workqueue.c 105.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45
#include <linux/rculist.h>
46

47
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
48

T
Tejun Heo 已提交
49
enum {
50 51
	/*
	 * worker_pool flags
52
	 *
53
	 * A bound pool is either associated or disassociated with its CPU.
54 55 56 57 58 59
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
60
	 * be executing on any CPU.  The pool behaves as an unbound one.
61 62
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
63 64
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
65
	 */
66
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
67
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

T
Tejun Heo 已提交
84
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
85

86 87 88
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

89 90 91
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
92 93 94 95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
100
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
101
};
L
Linus Torvalds 已提交
102 103

/*
T
Tejun Heo 已提交
104 105
 * Structure fields follow one of the following exclusion rules.
 *
106 107
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
108
 *
109 110 111
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
112
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
113
 *
114 115 116 117
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
118
 *
119 120
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
121
 * W: workqueue_lock protected.
122 123
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
L
Linus Torvalds 已提交
124 125
 */

126
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
127

128
struct worker_pool {
129
	spinlock_t		lock;		/* the pool lock */
130
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
131
	int			id;		/* I: pool ID */
132
	unsigned int		flags;		/* X: flags */
133 134 135

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
136 137

	/* nr_idle includes the ones off idle_list for rebinding */
138 139 140 141 142 143
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

144 145 146 147
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

148
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
149
	struct ida		worker_ida;	/* L: for worker IDs */
150 151 152 153 154 155 156

	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
157 158
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
159
/*
160 161 162 163
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
164
 */
165
struct pool_workqueue {
166
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
167
	struct workqueue_struct *wq;		/* I: the owning workqueue */
168 169 170 171
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
172
	int			nr_active;	/* L: nr of active works */
173
	int			max_active;	/* L: max active works */
174
	struct list_head	delayed_works;	/* L: delayed works */
175
	struct list_head	pwqs_node;	/* R: node on wq->pwqs */
176
	struct list_head	mayday_node;	/* W: node on wq->maydays */
177
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186 187
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
188 189 190 191 192
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
193
	unsigned int		flags;		/* W: WQ_* flags */
194
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
195
	struct list_head	pwqs;		/* R: all pwqs of this wq */
T
Tejun Heo 已提交
196
	struct list_head	list;		/* W: list of all workqueues */
197 198 199 200

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
201
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
202 203 204 205
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

206
	struct list_head	maydays;	/* W: pwqs requesting rescue */
207 208
	struct worker		*rescuer;	/* I: rescue worker */

209
	int			nr_drainers;	/* W: drain in progress */
210
	int			saved_max_active; /* W: saved pwq max_active */
211
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
212
	struct lockdep_map	lockdep_map;
213
#endif
214
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
215 216
};

217 218
static struct kmem_cache *pwq_cache;

219 220
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
221
struct workqueue_struct *system_highpri_wq __read_mostly;
222
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
223
struct workqueue_struct *system_long_wq __read_mostly;
224
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
225
struct workqueue_struct *system_unbound_wq __read_mostly;
226
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
227
struct workqueue_struct *system_freezable_wq __read_mostly;
228
EXPORT_SYMBOL_GPL(system_freezable_wq);
229

230 231 232
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

233 234 235 236 237
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

238
#define for_each_std_worker_pool(pool, cpu)				\
T
Tejun Heo 已提交
239 240
	for ((pool) = &std_worker_pools(cpu)[0];			\
	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
241

242 243
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
244

245 246
static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				unsigned int sw)
247 248 249 250 251 252 253 254 255 256
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
257
	return WORK_CPU_END;
258 259
}

260 261 262
/*
 * CPU iterators
 *
263
 * An extra cpu number is defined using an invalid cpu number
264
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
265 266
 * specific CPU.  The following iterators are similar to for_each_*_cpu()
 * iterators but also considers the unbound CPU.
267
 *
268 269
 * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
270
 */
271 272
#define for_each_wq_cpu(cpu)						\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
273
	     (cpu) < WORK_CPU_END;					\
274
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
275

276 277
#define for_each_online_wq_cpu(cpu)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
278
	     (cpu) < WORK_CPU_END;					\
279
	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
280

T
Tejun Heo 已提交
281 282 283 284
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
285 286 287 288 289 290 291
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
292 293
 */
#define for_each_pool(pool, id)						\
294 295 296
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
297

298 299 300 301
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
302 303 304 305 306 307 308
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
309 310
 */
#define for_each_pwq(pwq, wq)						\
311 312 313
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
314

315 316 317 318
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

319 320 321 322 323
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
359
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
395
	.debug_hint	= work_debug_hint,
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

431 432
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
433
static LIST_HEAD(workqueues);
434
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
435

436
/*
437 438
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
439
 */
440 441
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_std_worker_pools);
T
Tejun Heo 已提交
442
static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
443

444 445 446 447
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
448 449
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
450
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
451

T
Tejun Heo 已提交
452
static struct worker_pool *std_worker_pools(int cpu)
453
{
454
	if (cpu != WORK_CPU_UNBOUND)
T
Tejun Heo 已提交
455
		return per_cpu(cpu_std_worker_pools, cpu);
456
	else
T
Tejun Heo 已提交
457
		return unbound_std_worker_pools;
458 459
}

T
Tejun Heo 已提交
460 461
static int std_worker_pool_pri(struct worker_pool *pool)
{
T
Tejun Heo 已提交
462
	return pool - std_worker_pools(pool->cpu);
T
Tejun Heo 已提交
463 464
}

T
Tejun Heo 已提交
465 466 467 468 469
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

470 471 472
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
473

474 475 476 477
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
478

479
	return ret;
480 481
}

482 483
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
T
Tejun Heo 已提交
484
	struct worker_pool *pools = std_worker_pools(cpu);
485

T
Tejun Heo 已提交
486
	return &pools[highpri];
487 488
}

489 490 491 492 493 494 495 496
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
497
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
498
{
499 500 501
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
519

520
/*
521 522
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
523
 * is cleared and the high bits contain OFFQ flags and pool ID.
524
 *
525 526
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
527 528
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
529
 *
530
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
531
 * corresponding to a work.  Pool is available once the work has been
532
 * queued anywhere after initialization until it is sync canceled.  pwq is
533
 * available only while the work item is queued.
534
 *
535 536 537 538
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
539
 */
540 541
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
542
{
543
	WARN_ON_ONCE(!work_pending(work));
544 545
	atomic_long_set(&work->data, data | flags | work_static(work));
}
546

547
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
548 549
			 unsigned long extra_flags)
{
550 551
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
552 553
}

554 555 556 557 558 559 560
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

561 562
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
563
{
564 565 566 567 568 569 570
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
571
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
572
}
573

574
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
575
{
576 577
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
578 579
}

580
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
581
{
582
	unsigned long data = atomic_long_read(&work->data);
583

584
	if (data & WORK_STRUCT_PWQ)
585 586 587
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
588 589
}

590 591 592 593 594
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
595 596 597 598 599 600 601 602 603
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
604 605
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
606
{
607
	unsigned long data = atomic_long_read(&work->data);
608
	int pool_id;
609

610 611
	assert_rcu_or_wq_lock();

612 613
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
614
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
615

616 617
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
618 619
		return NULL;

620
	return idr_find(&worker_pool_idr, pool_id);
621 622 623 624 625 626 627 628 629 630 631
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
632 633
	unsigned long data = atomic_long_read(&work->data);

634 635
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
636
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
637

638
	return data >> WORK_OFFQ_POOL_SHIFT;
639 640
}

641 642
static void mark_work_canceling(struct work_struct *work)
{
643
	unsigned long pool_id = get_work_pool_id(work);
644

645 646
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
647 648 649 650 651 652
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

653
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
654 655
}

656
/*
657 658
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
659
 * they're being called with pool->lock held.
660 661
 */

