i915_gem.c 121.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

305 306 307 308 309
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
310
	int ret;
311 312 313 314 315 316 317 318 319 320 321 322 323 324

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
325 326 327 328 329
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
330 331 332
	if (ret)
		return ret;

333 334 335 336 337 338
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
339 340 341
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
342 343 344 345 346 347 348 349 350
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
351
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
352
	int ret = 0;
353 354 355 356 357 358 359

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
360

361
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
362 363 364 365 366 367 368 369 370 371
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
372 373 374 375
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
376 377
	}

378
	drm_clflush_virt_range(vaddr, args->size);
379
	i915_gem_chipset_flush(to_i915(dev));
380 381

out:
382
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
383
	return ret;
384 385
}

386 387
void *i915_gem_object_alloc(struct drm_device *dev)
{
388
	struct drm_i915_private *dev_priv = to_i915(dev);
389
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
390 391 392 393
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
394
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
395
	kmem_cache_free(dev_priv->objects, obj);
396 397
}

398 399 400 401 402
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
403
{
404
	struct drm_i915_gem_object *obj;
405 406
	int ret;
	u32 handle;
407

408
	size = roundup(size, PAGE_SIZE);
409 410
	if (size == 0)
		return -EINVAL;
411 412

	/* Allocate the new object */
413
	obj = i915_gem_object_create(dev, size);
414 415
	if (IS_ERR(obj))
		return PTR_ERR(obj);
416

417
	ret = drm_gem_handle_create(file, &obj->base, &handle);
418
	/* drop reference from allocate - handle holds it now */
419
	i915_gem_object_put_unlocked(obj);
420 421
	if (ret)
		return ret;
422

423
	*handle_p = handle;
424 425 426
	return 0;
}

427 428 429 430 431 432
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
433
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
434 435
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
436
			       args->size, &args->handle);
437 438 439 440
}

/**
 * Creates a new mm object and returns a handle to it.
441 442 443
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
444 445 446 447 448 449
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
450

451
	return i915_gem_create(file, dev,
452
			       args->size, &args->handle);
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

481
static inline int
482 483
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

519
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
520 521
		return -EINVAL;

522 523 524 525
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

544 545 546
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
547
static int
548 549 550 551 552 553 554
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

555
	if (unlikely(page_do_bit17_swizzling))
556 557 558 559 560 561 562 563 564 565 566
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

567
	return ret ? -EFAULT : 0;
568 569
}

570 571 572 573
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
574
	if (unlikely(swizzled)) {
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

592 593 594 595 596 597 598 599 600 601 602 603
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
604 605 606
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
607 608 609 610 611 612 613 614 615 616 617

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

618
	return ret ? - EFAULT : 0;
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
648
	struct drm_i915_private *dev_priv = to_i915(dev);
649 650 651 652 653 654 655
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

656
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

757
static int
758 759 760 761
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
762
{
763
	char __user *user_data;
764
	ssize_t remain;
765
	loff_t offset;
766
	int shmem_page_offset, page_length, ret = 0;
767
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
768
	int prefaulted = 0;
769
	int needs_clflush = 0;
770
	struct sg_page_iter sg_iter;
771

772
	if (!i915_gem_object_has_struct_page(obj))
773 774
		return -ENODEV;

775
	user_data = u64_to_user_ptr(args->data_ptr);
776 777
	remain = args->size;

778
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
779

780
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
781 782 783
	if (ret)
		return ret;

784
	offset = args->offset;
785

786 787
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
788
		struct page *page = sg_page_iter_page(&sg_iter);
789 790 791 792

		if (remain <= 0)
			break;

793 794 795 796 797
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
798
		shmem_page_offset = offset_in_page(offset);
799 800 801 802
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

803 804 805
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

806 807 808 809 810
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
811 812 813

		mutex_unlock(&dev->struct_mutex);

814
		if (likely(!i915.prefault_disable) && !prefaulted) {
815
			ret = fault_in_multipages_writeable(user_data, remain);
816 817 818 819 820 821 822
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
823

824 825 826
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
827

828
		mutex_lock(&dev->struct_mutex);
829 830

		if (ret)
831 832
			goto out;

833
next_page:
834
		remain -= page_length;
835
		user_data += page_length;
836 837 838
		offset += page_length;
	}

839
out:
840 841
	i915_gem_object_unpin_pages(obj);

842 843 844
	return ret;
}

845 846
/**
 * Reads data from the object referenced by handle.
847 848 849
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
850 851 852 853 854
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
855
		     struct drm_file *file)
856 857
{
	struct drm_i915_gem_pread *args = data;
858
	struct drm_i915_gem_object *obj;
859
	int ret = 0;
860

861 862 863 864
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
865
		       u64_to_user_ptr(args->data_ptr),
866 867 868
		       args->size))
		return -EFAULT;

869
	ret = i915_mutex_lock_interruptible(dev);
870
	if (ret)
871
		return ret;
872

873 874
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
875 876
		ret = -ENOENT;
		goto unlock;
877
	}
878

879
	/* Bounds check source.  */
880 881
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
882
		ret = -EINVAL;
883
		goto out;
C
Chris Wilson 已提交
884 885
	}

C
Chris Wilson 已提交
886 887
	trace_i915_gem_object_pread(obj, args->offset, args->size);

888
	ret = i915_gem_shmem_pread(dev, obj, args, file);
889

890
	/* pread for non shmem backed objects */
891 892
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
893 894
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
895 896
		intel_runtime_pm_put(to_i915(dev));
	}
897

898
out:
899
	i915_gem_object_put(obj);
900
unlock:
901
	mutex_unlock(&dev->struct_mutex);
902
	return ret;
903 904
}

905 906
/* This is the fast write path which cannot handle
 * page faults in the source data
907
 */
908 909 910 911 912 913

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
914
{
915 916
	void __iomem *vaddr_atomic;
	void *vaddr;
917
	unsigned long unwritten;
918

P
Peter Zijlstra 已提交
919
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
920 921 922
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
923
						      user_data, length);
P
Peter Zijlstra 已提交
924
	io_mapping_unmap_atomic(vaddr_atomic);
925
	return unwritten;
926 927
}

928 929 930
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
931
 * @i915: i915 device private data
932 933 934
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
935
 */
936
static int
937
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
938
			 struct drm_i915_gem_object *obj,
939
			 struct drm_i915_gem_pwrite *args,
940
			 struct drm_file *file)
941
{
942
	struct i915_ggtt *ggtt = &i915->ggtt;
943
	struct drm_device *dev = obj->base.dev;
944 945
	struct drm_mm_node node;
	uint64_t remain, offset;
946
	char __user *user_data;
947
	int ret;
948 949 950 951
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
952

953 954
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
970 971 972
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
973
	}
D
Daniel Vetter 已提交
974 975 976 977 978

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

979
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
980
	obj->dirty = true;
981

982 983 984 985
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
986 987
		/* Operation in this page
		 *
988 989 990
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
991
		 */
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1005
		/* If we get a fault while copying data, then (presumably) our
1006 1007
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1008 1009
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1010
		 */
1011
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1012
				    page_offset, user_data, page_length)) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1025
		}
1026

1027 1028 1029
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1030 1031
	}

1032
out_flush:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1046
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1047
out_unpin:
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1058
out:
1059
	return ret;
1060 1061
}

1062 1063 1064 1065
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1066
static int
1067 1068 1069 1070 1071
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1072
{
1073
	char *vaddr;
1074
	int ret;
1075

1076
	if (unlikely(page_do_bit17_swizzling))
1077
		return -EINVAL;
1078

1079 1080 1081 1082
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1083 1084
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1085 1086 1087 1088
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1089

1090
	return ret ? -EFAULT : 0;
1091 1092
}

1093 1094
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1095
static int
1096 1097 1098 1099 1100
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1101
{
1102 1103
	char *vaddr;
	int ret;
1104

1105
	vaddr = kmap(page);
1106
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1107 1108 1109
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1110 1111
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1112 1113
						user_data,
						page_length);
1114 1115 1116 1117 1118
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1119 1120 1121
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1122
	kunmap(page);
1123

