workqueue.c 121.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62
	 *
63 64
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
65
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
122 123 124
 * WQ: wq_mutex protected.
 *
 * WR: wq_mutex protected for writes.  Sched-RCU protected for reads.
125
 *
126 127
 * PW: pwq_lock protected.
 *
128
 * W: workqueue_lock protected.
129
 *
130
 * FR: wq->flush_mutex and pwq_lock protected for writes.  Sched-RCU
131
 *     protected for reads.
L
Linus Torvalds 已提交
132 133
 */

134
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
135

136
struct worker_pool {
137
	spinlock_t		lock;		/* the pool lock */
138
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
139
	int			id;		/* I: pool ID */
140
	unsigned int		flags;		/* X: flags */
141 142 143

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
144 145

	/* nr_idle includes the ones off idle_list for rebinding */
146 147 148 149 150 151
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

152
	/* a workers is either on busy_hash or idle_list, or the manager */
153 154 155
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

156
	/* see manage_workers() for details on the two manager mutexes */
157
	struct mutex		manager_arb;	/* manager arbitration */
158
	struct mutex		manager_mutex;	/* manager exclusion */
159
	struct ida		worker_ida;	/* L: for worker IDs */
160

T
Tejun Heo 已提交
161
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
162 163
	struct hlist_node	hash_node;	/* WQ: unbound_pool_hash node */
	int			refcnt;		/* WQ: refcnt for unbound pools */
T
Tejun Heo 已提交
164

165 166 167 168 169 170
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
171 172 173 174 175 176

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
177 178
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
179
/*
180 181 182 183
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
184
 */
185
struct pool_workqueue {
186
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
187
	struct workqueue_struct *wq;		/* I: the owning workqueue */
188 189
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
190
	int			refcnt;		/* L: reference count */
191 192
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
193
	int			nr_active;	/* L: nr of active works */
194
	int			max_active;	/* L: max active works */
195
	struct list_head	delayed_works;	/* L: delayed works */
196
	struct list_head	pwqs_node;	/* FR: node on wq->pwqs */
197
	struct list_head	mayday_node;	/* W: node on wq->maydays */
T
Tejun Heo 已提交
198 199 200 201 202

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
203
	 * determined without grabbing pwq_lock.
T
Tejun Heo 已提交
204 205 206
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
207
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
208

209 210 211 212 213 214 215 216 217
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

218 219
struct wq_device;

L
Linus Torvalds 已提交
220
/*
221 222
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
223 224
 */
struct workqueue_struct {
225
	unsigned int		flags;		/* WQ: WQ_* flags */
226
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
227
	struct list_head	pwqs;		/* FR: all pwqs of this wq */
228
	struct list_head	list;		/* WQ: list of all workqueues */
229 230 231 232

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
233
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
234 235 236 237
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

238
	struct list_head	maydays;	/* W: pwqs requesting rescue */
239 240
	struct worker		*rescuer;	/* I: rescue worker */

241
	int			nr_drainers;	/* WQ: drain in progress */
242
	int			saved_max_active; /* PW: saved pwq max_active */
243 244 245 246

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
247
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
248
	struct lockdep_map	lockdep_map;
249
#endif
250
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
251 252
};

253 254
static struct kmem_cache *pwq_cache;

255
static DEFINE_MUTEX(wq_mutex);		/* protects workqueues and pools */
256
static DEFINE_SPINLOCK(pwq_lock);	/* protects pool_workqueues */
257
static DEFINE_SPINLOCK(workqueue_lock);
258 259 260

static LIST_HEAD(workqueues);		/* WQ: list of all workqueues */
static bool workqueue_freezing;		/* WQ: have wqs started freezing? */
261 262 263 264 265

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

266
static DEFINE_IDR(worker_pool_idr);	/* WR: idr of all pools */
267

268
/* WQ: hash of all unbound pools keyed by pool->attrs */
269 270
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

271
/* I: attributes used when instantiating standard unbound pools on demand */
272 273
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

274 275
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
276
struct workqueue_struct *system_highpri_wq __read_mostly;
277
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
278
struct workqueue_struct *system_long_wq __read_mostly;
279
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
280
struct workqueue_struct *system_unbound_wq __read_mostly;
281
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
282
struct workqueue_struct *system_freezable_wq __read_mostly;
283
EXPORT_SYMBOL_GPL(system_freezable_wq);
284

285 286 287 288
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

289 290 291
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

292 293 294 295 296
#define assert_rcu_or_wq_mutex()					\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&wq_mutex),			\
			   "sched RCU or wq_mutex should be held")