662
static bool __need_more_worker(struct worker_pool *pool)
663
{
664
	return !atomic_read(&pool->nr_running);
665 666
}

667
/*
668 669
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
670 671
 *
 * Note that, because unbound workers never contribute to nr_running, this
672
 * function will always return %true for unbound pools as long as the
673
 * worklist isn't empty.
674
 */
675
static bool need_more_worker(struct worker_pool *pool)
676
{
677
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
678
}
679

680
/* Can I start working?  Called from busy but !running workers. */
681
static bool may_start_working(struct worker_pool *pool)
682
{
683
	return pool->nr_idle;
684 685 686
}

/* Do I need to keep working?  Called from currently running workers. */
687
static bool keep_working(struct worker_pool *pool)
688
{
689 690
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
691 692 693
}

/* Do we need a new worker?  Called from manager. */
694
static bool need_to_create_worker(struct worker_pool *pool)
695
{
696
	return need_more_worker(pool) && !may_start_working(pool);
697
}
698

699
/* Do I need to be the manager? */
700
static bool need_to_manage_workers(struct worker_pool *pool)
701
{
702
	return need_to_create_worker(pool) ||
703
		(pool->flags & POOL_MANAGE_WORKERS);
704 705 706
}

/* Do we have too many workers and should some go away? */
707
static bool too_many_workers(struct worker_pool *pool)
708
{
709
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
710 711
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
712

713 714 715 716 717 718 719
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

720
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
721 722
}

723
/*
724 725 726
 * Wake up functions.
 */

727
/* Return the first worker.  Safe with preemption disabled */
728
static struct worker *first_worker(struct worker_pool *pool)
729
{
730
	if (unlikely(list_empty(&pool->idle_list)))
731 732
		return NULL;

733
	return list_first_entry(&pool->idle_list, struct worker, entry);
734 735 736 737
}

/**
 * wake_up_worker - wake up an idle worker
738
 * @pool: worker pool to wake worker from
739
 *
740
 * Wake up the first idle worker of @pool.
741 742
 *
 * CONTEXT:
743
 * spin_lock_irq(pool->lock).
744
 */
745
static void wake_up_worker(struct worker_pool *pool)
746
{
747
	struct worker *worker = first_worker(pool);
748 749 750 751 752

	if (likely(worker))
		wake_up_process(worker->task);
}

753
/**
754 755 756 757 758 759 760 761 762 763
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
764
void wq_worker_waking_up(struct task_struct *task, int cpu)
765 766 767
{
	struct worker *worker = kthread_data(task);

768
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
769
		WARN_ON_ONCE(worker->pool->cpu != cpu);
770
		atomic_inc(&worker->pool->nr_running);
771
	}
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
789
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
790 791
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
792
	struct worker_pool *pool;
793

794 795 796 797 798
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
799
	if (worker->flags & WORKER_NOT_RUNNING)
800 801
		return NULL;

802 803
	pool = worker->pool;

804
	/* this can only happen on the local cpu */
805 806
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
807 808 809 810 811 812

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
813 814 815
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
816
	 * manipulating idle_list, so dereferencing idle_list without pool
817
	 * lock is safe.
818
	 */
819 820
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
821
		to_wakeup = first_worker(pool);
822 823 824 825 826
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
827
 * @worker: self
828 829 830
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
831 832 833
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
834
 *
835
 * CONTEXT:
836
 * spin_lock_irq(pool->lock)
837 838 839 840
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
841
	struct worker_pool *pool = worker->pool;
842

843 844
	WARN_ON_ONCE(worker->task != current);

845 846 847 848 849 850 851 852
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
853
			if (atomic_dec_and_test(&pool->nr_running) &&
854
			    !list_empty(&pool->worklist))
855
				wake_up_worker(pool);
856
		} else
857
			atomic_dec(&pool->nr_running);
858 859
	}

860 861 862 863
	worker->flags |= flags;
}

/**
864
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
865
 * @worker: self
866 867
 * @flags: flags to clear
 *
868
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
869
 *
870
 * CONTEXT:
871
 * spin_lock_irq(pool->lock)
872 873 874
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
875
	struct worker_pool *pool = worker->pool;
876 877
	unsigned int oflags = worker->flags;

878 879
	WARN_ON_ONCE(worker->task != current);

880
	worker->flags &= ~flags;
881

882 883 884 885 886
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
887 888
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
889
			atomic_inc(&pool->nr_running);
890 891
}

892 893
/**
 * find_worker_executing_work - find worker which is executing a work
894
 * @pool: pool of interest
895 896
 * @work: work to find worker for
 *
897 898
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
918 919
 *
 * CONTEXT:
920
 * spin_lock_irq(pool->lock).
921 922 923 924
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
925
 */
926
static struct worker *find_worker_executing_work(struct worker_pool *pool,
927
						 struct work_struct *work)
928
{
929 930
	struct worker *worker;

931
	hash_for_each_possible(pool->busy_hash, worker, hentry,
932 933 934
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
935 936 937
			return worker;

	return NULL;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
955
 * spin_lock_irq(pool->lock).
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

981
static void pwq_activate_delayed_work(struct work_struct *work)
982
{
983
	struct pool_workqueue *pwq = get_work_pwq(work);
984 985

	trace_workqueue_activate_work(work);
986
	move_linked_works(work, &pwq->pool->worklist, NULL);
987
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
988
	pwq->nr_active++;
989 990
}

991
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
992
{
993
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
994 995
						    struct work_struct, entry);

996
	pwq_activate_delayed_work(work);
997 998
}

999
/**
1000 1001
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1002 1003 1004
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1005
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1006 1007
 *
 * CONTEXT:
1008
 * spin_lock_irq(pool->lock).
1009
 */
1010
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1011 1012 1013 1014 1015
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

1016
	pwq->nr_in_flight[color]--;
1017

1018 1019
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1020
		/* one down, submit a delayed one */
1021 1022
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1023 1024 1025
	}

	/* is flush in progress and are we at the flushing tip? */
1026
	if (likely(pwq->flush_color != color))
1027 1028 1029
		return;

	/* are there still in-flight works? */
1030
	if (pwq->nr_in_flight[color])
1031 1032
		return;

1033 1034
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1035 1036

	/*
1037
	 * If this was the last pwq, wake up the first flusher.  It
1038 1039
	 * will handle the rest.
	 */
1040 1041
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1042 1043
}

1044
/**
1045
 * try_to_grab_pending - steal work item from worklist and disable irq
1046 1047
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1048
 * @flags: place to store irq state
1049 1050 1051 1052 1053 1054 1055
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1056 1057
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1058
 *
1059
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1060 1061 1062
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1063 1064 1065 1066
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1067
 * This function is safe to call from any context including IRQ handler.
1068
 */
1069 1070
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1071
{
1072
	struct worker_pool *pool;
1073
	struct pool_workqueue *pwq;
1074

1075 1076
	local_irq_save(*flags);

1077 1078 1079 1080
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1081 1082 1083 1084 1085
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1086 1087 1088 1089 1090
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1091 1092 1093 1094 1095 1096 1097
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1098 1099
	pool = get_work_pool(work);
	if (!pool)
1100
		goto fail;
1101

1102
	spin_lock(&pool->lock);
1103
	/*
1104 1105 1106 1107 1108
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1109 1110
	 * item is currently queued on that pool.
	 */
1111 1112
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1113 1114 1115 1116 1117
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1118
		 * on the delayed_list, will confuse pwq->nr_active
1119 1120 1121 1122
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1123
			pwq_activate_delayed_work(work);
1124 1125

		list_del_init(&work->entry);
1126
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1127

1128
		/* work->data points to pwq iff queued, point to pool */
1129 1130 1131 1132
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1133
	}
1134
	spin_unlock(&pool->lock);
1135 1136 1137 1138 1139
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1140
	return -EAGAIN;
1141 1142
}