1124
	return ret ? -EFAULT : 0;
1125 1126 1127
}

static int
1128 1129 1130 1131
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1132 1133
{
	ssize_t remain;
1134 1135
	loff_t offset;
	char __user *user_data;
1136
	int shmem_page_offset, page_length, ret = 0;
1137
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1138
	int hit_slowpath = 0;
1139 1140
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1141
	struct sg_page_iter sg_iter;
1142

1143
	user_data = u64_to_user_ptr(args->data_ptr);
1144 1145
	remain = args->size;

1146
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1147

1148 1149 1150 1151
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1152 1153 1154 1155 1156
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1157
		needs_clflush_after = cpu_write_needs_clflush(obj);
1158
	}
1159 1160 1161 1162 1163
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1164

1165 1166 1167 1168
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1169
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1170

1171 1172
	i915_gem_object_pin_pages(obj);

1173
	offset = args->offset;
1174
	obj->dirty = 1;
1175

1176 1177
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1178
		struct page *page = sg_page_iter_page(&sg_iter);
1179
		int partial_cacheline_write;
1180

1181 1182 1183
		if (remain <= 0)
			break;

1184 1185 1186 1187 1188
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1189
		shmem_page_offset = offset_in_page(offset);
1190 1191 1192 1193 1194

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1195 1196 1197 1198 1199 1200 1201
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1202 1203 1204
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1205 1206 1207 1208 1209 1210
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1211 1212 1213

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1214 1215 1216 1217
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1218

1219
		mutex_lock(&dev->struct_mutex);
1220 1221

		if (ret)
1222 1223
			goto out;

1224
next_page:
1225
		remain -= page_length;
1226
		user_data += page_length;
1227
		offset += page_length;
1228 1229
	}

1230
out:
1231 1232
	i915_gem_object_unpin_pages(obj);

1233
	if (hit_slowpath) {
1234 1235 1236 1237 1238 1239 1240
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1241
			if (i915_gem_clflush_object(obj, obj->pin_display))
1242
				needs_clflush_after = true;
1243
		}
1244
	}
1245

1246
	if (needs_clflush_after)
1247
		i915_gem_chipset_flush(to_i915(dev));
1248 1249
	else
		obj->cache_dirty = true;
1250

1251
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1252
	return ret;
1253 1254 1255 1256
}

/**
 * Writes data to the object referenced by handle.
1257 1258 1259
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1260 1261 1262 1263 1264
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1265
		      struct drm_file *file)
1266
{
1267
	struct drm_i915_private *dev_priv = to_i915(dev);
1268
	struct drm_i915_gem_pwrite *args = data;
1269
	struct drm_i915_gem_object *obj;
1270 1271 1272 1273 1274 1275
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1276
		       u64_to_user_ptr(args->data_ptr),
1277 1278 1279
		       args->size))
		return -EFAULT;

1280
	if (likely(!i915.prefault_disable)) {
1281
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1282 1283 1284 1285
						   args->size);
		if (ret)
			return -EFAULT;
	}
1286

1287 1288
	intel_runtime_pm_get(dev_priv);

1289
	ret = i915_mutex_lock_interruptible(dev);
1290
	if (ret)
1291
		goto put_rpm;
1292

1293 1294
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1295 1296
		ret = -ENOENT;
		goto unlock;
1297
	}
1298

1299
	/* Bounds check destination. */
1300 1301
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1302
		ret = -EINVAL;
1303
		goto out;
C
Chris Wilson 已提交
1304 1305
	}

C
Chris Wilson 已提交
1306 1307
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1308
	ret = -EFAULT;
1309 1310 1311 1312 1313 1314
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1315 1316
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1317
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1318 1319 1320
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1321
	}
1322

1323
	if (ret == -EFAULT || ret == -ENOSPC) {
1324 1325
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1326
		else if (i915_gem_object_has_struct_page(obj))
1327
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1328 1329
		else
			ret = -ENODEV;
1330
	}
1331

1332
out:
1333
	i915_gem_object_put(obj);
1334
unlock:
1335
	mutex_unlock(&dev->struct_mutex);
1336 1337 1338
put_rpm:
	intel_runtime_pm_put(dev_priv);

1339 1340 1341
	return ret;
}

1342 1343 1344
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1345 1346
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1347
 */
1348
int
1349 1350 1351
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1352
	struct reservation_object *resv;
C
Chris Wilson 已提交
1353 1354 1355
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1356

C
Chris Wilson 已提交
1357 1358 1359 1360 1361
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1362
	} else {
C
Chris Wilson 已提交
1363 1364 1365
		active_mask = 1;
		active = &obj->last_write;
	}
1366

C
Chris Wilson 已提交
1367
	for_each_active(active_mask, idx) {
1368 1369
		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
C
Chris Wilson 已提交
1370 1371
		if (ret)
			return ret;
1372 1373
	}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1384 1385 1386
	return 0;
}

1387 1388 1389 1390 1391
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392
					    struct intel_rps_client *rps,
1393 1394 1395
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1396
	struct drm_i915_private *dev_priv = to_i915(dev);
1397
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1398 1399
	struct i915_gem_active *active;
	unsigned long active_mask;
1400
	int ret, i, n = 0;
1401 1402 1403 1404

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1405 1406
	active_mask = obj->active;
	if (!active_mask)
1407 1408
		return 0;

C
Chris Wilson 已提交
1409 1410
	if (!readonly) {
		active = obj->last_read;
1411
	} else {
C
Chris Wilson 已提交
1412 1413 1414
		active_mask = 1;
		active = &obj->last_write;
	}
1415

C
Chris Wilson 已提交
1416 1417
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1418

C
Chris Wilson 已提交
1419 1420 1421
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1422
			requests[n++] = req;
1423 1424
	}

1425
	mutex_unlock(&dev->struct_mutex);
1426
	ret = 0;
1427
	for (i = 0; ret == 0 && i < n; i++)
1428
		ret = i915_wait_request(requests[i], true, NULL, rps);
1429 1430
	mutex_lock(&dev->struct_mutex);

1431
	for (i = 0; i < n; i++)
1432
		i915_gem_request_put(requests[i]);
1433 1434

	return ret;
1435 1436
}

1437 1438 1439 1440 1441 1442
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1443 1444 1445 1446 1447 1448 1449
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1450
/**
1451 1452
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1453 1454 1455
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1456 1457 1458
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1459
			  struct drm_file *file)
1460 1461
{
	struct drm_i915_gem_set_domain *args = data;
1462
	struct drm_i915_gem_object *obj;
1463 1464
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1465 1466
	int ret;

1467
	/* Only handle setting domains to types used by the CPU. */
1468
	if (write_domain & I915_GEM_GPU_DOMAINS)
1469 1470
		return -EINVAL;

1471
	if (read_domains & I915_GEM_GPU_DOMAINS)
1472 1473 1474 1475 1476 1477 1478 1479
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1480
	ret = i915_mutex_lock_interruptible(dev);
1481
	if (ret)
1482
		return ret;
1483

1484 1485
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1486 1487
		ret = -ENOENT;
		goto unlock;
1488
	}
1489

1490 1491 1492 1493
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1494
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1495
							  to_rps_client(file),
1496
							  !write_domain);
1497 1498 1499
	if (ret)
		goto unref;

1500
	if (read_domains & I915_GEM_DOMAIN_GTT)
1501
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1502
	else
1503
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1504

1505
	if (write_domain != 0)
1506
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1507

1508
unref:
1509
	i915_gem_object_put(obj);
1510
unlock:
1511 1512 1513 1514 1515 1516
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1517 1518 1519
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1520 1521 1522
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523
			 struct drm_file *file)
1524 1525
{
	struct drm_i915_gem_sw_finish *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528
	int ret = 0;

1529
	ret = i915_mutex_lock_interruptible(dev);
1530
	if (ret)
1531
		return ret;
1532

1533 1534
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1535 1536
		ret = -ENOENT;
		goto unlock;
1537 1538 1539
	}

