset(obj);
4038
out:
4039
	drm_gem_object_unreference(&obj->base);
4040
unlock:
4041
	mutex_unlock(&dev->struct_mutex);
4042
	return ret;
4043 4044 4045 4046
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4047
		     struct drm_file *file)
4048 4049
{
	struct drm_i915_gem_pin *args = data;
4050
	struct drm_i915_gem_object *obj;
4051
	int ret;
4052

4053 4054 4055
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4056

4057
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4058
	if (&obj->base == NULL) {
4059 4060
		ret = -ENOENT;
		goto unlock;
4061
	}
4062

4063
	if (obj->pin_filp != file) {
4064
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4065
			  args->handle);
4066 4067
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4068
	}
4069 4070 4071
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4072
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4073
	}
4074

4075
out:
4076
	drm_gem_object_unreference(&obj->base);
4077
unlock:
4078
	mutex_unlock(&dev->struct_mutex);
4079
	return ret;
4080 4081 4082 4083
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4084
		    struct drm_file *file)
4085 4086
{
	struct drm_i915_gem_busy *args = data;
4087
	struct drm_i915_gem_object *obj;
4088 4089
	int ret;

4090
	ret = i915_mutex_lock_interruptible(dev);
4091
	if (ret)
4092
		return ret;
4093

4094
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4095
	if (&obj->base == NULL) {
4096 4097
		ret = -ENOENT;
		goto unlock;
4098
	}
4099

4100 4101 4102 4103
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4104
	 */
4105
	ret = i915_gem_object_flush_active(obj);
4106

4107
	args->busy = obj->active;
4108 4109 4110 4111
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4112

4113
	drm_gem_object_unreference(&obj->base);
4114
unlock:
4115
	mutex_unlock(&dev->struct_mutex);
4116
	return ret;
4117 4118 4119 4120 4121 4122
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4123
	return i915_gem_ring_throttle(dev, file_priv);
4124 4125
}

4126 4127 4128 4129 4130
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
4131
	struct drm_i915_gem_object *obj;
4132
	int ret;
4133 4134 4135 4136 4137 4138 4139 4140 4141

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4142 4143 4144 4145
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4146
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4147
	if (&obj->base == NULL) {
4148 4149
		ret = -ENOENT;
		goto unlock;
4150 4151
	}

B
Ben Widawsky 已提交
4152
	if (i915_gem_obj_is_pinned(obj)) {
4153 4154
		ret = -EINVAL;
		goto out;
4155 4156
	}

4157 4158
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4159

C
Chris Wilson 已提交
4160 4161
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4162 4163
		i915_gem_object_truncate(obj);

4164
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4165

4166
out:
4167
	drm_gem_object_unreference(&obj->base);
4168
unlock:
4169
	mutex_unlock(&dev->struct_mutex);
4170
	return ret;
4171 4172
}

4173 4174
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4175
{
4176
	INIT_LIST_HEAD(&obj->global_list);
4177
	INIT_LIST_HEAD(&obj->ring_list);
4178
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4179
	INIT_LIST_HEAD(&obj->vma_list);
4180

4181 4182
	obj->ops = ops;

4183 4184 4185 4186 4187 4188 4189 4190
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4191 4192 4193 4194 4195
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4196 4197
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4198
{
4199
	struct drm_i915_gem_object *obj;
4200
	struct address_space *mapping;
D
Daniel Vetter 已提交
4201
	gfp_t mask;
4202

4203
	obj = i915_gem_object_alloc(dev);
4204 4205
	if (obj == NULL)
		return NULL;
4206

4207
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4208
		i915_gem_object_free(obj);
4209 4210
		return NULL;
	}
4211

4212 4213 4214 4215 4216 4217 4218
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4219
	mapping = file_inode(obj->base.filp)->i_mapping;
4220
	mapping_set_gfp_mask(mapping, mask);
4221

4222
	i915_gem_object_init(obj, &i915_gem_object_ops);
4223

4224 4225
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226

4227 4228
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4244 4245
	trace_i915_gem_object_create(obj);

4246
	return obj;
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4273
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4274
{
4275
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4276
	struct drm_device *dev = obj->base.dev;
4277
	struct drm_i915_private *dev_priv = dev->dev_private;
4278
	struct i915_vma *vma, *next;
4279

4280 4281
	intel_runtime_pm_get(dev_priv);

4282 4283
	trace_i915_gem_object_destroy(obj);

4284 4285 4286
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4287
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4288 4289 4290 4291
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4292 4293
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4294