T
Tejun Heo 已提交
1143
/**
1144
 * insert_work - insert a work into a pool
1145
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1146 1147 1148 1149
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1150
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1151
 * work_struct flags.
T
Tejun Heo 已提交
1152 1153
 *
 * CONTEXT:
1154
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1155
 */
1156 1157
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1158
{
1159
	struct worker_pool *pool = pwq->pool;
1160

T
Tejun Heo 已提交
1161
	/* we own @work, set data and link */
1162
	set_work_pwq(work, pwq, extra_flags);
1163
	list_add_tail(&work->entry, head);
1164 1165 1166 1167 1168 1169 1170 1171

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1172 1173
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1174 1175
}

1176 1177
/*
 * Test whether @work is being queued from another work executing on the
1178
 * same workqueue.
1179 1180 1181
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1182 1183 1184 1185 1186 1187 1188
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1189
	return worker && worker->current_pwq->wq == wq;
1190 1191
}

1192
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1193 1194
			 struct work_struct *work)
{
1195
	struct pool_workqueue *pwq;
1196
	struct list_head *worklist;
1197
	unsigned int work_flags;
1198
	unsigned int req_cpu = cpu;
1199 1200 1201 1202 1203 1204 1205 1206

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1207

1208
	debug_work_activate(work);
1209

1210
	/* if dying, only works from the same workqueue are allowed */
1211
	if (unlikely(wq->flags & WQ_DRAINING) &&
1212
	    WARN_ON_ONCE(!is_chained_work(wq)))
1213 1214
		return;

1215
	/* determine the pwq to use */
1216
	if (!(wq->flags & WQ_UNBOUND)) {
1217
		struct worker_pool *last_pool;
1218

1219
		if (cpu == WORK_CPU_UNBOUND)
1220 1221
			cpu = raw_smp_processor_id();

1222
		/*
1223 1224 1225 1226
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1227
		 */
1228
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1229
		last_pool = get_work_pool(work);
1230

1231
		if (last_pool && last_pool != pwq->pool) {
1232 1233
			struct worker *worker;

1234
			spin_lock(&last_pool->lock);
1235

1236
			worker = find_worker_executing_work(last_pool, work);
1237

1238
			if (worker && worker->current_pwq->wq == wq) {
1239
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1240
			} else {
1241
				/* meh... not running there, queue here */
1242
				spin_unlock(&last_pool->lock);
1243
				spin_lock(&pwq->pool->lock);
1244
			}
1245
		} else {
1246
			spin_lock(&pwq->pool->lock);
1247
		}
1248
	} else {
1249
		pwq = first_pwq(wq);
1250
		spin_lock(&pwq->pool->lock);
1251 1252
	}

1253 1254
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1255

1256
	if (WARN_ON(!list_empty(&work->entry))) {
1257
		spin_unlock(&pwq->pool->lock);
1258 1259
		return;
	}
1260

1261 1262
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1263

1264
	if (likely(pwq->nr_active < pwq->max_active)) {
1265
		trace_workqueue_activate_work(work);
1266 1267
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1268 1269
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1270
		worklist = &pwq->delayed_works;
1271
	}
1272

1273
	insert_work(pwq, work, worklist, work_flags);
1274

1275
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1276 1277
}

1278
/**
1279 1280
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1281 1282 1283
 * @wq: workqueue to use
 * @work: work to queue
 *
1284
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1285
 *
1286 1287
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1288
 */
1289 1290
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1291
{
1292
	bool ret = false;
1293
	unsigned long flags;
1294

1295
	local_irq_save(flags);
1296

1297
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1298
		__queue_work(cpu, wq, work);
1299
		ret = true;
1300
	}
1301

1302
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1303 1304
	return ret;
}
1305
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1306

1307
/**
1308
 * queue_work - queue work on a workqueue
1309 1310 1311
 * @wq: workqueue to use
 * @work: work to queue
 *
1312
 * Returns %false if @work was already on a queue, %true otherwise.
1313
 *
1314 1315
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1316
 */
1317
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1318
{
1319
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1320
}
1321
EXPORT_SYMBOL_GPL(queue_work);
1322

1323
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1324
{
1325
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1326

1327
	/* should have been called from irqsafe timer with irq already off */
1328
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1329
}
1330
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1331

1332 1333
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1334
{
1335 1336 1337 1338 1339
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1340 1341
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1354
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1355

1356
	dwork->wq = wq;
1357
	dwork->cpu = cpu;
1358 1359 1360 1361 1362 1363
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1364 1365
}

1366 1367 1368 1369
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1370
 * @dwork: work to queue
1371 1372
 * @delay: number of jiffies to wait before queueing
 *
1373 1374 1375
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1376
 */
1377 1378
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1379
{
1380
	struct work_struct *work = &dwork->work;
1381
	bool ret = false;
1382
	unsigned long flags;
1383

1384 1385
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1386

1387
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1388
		__queue_delayed_work(cpu, wq, dwork, delay);
1389
		ret = true;
1390
	}
1391

1392
	local_irq_restore(flags);
1393 1394
	return ret;
}
1395
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1396

1397 1398 1399 1400 1401 1402
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1403
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1404
 */
1405
bool queue_delayed_work(struct workqueue_struct *wq,
1406 1407
			struct delayed_work *dwork, unsigned long delay)
{
1408
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1409 1410
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1427
 * This function is safe to call from any context including IRQ handler.
1428 1429 1430 1431 1432 1433 1434
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1435

1436 1437 1438
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1439

1440 1441 1442
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1443
	}
1444 1445

	/* -ENOENT from try_to_grab_pending() becomes %true */
1446 1447
	return ret;
}
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1464

T
Tejun Heo 已提交
1465 1466 1467 1468 1469 1470 1471 1472
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1473
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1474 1475
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1476
{
1477
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1478

1479 1480 1481 1482
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1483

1484 1485
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1486
	pool->nr_idle++;
1487
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1488 1489

	/* idle_list is LIFO */
1490
	list_add(&worker->entry, &pool->idle_list);
1491

1492 1493
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1494

1495
	/*
1496
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1497
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1498 1499
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1500
	 */
1501
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1502
		     pool->nr_workers == pool->nr_idle &&
1503
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1513
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1514 1515 1516
 */
static void worker_leave_idle(struct worker *worker)
{
1517
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1518

1519 1520
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1521
	worker_clr_flags(worker, WORKER_IDLE);
1522
	pool->nr_idle--;
T
Tejun Heo 已提交
1523 1524 1525
	list_del_init(&worker->entry);
}

1526
/**
1527 1528 1529 1530
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1531 1532 1533 1534 1535 1536
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1537
 * This function is to be used by unbound workers and rescuers to bind
1538 1539 1540
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1541
 * verbatim as it's best effort and blocking and pool may be
1542 1543
 * [dis]associated in the meantime.
 *
1544
 * This function tries set_cpus_allowed() and locks pool and verifies the
1545
 * binding against %POOL_DISASSOCIATED which is set during
1546 1547 1548
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1549 1550
 *
 * CONTEXT:
1551
 * Might sleep.  Called without any lock but returns with pool->lock
1552 1553 1554
 * held.
 *
 * RETURNS:
1555
 * %true if the associated pool is online (@worker is successfully
1556 1557
 * bound), %false if offline.
 */
1558
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1559
__acquires(&pool->lock)
1560 1561
{
	while (true) {
1562
		/*
1563 1564 1565
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1566
		 * against POOL_DISASSOCIATED.
1567
		 */
1568
		if (!(pool->flags & POOL_DISASSOCIATED))
1569
			set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1570

1571
		spin_lock_irq(&pool->lock);
1572
		if (pool->flags & POOL_DISASSOCIATED)
1573
			return false;
1574
		if (task_cpu(current) == pool->cpu &&
1575
		    cpumask_equal(&current->cpus_allowed,
1576
				  get_cpu_mask(pool->cpu)))
1577
			return true;
1578
		spin_unlock_irq(&pool->lock);
1579

