workqueue.c 137.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162
	struct worker		*manager;	/* L: purely informational */
163 164
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
165
	struct completion	*detach_completion; /* all workers detached */
166

167
	struct ida		worker_ida;	/* worker IDs for task name */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PR: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260

261 262 263 264 265 266 267
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

268 269 270
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
271
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
272 273
};

274 275
static struct kmem_cache *pwq_cache;

276 277 278
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

279 280 281
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

282 283 284 285 286 287 288 289 290
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

291 292
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

293 294 295
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

296
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298

299
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301 302 303 304 305

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

306
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
307

308
/* PL: hash of all unbound pools keyed by pool->attrs */
309 310
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

311
/* I: attributes used when instantiating standard unbound pools on demand */
312 313
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

314 315 316
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

317
struct workqueue_struct *system_wq __read_mostly;
318
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
319
struct workqueue_struct *system_highpri_wq __read_mostly;
320
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
321
struct workqueue_struct *system_long_wq __read_mostly;
322
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
323
struct workqueue_struct *system_unbound_wq __read_mostly;
324
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
325
struct workqueue_struct *system_freezable_wq __read_mostly;
326
EXPORT_SYMBOL_GPL(system_freezable_wq);
327 328 329 330
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
331

332 333 334 335
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

336 337 338
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

339
#define assert_rcu_or_pool_mutex()					\
340
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
341 342
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
343

344
#define assert_rcu_or_wq_mutex(wq)					\
345
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
346
			   lockdep_is_held(&wq->mutex),			\
347
			   "sched RCU or wq->mutex should be held")
348

349 350 351
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
352
	     (pool)++)
353

T
Tejun Heo 已提交
354 355 356
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
357
 * @pi: integer used for iteration
358
 *
359 360 361
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
362 363 364
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
365
 */
366 367
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
368
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
369
		else
T
Tejun Heo 已提交
370

371 372 373 374 375
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
376
 * This must be called with @pool->attach_mutex.
377 378 379 380
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
381 382
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
383
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
384 385
		else

386 387 388 389
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
390
 *
391
 * This must be called either with wq->mutex held or sched RCU read locked.
392 393
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
394 395 396
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
397 398
 */
#define for_each_pwq(pwq, wq)						\
399
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
400
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
401
		else
402

403 404 405 406
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

407 408 409 410 411
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
447
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
483
	.debug_hint	= work_debug_hint,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

514 515 516 517 518 519 520
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

521 522 523 524 525
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

526 527 528 529 530 531 532
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
533 534 535 536
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

537
	lockdep_assert_held(&wq_pool_mutex);
538

539 540
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
541
	if (ret >= 0) {
T
Tejun Heo 已提交
542
		pool->id = ret;
543 544
		return 0;
	}
545
	return ret;
546 547
}

548 549 550 551 552 553 554 555
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
556 557
 *
 * Return: The unbound pool_workqueue for @node.
558 559 560 561 562 563 564 565
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
581

582
/*
583 584
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
585
 * is cleared and the high bits contain OFFQ flags and pool ID.
586
 *
587 588
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
589 590
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
591
 *
592
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
593
 * corresponding to a work.  Pool is available once the work has been
594
 * queued anywhere after initialization until it is sync canceled.  pwq is
595
 * available only while the work item is queued.
596
 *
597 598 599 600
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
601
 */
602 603
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
604
{
605
	WARN_ON_ONCE(!work_pending(work));
606 607
	atomic_long_set(&work->data, data | flags | work_static(work));
}
608

609
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
610 611
			 unsigned long extra_flags)
{
612 613
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
614 615
}

616 617 618 619 620 621 622
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

623 624
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
625
{
626 627 628 629 630 631 632
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
633
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
634
}
635

636
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
637
{
638 639
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
640 641
}

642
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
643
{
644
	unsigned long data = atomic_long_read(&work->data);
645

646
	if (data & WORK_STRUCT_PWQ)
647 648 649
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
650 651
}

652 653 654 655
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
656 657 658
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
659 660 661 662 663
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
664 665
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
666 667
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
668
{
669
	unsigned long data = atomic_long_read(&work->data);
670
	int pool_id;
671

672
	assert_rcu_or_pool_mutex();
673

674 675
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
676
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
677

678 679
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
680 681
		return NULL;

682
	return idr_find(&worker_pool_idr, pool_id);
683 684 685 686 687 688
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
689
 * Return: The worker_pool ID @work was last associated with.
690 691 692 693
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
694 695
	unsigned long data = atomic_long_read(&work->data);

696 697
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
698
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
699

700
	return data >> WORK_OFFQ_POOL_SHIFT;
701 702
}

703 704
static void mark_work_canceling(struct work_struct *work)
{
705
	unsigned long pool_id = get_work_pool_id(work);
706

707 708
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
709 710 711 712 713 714
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

715
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
716 717
}

718
/*
719 720
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
721
 * they're being called with pool->lock held.
722 723
 */

724
static bool __need_more_worker(struct worker_pool *pool)
725
{
726
	return !atomic_read(&pool->nr_running);
727 728
}

729
/*
730 731
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
732 733
 *
 * Note that, because unbound workers never contribute to nr_running, this
734
 * function will always return %true for unbound pools as long as the
735
 * worklist isn't empty.
736
 */
737
static bool need_more_worker(struct worker_pool *pool)
738
{
739
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
740
}
741

742
/* Can I start working?  Called from busy but !running workers. */
743
static bool may_start_working(struct worker_pool *pool)
744
{
745
	return pool->nr_idle;
746 747 748
}

/* Do I need to keep working?  Called from currently running workers. */
749
static bool keep_working(struct worker_pool *pool)
750
{
751 752
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
753 754 755
}

/* Do we need a new worker?  Called from manager. */
756
static bool need_to_create_worker(struct worker_pool *pool)
757
{
758
	return need_more_worker(pool) && !may_start_working(pool);
759
}
760

761
/* Do we have too many workers and should some go away? */
762
static bool too_many_workers(struct worker_pool *pool)
763
{
764
	bool managing = mutex_is_locked(&pool->manager_arb);
765 766
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
767 768

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 770
}

771
/*
772 773 774
 * Wake up functions.
 */

775 776
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
777
{
778
	if (unlikely(list_empty(&pool->idle_list)))
779 780
		return NULL;

781
	return list_first_entry(&pool->idle_list, struct worker, entry);
782 783 784 785
}

/**
 * wake_up_worker - wake up an idle worker
786
 * @pool: worker pool to wake worker from
787
 *
788
 * Wake up the first idle worker of @pool.
789 790
 *
 * CONTEXT:
791
 * spin_lock_irq(pool->lock).
792
 */
793
static void wake_up_worker(struct worker_pool *pool)
794
{
795
	struct worker *worker = first_idle_worker(pool);
796 797 798 799 800

	if (likely(worker))
		wake_up_process(worker->task);
}

801
/**
802 803 804 805 806 807 808 809 810 811
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
812
void wq_worker_waking_up(struct task_struct *task, int cpu)
813 814 815
{
	struct worker *worker = kthread_data(task);

816
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817
		WARN_ON_ONCE(worker->pool->cpu != cpu);
818
		atomic_inc(&worker->pool->nr_running);
819
	}
820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
834
 * Return:
835 836
 * Worker task on @cpu to wake up, %NULL if none.
 */
837
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 839
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840
	struct worker_pool *pool;
841

842 843 844 845 846
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
847
	if (worker->flags & WORKER_NOT_RUNNING)
848 849
		return NULL;

850 851
	pool = worker->pool;

852
	/* this can only happen on the local cpu */
853
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
854
		return NULL;
855 856 857 858 859 860

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
861 862 863
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
864
	 * manipulating idle_list, so dereferencing idle_list without pool
865
	 * lock is safe.
866
	 */
867 868
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
869
		to_wakeup = first_idle_worker(pool);
870 871 872 873 874
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877
 * @flags: flags to set
 *
878
 * Set @flags in @worker->flags and adjust nr_running accordingly.
879
 *
880
 * CONTEXT:
881
 * spin_lock_irq(pool->lock)
882
 */
883
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
884
{
885
	struct worker_pool *pool = worker->pool;
886