	/* Pinned buffers may be scanout, so flush the cache */
1540
	if (obj->pin_display)
1541
		i915_gem_object_flush_cpu_write_domain(obj);
1542

1543
	i915_gem_object_put(obj);
1544
unlock:
1545 1546 1547 1548 1549
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1550 1551 1552 1553 1554
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1555 1556 1557
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1568 1569 1570
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1571
		    struct drm_file *file)
1572 1573
{
	struct drm_i915_gem_mmap *args = data;
1574
	struct drm_i915_gem_object *obj;
1575 1576
	unsigned long addr;

1577 1578 1579
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1580
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1581 1582
		return -ENODEV;

1583 1584
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1585
		return -ENOENT;
1586

1587 1588 1589
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1590
	if (!obj->base.filp) {
1591
		i915_gem_object_put_unlocked(obj);
1592 1593 1594
		return -EINVAL;
	}

1595
	addr = vm_mmap(obj->base.filp, 0, args->size,
1596 1597
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1598 1599 1600 1601
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1602
		if (down_write_killable(&mm->mmap_sem)) {
1603
			i915_gem_object_put_unlocked(obj);
1604 1605
			return -EINTR;
		}
1606 1607 1608 1609 1610 1611 1612
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1613 1614

		/* This may race, but that's ok, it only gets set */
1615
		WRITE_ONCE(obj->has_wc_mmap, true);
1616
	}
1617
	i915_gem_object_put_unlocked(obj);
1618 1619 1620 1621 1622 1623 1624 1625
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1626 1627
/**
 * i915_gem_fault - fault a page into the GTT
1628 1629
 * @vma: VMA in question
 * @vmf: fault info
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1644 1645
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1646 1647
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1648
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1649 1650 1651
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1652
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1653

1654 1655
	intel_runtime_pm_get(dev_priv);

1656 1657 1658 1659
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1660 1661 1662
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1663

C
Chris Wilson 已提交
1664 1665
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1666 1667 1668 1669 1670 1671 1672 1673 1674
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1675 1676
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1677
		ret = -EFAULT;
1678 1679 1680
		goto unlock;
	}

1681
	/* Use a partial view if the object is bigger than the aperture. */
1682
	if (obj->base.size >= ggtt->mappable_end &&
1683
	    obj->tiling_mode == I915_TILING_NONE) {
1684
		static const unsigned int chunk_size = 256; // 1 MiB
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1697
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1698 1699
	if (ret)
		goto unlock;
1700

1701 1702 1703
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1704

1705
	ret = i915_gem_object_get_fence(obj);
1706
	if (ret)
1707
		goto unpin;
1708

1709
	/* Finally, remap it using the new GTT offset */
1710
	pfn = ggtt->mappable_base +
1711
		i915_gem_obj_ggtt_offset_view(obj, &view);
1712
	pfn >>= PAGE_SHIFT;
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1723

1724 1725
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1726 1727 1728 1729 1730
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1752
unpin:
1753
	i915_gem_object_ggtt_unpin_view(obj, &view);
1754
unlock:
1755
	mutex_unlock(&dev->struct_mutex);
1756
out:
1757
	switch (ret) {
1758
	case -EIO:
1759 1760 1761 1762 1763 1764 1765
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1766 1767 1768
			ret = VM_FAULT_SIGBUS;
			break;
		}
1769
	case -EAGAIN:
D
Daniel Vetter 已提交
1770 1771 1772 1773
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1774
		 */
1775 1776
	case 0:
	case -ERESTARTSYS:
1777
	case -EINTR:
1778 1779 1780 1781 1782
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1783 1784
		ret = VM_FAULT_NOPAGE;
		break;
1785
	case -ENOMEM:
1786 1787
		ret = VM_FAULT_OOM;
		break;
1788
	case -ENOSPC:
1789
	case -EFAULT:
1790 1791
		ret = VM_FAULT_SIGBUS;
		break;
1792
	default:
1793
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1794 1795
		ret = VM_FAULT_SIGBUS;
		break;
1796
	}
1797 1798 1799

	intel_runtime_pm_put(dev_priv);
	return ret;
1800 1801
}

1802 1803 1804 1805
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1806
 * Preserve the reservation of the mmapping with the DRM core code, but
1807 1808 1809 1810 1811 1812 1813 1814 1815
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1816
void
1817
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1818
{
1819 1820 1821 1822 1823 1824
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1825 1826
	if (!obj->fault_mappable)
		return;
1827

1828 1829
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1840
	obj->fault_mappable = false;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1852 1853
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1854
 * @dev_priv: i915 device
1855 1856 1857 1858 1859 1860
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1861 1862
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1863
{
1864
	u64 ggtt_size;
1865

1866 1867
	GEM_BUG_ON(size == 0);

1868
	if (INTEL_GEN(dev_priv) >= 4 ||
1869 1870
	    tiling_mode == I915_TILING_NONE)
		return size;
1871 1872

	/* Previous chips need a power-of-two fence region when tiling */
1873
	if (IS_GEN3(dev_priv))
1874
		ggtt_size = 1024*1024;
1875
	else
1876
		ggtt_size = 512*1024;
1877

1878 1879
	while (ggtt_size < size)
		ggtt_size <<= 1;
1880

1881
	return ggtt_size;
1882 1883
}

1884
/**
1885
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1886
 * @dev_priv: i915 device
1887 1888
 * @size: object size
 * @tiling_mode: tiling mode
1889
 * @fenced: is fenced alignment required or not
1890
 *
1891
 * Return the required global GTT alignment for an object, taking into account
1892
 * potential fence register mapping.
1893
 */
1894
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1895
				int tiling_mode, bool fenced)
1896
{
1897 1898
	GEM_BUG_ON(size == 0);

1899 1900 1901 1902
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1903
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1904
	    tiling_mode == I915_TILING_NONE)
1905 1906
		return 4096;

1907 1908 1909 1910
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1911
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1912 1913
}

1914 1915
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1916
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1917 1918
	int ret;

1919 1920
	dev_priv->mm.shrinker_no_lock_stealing = true;

1921 1922
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1923
		goto out;
1924 1925 1926 1927 1928 1929 1930 1931

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1932 1933 1934 1935 1936
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1937 1938
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1939
		goto out;
1940 1941

	i915_gem_shrink_all(dev_priv);
1942 1943 1944 1945 1946
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1947 1948 1949 1950 1951 1952 1953
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1954
int
1955 1956
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1957
		  uint32_t handle,
1958
		  uint64_t *offset)
1959
{
1960
	struct drm_i915_gem_object *obj;
1961 1962
	int ret;

1963
	ret = i915_mutex_lock_interruptible(dev);
1964
	if (ret)
1965
		return ret;
1966

1967 1968
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1969 1970 1971
		ret = -ENOENT;
		goto unlock;
	}
1972

1973
	if (obj->madv != I915_MADV_WILLNEED) {
1974
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1975
		ret = -EFAULT;
1976
		goto out;
1977 1978
	}

1979 1980 1981
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1982

1983
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1984

1985
out:
1986
	i915_gem_object_put(obj);
1987
unlock:
1988
	mutex_unlock(&dev->struct_mutex);
1989
	return ret;
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2013
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2014 2015
}

D
Daniel Vetter 已提交
2016 2017 2018
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2019
{
2020
	i915_gem_object_free_mmap_offset(obj);
2021

2022 2023
	if (obj->base.filp == NULL)
		return;
2024

D
Daniel Vetter 已提交
2025 2026 2027 2028 2029
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2030
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2031 2032
	obj->madv = __I915_MADV_PURGED;
}
2033

2034 2035 2036
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2037
{
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2052 2053
}

2054
static void
2055
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2056
{
2057 2058
	struct sgt_iter sgt_iter;
	struct page *page;
2059
	int ret;
2060

2061
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2062

C
Chris Wilson 已提交
2063
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2064
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2065 2066 2067
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2068
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2069 2070 2071
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2072 2073
	i915_gem_gtt_finish_object(obj);