1580 1581 1582 1583 1584 1585
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1586
		cpu_relax();
1587
		cond_resched();
1588 1589 1590
	}
}

1591
/*
1592
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1593
 * list_empty(@worker->entry) before leaving idle and call this function.
1594 1595 1596
 */
static void idle_worker_rebind(struct worker *worker)
{
1597
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1598
	if (worker_maybe_bind_and_lock(worker->pool))
1599
		worker_clr_flags(worker, WORKER_UNBOUND);
1600

1601 1602
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1603
	spin_unlock_irq(&worker->pool->lock);
1604 1605
}

1606
/*
1607
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1608 1609 1610
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1611
 */
1612
static void busy_worker_rebind_fn(struct work_struct *work)
1613 1614 1615
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1616
	if (worker_maybe_bind_and_lock(worker->pool))
1617
		worker_clr_flags(worker, WORKER_UNBOUND);
1618

1619
	spin_unlock_irq(&worker->pool->lock);
1620 1621
}

1622
/**
1623 1624
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1625
 *
1626
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1627 1628
 * is different for idle and busy ones.
 *
1629 1630 1631 1632
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1633
 *
1634 1635 1636 1637
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1638
 *
1639 1640 1641 1642
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1643
 */
1644
static void rebind_workers(struct worker_pool *pool)
1645
{
1646
	struct worker *worker, *n;
1647 1648
	int i;

1649 1650
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1651

1652
	/* dequeue and kick idle ones */
1653 1654 1655 1656 1657 1658
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1659

1660 1661 1662 1663 1664 1665
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1666

1667
	/* rebind busy workers */
1668
	for_each_busy_worker(worker, i, pool) {
1669 1670
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1671

1672 1673 1674
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1675

1676
		debug_work_activate(rebind_work);
1677

1678 1679
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1680
		 * and @pwq->pool consistent for sanity.
1681 1682 1683 1684 1685 1686
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

1687
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1688 1689
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1690
	}
1691 1692
}

T
Tejun Heo 已提交
1693 1694 1695 1696 1697
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1698 1699
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1700
		INIT_LIST_HEAD(&worker->scheduled);
1701
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1702 1703
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1704
	}
T
Tejun Heo 已提交
1705 1706 1707 1708 1709
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1710
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1711
 *
1712
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1722
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1723
{
1724
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1725
	struct worker *worker = NULL;
1726
	int id = -1;
T
Tejun Heo 已提交
1727

1728
	spin_lock_irq(&pool->lock);
1729
	while (ida_get_new(&pool->worker_ida, &id)) {
1730
		spin_unlock_irq(&pool->lock);
1731
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1732
			goto fail;
1733
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1734
	}
1735
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1736 1737 1738 1739 1740

	worker = alloc_worker();
	if (!worker)
		goto fail;

1741
	worker->pool = pool;
T
Tejun Heo 已提交
1742 1743
	worker->id = id;

1744
	if (pool->cpu != WORK_CPU_UNBOUND)
1745
		worker->task = kthread_create_on_node(worker_thread,
1746
					worker, cpu_to_node(pool->cpu),
1747
					"kworker/%d:%d%s", pool->cpu, id, pri);
1748 1749
	else
		worker->task = kthread_create(worker_thread, worker,
1750
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1751 1752 1753
	if (IS_ERR(worker->task))
		goto fail;

1754
	if (std_worker_pool_pri(pool))
1755 1756
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1757
	/*
1758
	 * Determine CPU binding of the new worker depending on
1759
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1760 1761 1762 1763 1764
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1765
	 */
1766
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1767
		kthread_bind(worker->task, pool->cpu);
1768
	} else {
1769
		worker->task->flags |= PF_THREAD_BOUND;
1770
		worker->flags |= WORKER_UNBOUND;
1771
	}
T
Tejun Heo 已提交
1772 1773 1774 1775

	return worker;
fail:
	if (id >= 0) {
1776
		spin_lock_irq(&pool->lock);
1777
		ida_remove(&pool->worker_ida, id);
1778
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1788
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1789 1790
 *
 * CONTEXT:
1791
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1792 1793 1794
 */
static void start_worker(struct worker *worker)
{
1795
	worker->flags |= WORKER_STARTED;
1796
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1797
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1798 1799 1800 1801 1802 1803 1804
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1805
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1806 1807
 *
 * CONTEXT:
1808
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1809 1810 1811
 */
static void destroy_worker(struct worker *worker)
{
1812
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1813 1814 1815
	int id = worker->id;

	/* sanity check frenzy */
1816 1817 1818
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1819

T
Tejun Heo 已提交
1820
	if (worker->flags & WORKER_STARTED)
1821
		pool->nr_workers--;
T
Tejun Heo 已提交
1822
	if (worker->flags & WORKER_IDLE)
1823
		pool->nr_idle--;
T
Tejun Heo 已提交
1824 1825

	list_del_init(&worker->entry);
1826
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1827

1828
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1829

T
Tejun Heo 已提交
1830 1831 1832
	kthread_stop(worker->task);
	kfree(worker);

1833
	spin_lock_irq(&pool->lock);
1834
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1835 1836
}

1837
static void idle_worker_timeout(unsigned long __pool)
1838
{
1839
	struct worker_pool *pool = (void *)__pool;
1840

1841
	spin_lock_irq(&pool->lock);
1842

1843
	if (too_many_workers(pool)) {
1844 1845 1846 1847
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1848
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1849 1850 1851
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1852
			mod_timer(&pool->idle_timer, expires);
1853 1854
		else {
			/* it's been idle for too long, wake up manager */
1855
			pool->flags |= POOL_MANAGE_WORKERS;
1856
			wake_up_worker(pool);
1857
		}
1858 1859
	}

1860
	spin_unlock_irq(&pool->lock);
1861
}
1862

1863
static void send_mayday(struct work_struct *work)
1864
{
1865 1866
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1867 1868

	lockdep_assert_held(&workqueue_lock);
1869 1870

	if (!(wq->flags & WQ_RESCUER))
1871
		return;
1872 1873

	/* mayday mayday mayday */
1874 1875
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1876
		wake_up_process(wq->rescuer->task);
1877
	}
1878 1879
}

1880
static void pool_mayday_timeout(unsigned long __pool)
1881
{
1882
	struct worker_pool *pool = (void *)__pool;
1883 1884
	struct work_struct *work;

1885 1886
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1887

1888
	if (need_to_create_worker(pool)) {
1889 1890 1891 1892 1893 1894
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1895
		list_for_each_entry(work, &pool->worklist, entry)
1896
			send_mayday(work);
L
Linus Torvalds 已提交
1897
	}
1898

1899 1900
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1901

1902
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1903 1904
}

1905 1906
/**
 * maybe_create_worker - create a new worker if necessary
1907
 * @pool: pool to create a new worker for
1908
 *
1909
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1910 1911
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1912
 * sent to all rescuers with works scheduled on @pool to resolve
1913 1914 1915 1916 1917 1918
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1919
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1920 1921 1922 1923
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1924
 * false if no action was taken and pool->lock stayed locked, true
1925 1926
 * otherwise.
 */
1927
static bool maybe_create_worker(struct worker_pool *pool)
1928 1929
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1930
{
1931
	if (!need_to_create_worker(pool))
1932 1933
		return false;
restart:
1934
	spin_unlock_irq(&pool->lock);
1935

1936
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1937
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1938 1939 1940 1941

	while (true) {
		struct worker *worker;

1942
		worker = create_worker(pool);
1943
		if (worker) {
1944
			del_timer_sync(&pool->mayday_timer);
1945
			spin_lock_irq(&pool->lock);
1946
			start_worker(worker);
1947 1948
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1949 1950 1951
			return true;
		}