887 888
	WARN_ON_ONCE(worker->task != current);

889
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
890 891
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
892
		atomic_dec(&pool->nr_running);
893 894
	}

895 896 897 898
	worker->flags |= flags;
}

/**
899
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
900
 * @worker: self
901 902
 * @flags: flags to clear
 *
903
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
904
 *
905
 * CONTEXT:
906
 * spin_lock_irq(pool->lock)
907 908 909
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
910
	struct worker_pool *pool = worker->pool;
911 912
	unsigned int oflags = worker->flags;

913 914
	WARN_ON_ONCE(worker->task != current);

915
	worker->flags &= ~flags;
916

917 918 919 920 921
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
922 923
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
924
			atomic_inc(&pool->nr_running);
925 926
}

927 928
/**
 * find_worker_executing_work - find worker which is executing a work
929
 * @pool: pool of interest
930 931
 * @work: work to find worker for
 *
932 933
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
934 935 936 937 938 939 940 941 942 943 944 945
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
946 947 948 949 950 951
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
952 953
 *
 * CONTEXT:
954
 * spin_lock_irq(pool->lock).
955
 *
956 957
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
958
 * otherwise.
959
 */
960
static struct worker *find_worker_executing_work(struct worker_pool *pool,
961
						 struct work_struct *work)
962
{
963 964
	struct worker *worker;

965
	hash_for_each_possible(pool->busy_hash, worker, hentry,
966 967 968
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
969 970 971
			return worker;

	return NULL;
972 973
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
989
 * spin_lock_irq(pool->lock).
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1073
static void pwq_activate_delayed_work(struct work_struct *work)
1074
{
1075
	struct pool_workqueue *pwq = get_work_pwq(work);
1076 1077

	trace_workqueue_activate_work(work);
1078
	move_linked_works(work, &pwq->pool->worklist, NULL);
1079
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1080
	pwq->nr_active++;
1081 1082
}

1083
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1084
{
1085
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1086 1087
						    struct work_struct, entry);

1088
	pwq_activate_delayed_work(work);
1089 1090
}

1091
/**
1092 1093
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1094 1095 1096
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1097
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1098 1099
 *
 * CONTEXT:
1100
 * spin_lock_irq(pool->lock).
1101
 */
1102
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1103
{
T
Tejun Heo 已提交
1104
	/* uncolored work items don't participate in flushing or nr_active */
1105
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1106
		goto out_put;
1107

1108
	pwq->nr_in_flight[color]--;
1109

1110 1111
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1112
		/* one down, submit a delayed one */
1113 1114
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1115 1116 1117
	}

	/* is flush in progress and are we at the flushing tip? */
1118
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1119
		goto out_put;
1120 1121

	/* are there still in-flight works? */
1122
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1123
		goto out_put;
1124

1125 1126
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1127 1128

	/*
1129
	 * If this was the last pwq, wake up the first flusher.  It
1130 1131
	 * will handle the rest.
	 */
1132 1133
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1134 1135
out_put:
	put_pwq(pwq);
1136 1137
}

1138
/**
1139
 * try_to_grab_pending - steal work item from worklist and disable irq
1140 1141
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1142
 * @flags: place to store irq state
1143 1144
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1145
 * stable state - idle, on timer or on worklist.
1146
 *
1147
 * Return:
1148 1149 1150
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1151 1152
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1153
 *
1154
 * Note:
1155
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1156 1157 1158
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1159 1160 1161 1162
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1163
 * This function is safe to call from any context including IRQ handler.
1164
 */
1165 1166
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1167
{
1168
	struct worker_pool *pool;
1169
	struct pool_workqueue *pwq;
1170

1171 1172
	local_irq_save(*flags);

1173 1174 1175 1176
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1177 1178 1179 1180 1181
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1182 1183 1184 1185 1186
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1187 1188 1189 1190 1191 1192 1193
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1194 1195
	pool = get_work_pool(work);
	if (!pool)
1196
		goto fail;
1197

1198
	spin_lock(&pool->lock);
1199
	/*
1200 1201 1202 1203 1204
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1205 1206
	 * item is currently queued on that pool.
	 */
1207 1208
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1209 1210 1211 1212 1213
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1214
		 * on the delayed_list, will confuse pwq->nr_active
1215 1216 1217 1218
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1219
			pwq_activate_delayed_work(work);
1220 1221

		list_del_init(&work->entry);
1222
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1223

1224
		/* work->data points to pwq iff queued, point to pool */
1225 1226 1227 1228
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1229
	}
1230
	spin_unlock(&pool->lock);
1231 1232 1233 1234 1235
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1236
	return -EAGAIN;
1237 1238
}

T
Tejun Heo 已提交
1239
/**
1240
 * insert_work - insert a work into a pool
1241
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1242 1243 1244 1245
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1246
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1247
 * work_struct flags.
T
Tejun Heo 已提交
1248 1249
 *
 * CONTEXT:
1250
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1251
 */
1252 1253
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1254
{
1255
	struct worker_pool *pool = pwq->pool;
1256

T
Tejun Heo 已提交
1257
	/* we own @work, set data and link */
1258
	set_work_pwq(work, pwq, extra_flags);
1259
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1260
	get_pwq(pwq);
1261 1262

	/*
1263 1264 1265
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1266 1267 1268
	 */
	smp_mb();

1269 1270
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1271 1272
}

1273 1274
/*
 * Test whether @work is being queued from another work executing on the
1275
 * same workqueue.
1276 1277 1278
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1279 1280 1281 1282 1283 1284 1285
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1286
	return worker && worker->current_pwq->wq == wq;
1287 1288
}

1289
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1290 1291
			 struct work_struct *work)
{
1292
	struct pool_workqueue *pwq;
1293
	struct worker_pool *last_pool;
1294
	struct list_head *worklist;
1295
	unsigned int work_flags;
1296
	unsigned int req_cpu = cpu;
1297 1298 1299 1300 1301 1302 1303 1304

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1305

1306
	debug_work_activate(work);
1307

1308
	/* if draining, only works from the same workqueue are allowed */
1309
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1310
	    WARN_ON_ONCE(!is_chained_work(wq)))
1311
		return;
1312
retry:
1313 1314 1315
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1316
	/* pwq which will be used unless @work is executing elsewhere */
1317
	if (!(wq->flags & WQ_UNBOUND))
1318
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1319 1320
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1321

1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1330

1331
		spin_lock(&last_pool->lock);
1332

1333
		worker = find_worker_executing_work(last_pool, work);
1334

1335 1336
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1337
		} else {
1338 1339
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1340
			spin_lock(&pwq->pool->lock);
1341
		}
1342
	} else {
1343
		spin_lock(&pwq->pool->lock);
1344 1345
	}

1346 1347 1348 1349
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1350 1351
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1365 1366
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1367

1368
	if (WARN_ON(!list_empty(&work->entry))) {
1369
		spin_unlock(&pwq->pool->lock);
1370 1371
		return;
	}
1372

1373 1374
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1375

1376
	if (likely(pwq->nr_active < pwq->max_active)) {
1377
		trace_workqueue_activate_work(work);
1378 1379
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1380 1381
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1382
		worklist = &pwq->delayed_works;
1383
	}
1384

1385
	insert_work(pwq, work, worklist, work_flags);
1386

1387
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1388 1389
}

1390
/**
1391 1392
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1393 1394 1395
 * @wq: workqueue to use
 * @work: work to queue
 *
1396 1397
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1398 1399
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1400
 */
1401 1402
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1403
{
1404
	bool ret = false;
1405
	unsigned long flags;
1406

1407
	local_irq_save(flags);
1408

1409
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1410
		__queue_work(cpu, wq, work);
1411
		ret = true;
1412
	}
1413

1414
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1415 1416
	return ret;
}
1417
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1418

1419
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1420
{
1421
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1422