2074
	if (i915_gem_object_needs_bit17_swizzle(obj))
2075 2076
		i915_gem_object_save_bit_17_swizzle(obj);

2077 2078
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2079

2080
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2081
		if (obj->dirty)
2082
			set_page_dirty(page);
2083

2084
		if (obj->madv == I915_MADV_WILLNEED)
2085
			mark_page_accessed(page);
2086

2087
		put_page(page);
2088
	}
2089
	obj->dirty = 0;
2090

2091 2092
	sg_free_table(obj->pages);
	kfree(obj->pages);
2093
}
C
Chris Wilson 已提交
2094

2095
int
2096 2097 2098 2099
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2100
	if (obj->pages == NULL)
2101 2102
		return 0;

2103 2104 2105
	if (obj->pages_pin_count)
		return -EBUSY;

2106
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2107

2108 2109 2110
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2111
	list_del(&obj->global_list);
2112

2113
	if (obj->mapping) {
2114 2115 2116 2117
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2118 2119 2120
		obj->mapping = NULL;
	}

2121
	ops->put_pages(obj);
2122
	obj->pages = NULL;
2123

2124
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2125 2126 2127 2128

	return 0;
}

2129
static int
C
Chris Wilson 已提交
2130
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2131
{
2132
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2133 2134
	int page_count, i;
	struct address_space *mapping;
2135 2136
	struct sg_table *st;
	struct scatterlist *sg;
2137
	struct sgt_iter sgt_iter;
2138
	struct page *page;
2139
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2140
	int ret;
C
Chris Wilson 已提交
2141
	gfp_t gfp;
2142

C
Chris Wilson 已提交
2143 2144 2145 2146 2147 2148 2149
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2150 2151 2152 2153
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2154
	page_count = obj->base.size / PAGE_SIZE;
2155 2156
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2157
		return -ENOMEM;
2158
	}
2159

2160 2161 2162 2163 2164
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2165
	mapping = file_inode(obj->base.filp)->i_mapping;
2166
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2167
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2168 2169 2170
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2171 2172
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2173 2174 2175 2176 2177
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2178 2179 2180 2181 2182 2183 2184 2185
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2186
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2187 2188
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2189
				goto err_pages;
I
Imre Deak 已提交
2190
			}
C
Chris Wilson 已提交
2191
		}
2192 2193 2194 2195 2196 2197 2198 2199
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2200 2201 2202 2203 2204 2205 2206 2207 2208
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2209 2210 2211

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2212
	}
2213 2214 2215 2216
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2217 2218
	obj->pages = st;

I
Imre Deak 已提交
2219 2220 2221 2222
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2223
	if (i915_gem_object_needs_bit17_swizzle(obj))
2224 2225
		i915_gem_object_do_bit_17_swizzle(obj);

2226 2227 2228 2229
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2230 2231 2232
	return 0;

err_pages:
2233
	sg_mark_end(sg);
2234 2235
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2236 2237
	sg_free_table(st);
	kfree(st);
2238 2239 2240 2241 2242 2243 2244 2245 2246

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2247 2248 2249 2250
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2263
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2264 2265 2266
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2267
	if (obj->pages)
2268 2269
		return 0;

2270
	if (obj->madv != I915_MADV_WILLNEED) {
2271
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2272
		return -EFAULT;
2273 2274
	}

2275 2276
	BUG_ON(obj->pages_pin_count);

2277 2278 2279 2280
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2281
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2282 2283 2284 2285

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2286
	return 0;
2287 2288
}

2289 2290 2291 2292 2293
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2294 2295
	struct sgt_iter sgt_iter;
	struct page *page;
2296 2297
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2298 2299 2300 2301 2302 2303 2304
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2305 2306 2307 2308 2309 2310
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2311

2312 2313
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2314 2315 2316 2317 2318 2319

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2320 2321
	if (pages != stack_pages)
		drm_free_large(pages);
2322 2323 2324 2325 2326

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2339 2340 2341
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2342 2343 2344 2345 2346 2347 2348 2349
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2350
static void
2351 2352
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2353
{
2354 2355
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2356

2357
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2358 2359
}

2360
static void
2361 2362
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2363
{
2364 2365 2366
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2367

2368
	GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2369

2370
	obj->active &= ~(1 << idx);
2371 2372
	if (obj->active)
		return;
2373

2374 2375 2376 2377
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2378 2379 2380
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2381

2382
	i915_gem_object_put(obj);
2383 2384
}

2385
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2386
{
2387
	unsigned long elapsed;
2388

2389
	if (ctx->hang_stats.banned)
2390 2391
		return true;

2392
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2393 2394
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2395 2396
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2397 2398 2399 2400 2401
	}

	return false;
}

2402
static void i915_set_reset_status(struct i915_gem_context *ctx,
2403
				  const bool guilty)
2404
{
2405
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2406 2407

	if (guilty) {
2408
		hs->banned = i915_context_is_banned(ctx);
2409 2410 2411 2412
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2413 2414 2415
	}
}

2416
struct drm_i915_gem_request *
2417
i915_gem_find_active_request(struct intel_engine_cs *engine)
2418
{
2419 2420
	struct drm_i915_gem_request *request;

2421 2422 2423 2424 2425 2426 2427 2428
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2429
	list_for_each_entry(request, &engine->request_list, link) {
2430
		if (i915_gem_request_completed(request))
2431
			continue;
2432

2433
		return request;
2434
	}
2435 2436 2437 2438

	return NULL;
}

2439
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2440 2441 2442 2443
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2444
	request = i915_gem_find_active_request(engine);
2445 2446 2447
	if (request == NULL)
		return;

2448
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2449

2450
	i915_set_reset_status(request->ctx, ring_hung);
2451
	list_for_each_entry_continue(request, &engine->request_list, link)
2452
		i915_set_reset_status(request->ctx, false);
2453
}
2454

2455
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2456
{
2457
	struct intel_ring *ring;
2458

2459 2460 2461 2462
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2463
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2464

2465 2466 2467 2468 2469 2470
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2471
	if (i915.enable_execlists) {
2472 2473
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2474

2475
		intel_execlists_cancel_requests(engine);
2476 2477
	}

2478 2479 2480 2481 2482 2483 2484
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2485
	if (!list_empty(&engine->request_list)) {
2486 2487
		struct drm_i915_gem_request *request;

2488 2489
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2490
					  link);
2491

2492
		i915_gem_request_retire_upto(request);
2493
	}
2494 2495 2496 2497 2498 2499 2500 2501

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2502 2503 2504
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2505
	}
2506

2507
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2508 2509
}

2510
void i915_gem_reset(struct drm_device *dev)
2511
{
2512
	struct drm_i915_private *dev_priv = to_i915(dev);
2513
	struct intel_engine_cs *engine;
2514

2515 2516 2517 2518 2519
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2520
	for_each_engine(engine, dev_priv)
2521
		i915_gem_reset_engine_status(engine);
2522

2523
	for_each_engine(engine, dev_priv)
2524
		i915_gem_reset_engine_cleanup(engine);
2525
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2526

2527 2528
	i915_gem_context_reset(dev);

2529
	i915_gem_restore_fences(dev);
2530 2531
}

2532
static void
2533 2534
i915_gem_retire_work_handler(struct work_struct *work)
{
2535
	struct drm_i915_private *dev_priv =
2536
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2537
	struct drm_device *dev = &dev_priv->drm;
2538

2539
	/* Come back later if the device is busy... */
2540
	if (mutex_trylock(&dev->struct_mutex)) {
2541
		i915_gem_retire_requests(dev_priv);
2542
		mutex_unlock(&dev->struct_mutex);
2543
	}
2544 2545 2546 2547 2548

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2549 2550
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2551 2552
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2553
				   round_jiffies_up_relative(HZ));
2554
	}
2555
}
2556

2557 2558 2559 2560
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2561
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2562
	struct drm_device *dev = &dev_priv->drm;
2563
	struct intel_engine_cs *engine;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2586

2587
	for_each_engine(engine, dev_priv)
2588
		i915_gem_batch_pool_fini(&engine->batch_pool);
2589