4295 4296
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4297

4298
			WARN_ON(i915_vma_unbind(vma));
4299

4300 4301
			dev_priv->mm.interruptible = was_interruptible;
		}
4302 4303
	}

B
Ben Widawsky 已提交
4304 4305 4306 4307 4308
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4309 4310
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4311
	if (discard_backing_storage(obj))
4312
		obj->madv = I915_MADV_DONTNEED;
4313
	i915_gem_object_put_pages(obj);
4314
	i915_gem_object_free_mmap_offset(obj);
4315
	i915_gem_object_release_stolen(obj);
4316

4317 4318
	BUG_ON(obj->pages);

4319 4320
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4321

4322 4323 4324
	if (obj->ops->release)
		obj->ops->release(obj);

4325 4326
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4327

4328
	kfree(obj->bit_17);
4329
	i915_gem_object_free(obj);
4330 4331

	intel_runtime_pm_put(dev_priv);
4332 4333
}

4334
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4335
				     struct i915_address_space *vm)
4336 4337 4338 4339 4340 4341 4342 4343 4344
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4345 4346 4347
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4348 4349 4350 4351 4352

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4353
	list_del(&vma->vma_link);
4354

B
Ben Widawsky 已提交
4355 4356 4357
	kfree(vma);
}

4358 4359 4360 4361
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4362
	struct intel_engine_cs *ring;
4363 4364 4365 4366 4367 4368
	int i;

	for_each_ring(ring, dev_priv, i)
		intel_stop_ring_buffer(ring);
}

4369
int
4370
i915_gem_suspend(struct drm_device *dev)
4371
{
4372
	struct drm_i915_private *dev_priv = dev->dev_private;
4373
	int ret = 0;
4374

4375
	mutex_lock(&dev->struct_mutex);
4376
	if (dev_priv->ums.mm_suspended)
4377
		goto err;
4378

4379
	ret = i915_gpu_idle(dev);
4380
	if (ret)
4381
		goto err;
4382

4383
	i915_gem_retire_requests(dev);
4384

4385
	/* Under UMS, be paranoid and evict. */
4386
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4387
		i915_gem_evict_everything(dev);
4388 4389

	i915_kernel_lost_context(dev);
4390
	i915_gem_stop_ringbuffers(dev);
4391

4392 4393 4394 4395 4396 4397 4398 4399 4400
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound ums.mm_suspended!
	 */
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
							     DRIVER_MODESET);
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4401
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4402
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4403

4404
	return 0;
4405 4406 4407 4408

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4409 4410
}

4411
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4412
{
4413
	struct drm_device *dev = ring->dev;
4414
	struct drm_i915_private *dev_priv = dev->dev_private;
4415 4416
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4417
	int i, ret;
B
Ben Widawsky 已提交
4418

4419
	if (!HAS_L3_DPF(dev) || !remap_info)
4420
		return 0;
B
Ben Widawsky 已提交
4421

4422 4423 4424
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4425

4426 4427 4428 4429 4430
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4431
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4432 4433 4434
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4435 4436
	}

4437
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4438

4439
	return ret;
B
Ben Widawsky 已提交
4440 4441
}

4442 4443
void i915_gem_init_swizzling(struct drm_device *dev)
{
4444
	struct drm_i915_private *dev_priv = dev->dev_private;
4445

4446
	if (INTEL_INFO(dev)->gen < 5 ||
4447 4448 4449 4450 4451 4452
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4453 4454 4455
	if (IS_GEN5(dev))
		return;

4456 4457
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4458
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4459
	else if (IS_GEN7(dev))
4460
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4461 4462
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4463 4464
	else
		BUG();
4465
}
D
Daniel Vetter 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4483
static int i915_gem_init_rings(struct drm_device *dev)
4484
{
4485
	struct drm_i915_private *dev_priv = dev->dev_private;
4486
	int ret;
4487

4488
	ret = intel_init_render_ring_buffer(dev);
4489
	if (ret)
4490
		return ret;
4491 4492

	if (HAS_BSD(dev)) {
4493
		ret = intel_init_bsd_ring_buffer(dev);
4494 4495
		if (ret)
			goto cleanup_render_ring;
4496
	}
4497

4498
	if (intel_enable_blt(dev)) {
4499 4500 4501 4502 4503
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4504 4505 4506 4507 4508 4509
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4510 4511 4512 4513 4514
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4515

4516
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517
	if (ret)
4518
		goto cleanup_bsd2_ring;
4519 4520 4521

	return 0;

4522 4523
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4524 4525
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4539
	struct drm_i915_private *dev_priv = dev->dev_private;
4540
	int ret, i;
4541 4542 4543 4544

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4545
	if (dev_priv->ellc_size)
4546
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4547

4548 4549 4550
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4551

4552
	if (HAS_PCH_NOP(dev)) {
4553 4554 4555 4556 4557 4558 4559 4560 4561
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4562 4563
	}