1423
	/* should have been called from irqsafe timer with irq already off */
1424
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1425
}
1426
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1427

1428 1429
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1430
{
1431 1432 1433 1434 1435
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1436 1437
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1450
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1451

1452
	dwork->wq = wq;
1453
	dwork->cpu = cpu;
1454 1455 1456 1457 1458 1459
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1460 1461
}

1462 1463 1464 1465
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1466
 * @dwork: work to queue
1467 1468
 * @delay: number of jiffies to wait before queueing
 *
1469
 * Return: %false if @work was already on a queue, %true otherwise.  If
1470 1471
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1472
 */
1473 1474
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1475
{
1476
	struct work_struct *work = &dwork->work;
1477
	bool ret = false;
1478
	unsigned long flags;
1479

1480 1481
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1482

1483
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484
		__queue_delayed_work(cpu, wq, dwork, delay);
1485
		ret = true;
1486
	}
1487

1488
	local_irq_restore(flags);
1489 1490
	return ret;
}
1491
EXPORT_SYMBOL(queue_delayed_work_on);
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1505
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1506 1507
 * pending and its timer was modified.
 *
1508
 * This function is safe to call from any context including IRQ handler.
1509 1510 1511 1512 1513 1514 1515
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1516

1517 1518 1519
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1520

1521 1522 1523
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1524
	}
1525 1526

	/* -ENOENT from try_to_grab_pending() becomes %true */
1527 1528
	return ret;
}
1529 1530
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1531 1532 1533 1534 1535 1536 1537 1538
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1539
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1540 1541
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1542
{
1543
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1544

1545 1546 1547 1548
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1549

1550
	/* can't use worker_set_flags(), also called from create_worker() */
1551
	worker->flags |= WORKER_IDLE;
1552
	pool->nr_idle++;
1553
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1554 1555

	/* idle_list is LIFO */
1556
	list_add(&worker->entry, &pool->idle_list);
1557

1558 1559
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1560

1561
	/*
1562
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1563
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1564 1565
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1566
	 */
1567
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1568
		     pool->nr_workers == pool->nr_idle &&
1569
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1579
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1580 1581 1582
 */
static void worker_leave_idle(struct worker *worker)
{
1583
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1584

1585 1586
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1587
	worker_clr_flags(worker, WORKER_IDLE);
1588
	pool->nr_idle--;
T
Tejun Heo 已提交
1589 1590 1591
	list_del_init(&worker->entry);
}

1592
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1593 1594 1595
{
	struct worker *worker;

1596
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1597 1598
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1599
		INIT_LIST_HEAD(&worker->scheduled);
1600
		INIT_LIST_HEAD(&worker->node);
1601 1602
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1603
	}
T
Tejun Heo 已提交
1604 1605 1606
	return worker;
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1640 1641 1642 1643 1644
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1645 1646 1647
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1648 1649 1650 1651 1652 1653
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1654
	mutex_lock(&pool->attach_mutex);
1655 1656
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1657
		detach_completion = pool->detach_completion;
1658
	mutex_unlock(&pool->attach_mutex);
1659

1660 1661 1662
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1663 1664 1665 1666
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1667 1668
/**
 * create_worker - create a new workqueue worker
1669
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1670
 *
1671
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1672 1673 1674 1675
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1676
 * Return:
T
Tejun Heo 已提交
1677 1678
 * Pointer to the newly created worker.
 */
1679
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1680 1681
{
	struct worker *worker = NULL;
1682
	int id = -1;
1683
	char id_buf[16];
T
Tejun Heo 已提交
1684

1685 1686
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1687 1688
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1689

1690
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1691 1692 1693
	if (!worker)
		goto fail;

1694
	worker->pool = pool;
T
Tejun Heo 已提交
1695 1696
	worker->id = id;

1697
	if (pool->cpu >= 0)
1698 1699
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1700
	else
1701 1702
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1703
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1704
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1705 1706 1707
	if (IS_ERR(worker->task))
		goto fail;

1708 1709 1710 1711 1712
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1713
	/* successful, attach the worker to the pool */
1714
	worker_attach_to_pool(worker, pool);
1715

1716 1717 1718 1719 1720 1721 1722
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1723
	return worker;
1724

T
Tejun Heo 已提交
1725
fail:
1726
	if (id >= 0)
1727
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1728 1729 1730 1731 1732 1733 1734 1735
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1736 1737
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1738 1739
 *
 * CONTEXT:
1740
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1741 1742 1743
 */
static void destroy_worker(struct worker *worker)
{
1744
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1745

1746 1747
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1748
	/* sanity check frenzy */
1749
	if (WARN_ON(worker->current_work) ||
1750 1751
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1752
		return;
T
Tejun Heo 已提交
1753

1754 1755
	pool->nr_workers--;
	pool->nr_idle--;
1756

T
Tejun Heo 已提交
1757
	list_del_init(&worker->entry);
1758
	worker->flags |= WORKER_DIE;
1759
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1760 1761
}

1762
static void idle_worker_timeout(unsigned long __pool)
1763
{
1764
	struct worker_pool *pool = (void *)__pool;
1765

1766
	spin_lock_irq(&pool->lock);
1767

1768
	while (too_many_workers(pool)) {
1769 1770 1771 1772
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1773
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1774 1775
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1776
		if (time_before(jiffies, expires)) {
1777
			mod_timer(&pool->idle_timer, expires);
1778
			break;
1779
		}
1780 1781

		destroy_worker(worker);
1782 1783
	}

1784
	spin_unlock_irq(&pool->lock);
1785
}
1786

1787
static void send_mayday(struct work_struct *work)
1788
{
1789 1790
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1791

1792
	lockdep_assert_held(&wq_mayday_lock);
1793

1794
	if (!wq->rescuer)
1795
		return;
1796 1797

	/* mayday mayday mayday */
1798
	if (list_empty(&pwq->mayday_node)) {
1799 1800 1801 1802 1803 1804
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1805
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1806
		wake_up_process(wq->rescuer->task);
1807
	}
1808 1809
}

1810
static void pool_mayday_timeout(unsigned long __pool)
1811
{
1812
	struct worker_pool *pool = (void *)__pool;
1813 1814
	struct work_struct *work;

1815 1816
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1817

1818
	if (need_to_create_worker(pool)) {
1819 1820 1821 1822 1823 1824
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1825
		list_for_each_entry(work, &pool->worklist, entry)
1826
			send_mayday(work);
L
Linus Torvalds 已提交
1827
	}
1828

1829 1830
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1831

1832
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1833 1834
}

1835 1836
/**
 * maybe_create_worker - create a new worker if necessary
1837
 * @pool: pool to create a new worker for
1838
 *
1839
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1840 1841
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1842
 * sent to all rescuers with works scheduled on @pool to resolve
1843 1844
 * possible allocation deadlock.
 *
1845 1846
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1847 1848
 *
 * LOCKING:
1849
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1850 1851 1852
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1853
static void maybe_create_worker(struct worker_pool *pool)
1854 1855
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1856
{
1857
restart:
1858
	spin_unlock_irq(&pool->lock);
1859

1860
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1861
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1862 1863

	while (true) {
1864
		if (create_worker(pool) || !need_to_create_worker(pool))
1865
			break;
L
Linus Torvalds 已提交
1866

1867
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1868

1869
		if (!need_to_create_worker(pool))
1870 1871 1872
			break;
	}

1873
	del_timer_sync(&pool->mayday_timer);
1874
	spin_lock_irq(&pool->lock);
1875 1876 1877 1878 1879
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1880
	if (need_to_create_worker(pool))
1881 1882 1883
		goto restart;
}

1884
/**
1885 1886
 * manage_workers - manage worker pool
 * @worker: self
1887
 *
1888
 * Assume the manager role and manage the worker pool @worker belongs
1889
 * to.  At any given time, there can be only zero or one manager per
1890
 * pool.  The exclusion is handled automatically by this function.
1891 1892 1893 1894
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1895 1896
 *
 * CONTEXT:
1897
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1898 1899
 * multiple times.  Does GFP_KERNEL allocations.
 *
1900
 * Return:
1901 1902 1903 1904
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1905
 */
1906
static bool manage_workers(struct worker *worker)
1907
{
1908
	struct worker_pool *pool = worker->pool;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1920
	if (!mutex_trylock(&pool->manager_arb))
1921
		return false;
1922
	pool->manager = worker;
1923