2590 2591 2592
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2593

2594 2595 2596 2597
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2598
	stuck_engines = intel_kick_waiters(dev_priv);
2599 2600 2601
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2602

2603 2604 2605 2606 2607
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2608

2609 2610 2611 2612
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2613
	}
2614 2615
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2629 2630
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2631 2632 2633
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2658
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2659 2660
	int i, n = 0;
	int ret;
2661

2662 2663 2664
	if (args->flags != 0)
		return -EINVAL;

2665 2666 2667 2668
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2669 2670
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2671 2672 2673 2674
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2675
	if (!obj->active)
2676
		goto out;
2677

2678
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2679
		struct drm_i915_gem_request *req;
2680

2681 2682
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2683 2684
		if (req)
			requests[n++] = req;
2685 2686
	}

2687 2688
out:
	i915_gem_object_put(obj);
2689 2690
	mutex_unlock(&dev->struct_mutex);

2691 2692
	for (i = 0; i < n; i++) {
		if (ret == 0)
2693 2694 2695
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2696
		i915_gem_request_put(requests[i]);
2697
	}
2698
	return ret;
2699 2700
}

2701
static int
2702
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2703
		       struct drm_i915_gem_request *from)
2704 2705 2706
{
	int ret;

2707
	if (to->engine == from->engine)
2708 2709
		return 0;

2710
	if (!i915.semaphores) {
2711 2712 2713 2714
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2715 2716 2717
		if (ret)
			return ret;
	} else {
2718
		int idx = intel_engine_sync_index(from->engine, to->engine);
2719
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2720 2721
			return 0;

2722
		trace_i915_gem_ring_sync_to(to, from);
2723
		ret = to->engine->semaphore.sync_to(to, from);
2724 2725 2726
		if (ret)
			return ret;

2727
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2728 2729 2730 2731 2732
	}

	return 0;
}

2733 2734 2735 2736
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2737
 * @to: request we are wishing to use
2738 2739
 *
 * This code is meant to abstract object synchronization with the GPU.
2740 2741 2742
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2743 2744 2745 2746 2747 2748 2749
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2750 2751 2752
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2753 2754
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2755
		     struct drm_i915_gem_request *to)
2756
{
C
Chris Wilson 已提交
2757 2758 2759
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2760

C
Chris Wilson 已提交
2761
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2762

C
Chris Wilson 已提交
2763 2764 2765
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2766

C
Chris Wilson 已提交
2767 2768
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2769
	} else {
C
Chris Wilson 已提交
2770 2771
		active_mask = 1;
		active = &obj->last_write;
2772
	}
C
Chris Wilson 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2783
		ret = __i915_gem_object_sync(to, request);
2784 2785 2786
		if (ret)
			return ret;
	}
2787

2788
	return 0;
2789 2790
}

2791 2792 2793 2794 2795 2796 2797
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2798 2799 2800
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2812 2813
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2814
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2815 2816 2817 2818 2819 2820 2821 2822

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2823
int i915_vma_unbind(struct i915_vma *vma)
2824
{
2825
	struct drm_i915_gem_object *obj = vma->obj;
2826
	unsigned long active;
2827
	int ret;
2828

2829 2830 2831 2832
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2833
	if (active) {
2834 2835
		int idx;

2836 2837 2838 2839 2840
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2841
		__i915_vma_pin(vma);
2842

2843 2844 2845 2846
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2847
				break;
2848 2849
		}

2850
		__i915_vma_unpin(vma);
2851 2852 2853
		if (ret)
			return ret;

2854 2855 2856
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2857
	if (i915_vma_is_pinned(vma))
2858 2859
		return -EBUSY;

2860 2861
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2862

2863 2864
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2865

2866 2867
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2868
		i915_gem_object_finish_gtt(obj);
2869

2870 2871 2872 2873
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2874 2875

		__i915_vma_iounmap(vma);
2876
	}
2877

2878 2879 2880 2881
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2882
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2883

2884 2885 2886
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2887
	if (i915_vma_is_ggtt(vma)) {
2888 2889 2890 2891 2892 2893
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2894
		vma->ggtt_view.pages = NULL;
2895
	}
2896

B
Ben Widawsky 已提交
2897
	/* Since the unbound list is global, only move to that list if
2898
	 * no more VMAs exist. */
2899 2900 2901
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2902

2903 2904 2905 2906 2907 2908
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2909
destroy:
2910
	if (unlikely(i915_vma_is_closed(vma)))
2911 2912
		i915_vma_destroy(vma);

2913
	return 0;
2914 2915
}

2916
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2917
{
2918
	struct intel_engine_cs *engine;
2919
	int ret;
2920

2921
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2922

2923
	for_each_engine(engine, dev_priv) {
2924 2925 2926
		if (engine->last_context == NULL)
			continue;

2927
		ret = intel_engine_idle(engine);
2928 2929 2930
		if (ret)
			return ret;
	}
2931

2932
	return 0;
2933 2934
}

2935
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2936 2937
				     unsigned long cache_level)
{
2938
	struct drm_mm_node *gtt_space = &vma->node;
2939 2940
	struct drm_mm_node *other;

2941 2942 2943 2944 2945 2946
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2947
	 */
2948
	if (vma->vm->mm.color_adjust == NULL)
2949 2950
		return true;

2951
	if (!drm_mm_node_allocated(gtt_space))
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2968
/**
2969 2970
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2971
 * @size: requested size in bytes (can be larger than the VMA)
2972
 * @alignment: required alignment
2973
 * @flags: mask of PIN_* flags to use
2974 2975 2976 2977 2978 2979 2980
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2981
 */
2982 2983
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2984
{
2985 2986
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2987 2988
	u64 start, end;
	u64 min_alignment;
2989
	int ret;
2990

2991
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2992
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
		size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);

	min_alignment =
		i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3006
		return -EINVAL;
3007
	}
3008

3009
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3010 3011

	end = vma->vm->total;
3012
	if (flags & PIN_MAPPABLE)
3013
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3014
	if (flags & PIN_ZONE_4G)
3015
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3016

3017 3018 3019
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3020
	 */
3021
	if (size > end) {
3022
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3023
			  size, obj->base.size,
3024
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3025
			  end);
3026
		return -E2BIG;
3027 3028
	}

3029
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3030
	if (ret)
3031
		return ret;
C
Chris Wilson 已提交
3032

3033 3034
	i915_gem_object_pin_pages(obj);

3035
	if (flags & PIN_OFFSET_FIXED) {
3036
		u64 offset = flags & PIN_OFFSET_MASK;
3037
		if (offset & (alignment - 1) || offset > end - size) {
3038
			ret = -EINVAL;
3039
			goto err_unpin;
3040
		}
3041

3042 3043 3044
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3045
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3046 3047 3048
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3049 3050 3051
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3052
		}
3053
	} else {
3054 3055
		u32 search_flag, alloc_flag;

3056 3057 3058 3059 3060 3061 3062
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3073
search_free:
3074 3075
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3076 3077 3078 3079 3080 3081
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3082
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3083 3084 3085 3086 3087
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3088

3089
			goto err_unpin;
3090
		}
3091
	}
3092
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3093

3094
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3095
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3096
	obj->bind_count++;
3097

3098
	return 0;
B
Ben Widawsky 已提交
3099

3100
err_unpin:
B
Ben Widawsky 已提交
3101
	i915_gem_object_unpin_pages(obj);
3102
	return ret;
3103 3104
}

3105
bool
3106 3107
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3108 3109 3110 3111 3112
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3113
	if (obj->pages == NULL)
3114
		return false;
3115

3116 3117 3118 3119
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3120
	if (obj->stolen || obj->phys_handle)
3121
		return false;
3122

3123 3124 3125 3126 3127 3128 3129 3130
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3131 3132
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3133
		return false;
3134
	}
3135

C
Chris Wilson 已提交
3136
	trace_i915_gem_object_clflush(obj);
3137
	drm_clflush_sg(obj->pages);
3138
	obj->cache_dirty = false;
3139 3140

	return true;
3141 3142 3143 3144
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3145
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3146
{
C
Chris Wilson 已提交
3147 3148
	uint32_t old_write_domain;