1952
		if (!need_to_create_worker(pool))
1953
			break;
L
Linus Torvalds 已提交
1954

1955 1956
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1957

1958
		if (!need_to_create_worker(pool))
1959 1960 1961
			break;
	}

1962
	del_timer_sync(&pool->mayday_timer);
1963
	spin_lock_irq(&pool->lock);
1964
	if (need_to_create_worker(pool))
1965 1966 1967 1968 1969 1970
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1971
 * @pool: pool to destroy workers for
1972
 *
1973
 * Destroy @pool workers which have been idle for longer than
1974 1975 1976
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1977
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1978 1979 1980
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1981
 * false if no action was taken and pool->lock stayed locked, true
1982 1983
 * otherwise.
 */
1984
static bool maybe_destroy_workers(struct worker_pool *pool)
1985 1986
{
	bool ret = false;
L
Linus Torvalds 已提交
1987

1988
	while (too_many_workers(pool)) {
1989 1990
		struct worker *worker;
		unsigned long expires;
1991

1992
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1993
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1994

1995
		if (time_before(jiffies, expires)) {
1996
			mod_timer(&pool->idle_timer, expires);
1997
			break;
1998
		}
L
Linus Torvalds 已提交
1999

2000 2001
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2002
	}
2003

2004
	return ret;
2005 2006
}

2007
/**
2008 2009
 * manage_workers - manage worker pool
 * @worker: self
2010
 *
2011
 * Assume the manager role and manage the worker pool @worker belongs
2012
 * to.  At any given time, there can be only zero or one manager per
2013
 * pool.  The exclusion is handled automatically by this function.
2014 2015 2016 2017
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2018 2019
 *
 * CONTEXT:
2020
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2021 2022 2023
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2024 2025
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2026
 */
2027
static bool manage_workers(struct worker *worker)
2028
{
2029
	struct worker_pool *pool = worker->pool;
2030
	bool ret = false;
2031

2032
	if (pool->flags & POOL_MANAGING_WORKERS)
2033
		return ret;
2034

2035
	pool->flags |= POOL_MANAGING_WORKERS;
2036

2037 2038 2039 2040 2041 2042
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2043
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2044 2045
	 * manager against CPU hotplug.
	 *
2046
	 * assoc_mutex would always be free unless CPU hotplug is in
2047
	 * progress.  trylock first without dropping @pool->lock.
2048
	 */
2049
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2050
		spin_unlock_irq(&pool->lock);
2051
		mutex_lock(&pool->assoc_mutex);
2052 2053
		/*
		 * CPU hotplug could have happened while we were waiting
2054
		 * for assoc_mutex.  Hotplug itself can't handle us
2055
		 * because manager isn't either on idle or busy list, and
2056
		 * @pool's state and ours could have deviated.
2057
		 *
2058
		 * As hotplug is now excluded via assoc_mutex, we can
2059
		 * simply try to bind.  It will succeed or fail depending
2060
		 * on @pool's current state.  Try it and adjust
2061 2062
		 * %WORKER_UNBOUND accordingly.
		 */
2063
		if (worker_maybe_bind_and_lock(pool))
2064 2065 2066
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2067

2068 2069
		ret = true;
	}
2070

2071
	pool->flags &= ~POOL_MANAGE_WORKERS;
2072 2073

	/*
2074 2075
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2076
	 */
2077 2078
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2079

2080
	pool->flags &= ~POOL_MANAGING_WORKERS;
2081
	mutex_unlock(&pool->assoc_mutex);
2082
	return ret;
2083 2084
}

2085 2086
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2087
 * @worker: self
2088 2089 2090 2091 2092 2093 2094 2095 2096
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2097
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2098
 */
T
Tejun Heo 已提交
2099
static void process_one_work(struct worker *worker, struct work_struct *work)
2100 2101
__releases(&pool->lock)
__acquires(&pool->lock)
2102
{
2103
	struct pool_workqueue *pwq = get_work_pwq(work);
2104
	struct worker_pool *pool = worker->pool;
2105
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2106
	int work_color;
2107
	struct worker *collision;
2108 2109 2110 2111 2112 2113 2114 2115
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2116 2117 2118
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2119
#endif
2120 2121 2122
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2123
	 * unbound or a disassociated pool.
2124
	 */
2125
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2126
		     !(pool->flags & POOL_DISASSOCIATED) &&
2127
		     raw_smp_processor_id() != pool->cpu);
2128

2129 2130 2131 2132 2133 2134
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2135
	collision = find_worker_executing_work(pool, work);
2136 2137 2138 2139 2140
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2141
	/* claim and dequeue */
2142
	debug_work_deactivate(work);
2143
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2144
	worker->current_work = work;
2145
	worker->current_func = work->func;
2146
	worker->current_pwq = pwq;
2147
	work_color = get_work_color(work);
2148

2149 2150
	list_del_init(&work->entry);

2151 2152 2153 2154 2155 2156 2157
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2158
	/*
2159
	 * Unbound pool isn't concurrency managed and work items should be
2160 2161
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2162 2163
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2164

2165
	/*
2166
	 * Record the last pool and clear PENDING which should be the last
2167
	 * update to @work.  Also, do this inside @pool->lock so that
2168 2169
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2170
	 */
2171
	set_work_pool_and_clear_pending(work, pool->id);
2172

2173
	spin_unlock_irq(&pool->lock);
2174

2175
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2176
	lock_map_acquire(&lockdep_map);
2177
	trace_workqueue_execute_start(work);
2178
	worker->current_func(work);
2179 2180 2181 2182 2183
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2184
	lock_map_release(&lockdep_map);
2185
	lock_map_release(&pwq->wq->lockdep_map);
2186 2187

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2188 2189
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2190 2191
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2192 2193 2194 2195
		debug_show_held_locks(current);
		dump_stack();
	}

2196
	spin_lock_irq(&pool->lock);
2197

2198 2199 2200 2201
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2202
	/* we're done with it, release */
2203
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2204
	worker->current_work = NULL;
2205
	worker->current_func = NULL;
2206 2207
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2219
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2220 2221 2222
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2223
{
2224 2225
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2226
						struct work_struct, entry);
T
Tejun Heo 已提交
2227
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2228 2229 2230
	}
}

T
Tejun Heo 已提交
2231 2232
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2233
 * @__worker: self
T
Tejun Heo 已提交
2234
 *
2235 2236
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2237 2238 2239
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2240
 */
T
Tejun Heo 已提交
2241
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2242
{
T
Tejun Heo 已提交
2243
	struct worker *worker = __worker;
2244
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2245

2246 2247
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2248
woke_up:
2249
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2250

2251 2252
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2253
		spin_unlock_irq(&pool->lock);
2254

2255
		/* if DIE is set, destruction is requested */
2256 2257 2258 2259 2260
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2261
		/* otherwise, rebind */
2262 2263
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2264
	}
2265

T
Tejun Heo 已提交
2266
	worker_leave_idle(worker);
2267
recheck:
2268
	/* no more worker necessary? */
2269
	if (!need_more_worker(pool))
2270 2271 2272
		goto sleep;

	/* do we need to manage? */
2273
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2274 2275
		goto recheck;

T
Tejun Heo 已提交
2276 2277 2278 2279 2280
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2281
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2282

2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2291
		struct work_struct *work =
2292
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2293 2294 2295 2296 2297 2298
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2299
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2300 2301 2302
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2303
		}
2304
	} while (keep_working(pool));
2305 2306

	worker_set_flags(worker, WORKER_PREP, false);
2307
sleep:
2308
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2309
		goto recheck;
2310

T
Tejun Heo 已提交
2311
	/*
2312 2313 2314 2315 2316
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2317 2318 2319
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2320
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2321 2322
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2323 2324
}