1924
	maybe_create_worker(pool);
1925

1926
	pool->manager = NULL;
1927
	mutex_unlock(&pool->manager_arb);
1928
	return true;
1929 1930
}

1931 1932
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1933
 * @worker: self
1934 1935 1936 1937 1938 1939 1940 1941 1942
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1943
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1944
 */
T
Tejun Heo 已提交
1945
static void process_one_work(struct worker *worker, struct work_struct *work)
1946 1947
__releases(&pool->lock)
__acquires(&pool->lock)
1948
{
1949
	struct pool_workqueue *pwq = get_work_pwq(work);
1950
	struct worker_pool *pool = worker->pool;
1951
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1952
	int work_color;
1953
	struct worker *collision;
1954 1955 1956 1957 1958 1959 1960 1961
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1962 1963 1964
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1965
#endif
1966
	/* ensure we're on the correct CPU */
1967
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1968
		     raw_smp_processor_id() != pool->cpu);
1969

1970 1971 1972 1973 1974 1975
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1976
	collision = find_worker_executing_work(pool, work);
1977 1978 1979 1980 1981
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1982
	/* claim and dequeue */
1983
	debug_work_deactivate(work);
1984
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1985
	worker->current_work = work;
1986
	worker->current_func = work->func;
1987
	worker->current_pwq = pwq;
1988
	work_color = get_work_color(work);
1989

1990 1991
	list_del_init(&work->entry);

1992
	/*
1993 1994 1995 1996
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
1997 1998
	 */
	if (unlikely(cpu_intensive))
1999
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2000

2001
	/*
2002 2003 2004 2005
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2006
	 * UNBOUND and CPU_INTENSIVE ones.
2007
	 */
2008
	if (need_more_worker(pool))
2009
		wake_up_worker(pool);
2010

2011
	/*
2012
	 * Record the last pool and clear PENDING which should be the last
2013
	 * update to @work.  Also, do this inside @pool->lock so that
2014 2015
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2016
	 */
2017
	set_work_pool_and_clear_pending(work, pool->id);
2018

2019
	spin_unlock_irq(&pool->lock);
2020

2021
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2022
	lock_map_acquire(&lockdep_map);
2023
	trace_workqueue_execute_start(work);
2024
	worker->current_func(work);
2025 2026 2027 2028 2029
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2030
	lock_map_release(&lockdep_map);
2031
	lock_map_release(&pwq->wq->lockdep_map);
2032 2033

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2034 2035
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2036 2037
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2038 2039 2040 2041
		debug_show_held_locks(current);
		dump_stack();
	}

2042 2043 2044 2045 2046
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2047 2048
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2049
	 */
2050
	cond_resched_rcu_qs();
2051

2052
	spin_lock_irq(&pool->lock);
2053

2054 2055 2056 2057
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2058
	/* we're done with it, release */
2059
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2060
	worker->current_work = NULL;
2061
	worker->current_func = NULL;
2062
	worker->current_pwq = NULL;
2063
	worker->desc_valid = false;
2064
	pwq_dec_nr_in_flight(pwq, work_color);
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2076
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2077 2078 2079
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2080
{
2081 2082
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2083
						struct work_struct, entry);
T
Tejun Heo 已提交
2084
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2085 2086 2087
	}
}

T
Tejun Heo 已提交
2088 2089
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2090
 * @__worker: self
T
Tejun Heo 已提交
2091
 *
2092 2093 2094 2095 2096
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2097 2098
 *
 * Return: 0
T
Tejun Heo 已提交
2099
 */
T
Tejun Heo 已提交
2100
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2101
{
T
Tejun Heo 已提交
2102
	struct worker *worker = __worker;
2103
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2104

2105 2106
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2107
woke_up:
2108
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2109

2110 2111
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2112
		spin_unlock_irq(&pool->lock);
2113 2114
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2115 2116

		set_task_comm(worker->task, "kworker/dying");
2117
		ida_simple_remove(&pool->worker_ida, worker->id);
2118 2119
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2120
		return 0;
T
Tejun Heo 已提交
2121
	}
2122

T
Tejun Heo 已提交
2123
	worker_leave_idle(worker);
2124
recheck:
2125
	/* no more worker necessary? */
2126
	if (!need_more_worker(pool))
2127 2128 2129
		goto sleep;

	/* do we need to manage? */
2130
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2131 2132
		goto recheck;

T
Tejun Heo 已提交
2133 2134 2135 2136 2137
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2138
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2139

2140
	/*
2141 2142 2143 2144 2145
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2146
	 */
2147
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2148 2149

	do {
T
Tejun Heo 已提交
2150
		struct work_struct *work =
2151
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2152 2153 2154 2155 2156 2157
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2158
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2159 2160 2161
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2162
		}
2163
	} while (keep_working(pool));
2164

2165
	worker_set_flags(worker, WORKER_PREP);
2166
sleep:
T
Tejun Heo 已提交
2167
	/*
2168 2169 2170 2171 2172
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2173 2174 2175
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2176
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2177 2178
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2179 2180
}

2181 2182
/**
 * rescuer_thread - the rescuer thread function
2183
 * @__rescuer: self
2184 2185
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2186
 * workqueue which has WQ_MEM_RECLAIM set.
2187
 *
2188
 * Regular work processing on a pool may block trying to create a new
2189 2190 2191 2192 2193
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2194 2195
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2196 2197 2198
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2199 2200
 *
 * Return: 0
2201
 */
2202
static int rescuer_thread(void *__rescuer)
2203
{
2204 2205
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2206
	struct list_head *scheduled = &rescuer->scheduled;
2207
	bool should_stop;
2208 2209

	set_user_nice(current, RESCUER_NICE_LEVEL);
2210 2211 2212 2213 2214 2215

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2216 2217 2218
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2219 2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2228

2229
	/* see whether any pwq is asking for help */
2230
	spin_lock_irq(&wq_mayday_lock);
2231 2232 2233 2234

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2235
		struct worker_pool *pool = pwq->pool;
2236 2237 2238
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2239 2240
		list_del_init(&pwq->mayday_node);

2241
		spin_unlock_irq(&wq_mayday_lock);
2242

2243 2244 2245
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2246
		rescuer->pool = pool;
2247 2248 2249 2250 2251

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2252
		WARN_ON_ONCE(!list_empty(scheduled));
2253
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2254
			if (get_work_pwq(work) == pwq)
2255 2256
				move_linked_works(work, scheduled, &n);

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2276

2277 2278
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2279
		 * go away while we're still attached to it.
2280 2281 2282
		 */
		put_pwq(pwq);

2283
		/*
2284
		 * Leave this pool.  If need_more_worker() is %true, notify a
2285 2286 2287
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2288
		if (need_more_worker(pool))
2289
			wake_up_worker(pool);
2290

2291
		rescuer->pool = NULL;
2292 2293 2294 2295 2296
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2297 2298
	}

2299
	spin_unlock_irq(&wq_mayday_lock);
2300

2301 2302 2303 2304 2305 2306
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2307 2308
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2309 2310
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2311 2312
}

O
Oleg Nesterov 已提交
2313 2314 2315
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2316
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2317 2318 2319 2320 2321 2322 2323 2324
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2325 2326
/**
 * insert_wq_barrier - insert a barrier work
2327
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2328
 * @barr: wq_barrier to insert
2329 2330
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2331
 *
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2344
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2345 2346
 *
 * CONTEXT:
2347
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2348
 */
2349
static void insert_wq_barrier(struct pool_workqueue *pwq,
2350 2351
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2352
{
2353 2354 2355
	struct list_head *head;
	unsigned int linked = 0;