3149
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3150 3151
		return;

3152
	/* No actual flushing is required for the GTT write domain.  Writes
3153 3154
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3155 3156 3157 3158
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3159
	 */
3160 3161
	wmb();

3162 3163
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3164

3165
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3166

C
Chris Wilson 已提交
3167
	trace_i915_gem_object_change_domain(obj,
3168
					    obj->base.read_domains,
C
Chris Wilson 已提交
3169
					    old_write_domain);
3170 3171 3172 3173
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3174
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3175
{
C
Chris Wilson 已提交
3176
	uint32_t old_write_domain;
3177

3178
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3179 3180
		return;

3181
	if (i915_gem_clflush_object(obj, obj->pin_display))
3182
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3183

3184 3185
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3186

3187
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3188

C
Chris Wilson 已提交
3189
	trace_i915_gem_object_change_domain(obj,
3190
					    obj->base.read_domains,
C
Chris Wilson 已提交
3191
					    old_write_domain);
3192 3193
}

3194 3195
/**
 * Moves a single object to the GTT read, and possibly write domain.
3196 3197
 * @obj: object to act on
 * @write: ask for write access or read only
3198 3199 3200 3201
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3202
int
3203
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3204
{
C
Chris Wilson 已提交
3205
	uint32_t old_write_domain, old_read_domains;
3206
	struct i915_vma *vma;
3207
	int ret;
3208

3209
	ret = i915_gem_object_wait_rendering(obj, !write);
3210 3211 3212
	if (ret)
		return ret;

3213 3214 3215
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3228
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3229

3230 3231 3232 3233 3234 3235 3236
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3237 3238
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3239

3240 3241 3242
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3243 3244
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3245
	if (write) {
3246 3247 3248
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3249 3250
	}

C
Chris Wilson 已提交
3251 3252 3253 3254
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3255
	/* And bump the LRU for this access */
3256
	vma = i915_gem_obj_to_ggtt(obj);
3257 3258 3259 3260
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3261

3262 3263 3264
	return 0;
}

3265 3266
/**
 * Changes the cache-level of an object across all VMA.
3267 3268
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3280 3281 3282
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3283
	struct i915_vma *vma;
3284
	int ret = 0;
3285 3286

	if (obj->cache_level == cache_level)
3287
		goto out;
3288

3289 3290 3291 3292 3293
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3294 3295
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3296 3297 3298
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3299
		if (i915_vma_is_pinned(vma)) {
3300 3301 3302 3303
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3316 3317
	}

3318 3319 3320 3321 3322 3323 3324
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3325
	if (obj->bind_count) {
3326 3327 3328 3329
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3330
		ret = i915_gem_object_wait_rendering(obj, false);
3331 3332 3333
		if (ret)
			return ret;

3334
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3351 3352 3353
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3354 3355 3356 3357 3358 3359 3360 3361
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3362 3363
		}

3364
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3365 3366 3367 3368 3369 3370 3371
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3372 3373
	}

3374
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3375 3376 3377
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3378
out:
3379 3380 3381 3382
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3383
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3384
		if (i915_gem_clflush_object(obj, true))
3385
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3386 3387 3388 3389 3390
	}

	return 0;
}

B
Ben Widawsky 已提交
3391 3392
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3393
{
B
Ben Widawsky 已提交
3394
	struct drm_i915_gem_caching *args = data;
3395 3396
	struct drm_i915_gem_object *obj;

3397 3398
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3399
		return -ENOENT;
3400

3401 3402 3403 3404 3405 3406
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3407 3408 3409 3410
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3411 3412 3413 3414
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3415

3416
	i915_gem_object_put_unlocked(obj);
3417
	return 0;
3418 3419
}

B
Ben Widawsky 已提交
3420 3421
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3422
{
3423
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3424
	struct drm_i915_gem_caching *args = data;
3425 3426 3427 3428
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3429 3430
	switch (args->caching) {
	case I915_CACHING_NONE:
3431 3432
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3433
	case I915_CACHING_CACHED:
3434 3435 3436 3437 3438 3439
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3440
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3441 3442
			return -ENODEV;

3443 3444
		level = I915_CACHE_LLC;
		break;
3445 3446 3447
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3448 3449 3450 3451
	default:
		return -EINVAL;
	}

3452 3453
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3454 3455
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3456
		goto rpm_put;
B
Ben Widawsky 已提交
3457

3458 3459
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3460 3461 3462 3463 3464 3465
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3466
	i915_gem_object_put(obj);
3467 3468
unlock:
	mutex_unlock(&dev->struct_mutex);
3469 3470 3471
rpm_put:
	intel_runtime_pm_put(dev_priv);

3472 3473 3474
	return ret;
}

3475
/*
3476 3477 3478
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3479 3480
 */
int
3481 3482
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3483
				     const struct i915_ggtt_view *view)
3484
{
3485
	u32 old_read_domains, old_write_domain;
3486 3487
	int ret;

3488 3489 3490
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3491
	obj->pin_display++;
3492

3493 3494 3495 3496 3497 3498 3499 3500 3501
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3502 3503
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3504
	if (ret)
3505
		goto err_unpin_display;
3506

3507 3508 3509 3510
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3511
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3512 3513
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3514
	if (ret)
3515
		goto err_unpin_display;
3516

3517
	i915_gem_object_flush_cpu_write_domain(obj);
3518

3519
	old_write_domain = obj->base.write_domain;
3520
	old_read_domains = obj->base.read_domains;
3521 3522 3523 3524

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3525
	obj->base.write_domain = 0;
3526
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3527 3528 3529

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3530
					    old_write_domain);
3531 3532

	return 0;
3533 3534

err_unpin_display:
3535
	obj->pin_display--;
3536 3537 3538 3539
	return ret;
}

void
3540 3541
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3542
{
3543 3544 3545
	if (WARN_ON(obj->pin_display == 0))
		return;

3546 3547
	i915_gem_object_ggtt_unpin_view(obj, view);

3548
	obj->pin_display--;
3549 3550
}

3551 3552
/**
 * Moves a single object to the CPU read, and possibly write domain.
3553 3554
 * @obj: object to act on
 * @write: requesting write or read-only access
3555 3556 3557 3558
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3559
int
3560
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3561
{
C
Chris Wilson 已提交
3562
	uint32_t old_write_domain, old_read_domains;
3563 3564
	int ret;

3565
	ret = i915_gem_object_wait_rendering(obj, !write);
3566 3567 3568
	if (ret)
		return ret;

3569 3570 3571
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3572
	i915_gem_object_flush_gtt_write_domain(obj);
3573

3574 3575
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3576

3577
	/* Flush the CPU cache if it's still invalid. */
3578
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3579
		i915_gem_clflush_object(obj, false);
3580

3581
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3582 3583 3584 3585 3586
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3587
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3588 3589 3590 3591 3592

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3593 3594
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3595
	}
3596

C
Chris Wilson 已提交
3597 3598 3599 3600
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3601 3602 3603
	return 0;
}

3604 3605 3606
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3607 3608 3609 3610
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3611 3612 3613
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3614
static int
3615
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3616
{
3617
	struct drm_i915_private *dev_priv = to_i915(dev);
3618
	struct drm_i915_file_private *file_priv = file->driver_priv;
3619
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3620
	struct drm_i915_gem_request *request, *target = NULL;
3621
	int ret;
3622

3623 3624 3625 3626
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3627 3628 3629
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3630

3631
	spin_lock(&file_priv->mm.lock);
3632
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3633 3634
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3635

3636 3637 3638 3639 3640 3641 3642
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3643
		target = request;
3644
	}
3645
	if (target)
3646
		i915_gem_request_get(target);
3647
	spin_unlock(&file_priv->mm.lock);
3648

3649
	if (target == NULL)
3650
		return 0;
3651

3652
	ret = i915_wait_request(target, true, NULL, NULL);
3653
	i915_gem_request_put(target);
3654