2325 2326
/**
 * rescuer_thread - the rescuer thread function
2327
 * @__rescuer: self
2328 2329 2330 2331
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2332
 * Regular work processing on a pool may block trying to create a new
2333 2334 2335 2336 2337
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2338 2339
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2340 2341 2342 2343
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2344
static int rescuer_thread(void *__rescuer)
2345
{
2346 2347
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2348 2349 2350
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2351 2352 2353 2354 2355 2356

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2357 2358 2359
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2360 2361
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2362
		rescuer->task->flags &= ~PF_WQ_WORKER;
2363
		return 0;
2364
	}
2365

2366 2367 2368 2369 2370 2371
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2372
		struct worker_pool *pool = pwq->pool;
2373 2374 2375
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2376 2377 2378
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2379 2380

		/* migrate to the target cpu if possible */
2381
		worker_maybe_bind_and_lock(pool);
2382
		rescuer->pool = pool;
2383 2384 2385 2386 2387

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2388
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2389
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2390
			if (get_work_pwq(work) == pwq)
2391 2392 2393
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2394 2395

		/*
2396
		 * Leave this pool.  If keep_working() is %true, notify a
2397 2398 2399
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2400 2401
		if (keep_working(pool))
			wake_up_worker(pool);
2402

2403
		rescuer->pool = NULL;
2404 2405
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2406 2407
	}

2408 2409
	spin_unlock_irq(&workqueue_lock);

2410 2411
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2412 2413
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2414 2415
}

O
Oleg Nesterov 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2427 2428
/**
 * insert_wq_barrier - insert a barrier work
2429
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2430
 * @barr: wq_barrier to insert
2431 2432
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2433
 *
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2446
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2447 2448
 *
 * CONTEXT:
2449
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2450
 */
2451
static void insert_wq_barrier(struct pool_workqueue *pwq,
2452 2453
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2454
{
2455 2456 2457
	struct list_head *head;
	unsigned int linked = 0;

2458
	/*
2459
	 * debugobject calls are safe here even with pool->lock locked
2460 2461 2462 2463
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2464
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2465
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2466
	init_completion(&barr->done);
2467

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2483
	debug_work_activate(&barr->work);
2484
	insert_work(pwq, &barr->work, head,
2485
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2486 2487
}

2488
/**
2489
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2490 2491 2492 2493
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2494
 * Prepare pwqs for workqueue flushing.
2495
 *
2496 2497 2498 2499 2500
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2501 2502 2503 2504 2505 2506 2507
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2508
 * If @work_color is non-negative, all pwqs should have the same
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2519
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2520
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2521
{
2522
	bool wait = false;
2523
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2524

2525
	if (flush_color >= 0) {
2526
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2527
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2528
	}
2529

2530 2531
	local_irq_disable();

2532
	for_each_pwq(pwq, wq) {
2533
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2534

2535
		spin_lock(&pool->lock);
2536

2537
		if (flush_color >= 0) {
2538
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2539

2540 2541 2542
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2543 2544 2545
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2546

2547
		if (work_color >= 0) {
2548
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2549
			pwq->work_color = work_color;
2550
		}
L
Linus Torvalds 已提交
2551

2552
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2553
	}
2554

2555 2556
	local_irq_enable();

2557
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2558
		complete(&wq->first_flusher->done);
2559

2560
	return wait;
L
Linus Torvalds 已提交
2561 2562
}

2563
/**
L
Linus Torvalds 已提交
2564
 * flush_workqueue - ensure that any scheduled work has run to completion.
2565
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2566 2567 2568 2569
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2570 2571
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2572
 */
2573
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2574
{
2575 2576 2577 2578 2579 2580
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2581

2582 2583
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2598
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2599 2600 2601 2602 2603
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2604
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2605 2606 2607

			wq->first_flusher = &this_flusher;

2608
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2609 2610 2611 2612 2613 2614 2615 2616
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2617
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2618
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2619
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2645 2646 2647 2648
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2649 2650
	wq->first_flusher = NULL;

2651 2652
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2665 2666
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2686
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2687 2688 2689
		}

		if (list_empty(&wq->flusher_queue)) {
2690
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2691 2692 2693 2694 2695
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2696
		 * the new first flusher and arm pwqs.
2697
		 */
2698 2699
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2700 2701 2702 2703

		list_del_init(&next->list);
		wq->first_flusher = next;

2704
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2716
}
2717
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2733
	struct pool_workqueue *pwq;
2734 2735 2736 2737 2738 2739

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2740
	spin_lock_irq(&workqueue_lock);
2741 2742
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2743
	spin_unlock_irq(&workqueue_lock);
2744 2745 2746
reflush:
	flush_workqueue(wq);

2747 2748
	local_irq_disable();

2749
	for_each_pwq(pwq, wq) {
2750
		bool drained;
2751

2752
		spin_lock(&pwq->pool->lock);
2753
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2754
		spin_unlock(&pwq->pool->lock);
2755 2756

		if (drained)
2757 2758 2759 2760
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2761 2762
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2763 2764

		local_irq_enable();
2765 2766 2767
		goto reflush;
	}

2768
	spin_lock(&workqueue_lock);
2769 2770
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2771 2772 2773
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2774 2775 2776
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2777
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2778
{
2779
	struct worker *worker = NULL;
2780
	struct worker_pool *pool;
2781
	struct pool_workqueue *pwq;
2782 2783

	might_sleep();
2784 2785

	local_irq_disable();
2786
	pool = get_work_pool(work);
2787 2788
	if (!pool) {
		local_irq_enable();
2789
		return false;
2790
	}
2791

2792
	spin_lock(&pool->lock);
2793
	/* see the comment in try_to_grab_pending() with the same code */
2794 2795 2796
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2797
			goto already_gone;
2798
	} else {
2799
		worker = find_worker_executing_work(pool, work);
2800
		if (!worker)
T
Tejun Heo 已提交
2801
			goto already_gone;
2802
		pwq = worker->current_pwq;
2803
	}
2804

2805
	insert_wq_barrier(pwq, barr, work, worker);
2806
	spin_unlock_irq(&pool->lock);
2807

2808 2809 2810 2811 2812 2813
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2814 2815
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2816
	else
2817 2818
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2819

2820
	return true;
T
Tejun Heo 已提交
2821
already_gone:
2822
	spin_unlock_irq(&pool->lock);
2823
	return false;
2824
}
2825 2826 2827 2828 2829

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2830 2831
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2832 2833 2834 2835 2836 2837 2838 2839 2840
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2841 2842 2843
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2844
	if (start_flush_work(work, &barr)) {
2845 2846 2847
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2848
	} else {
2849
		return false;
2850 2851
	}
}
2852
EXPORT_SYMBOL_GPL(flush_work);
2853

2854
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2855
{
2856
	unsigned long flags;
2857 2858 2859
	int ret;

	do {
2860 2861 2862 2863 2864 2865
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2866
			flush_work(work);
2867 2868
	} while (unlikely(ret < 0));

2869 2870 2871 2872
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2873
	flush_work(work);
2874
	clear_work_data(work);
2875 2876 2877
	return ret;
}

2878
/**
2879 2880
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2881
 *
2882 2883 2884 2885
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2886
 *
2887 2888
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2889
 *
2890
 * The caller must ensure that the workqueue on which @work was last
2891
 * queued can't be destroyed before this function returns.
2892 2893 2894
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2895
 */
2896
bool cancel_work_sync(struct work_struct *work)
2897
{
2898
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2899
}
2900
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2901