2356
	/*
2357
	 * debugobject calls are safe here even with pool->lock locked
2358 2359 2360 2361
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2362
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2363
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2364
	init_completion(&barr->done);
2365
	barr->task = current;
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2382
	debug_work_activate(&barr->work);
2383
	insert_work(pwq, &barr->work, head,
2384
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2385 2386
}

2387
/**
2388
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2389 2390 2391 2392
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2393
 * Prepare pwqs for workqueue flushing.
2394
 *
2395 2396 2397 2398 2399
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2400 2401 2402 2403 2404 2405 2406
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2407
 * If @work_color is non-negative, all pwqs should have the same
2408 2409 2410 2411
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2412
 * mutex_lock(wq->mutex).
2413
 *
2414
 * Return:
2415 2416 2417
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2418
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2419
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2420
{
2421
	bool wait = false;
2422
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2423

2424
	if (flush_color >= 0) {
2425
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2426
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2427
	}
2428

2429
	for_each_pwq(pwq, wq) {
2430
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2431

2432
		spin_lock_irq(&pool->lock);
2433

2434
		if (flush_color >= 0) {
2435
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2436

2437 2438 2439
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2440 2441 2442
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2443

2444
		if (work_color >= 0) {
2445
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2446
			pwq->work_color = work_color;
2447
		}
L
Linus Torvalds 已提交
2448

2449
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2450
	}
2451

2452
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2453
		complete(&wq->first_flusher->done);
2454

2455
	return wait;
L
Linus Torvalds 已提交
2456 2457
}

2458
/**
L
Linus Torvalds 已提交
2459
 * flush_workqueue - ensure that any scheduled work has run to completion.
2460
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2461
 *
2462 2463
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2464
 */
2465
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2466
{
2467 2468 2469 2470 2471 2472
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2473

2474 2475
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2476

2477
	mutex_lock(&wq->mutex);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2490
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2491 2492 2493 2494 2495
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2496
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2497 2498 2499

			wq->first_flusher = &this_flusher;

2500
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2501 2502 2503 2504 2505 2506 2507 2508
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2509
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2510
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2511
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2522
	mutex_unlock(&wq->mutex);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2535
	mutex_lock(&wq->mutex);
2536

2537 2538 2539 2540
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2541 2542
	wq->first_flusher = NULL;

2543 2544
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2557 2558
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2578
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2579 2580 2581
		}

		if (list_empty(&wq->flusher_queue)) {
2582
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2583 2584 2585 2586 2587
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2588
		 * the new first flusher and arm pwqs.
2589
		 */
2590 2591
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2592 2593 2594 2595

		list_del_init(&next->list);
		wq->first_flusher = next;

2596
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2607
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2608
}
2609
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2625
	struct pool_workqueue *pwq;
2626 2627 2628 2629

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2630
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2631
	 */
2632
	mutex_lock(&wq->mutex);
2633
	if (!wq->nr_drainers++)
2634
		wq->flags |= __WQ_DRAINING;
2635
	mutex_unlock(&wq->mutex);
2636 2637 2638
reflush:
	flush_workqueue(wq);

2639
	mutex_lock(&wq->mutex);
2640

2641
	for_each_pwq(pwq, wq) {
2642
		bool drained;
2643

2644
		spin_lock_irq(&pwq->pool->lock);
2645
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2646
		spin_unlock_irq(&pwq->pool->lock);
2647 2648

		if (drained)
2649 2650 2651 2652
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2653
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2654
				wq->name, flush_cnt);
2655

2656
		mutex_unlock(&wq->mutex);
2657 2658 2659 2660
		goto reflush;
	}

	if (!--wq->nr_drainers)
2661
		wq->flags &= ~__WQ_DRAINING;
2662
	mutex_unlock(&wq->mutex);
2663 2664 2665
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2666
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2667
{
2668
	struct worker *worker = NULL;
2669
	struct worker_pool *pool;
2670
	struct pool_workqueue *pwq;
2671 2672

	might_sleep();
2673 2674

	local_irq_disable();
2675
	pool = get_work_pool(work);
2676 2677
	if (!pool) {
		local_irq_enable();
2678
		return false;
2679
	}
2680

2681
	spin_lock(&pool->lock);
2682
	/* see the comment in try_to_grab_pending() with the same code */
2683 2684 2685
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2686
			goto already_gone;
2687
	} else {
2688
		worker = find_worker_executing_work(pool, work);
2689
		if (!worker)
T
Tejun Heo 已提交
2690
			goto already_gone;
2691
		pwq = worker->current_pwq;
2692
	}
2693

2694
	insert_wq_barrier(pwq, barr, work, worker);
2695
	spin_unlock_irq(&pool->lock);
2696

2697 2698 2699 2700 2701 2702
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2703
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2704
		lock_map_acquire(&pwq->wq->lockdep_map);
2705
	else
2706 2707
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2708

2709
	return true;
T
Tejun Heo 已提交
2710
already_gone:
2711
	spin_unlock_irq(&pool->lock);
2712
	return false;
2713
}
2714 2715 2716 2717 2718

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2719 2720
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2721
 *
2722
 * Return:
2723 2724 2725 2726 2727
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2728 2729
	struct wq_barrier barr;

2730 2731 2732
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2733 2734 2735 2736 2737 2738 2739
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2740
}
2741
EXPORT_SYMBOL_GPL(flush_work);
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2757
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2758
{
2759
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2760
	unsigned long flags;
2761 2762 2763
	int ret;

	do {
2764 2765
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2780
		 */
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2794 2795
	} while (unlikely(ret < 0));

2796 2797 2798 2799
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2800
	flush_work(work);
2801
	clear_work_data(work);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2812 2813 2814
	return ret;
}

2815
/**
2816 2817
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2818
 *
2819 2820 2821 2822
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2823
 *
2824 2825
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2826
 *
2827
 * The caller must ensure that the workqueue on which @work was last
2828
 * queued can't be destroyed before this function returns.
2829
 *
2830
 * Return:
2831
 * %true if @work was pending, %false otherwise.
2832
 */
2833
bool cancel_work_sync(struct work_struct *work)
2834
{
2835
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2836
}
2837
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2838

2839
/**
2840 2841
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2842
 *
2843 2844 2845
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2846
 *
2847
 * Return:
2848 2849
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2850
 */
2851 2852
bool flush_delayed_work(struct delayed_work *dwork)
{
2853
	local_irq_disable();
2854
	if (del_timer_sync(&dwork->timer))
2855
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2856
	local_irq_enable();
2857 2858 2859 2860
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2861
/**
2862 2863
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2864
 *
2865 2866 2867 2868 2869 2870 2871 2872 2873
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2874
 *
2875
 * This function is safe to call from any context including IRQ handler.
2876
 */
2877
bool cancel_delayed_work(struct delayed_work *dwork)
2878
{
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2889 2890
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2891
	local_irq_restore(flags);
2892
	return ret;
2893
}
2894
EXPORT_SYMBOL(cancel_delayed_work);
2895

2896 2897 2898 2899 2900 2901
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2902
 * Return:
2903 2904 2905
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2906
{
2907
	return __cancel_work_timer(&dwork->work, true);
2908
}
2909
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2910

2911
/**
2912
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2913 2914
 * @func: the function to call
 *
2915 2916
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2917
 * schedule_on_each_cpu() is very slow.
2918
 *
2919
 * Return:
2920
 * 0 on success, -errno on failure.
2921
 */
2922
int schedule_on_each_cpu(work_func_t func)
2923 2924
{
	int cpu;
2925
	struct work_struct __percpu *works;
2926

2927 2928
	works = alloc_percpu(struct work_struct);
	if (!works)
2929
		return -ENOMEM;
2930

2931 2932
	get_online_cpus();

2933
	for_each_online_cpu(cpu) {
2934 2935 2936
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2937
		schedule_work_on(cpu, work);
2938
	}
2939 2940 2941 2942