4564 4565 4566
	i915_gem_init_swizzling(dev);

	ret = i915_gem_init_rings(dev);
4567 4568 4569
	if (ret)
		return ret;

4570 4571 4572
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4573
	/*
4574 4575 4576 4577 4578
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4579
	 */
4580
	ret = i915_gem_context_enable(dev_priv);
4581
	if (ret && ret != -EIO) {
4582
		DRM_ERROR("Context enable failed %d\n", ret);
4583
		i915_gem_cleanup_ringbuffer(dev);
4584
	}
D
Daniel Vetter 已提交
4585

4586
	return ret;
4587 4588
}

4589 4590 4591 4592 4593 4594
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4595 4596 4597

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4598 4599 4600
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4601 4602 4603
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4604
	i915_gem_init_userptr(dev);
4605
	i915_gem_init_global_gtt(dev);
4606

4607
	ret = i915_gem_context_init(dev);
4608 4609
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4610
		return ret;
4611
	}
4612

4613
	ret = i915_gem_init_hw(dev);
4614 4615 4616 4617 4618 4619 4620 4621
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4622
	}
4623
	mutex_unlock(&dev->struct_mutex);
4624

4625 4626 4627
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4628
	return ret;
4629 4630
}

4631 4632 4633
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4634
	struct drm_i915_private *dev_priv = dev->dev_private;
4635
	struct intel_engine_cs *ring;
4636
	int i;
4637

4638 4639
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4640 4641
}

4642 4643 4644 4645
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4646
	struct drm_i915_private *dev_priv = dev->dev_private;
4647
	int ret;
4648

J
Jesse Barnes 已提交
4649 4650 4651
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4652
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4653
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4654
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4655 4656 4657
	}

	mutex_lock(&dev->struct_mutex);
4658
	dev_priv->ums.mm_suspended = 0;
4659

4660
	ret = i915_gem_init_hw(dev);
4661 4662
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4663
		return ret;
4664
	}
4665

4666
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4667

4668
	ret = drm_irq_install(dev, dev->pdev->irq);
4669 4670
	if (ret)
		goto cleanup_ringbuffer;
4671
	mutex_unlock(&dev->struct_mutex);
4672

4673
	return 0;
4674 4675 4676

cleanup_ringbuffer:
	i915_gem_cleanup_ringbuffer(dev);
4677
	dev_priv->ums.mm_suspended = 1;
4678 4679 4680
	mutex_unlock(&dev->struct_mutex);

	return ret;
4681 4682 4683 4684 4685 4686
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4687 4688 4689
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4690
	mutex_lock(&dev->struct_mutex);
4691
	drm_irq_uninstall(dev);
4692
	mutex_unlock(&dev->struct_mutex);
4693

4694
	return i915_gem_suspend(dev);
4695 4696 4697 4698 4699 4700 4701
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4702 4703 4704
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4705
	ret = i915_gem_suspend(dev);
4706 4707
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4708 4709
}

4710
static void
4711
init_ring_lists(struct intel_engine_cs *ring)
4712 4713 4714 4715 4716
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4717 4718
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4719
{
4720 4721
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4722 4723 4724 4725
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4726
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4727 4728
}

4729 4730 4731
void
i915_gem_load(struct drm_device *dev)
{
4732
	struct drm_i915_private *dev_priv = dev->dev_private;
4733 4734 4735 4736 4737 4738 4739
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4740

B
Ben Widawsky 已提交
4741 4742 4743
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4744
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4745 4746
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4747
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4748 4749
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4750
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4751
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4752 4753
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4754 4755
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4756
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4757

4758 4759
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4760 4761
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4762 4763
	}

4764 4765
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4766
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4767 4768
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4769

4770 4771 4772
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4773 4774 4775 4776
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4777
	/* Initialize fence registers to zero */
4778 4779
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4780

4781
	i915_gem_detect_bit_6_swizzle(dev);
4782
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4783

4784 4785
	dev_priv->mm.interruptible = true;

4786 4787 4788 4789
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4790 4791 4792

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4793
}
4794 4795 4796 4797 4798

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4799 4800
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4801
{
4802
	struct drm_i915_private *dev_priv = dev->dev_private;
4803 4804 4805 4806 4807 4808
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4809
	phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4810 4811 4812 4813 4814
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4815
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4828
	kfree(phys_obj);
4829 4830 4831
	return ret;
}

4832
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4833
{
4834
	struct drm_i915_private *dev_priv = dev->dev_private;
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4857
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4858 4859 4860 4861
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4862
				 struct drm_i915_gem_object *obj)
4863
{
A
Al Viro 已提交
4864
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4865
	char *vaddr;
4866 4867 4868
	int i;
	int page_count;