3655 3656 3657
	return ret;
}

3658
static bool
3659
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3660 3661 3662
{
	struct drm_i915_gem_object *obj = vma->obj;

3663 3664 3665
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3666 3667 3668 3669
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3670 3671 3672 3673 3674 3675 3676 3677 3678
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3679 3680 3681 3682
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3683 3684 3685
	return false;
}

3686 3687 3688
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3689
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3690 3691 3692
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3693
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3694 3695
					    obj->base.size,
					    obj->tiling_mode);
3696
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3697 3698 3699
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3700 3701 3702 3703 3704

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3705
		    dev_priv->ggtt.mappable_end);
3706 3707 3708 3709

	obj->map_and_fenceable = mappable && fenceable;
}

3710 3711
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3712
{
3713
	unsigned int bound = vma->flags;
3714 3715
	int ret;

3716
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3717
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3718

3719 3720 3721 3722
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3723

3724
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3725 3726 3727
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3728
	}
3729

3730
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3731
	if (ret)
3732
		goto err;
3733

3734
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3735
		__i915_vma_set_map_and_fenceable(vma);
3736

3737
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3738 3739
	return 0;

3740 3741 3742
err:
	__i915_vma_unpin(vma);
	return ret;
3743 3744 3745 3746 3747
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3748
			 u64 size,
3749 3750
			 u64 alignment,
			 u64 flags)
3751
{
3752 3753
	struct i915_vma *vma;
	int ret;
3754

3755 3756
	if (!view)
		view = &i915_ggtt_view_normal;
3757

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3782 3783
}

3784
void
3785 3786
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3787
{
3788
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3789 3790 3791 3792
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3793
		    struct drm_file *file)
3794 3795
{
	struct drm_i915_gem_busy *args = data;
3796
	struct drm_i915_gem_object *obj;
3797 3798
	int ret;

3799
	ret = i915_mutex_lock_interruptible(dev);
3800
	if (ret)
3801
		return ret;
3802

3803 3804
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3805 3806
		ret = -ENOENT;
		goto unlock;
3807
	}
3808

3809 3810
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3811
	 * become non-busy without any further actions.
3812
	 */
3813 3814
	args->busy = 0;
	if (obj->active) {
3815
		struct drm_i915_gem_request *req;
3816 3817
		int i;

3818
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3819 3820
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3821
			if (req)
3822
				args->busy |= 1 << (16 + req->engine->exec_id);
3823
		}
3824 3825
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3826 3827
		if (req)
			args->busy |= req->engine->exec_id;
3828
	}
3829

3830
	i915_gem_object_put(obj);
3831
unlock:
3832
	mutex_unlock(&dev->struct_mutex);
3833
	return ret;
3834 3835 3836 3837 3838 3839
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3840
	return i915_gem_ring_throttle(dev, file_priv);
3841 3842
}

3843 3844 3845 3846
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3847
	struct drm_i915_private *dev_priv = to_i915(dev);
3848
	struct drm_i915_gem_madvise *args = data;
3849
	struct drm_i915_gem_object *obj;
3850
	int ret;
3851 3852 3853 3854 3855 3856 3857 3858 3859

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3860 3861 3862 3863
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3864 3865
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3866 3867
		ret = -ENOENT;
		goto unlock;
3868 3869
	}

B
Ben Widawsky 已提交
3870
	if (i915_gem_obj_is_pinned(obj)) {
3871 3872
		ret = -EINVAL;
		goto out;
3873 3874
	}

3875 3876 3877 3878 3879 3880 3881 3882 3883
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3884 3885
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3886

C
Chris Wilson 已提交
3887
	/* if the object is no longer attached, discard its backing storage */
3888
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3889 3890
		i915_gem_object_truncate(obj);

3891
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3892

3893
out:
3894
	i915_gem_object_put(obj);
3895
unlock:
3896
	mutex_unlock(&dev->struct_mutex);
3897
	return ret;
3898 3899
}

3900 3901
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3902
{
3903 3904
	int i;

3905
	INIT_LIST_HEAD(&obj->global_list);
3906
	for (i = 0; i < I915_NUM_ENGINES; i++)
3907 3908 3909 3910 3911
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3912
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3913
	INIT_LIST_HEAD(&obj->vma_list);
3914
	INIT_LIST_HEAD(&obj->batch_pool_link);
3915

3916 3917
	obj->ops = ops;

3918 3919 3920
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3921
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3922 3923
}

3924
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3925
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3926 3927 3928 3929
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3930
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3931
						  size_t size)
3932
{
3933
	struct drm_i915_gem_object *obj;
3934
	struct address_space *mapping;
D
Daniel Vetter 已提交
3935
	gfp_t mask;
3936
	int ret;
3937

3938
	obj = i915_gem_object_alloc(dev);
3939
	if (obj == NULL)
3940
		return ERR_PTR(-ENOMEM);
3941

3942 3943 3944
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3945

3946 3947 3948 3949 3950 3951 3952
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3953
	mapping = file_inode(obj->base.filp)->i_mapping;
3954
	mapping_set_gfp_mask(mapping, mask);
3955

3956
	i915_gem_object_init(obj, &i915_gem_object_ops);
3957

3958 3959
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3960

3961 3962
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3978 3979
	trace_i915_gem_object_create(obj);

3980
	return obj;
3981 3982 3983 3984 3985

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
3986 3987
}

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4012
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4013
{
4014
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4015
	struct drm_device *dev = obj->base.dev;
4016
	struct drm_i915_private *dev_priv = to_i915(dev);
4017
	struct i915_vma *vma, *next;
4018

4019 4020
	intel_runtime_pm_get(dev_priv);

4021 4022
	trace_i915_gem_object_destroy(obj);

4023 4024 4025 4026 4027 4028 4029
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4030
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4031
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4032
		GEM_BUG_ON(i915_vma_is_active(vma));
4033
		vma->flags &= ~I915_VMA_PIN_MASK;
4034
		i915_vma_close(vma);
4035
	}
4036
	GEM_BUG_ON(obj->bind_count);
4037

B
Ben Widawsky 已提交
4038 4039 4040 4041 4042
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4043
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4044

4045 4046 4047 4048 4049
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4050 4051
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4052
	if (discard_backing_storage(obj))
4053
		obj->madv = I915_MADV_DONTNEED;
4054
	i915_gem_object_put_pages(obj);
4055

4056 4057
	BUG_ON(obj->pages);

4058 4059
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4060

4061 4062 4063
	if (obj->ops->release)
		obj->ops->release(obj);

4064 4065
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4066

4067
	kfree(obj->bit_17);
4068
	i915_gem_object_free(obj);
4069 4070

	intel_runtime_pm_put(dev_priv);
4071 4072
}

4073 4074
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4075 4076
{
	struct i915_vma *vma;
4077
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4078 4079
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4080
			return vma;
4081 4082 4083 4084 4085 4086 4087 4088
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4089

4090
	GEM_BUG_ON(!view);
4091

4092
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4093 4094
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4095
			return vma;
4096 4097 4098
	return NULL;
}

4099
static void
4100
i915_gem_stop_engines(struct drm_device *dev)
4101
{
4102
	struct drm_i915_private *dev_priv = to_i915(dev);
4103
	struct intel_engine_cs *engine;
4104

4105
	for_each_engine(engine, dev_priv)
4106
		dev_priv->gt.stop_engine(engine);
4107 4108
}

4109
int
4110
i915_gem_suspend(struct drm_device *dev)
4111
{
4112
	struct drm_i915_private *dev_priv = to_i915(dev);
4113
	int ret = 0;
4114

4115 4116
	intel_suspend_gt_powersave(dev_priv);

4117
	mutex_lock(&dev->struct_mutex);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4131
	ret = i915_gem_wait_for_idle(dev_priv);
4132
	if (ret)
4133
		goto err;
4134

4135
	i915_gem_retire_requests(dev_priv);
4136

4137 4138 4139 4140 4141
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4142
	i915_gem_stop_engines(dev);
4143
	i915_gem_context_lost(dev_priv);
4144 4145
	mutex_unlock(&dev->struct_mutex);