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2943
	put_online_cpus();
2944
	free_percpu(works);
2945 2946 2947
	return 0;
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2972 2973
void flush_scheduled_work(void)
{
2974
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2975
}
2976
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2987
 * Return:	0 - function was executed
2988 2989
 *		1 - function was scheduled for execution
 */
2990
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2991 2992
{
	if (!in_interrupt()) {
2993
		fn(&ew->work);
2994 2995 2996
		return 0;
	}

2997
	INIT_WORK(&ew->work, fn);
2998 2999 3000 3001 3002 3003
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3031 3032
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3033 3034 3035 3036 3037
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3038
static DEVICE_ATTR_RO(per_cpu);
3039

3040 3041
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3042 3043 3044 3045 3046 3047
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3048 3049 3050
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3061
static DEVICE_ATTR_RW(max_active);
3062

3063 3064 3065 3066
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3067
};
3068
ATTRIBUTE_GROUPS(wq_sysfs);
3069

3070 3071
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3072 3073
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3074 3075
	const char *delim = "";
	int node, written = 0;
3076 3077

	rcu_read_lock_sched();
3078 3079 3080 3081 3082 3083 3084
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3096 3097 3098
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3112 3113 3114
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3130
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3145
	mutex_lock(&wq->mutex);
3146 3147
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
3148
	mutex_unlock(&wq->mutex);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3207
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3208
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3209 3210
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3211
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3212 3213 3214 3215 3216
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3217
	.dev_groups			= wq_sysfs_groups,
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3246
 * Return: 0 on success, -errno on failure.
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

3296
	dev_set_uevent_suppress(&wq_dev->dev, false);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3340 3341 3342
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3354
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3355 3356 3357 3358 3359 3360
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3361 3362 3363 3364 3365
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3366 3367 3368 3369 3370 3371
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3372 3373 3374 3375 3376 3377 3378 3379
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3380 3381
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3396 3397 3398 3399 3400
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3401 3402
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3403 3404
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3405 3406
 */
static int init_worker_pool(struct worker_pool *pool)
3407 3408
{
	spin_lock_init(&pool->lock);
3409 3410
	pool->id = -1;
	pool->cpu = -1;
3411
	pool->node = NUMA_NO_NODE;
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3425
	mutex_init(&pool->attach_mutex);
3426
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3427

3428
	ida_init(&pool->worker_ida);
3429 3430 3431 3432
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3433 3434 3435 3436
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3437 3438
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static void rcu_free_wq(struct rcu_head *rcu)
{
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);

	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
	else
		free_workqueue_attrs(wq->unbound_attrs);

	kfree(wq->rescuer);
	kfree(wq);
}

3453 3454 3455 3456
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3457
	ida_destroy(&pool->worker_ida);
3458 3459 3460 3461 3462 3463 3464 3465 3466
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3467 3468 3469
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3470 3471
 *
 * Should be called with wq_pool_mutex held.
3472 3473 3474
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3475
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3476 3477
	struct worker *worker;

3478 3479 3480
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3481 3482 3483
		return;

	/* sanity checks */
3484
	if (WARN_ON(!(pool->cpu < 0)) ||
3485
	    WARN_ON(!list_empty(&pool->worklist)))
3486 3487 3488 3489 3490 3491 3492
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3493 3494 3495
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3496
	 * attach_mutex.
3497
	 */
3498 3499
	mutex_lock(&pool->manager_arb);

3500
	spin_lock_irq(&pool->lock);
3501
	while ((worker = first_idle_worker(pool)))
3502 3503 3504
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3505

3506
	mutex_lock(&pool->attach_mutex);
3507
	if (!list_empty(&pool->workers))
3508
		pool->detach_completion = &detach_completion;
3509
	mutex_unlock(&pool->attach_mutex);
3510 3511 3512 3513

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3531
 * create a new one.
3532 3533
 *
 * Should be called with wq_pool_mutex held.
3534 3535 3536
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3537 3538 3539 3540 3541
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3542
	int node;
3543

3544
	lockdep_assert_held(&wq_pool_mutex);
3545 3546 3547 3548 3549

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
3550
			return pool;
3551 3552 3553 3554 3555 3556 3557 3558
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3559
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3560 3561
	copy_workqueue_attrs(pool->attrs, attrs);

3562 3563 3564 3565 3566 3567
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3579 3580 3581 3582
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3583
	if (!create_worker(pool))
3584 3585 3586 3587
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3588

3589 3590 3591 3592 3593 3594 3595
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3612
	bool is_last;
T
Tejun Heo 已提交
3613 3614 3615 3616

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3617
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3618
	list_del_rcu(&pwq->pwqs_node);
3619
	is_last = list_empty(&wq->pwqs);
3620
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3621

3622
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3623
	put_unbound_pool(pool);
3624 3625
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3626 3627 3628 3629
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
3630
	 * is gonna access it anymore.  Schedule RCU free.
T
Tejun Heo 已提交
3631
	 */
3632 3633
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3634 3635
}

3636
/**
3637
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3638 3639
 * @pwq: target pool_workqueue
 *
3640 3641 3642
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3643
 */
3644
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3645
{
3646 3647 3648 3649
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3650
	lockdep_assert_held(&wq->mutex);
3651 3652 3653 3654 3655

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3656
	spin_lock_irq(&pwq->pool->lock);
3657

3658 3659 3660 3661 3662 3663
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3664
		pwq->max_active = wq->saved_max_active;
3665

3666 3667 3668
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3669 3670 3671 3672 3673 3674

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3675 3676 3677 3678
	} else {
		pwq->max_active = 0;
	}

3679
	spin_unlock_irq(&pwq->pool->lock);
3680 3681
}

3682
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3683 3684
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3685 3686 3687
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3688 3689
	memset(pwq, 0, sizeof(*pwq));

3690 3691 3692
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3693
	pwq->refcnt = 1;
3694
	INIT_LIST_HEAD(&pwq->delayed_works);
3695
	INIT_LIST_HEAD(&pwq->pwqs_node);
3696
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3697
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3698
}
3699

3700
/* sync @pwq with the current state of its associated wq and link it */
3701
static void link_pwq(struct pool_workqueue *pwq)
3702 3703 3704 3705
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3706

3707 3708 3709 3710
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3711
	/* set the matching work_color */
3712
	pwq->work_color = wq->work_color;
3713 3714 3715 3716 3717

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3718
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3719
}
3720

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3734
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3735 3736 3737
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3738
	}
3739

3740 3741
	init_pwq(pwq, wq, pool);
	return pwq;
3742 3743
}

3744 3745 3746 3747 3748 3749 3750
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3751
		kmem_cache_free(pwq_cache, pwq);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3764
 * calculation.  The result is stored in @cpumask.
3765 3766 3767 3768 3769 3770 3771 3772
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3773 3774 3775
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3776 3777 3778 3779
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3780
	if (!wq_numa_enabled || attrs->no_numa)
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3817 3818 3819 3820 3821
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3822 3823 3824 3825 3826 3827
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3828
 *
3829 3830 3831
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3832 3833 3834 3835
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3836 3837
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3838
	int node, ret;
3839

3840
	/* only unbound workqueues can change attributes */
3841 3842 3843
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3844 3845 3846 3847
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3848
	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3849
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3850 3851
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3852 3853
		goto enomem;

3854
	/* make a copy of @attrs and sanitize it */
3855 3856 3857
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3872
	mutex_lock(&wq_pool_mutex);
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3894
	mutex_unlock(&wq_pool_mutex);
3895

3896
	/* all pwqs have been created successfully, let's install'em */
3897
	mutex_lock(&wq->mutex);
3898

3899
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3900 3901

	/* save the previous pwq and install the new one */
3902
	for_each_node(node)
3903 3904 3905 3906 3907
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3908 3909

	mutex_unlock(&wq->mutex);
3910

3911 3912 3913 3914 3915 3916
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3917 3918 3919
	ret = 0;
	/* fall through */
out_free:
3920
	free_workqueue_attrs(tmp_attrs);
3921
	free_workqueue_attrs(new_attrs);
3922
	kfree(pwq_tbl);
3923
	return ret;
3924