4869
	if (!obj->phys_obj)
4870
		return;
4871
	vaddr = obj->phys_obj->handle->vaddr;
4872

4873
	page_count = obj->base.size / PAGE_SIZE;
4874
	for (i = 0; i < page_count; i++) {
4875
		struct page *page = shmem_read_mapping_page(mapping, i);
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4887
	}
4888
	i915_gem_chipset_flush(dev);
4889

4890 4891
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4892 4893 4894 4895
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4896
			    struct drm_i915_gem_object *obj,
4897 4898
			    int id,
			    int align)
4899
{
A
Al Viro 已提交
4900
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4901
	struct drm_i915_private *dev_priv = dev->dev_private;
4902 4903 4904 4905 4906 4907 4908
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4909 4910
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4911 4912 4913 4914 4915 4916 4917
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4918
						obj->base.size, align);
4919
		if (ret) {
4920 4921
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4922
			return ret;
4923 4924 4925 4926
		}
	}

	/* bind to the object */
4927 4928
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4929

4930
	page_count = obj->base.size / PAGE_SIZE;
4931 4932

	for (i = 0; i < page_count; i++) {
4933 4934 4935
		struct page *page;
		char *dst, *src;

4936
		page = shmem_read_mapping_page(mapping, i);
4937 4938
		if (IS_ERR(page))
			return PTR_ERR(page);
4939

4940
		src = kmap_atomic(page);
4941
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4942
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4943
		kunmap_atomic(src);
4944

4945 4946 4947
		mark_page_accessed(page);
		page_cache_release(page);
	}
4948

4949 4950 4951 4952
	return 0;
}

static int
4953 4954
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4955 4956 4957
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4958
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
V
Ville Syrjälä 已提交
4959
	char __user *user_data = to_user_ptr(args->data_ptr);
4960

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4974

4975
	i915_gem_chipset_flush(dev);
4976 4977
	return 0;
}
4978

4979
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4980
{
4981
	struct drm_i915_file_private *file_priv = file->driver_priv;
4982

4983 4984
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4985 4986 4987 4988
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4989
	spin_lock(&file_priv->mm.lock);
4990 4991 4992 4993 4994 4995 4996 4997 4998
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4999
	spin_unlock(&file_priv->mm.lock);
5000
}
5001

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5014
	int ret;
5015 5016 5017 5018 5019 5020 5021 5022 5023

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5024
	file_priv->file = file;
5025 5026 5027 5028 5029 5030

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5031 5032 5033
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5034

5035
	return ret;
5036 5037
}

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5079
static unsigned long
5080
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5081
{
5082
	struct drm_i915_private *dev_priv =
5083
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5084
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5085
	struct drm_i915_gem_object *obj;
5086
	unsigned long count;
5087
	bool unlock;
5088

5089 5090
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5091

5092
	count = 0;
5093
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5094
		if (obj->pages_pin_count == 0)
5095
			count += obj->base.size >> PAGE_SHIFT;
5096 5097

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5098 5099
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5100
			count += obj->base.size >> PAGE_SHIFT;
5101
	}
5102

5103 5104
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5105

5106
	return count;
5107
}
5108 5109 5110 5111 5112 5113 5114 5115

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5116 5117
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
		vm = &dev_priv->gtt.base;

	BUG_ON(list_empty(&o->vma_list));
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5135
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5136 5137 5138 5139 5140 5141 5142
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5143
	struct i915_vma *vma;
5144

5145 5146
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5158 5159
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		vm = &dev_priv->gtt.base;

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5171
static unsigned long
5172
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5173 5174
{
	struct drm_i915_private *dev_priv =
5175
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5176 5177
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5178
	bool unlock;
5179

5180 5181
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5182

5183 5184 5185 5186 5187
	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
	if (freed < sc->nr_to_scan)
		freed += __i915_gem_shrink(dev_priv,
					   sc->nr_to_scan - freed,
					   false);
5188 5189
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5190

5191 5192
	return freed;
}
5193

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
	unsigned long pinned, bound, unbound, freed;
	bool was_interruptible;
	bool unlock;

	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
		schedule_timeout_killable(1);
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	freed = i915_gem_shrink_all(dev_priv);

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
		freed, pinned);
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

	*(unsigned long *)ptr += freed;
	return NOTIFY_DONE;
}

5258 5259 5260 5261
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

5262 5263 5264
	/* This WARN has probably outlived its usefulness (callers already
	 * WARN if they don't find the GGTT vma they expect). When removing,
	 * remember to remove the pre-check in is_pin_display() as well */
5265 5266 5267 5268
	if (WARN_ON(list_empty(&obj->vma_list)))
		return NULL;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5269
	if (vma->vm != obj_to_ggtt(obj))
5270 5271 5272 5273
		return NULL;

	return vma;
}