2902
/**
2903 2904
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2905
 *
2906 2907 2908
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2909
 *
2910 2911 2912
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2913
 */
2914 2915
bool flush_delayed_work(struct delayed_work *dwork)
{
2916
	local_irq_disable();
2917
	if (del_timer_sync(&dwork->timer))
2918
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2919
	local_irq_enable();
2920 2921 2922 2923
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2924
/**
2925 2926
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2927
 *
2928 2929 2930 2931 2932
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2933
 *
2934
 * This function is safe to call from any context including IRQ handler.
2935
 */
2936
bool cancel_delayed_work(struct delayed_work *dwork)
2937
{
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2948 2949
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2950
	local_irq_restore(flags);
2951
	return ret;
2952
}
2953
EXPORT_SYMBOL(cancel_delayed_work);
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2965
{
2966
	return __cancel_work_timer(&dwork->work, true);
2967
}
2968
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2969

2970
/**
2971 2972 2973 2974 2975 2976
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2977
bool schedule_work_on(int cpu, struct work_struct *work)
2978
{
2979
	return queue_work_on(cpu, system_wq, work);
2980 2981 2982
}
EXPORT_SYMBOL(schedule_work_on);

2983 2984 2985 2986
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2987 2988
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2989 2990 2991 2992
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2993
 */
2994
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2995
{
2996
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2997
}
2998
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2999

3000 3001 3002
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3003
 * @dwork: job to be done
3004 3005 3006 3007 3008
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3009 3010
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3011
{
3012
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3013
}
3014
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3015

3016 3017
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3018 3019
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3020 3021 3022 3023
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3024
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3025
{
3026
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3027
}
3028
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3029

3030
/**
3031
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3032 3033
 * @func: the function to call
 *
3034 3035
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3036
 * schedule_on_each_cpu() is very slow.
3037 3038 3039
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3040
 */
3041
int schedule_on_each_cpu(work_func_t func)
3042 3043
{
	int cpu;
3044
	struct work_struct __percpu *works;
3045

3046 3047
	works = alloc_percpu(struct work_struct);
	if (!works)
3048
		return -ENOMEM;
3049

3050 3051
	get_online_cpus();

3052
	for_each_online_cpu(cpu) {
3053 3054 3055
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3056
		schedule_work_on(cpu, work);
3057
	}
3058 3059 3060 3061

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3062
	put_online_cpus();
3063
	free_percpu(works);
3064 3065 3066
	return 0;
}

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3091 3092
void flush_scheduled_work(void)
{
3093
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3094
}
3095
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3109
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3110 3111
{
	if (!in_interrupt()) {
3112
		fn(&ew->work);
3113 3114 3115
		return 0;
	}

3116
	INIT_WORK(&ew->work, fn);
3117 3118 3119 3120 3121 3122
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3123 3124
int keventd_up(void)
{
3125
	return system_wq != NULL;
L
Linus Torvalds 已提交
3126 3127
}

3128
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3129
{
3130
	bool highpri = wq->flags & WQ_HIGHPRI;
3131 3132 3133
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3134 3135
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3136 3137 3138
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3139 3140
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3141

3142
			pwq->pool = get_std_worker_pool(cpu, highpri);
3143
			list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3144 3145 3146 3147 3148 3149 3150 3151
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3152
		pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3153
		list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3154 3155 3156
	}

	return 0;
T
Tejun Heo 已提交
3157 3158
}

3159
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3160
{
3161
	if (!(wq->flags & WQ_UNBOUND))
3162 3163 3164 3165
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3166 3167
}

3168 3169
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3170
{
3171 3172 3173
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3174 3175
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3176

3177
	return clamp_val(max_active, 1, lim);
3178 3179
}

3180
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3181 3182 3183
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3184
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3185
{
3186
	va_list args, args1;
L
Linus Torvalds 已提交
3187
	struct workqueue_struct *wq;
3188
	struct pool_workqueue *pwq;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3203

3204 3205 3206 3207 3208 3209 3210
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3211
	max_active = max_active ?: WQ_DFL_ACTIVE;
3212
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3213

3214
	/* init wq */
3215
	wq->flags = flags;
3216
	wq->saved_max_active = max_active;
3217
	mutex_init(&wq->flush_mutex);
3218
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3219
	INIT_LIST_HEAD(&wq->pwqs);
3220 3221
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3222
	INIT_LIST_HEAD(&wq->maydays);
3223

3224
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3225
	INIT_LIST_HEAD(&wq->list);
3226

3227
	if (alloc_and_link_pwqs(wq) < 0)
3228 3229
		goto err;

3230
	local_irq_disable();
3231
	for_each_pwq(pwq, wq) {
3232 3233 3234 3235 3236
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3237
		INIT_LIST_HEAD(&pwq->mayday_node);
3238
	}
3239
	local_irq_enable();
T
Tejun Heo 已提交
3240

3241 3242 3243 3244 3245 3246 3247
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3248 3249
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3250
					       wq->name);
3251 3252 3253 3254 3255
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3256 3257
	}

3258 3259 3260 3261 3262
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3263
	spin_lock_irq(&workqueue_lock);
3264

3265
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3266 3267
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3268

T
Tejun Heo 已提交
3269
	list_add(&wq->list, &workqueues);
3270

3271
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3272

3273
	return wq;
T
Tejun Heo 已提交
3274 3275
err:
	if (wq) {
3276
		free_pwqs(wq);
3277
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3278 3279 3280
		kfree(wq);
	}
	return NULL;
3281
}
3282
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3283

3284 3285 3286 3287 3288 3289 3290 3291
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3292
	struct pool_workqueue *pwq;
3293

3294 3295
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3296

3297 3298
	spin_lock_irq(&workqueue_lock);

3299
	/* sanity checks */
3300
	for_each_pwq(pwq, wq) {
3301 3302
		int i;

3303 3304 3305
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3306
				return;
3307 3308 3309
			}
		}

3310
		if (WARN_ON(pwq->nr_active) ||
3311 3312
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3313
			return;
3314
		}
3315 3316
	}

3317 3318 3319 3320
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3321
	list_del(&wq->list);
3322

3323
	spin_unlock_irq(&workqueue_lock);
3324

3325 3326
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3327
		kfree(wq->rescuer);
3328 3329
	}

3330
	free_pwqs(wq);
3331 3332 3333 3334
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3335
/**
3336 3337
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3338 3339
 * @max_active: new max_active value.
 *
3340
 * Set @pwq->max_active to @max_active and activate delayed works if
3341 3342 3343
 * increased.
 *
 * CONTEXT:
3344
 * spin_lock_irq(pool->lock).
3345
 */
3346
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3347
{
3348
	pwq->max_active = max_active;
3349

3350 3351 3352
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3367
	struct pool_workqueue *pwq;
3368

3369
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3370

3371
	spin_lock_irq(&workqueue_lock);
3372 3373 3374

	wq->saved_max_active = max_active;

3375
	for_each_pwq(pwq, wq) {
3376
		struct worker_pool *pool = pwq->pool;
3377

3378
		spin_lock(&pool->lock);
3379

3380
		if (!(wq->flags & WQ_FREEZABLE) ||
3381
		    !(pool->flags & POOL_FREEZING))
3382
			pwq_set_max_active(pwq, max_active);
3383

3384
		spin_unlock(&pool->lock);
3385
	}
3386

3387
	spin_unlock_irq(&workqueue_lock);
3388
}
3389
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3390

3391
/**
3392 3393 3394
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3395
 *
3396 3397 3398
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3399
 *
3400 3401
 * RETURNS:
 * %true if congested, %false otherwise.
3402
 */
3403
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3404
{
3405
	struct pool_workqueue *pwq;
3406 3407 3408
	bool ret;

	preempt_disable();
3409 3410 3411 3412 3413

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3414

3415 3416 3417 3418
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3419
}
3420
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3421

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3434
{
3435
	struct worker_pool *pool;
3436 3437
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3438

3439 3440
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3441

3442 3443
	local_irq_save(flags);
	pool = get_work_pool(work);
3444
	if (pool) {
3445
		spin_lock(&pool->lock);
3446 3447
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3448
		spin_unlock(&pool->lock);
3449
	}
3450
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3451

3452
	return ret;
L
Linus Torvalds 已提交
3453
}
3454
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3455