3925 3926 3927 3928 3929 3930 3931
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3932
enomem:
3933 3934
	ret = -ENOMEM;
	goto out_free;
3935 3936
}

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3982 3983
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3984 3985 3986 3987 3988 3989 3990 3991

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3992
	 * wq's, the default pwq should be used.
3993 3994 3995 3996 3997
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3998
		goto use_dfl_pwq;
3999 4000 4001 4002 4003 4004 4005
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4006 4007
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4008 4009
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4032
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4033
{
4034
	bool highpri = wq->flags & WQ_HIGHPRI;
4035
	int cpu, ret;
4036 4037

	if (!(wq->flags & WQ_UNBOUND)) {
4038 4039
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4040 4041 4042
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4043 4044
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4045
			struct worker_pool *cpu_pools =
4046
				per_cpu(cpu_worker_pools, cpu);
4047

4048 4049 4050
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4051
			link_pwq(pwq);
4052
			mutex_unlock(&wq->mutex);
4053
		}
4054
		return 0;
4055 4056 4057 4058 4059 4060 4061
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4062
	} else {
4063
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4064
	}
T
Tejun Heo 已提交
4065 4066
}

4067 4068
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4069
{
4070 4071 4072
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4073 4074
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4075

4076
	return clamp_val(max_active, 1, lim);
4077 4078
}

4079
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4080 4081 4082
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4083
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4084
{
4085
	size_t tbl_size = 0;
4086
	va_list args;
L
Linus Torvalds 已提交
4087
	struct workqueue_struct *wq;
4088
	struct pool_workqueue *pwq;
4089

4090 4091 4092 4093
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4094
	/* allocate wq and format name */
4095
	if (flags & WQ_UNBOUND)
4096
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4097 4098

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4099
	if (!wq)
4100
		return NULL;
4101

4102 4103 4104 4105 4106 4107
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4108 4109
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4110
	va_end(args);
L
Linus Torvalds 已提交
4111

4112
	max_active = max_active ?: WQ_DFL_ACTIVE;
4113
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4114

4115
	/* init wq */
4116
	wq->flags = flags;
4117
	wq->saved_max_active = max_active;
4118
	mutex_init(&wq->mutex);
4119
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4120
	INIT_LIST_HEAD(&wq->pwqs);
4121 4122
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4123
	INIT_LIST_HEAD(&wq->maydays);
4124

4125
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4126
	INIT_LIST_HEAD(&wq->list);
4127

4128
	if (alloc_and_link_pwqs(wq) < 0)
4129
		goto err_free_wq;
T
Tejun Heo 已提交
4130

4131 4132 4133 4134 4135
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4136 4137
		struct worker *rescuer;

4138
		rescuer = alloc_worker(NUMA_NO_NODE);
4139
		if (!rescuer)
4140
			goto err_destroy;
4141

4142 4143
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4144
					       wq->name);
4145 4146 4147 4148
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4149

4150
		wq->rescuer = rescuer;
4151
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4152
		wake_up_process(rescuer->task);
4153 4154
	}

4155 4156 4157
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4158
	/*
4159 4160 4161
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4162
	 */
4163
	mutex_lock(&wq_pool_mutex);
4164

4165
	mutex_lock(&wq->mutex);
4166 4167
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4168
	mutex_unlock(&wq->mutex);
4169

4170
	list_add_tail_rcu(&wq->list, &workqueues);
4171

4172
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4173

4174
	return wq;
4175 4176

err_free_wq:
4177
	free_workqueue_attrs(wq->unbound_attrs);
4178 4179 4180 4181
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4182
	return NULL;
4183
}
4184
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4185

4186 4187 4188 4189 4190 4191 4192 4193
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4194
	struct pool_workqueue *pwq;
4195
	int node;
4196

4197 4198
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4199

4200
	/* sanity checks */
4201
	mutex_lock(&wq->mutex);
4202
	for_each_pwq(pwq, wq) {
4203 4204
		int i;

4205 4206
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4207
				mutex_unlock(&wq->mutex);
4208
				return;
4209 4210 4211
			}
		}

4212
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4213
		    WARN_ON(pwq->nr_active) ||
4214
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4215
			mutex_unlock(&wq->mutex);
4216
			return;
4217
		}
4218
	}
4219
	mutex_unlock(&wq->mutex);
4220

4221 4222 4223 4224
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4225
	mutex_lock(&wq_pool_mutex);
4226
	list_del_rcu(&wq->list);
4227
	mutex_unlock(&wq_pool_mutex);
4228

4229 4230
	workqueue_sysfs_unregister(wq);

4231
	if (wq->rescuer)
4232 4233
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4234 4235 4236
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4237
		 * schedule RCU free.
T
Tejun Heo 已提交
4238
		 */
4239
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4240 4241 4242
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4243 4244
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4245
		 */
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4258
		put_pwq_unlocked(pwq);
4259
	}
4260 4261 4262
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4275
	struct pool_workqueue *pwq;
4276

4277 4278 4279 4280
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4281
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4282

4283
	mutex_lock(&wq->mutex);
4284 4285 4286

	wq->saved_max_active = max_active;

4287 4288
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4289

4290
	mutex_unlock(&wq->mutex);
4291
}
4292
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4293

4294 4295 4296 4297 4298
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4299 4300
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4301 4302 4303 4304 4305
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4306
	return worker && worker->rescue_wq;
4307 4308
}

4309
/**
4310 4311 4312
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4313
 *
4314 4315 4316
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4317
 *
4318 4319 4320 4321 4322 4323
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4324
 * Return:
4325
 * %true if congested, %false otherwise.
4326
 */
4327
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4328
{
4329
	struct pool_workqueue *pwq;
4330 4331
	bool ret;

4332
	rcu_read_lock_sched();
4333

4334 4335 4336
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4337 4338 4339
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4340
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4341

4342
	ret = !list_empty(&pwq->delayed_works);
4343
	rcu_read_unlock_sched();
4344 4345

	return ret;
L
Linus Torvalds 已提交
4346
}
4347
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4348

4349 4350 4351 4352 4353 4354 4355 4356
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4357
 * Return:
4358 4359 4360
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4361
{
4362
	struct worker_pool *pool;
4363 4364
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4365

4366 4367
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4368

4369 4370
	local_irq_save(flags);
	pool = get_work_pool(work);
4371
	if (pool) {
4372
		spin_lock(&pool->lock);
4373 4374
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4375
		spin_unlock(&pool->lock);
4376
	}
4377
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4378

4379
	return ret;
L
Linus Torvalds 已提交
4380
}
4381
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4382

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4460 4461 4462
/*
 * CPU hotplug.
 *
4463
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4464
 * are a lot of assumptions on strong associations among work, pwq and
4465
 * pool which make migrating pending and scheduled works very
4466
 * difficult to implement without impacting hot paths.  Secondly,
4467
 * worker pools serve mix of short, long and very long running works making
4468 4469
 * blocked draining impractical.
 *
4470
 * This is solved by allowing the pools to be disassociated from the CPU
4471 4472
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4473
 */
L
Linus Torvalds 已提交
4474

4475
static void wq_unbind_fn(struct work_struct *work)
4476
{
4477
	int cpu = smp_processor_id();
4478
	struct worker_pool *pool;
4479
	struct worker *worker;
4480

4481
	for_each_cpu_worker_pool(pool, cpu) {
4482
		mutex_lock(&pool->attach_mutex);
4483
		spin_lock_irq(&pool->lock);
4484

4485
		/*
4486
		 * We've blocked all attach/detach operations. Make all workers
4487 4488 4489 4490 4491
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4492
		for_each_pool_worker(worker, pool)
4493
			worker->flags |= WORKER_UNBOUND;
4494

4495
		pool->flags |= POOL_DISASSOCIATED;
4496

4497
		spin_unlock_irq(&pool->lock);
4498
		mutex_unlock(&pool->attach_mutex);
4499

4500 4501 4502 4503 4504 4505 4506
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4507

4508 4509 4510 4511 4512 4513 4514 4515
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4516
		atomic_set(&pool->nr_running, 0);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4527 4528
}