4146
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4147 4148
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4149

4150 4151 4152
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4153
	WARN_ON(dev_priv->gt.awake);
4154

4155
	return 0;
4156 4157 4158 4159

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4160 4161
}

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4179 4180
void i915_gem_init_swizzling(struct drm_device *dev)
{
4181
	struct drm_i915_private *dev_priv = to_i915(dev);
4182

4183
	if (INTEL_INFO(dev)->gen < 5 ||
4184 4185 4186 4187 4188 4189
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4190 4191 4192
	if (IS_GEN5(dev))
		return;

4193 4194
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4195
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4196
	else if (IS_GEN7(dev))
4197
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4198 4199
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4200 4201
	else
		BUG();
4202
}
D
Daniel Vetter 已提交
4203

4204 4205
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4206
	struct drm_i915_private *dev_priv = to_i915(dev);
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4231 4232 4233
int
i915_gem_init_hw(struct drm_device *dev)
{
4234
	struct drm_i915_private *dev_priv = to_i915(dev);
4235
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4236
	int ret;
4237

4238 4239 4240
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4241
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4242
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4243

4244 4245 4246
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4247

4248
	if (HAS_PCH_NOP(dev)) {
4249 4250 4251 4252 4253 4254 4255 4256 4257
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4258 4259
	}

4260 4261
	i915_gem_init_swizzling(dev);

4262 4263 4264 4265 4266 4267 4268 4269
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4270
	BUG_ON(!dev_priv->kernel_context);
4271

4272 4273 4274 4275 4276 4277 4278
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4279
	for_each_engine(engine, dev_priv) {
4280
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4281
		if (ret)
4282
			goto out;
D
Daniel Vetter 已提交
4283
	}
4284

4285 4286
	intel_mocs_init_l3cc_table(dev);

4287
	/* We can't enable contexts until all firmware is loaded */
4288 4289 4290
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4291

4292 4293
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4294
	return ret;
4295 4296
}

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4318 4319
int i915_gem_init(struct drm_device *dev)
{
4320
	struct drm_i915_private *dev_priv = to_i915(dev);
4321 4322 4323
	int ret;

	mutex_lock(&dev->struct_mutex);
4324

4325
	if (!i915.enable_execlists) {
4326 4327
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4328
	} else {
4329 4330
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4331 4332
	}

4333 4334 4335 4336 4337 4338 4339 4340
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4341
	i915_gem_init_userptr(dev_priv);
4342 4343 4344 4345

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4346

4347
	ret = i915_gem_context_init(dev);
4348 4349
	if (ret)
		goto out_unlock;
4350

4351
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4352
	if (ret)
4353
		goto out_unlock;
4354

4355
	ret = i915_gem_init_hw(dev);
4356
	if (ret == -EIO) {
4357
		/* Allow engine initialisation to fail by marking the GPU as
4358 4359 4360 4361
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4362
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4363
		ret = 0;
4364
	}
4365 4366

out_unlock:
4367
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4368
	mutex_unlock(&dev->struct_mutex);
4369

4370
	return ret;
4371 4372
}

4373
void
4374
i915_gem_cleanup_engines(struct drm_device *dev)
4375
{
4376
	struct drm_i915_private *dev_priv = to_i915(dev);
4377
	struct intel_engine_cs *engine;
4378

4379
	for_each_engine(engine, dev_priv)
4380
		dev_priv->gt.cleanup_engine(engine);
4381 4382
}

4383
static void
4384
init_engine_lists(struct intel_engine_cs *engine)
4385
{
4386
	INIT_LIST_HEAD(&engine->request_list);
4387 4388
}

4389 4390 4391
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4392
	struct drm_device *dev = &dev_priv->drm;
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4403
	if (intel_vgpu_active(dev_priv))
4404 4405 4406 4407 4408 4409 4410 4411 4412
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4413
void
4414
i915_gem_load_init(struct drm_device *dev)
4415
{
4416
	struct drm_i915_private *dev_priv = to_i915(dev);
4417 4418
	int i;

4419
	dev_priv->objects =
4420 4421 4422 4423
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4424 4425 4426 4427 4428
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4429 4430 4431 4432 4433
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4434

4435
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4436 4437
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4438
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4439 4440
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4441
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4442
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4443
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4444
			  i915_gem_retire_work_handler);
4445
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4446
			  i915_gem_idle_work_handler);
4447
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4448
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4449

4450 4451
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4452
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4453

4454
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4455

4456 4457
	dev_priv->mm.interruptible = true;

4458
	spin_lock_init(&dev_priv->fb_tracking.lock);
4459
}
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4498
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4499
{
4500
	struct drm_i915_file_private *file_priv = file->driver_priv;
4501
	struct drm_i915_gem_request *request;
4502 4503 4504 4505 4506

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4507
	spin_lock(&file_priv->mm.lock);
4508
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4509
		request->file_priv = NULL;
4510
	spin_unlock(&file_priv->mm.lock);
4511

4512
	if (!list_empty(&file_priv->rps.link)) {
4513
		spin_lock(&to_i915(dev)->rps.client_lock);
4514
		list_del(&file_priv->rps.link);
4515
		spin_unlock(&to_i915(dev)->rps.client_lock);
4516
	}
4517 4518 4519 4520 4521
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4522
	int ret;
4523 4524 4525 4526 4527 4528 4529 4530

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4531
	file_priv->dev_priv = to_i915(dev);
4532
	file_priv->file = file;
4533
	INIT_LIST_HEAD(&file_priv->rps.link);
4534 4535 4536 4537

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4538
	file_priv->bsd_engine = -1;
4539

4540 4541 4542
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4543

4544
	return ret;
4545 4546
}

4547 4548
/**
 * i915_gem_track_fb - update frontbuffer tracking
4549 4550 4551
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4552 4553 4554 4555
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4556 4557 4558 4559
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4560 4561 4562 4563 4564 4565 4566 4567 4568
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4569
	if (old) {
4570 4571
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4572 4573 4574
	}

	if (new) {
4575 4576
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4577 4578 4579
	}
}

4580
/* All the new VM stuff */
4581 4582
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4583
{
4584
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4585 4586
	struct i915_vma *vma;

4587
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4588

4589
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4590
		if (i915_vma_is_ggtt(vma) &&
4591 4592 4593
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4594 4595
			return vma->node.start;
	}
4596

4597 4598
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4599 4600 4601
	return -1;
}

4602 4603
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4604 4605 4606
{
	struct i915_vma *vma;

4607
	list_for_each_entry(vma, &o->vma_list, obj_link)
4608 4609
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4610 4611
			return vma->node.start;

4612
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4613 4614 4615 4616 4617 4618 4619 4620
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4621
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4622
		if (i915_vma_is_ggtt(vma) &&
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4633
				  const struct i915_ggtt_view *view)
4634 4635 4636
{
	struct i915_vma *vma;

4637
	list_for_each_entry(vma, &o->vma_list, obj_link)
4638
		if (i915_vma_is_ggtt(vma) &&
4639
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4640
		    drm_mm_node_allocated(&vma->node))
4641 4642 4643 4644 4645
			return true;

	return false;
}

4646
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4647 4648 4649
{
	struct i915_vma *vma;

4650
	GEM_BUG_ON(list_empty(&o->vma_list));
4651

4652
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4653
		if (i915_vma_is_ggtt(vma) &&
4654
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4655
			return vma->node.size;
4656
	}
4657

4658 4659 4660
	return 0;
}

4661
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4662 4663
{
	struct i915_vma *vma;
4664
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4665
		if (i915_vma_is_pinned(vma))
4666
			return true;
4667

4668
	return false;
4669
}
4670

4671 4672 4673 4674 4675 4676 4677
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4678
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4679 4680 4681 4682 4683 4684 4685
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4696
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4697
	if (IS_ERR(obj))
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4711
	obj->dirty = 1;		/* Backing store is now out of date */
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4723
	i915_gem_object_put(obj);
4724 4725
	return ERR_PTR(ret);
}