3456 3457 3458
/*
 * CPU hotplug.
 *
3459
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3460
 * are a lot of assumptions on strong associations among work, pwq and
3461
 * pool which make migrating pending and scheduled works very
3462
 * difficult to implement without impacting hot paths.  Secondly,
3463
 * worker pools serve mix of short, long and very long running works making
3464 3465
 * blocked draining impractical.
 *
3466
 * This is solved by allowing the pools to be disassociated from the CPU
3467 3468
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3469
 */
L
Linus Torvalds 已提交
3470

3471
static void wq_unbind_fn(struct work_struct *work)
3472
{
3473
	int cpu = smp_processor_id();
3474
	struct worker_pool *pool;
3475 3476
	struct worker *worker;
	int i;
3477

3478
	for_each_std_worker_pool(pool, cpu) {
3479
		WARN_ON_ONCE(cpu != smp_processor_id());
3480

3481 3482
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3483

3484 3485 3486 3487 3488 3489 3490
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3491
		list_for_each_entry(worker, &pool->idle_list, entry)
3492
			worker->flags |= WORKER_UNBOUND;
3493

3494
		for_each_busy_worker(worker, i, pool)
3495
			worker->flags |= WORKER_UNBOUND;
3496

3497
		pool->flags |= POOL_DISASSOCIATED;
3498

3499 3500 3501
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3502

3503
	/*
3504
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3505 3506
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3507 3508
	 */
	schedule();
3509

3510
	/*
3511 3512
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3513 3514 3515
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3516 3517 3518 3519
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3520
	 */
3521
	for_each_std_worker_pool(pool, cpu)
3522
		atomic_set(&pool->nr_running, 0);
3523 3524
}

T
Tejun Heo 已提交
3525 3526 3527 3528
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3529
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3530 3531
					       unsigned long action,
					       void *hcpu)
3532
{
3533
	int cpu = (unsigned long)hcpu;
3534
	struct worker_pool *pool;
3535

T
Tejun Heo 已提交
3536
	switch (action & ~CPU_TASKS_FROZEN) {
3537
	case CPU_UP_PREPARE:
3538
		for_each_std_worker_pool(pool, cpu) {
3539 3540 3541 3542 3543 3544 3545 3546 3547
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3548
			spin_lock_irq(&pool->lock);
3549
			start_worker(worker);
3550
			spin_unlock_irq(&pool->lock);
3551
		}
T
Tejun Heo 已提交
3552
		break;
3553

3554 3555
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3556
		for_each_std_worker_pool(pool, cpu) {
3557 3558 3559
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3560
			pool->flags &= ~POOL_DISASSOCIATED;
3561 3562 3563 3564 3565
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3566
		break;
3567
	}
3568 3569 3570 3571 3572 3573 3574
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3575
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3576 3577 3578
						 unsigned long action,
						 void *hcpu)
{
3579
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3580 3581
	struct work_struct unbind_work;

3582 3583
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3584
		/* unbinding should happen on the local CPU */
3585
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3586
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3587 3588
		flush_work(&unbind_work);
		break;
3589 3590 3591 3592
	}
	return NOTIFY_OK;
}

3593
#ifdef CONFIG_SMP
3594

3595
struct work_for_cpu {
3596
	struct work_struct work;
3597 3598 3599 3600 3601
	long (*fn)(void *);
	void *arg;
	long ret;
};

3602
static void work_for_cpu_fn(struct work_struct *work)
3603
{
3604 3605
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3606 3607 3608 3609 3610 3611 3612 3613 3614
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3615 3616
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3617
 * The caller must not hold any locks which would prevent @fn from completing.
3618
 */
3619
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3620
{
3621
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3622

3623 3624 3625
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3626 3627 3628 3629 3630
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3631 3632 3633 3634 3635
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3636 3637
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3638
 * pool->worklist.
3639 3640
 *
 * CONTEXT:
3641
 * Grabs and releases workqueue_lock and pool->lock's.
3642 3643 3644
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3645
	struct worker_pool *pool;
3646 3647
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3648
	int id;
3649

3650
	spin_lock_irq(&workqueue_lock);
3651

3652
	WARN_ON_ONCE(workqueue_freezing);
3653 3654
	workqueue_freezing = true;

3655
	/* set FREEZING */
T
Tejun Heo 已提交
3656 3657 3658 3659
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3660 3661
		spin_unlock(&pool->lock);
	}
3662

3663 3664 3665 3666
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3667

3668 3669 3670 3671
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3672
		}
3673 3674
	}

3675
	spin_unlock_irq(&workqueue_lock);
3676 3677 3678
}

/**
3679
 * freeze_workqueues_busy - are freezable workqueues still busy?
3680 3681 3682 3683 3684 3685 3686 3687
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3688 3689
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3690 3691 3692 3693
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3694 3695
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3696

3697
	spin_lock_irq(&workqueue_lock);
3698

3699
	WARN_ON_ONCE(!workqueue_freezing);
3700

3701 3702 3703
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3704 3705 3706 3707
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3708
		for_each_pwq(pwq, wq) {
3709
			WARN_ON_ONCE(pwq->nr_active < 0);
3710
			if (pwq->nr_active) {
3711 3712 3713 3714 3715 3716
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3717
	spin_unlock_irq(&workqueue_lock);
3718 3719 3720 3721 3722 3723 3724
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3725
 * frozen works are transferred to their respective pool worklists.
3726 3727
 *
 * CONTEXT:
3728
 * Grabs and releases workqueue_lock and pool->lock's.
3729 3730 3731
 */
void thaw_workqueues(void)
{
3732 3733 3734 3735
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3736

3737
	spin_lock_irq(&workqueue_lock);
3738 3739 3740 3741

	if (!workqueue_freezing)
		goto out_unlock;

3742 3743 3744 3745 3746 3747 3748
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3749

3750 3751 3752 3753
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3754

3755 3756 3757 3758
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3759
		}
3760 3761
	}

3762 3763 3764 3765 3766 3767 3768
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3769 3770
	workqueue_freezing = false;
out_unlock:
3771
	spin_unlock_irq(&workqueue_lock);
3772 3773 3774
}
#endif /* CONFIG_FREEZER */

3775
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3776
{
3777
	int cpu;
T
Tejun Heo 已提交
3778

3779 3780
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3781
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3782

3783 3784 3785 3786
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

3787
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3788
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3789

3790 3791
	/* initialize CPU pools */
	for_each_wq_cpu(cpu) {
3792
		struct worker_pool *pool;
3793

3794
		for_each_std_worker_pool(pool, cpu) {
3795
			spin_lock_init(&pool->lock);
3796
			pool->cpu = cpu;
3797
			pool->flags |= POOL_DISASSOCIATED;
3798 3799
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3800
			hash_init(pool->busy_hash);
3801

3802 3803 3804
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3805

3806
			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3807 3808
				    (unsigned long)pool);

3809
			mutex_init(&pool->assoc_mutex);
3810
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3811 3812 3813

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3814
		}
3815 3816
	}

3817
	/* create the initial worker */
3818
	for_each_online_wq_cpu(cpu) {
3819
		struct worker_pool *pool;
3820

3821
		for_each_std_worker_pool(pool, cpu) {
3822 3823
			struct worker *worker;

3824 3825 3826
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3827
			worker = create_worker(pool);
3828
			BUG_ON(!worker);
3829
			spin_lock_irq(&pool->lock);
3830
			start_worker(worker);
3831
			spin_unlock_irq(&pool->lock);
3832
		}
3833 3834
	}

3835
	system_wq = alloc_workqueue("events", 0, 0);
3836
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3837
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3838 3839
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3840 3841
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3842
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3843
	       !system_unbound_wq || !system_freezable_wq);
3844
	return 0;
L
Linus Torvalds 已提交
3845
}
3846
early_initcall(init_workqueues);