T
Tejun Heo 已提交
4529 4530 4531 4532
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4533
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4534 4535 4536
 */
static void rebind_workers(struct worker_pool *pool)
{
4537
	struct worker *worker;
T
Tejun Heo 已提交
4538

4539
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4540

4541 4542 4543 4544 4545 4546 4547
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4548
	for_each_pool_worker(worker, pool)
4549 4550
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4551

4552
	spin_lock_irq(&pool->lock);
4553
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4554

4555
	for_each_pool_worker(worker, pool) {
4556
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4557 4558

		/*
4559 4560 4561 4562 4563 4564
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4565
		 */
4566 4567
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4568

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4588
	}
4589 4590

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4591 4592
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4608
	lockdep_assert_held(&pool->attach_mutex);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4620
	for_each_pool_worker(worker, pool)
4621 4622 4623 4624
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4625 4626 4627 4628
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4629
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4630 4631
					       unsigned long action,
					       void *hcpu)
4632
{
4633
	int cpu = (unsigned long)hcpu;
4634
	struct worker_pool *pool;
4635
	struct workqueue_struct *wq;
4636
	int pi;
4637

T
Tejun Heo 已提交
4638
	switch (action & ~CPU_TASKS_FROZEN) {
4639
	case CPU_UP_PREPARE:
4640
		for_each_cpu_worker_pool(pool, cpu) {
4641 4642
			if (pool->nr_workers)
				continue;
4643
			if (!create_worker(pool))
4644
				return NOTIFY_BAD;
4645
		}
T
Tejun Heo 已提交
4646
		break;
4647

4648 4649
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4650
		mutex_lock(&wq_pool_mutex);
4651 4652

		for_each_pool(pool, pi) {
4653
			mutex_lock(&pool->attach_mutex);
4654

4655
			if (pool->cpu == cpu)
4656
				rebind_workers(pool);
4657
			else if (pool->cpu < 0)
4658
				restore_unbound_workers_cpumask(pool, cpu);
4659

4660
			mutex_unlock(&pool->attach_mutex);
4661
		}
4662

4663 4664 4665 4666
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4667
		mutex_unlock(&wq_pool_mutex);
4668
		break;
4669
	}
4670 4671 4672 4673 4674 4675 4676
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4677
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4678 4679 4680
						 unsigned long action,
						 void *hcpu)
{
4681
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4682
	struct work_struct unbind_work;
4683
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4684

4685 4686
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4687
		/* unbinding per-cpu workers should happen on the local CPU */
4688
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4689
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4690 4691 4692 4693 4694 4695 4696 4697

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4698
		flush_work(&unbind_work);
4699
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4700
		break;
4701 4702 4703 4704
	}
	return NOTIFY_OK;
}

4705
#ifdef CONFIG_SMP
4706

4707
struct work_for_cpu {
4708
	struct work_struct work;
4709 4710 4711 4712 4713
	long (*fn)(void *);
	void *arg;
	long ret;
};

4714
static void work_for_cpu_fn(struct work_struct *work)
4715
{
4716 4717
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4718 4719 4720 4721 4722 4723 4724 4725 4726
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4727
 * It is up to the caller to ensure that the cpu doesn't go offline.
4728
 * The caller must not hold any locks which would prevent @fn from completing.
4729 4730
 *
 * Return: The value @fn returns.
4731
 */
4732
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4733
{
4734
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4735

4736 4737
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4738
	flush_work(&wfc.work);
4739
	destroy_work_on_stack(&wfc.work);
4740 4741 4742 4743 4744
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4745 4746 4747 4748 4749
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4750
 * Start freezing workqueues.  After this function returns, all freezable
4751
 * workqueues will queue new works to their delayed_works list instead of
4752
 * pool->worklist.
4753 4754
 *
 * CONTEXT:
4755
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4756 4757 4758
 */
void freeze_workqueues_begin(void)
{
4759 4760
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4761

4762
	mutex_lock(&wq_pool_mutex);
4763

4764
	WARN_ON_ONCE(workqueue_freezing);
4765 4766
	workqueue_freezing = true;

4767
	list_for_each_entry(wq, &workqueues, list) {
4768
		mutex_lock(&wq->mutex);
4769 4770
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4771
		mutex_unlock(&wq->mutex);
4772
	}
4773

4774
	mutex_unlock(&wq_pool_mutex);
4775 4776 4777
}

/**
4778
 * freeze_workqueues_busy - are freezable workqueues still busy?
4779 4780 4781 4782 4783
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4784
 * Grabs and releases wq_pool_mutex.
4785
 *
4786
 * Return:
4787 4788
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4789 4790 4791 4792
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4793 4794
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4795

4796
	mutex_lock(&wq_pool_mutex);
4797

4798
	WARN_ON_ONCE(!workqueue_freezing);
4799

4800 4801 4802
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4803 4804 4805 4806
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4807
		rcu_read_lock_sched();
4808
		for_each_pwq(pwq, wq) {
4809
			WARN_ON_ONCE(pwq->nr_active < 0);
4810
			if (pwq->nr_active) {
4811
				busy = true;
4812
				rcu_read_unlock_sched();
4813 4814 4815
				goto out_unlock;
			}
		}
4816
		rcu_read_unlock_sched();
4817 4818
	}
out_unlock:
4819
	mutex_unlock(&wq_pool_mutex);
4820 4821 4822 4823 4824 4825 4826
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4827
 * frozen works are transferred to their respective pool worklists.
4828 4829
 *
 * CONTEXT:
4830
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4831 4832 4833
 */
void thaw_workqueues(void)
{
4834 4835
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4836

4837
	mutex_lock(&wq_pool_mutex);
4838 4839 4840 4841

	if (!workqueue_freezing)
		goto out_unlock;

4842
	workqueue_freezing = false;
4843

4844 4845
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4846
		mutex_lock(&wq->mutex);
4847 4848
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4849
		mutex_unlock(&wq->mutex);
4850 4851 4852
	}

out_unlock:
4853
	mutex_unlock(&wq_pool_mutex);
4854 4855 4856
}
#endif /* CONFIG_FREEZER */

4857 4858 4859 4860 4861 4862 4863 4864
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

4865 4866 4867 4868 4869
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4870 4871 4872
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4873 4874 4875 4876 4877
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
4878
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4879 4880 4881
	BUG_ON(!tbl);

	for_each_node(node)
4882
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4883
				node_online(node) ? node : NUMA_NO_NODE));
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4899
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4900
{
T
Tejun Heo 已提交
4901 4902
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4903

4904 4905 4906 4907
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4908
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4909
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4910

4911 4912
	wq_numa_init();

4913
	/* initialize CPU pools */
4914
	for_each_possible_cpu(cpu) {
4915
		struct worker_pool *pool;
4916

T
Tejun Heo 已提交
4917
		i = 0;
4918
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4919
			BUG_ON(init_worker_pool(pool));
4920
			pool->cpu = cpu;
4921
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4922
			pool->attrs->nice = std_nice[i++];
4923
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4924

T
Tejun Heo 已提交
4925
			/* alloc pool ID */
4926
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4927
			BUG_ON(worker_pool_assign_id(pool));
4928
			mutex_unlock(&wq_pool_mutex);
4929
		}
4930 4931
	}

4932
	/* create the initial worker */
4933
	for_each_online_cpu(cpu) {
4934
		struct worker_pool *pool;
4935

4936
		for_each_cpu_worker_pool(pool, cpu) {
4937
			pool->flags &= ~POOL_DISASSOCIATED;
4938
			BUG_ON(!create_worker(pool));
4939
		}
4940 4941
	}

4942
	/* create default unbound and ordered wq attrs */
4943 4944 4945 4946 4947 4948
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4959 4960
	}

4961
	system_wq = alloc_workqueue("events", 0, 0);
4962
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4963
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4964 4965
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4966 4967
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4968 4969 4970 4971 4972
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4973
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4974 4975 4976
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4977
	return 0;
L
Linus Torvalds 已提交
4978
}
4979
early_initcall(init_workqueues);