297
#define assert_rcu_or_pwq_lock()					\
298
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
299 300
			   lockdep_is_held(&pwq_lock),			\
			   "sched RCU or pwq_lock should be held")
301

302 303 304
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
305
	     (pool)++)
306

307 308
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
309

T
Tejun Heo 已提交
310 311 312
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
313
 * @pi: integer used for iteration
314
 *
315 316 317
 * This must be called either with wq_mutex held or sched RCU read locked.
 * If the pool needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pool stays online.
318 319 320
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
321
 */
322 323
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
324
		if (({ assert_rcu_or_wq_mutex(); false; })) { }		\
325
		else
T
Tejun Heo 已提交
326

327 328 329 330
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
331
 *
332 333 334
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
335 336 337
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
338 339
 */
#define for_each_pwq(pwq, wq)						\
340
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
341
		if (({ assert_rcu_or_pwq_lock(); false; })) { }		\
342
		else
343

344 345 346 347
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

348 349 350 351 352
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
388
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
424
	.debug_hint	= work_debug_hint,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
460 461 462 463 464
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

465 466
	lockdep_assert_held(&wq_mutex);

467 468 469 470 471
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
472

473
	return ret;
474 475
}

476 477 478 479
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
480 481 482
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
483
 */
484
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
485
{
486
	assert_rcu_or_pwq_lock();
487 488
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
506

507
/*
508 509
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
510
 * is cleared and the high bits contain OFFQ flags and pool ID.
511
 *
512 513
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
514 515
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
516
 *
517
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
518
 * corresponding to a work.  Pool is available once the work has been
519
 * queued anywhere after initialization until it is sync canceled.  pwq is
520
 * available only while the work item is queued.
521
 *
522 523 524 525
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
526
 */
527 528
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
529
{
530
	WARN_ON_ONCE(!work_pending(work));
531 532
	atomic_long_set(&work->data, data | flags | work_static(work));
}
533

534
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
535 536
			 unsigned long extra_flags)
{
537 538
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
539 540
}

541 542 543 544 545 546 547
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

548 549
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
550
{
551 552 553 554 555 556 557
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
558
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
559
}
560

561
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
562
{
563 564
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
565 566
}

567
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
568
{
569
	unsigned long data = atomic_long_read(&work->data);
570

571
	if (data & WORK_STRUCT_PWQ)
572 573 574
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
575 576
}

577 578 579 580 581
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
582
 *
583 584 585
 * Pools are created and destroyed under wq_mutex, and allows read access
 * under sched-RCU read lock.  As such, this function should be called
 * under wq_mutex or with preemption disabled.
586 587 588 589 590
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
591 592
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
593
{
594
	unsigned long data = atomic_long_read(&work->data);
595
	int pool_id;
596

597
	assert_rcu_or_wq_mutex();
598

599 600
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
601
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
602

603 604
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
605 606
		return NULL;

607
	return idr_find(&worker_pool_idr, pool_id);
608 609 610 611 612 613 614 615 616 617 618
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
619 620
	unsigned long data = atomic_long_read(&work->data);

621 622
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
623
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
624

625
	return data >> WORK_OFFQ_POOL_SHIFT;
626 627
}

628 629
static void mark_work_canceling(struct work_struct *work)
{
630
	unsigned long pool_id = get_work_pool_id(work);
631

632 633
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
634 635 636 637 638 639
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

640
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
641 642
}

643
/*
644 645
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
646
 * they're being called with pool->lock held.
647 648
 */

649
static bool __need_more_worker(struct worker_pool *pool)
650
{
651
	return !atomic_read(&pool->nr_running);
652 653
}

654
/*
655 656
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
657 658
 *
 * Note that, because unbound workers never contribute to nr_running, this
659
 * function will always return %true for unbound pools as long as the
660
 * worklist isn't empty.
661
 */
662
static bool need_more_worker(struct worker_pool *pool)
663
{
664
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
665
}
666

667
/* Can I start working?  Called from busy but !running workers. */
668
static bool may_start_working(struct worker_pool *pool)
669
{
670
	return pool->nr_idle;
671 672 673
}

/* Do I need to keep working?  Called from currently running workers. */
674
static bool keep_working(struct worker_pool *pool)
675
{
676 677
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
678 679 680
}

/* Do we need a new worker?  Called from manager. */
681
static bool need_to_create_worker(struct worker_pool *pool)
682
{
683
	return need_more_worker(pool) && !may_start_working(pool);
684
}
685

686
/* Do I need to be the manager? */
687
static bool need_to_manage_workers(struct worker_pool *pool)
688
{
689
	return need_to_create_worker(pool) ||
690
		(pool->flags & POOL_MANAGE_WORKERS);
691 692 693
}

/* Do we have too many workers and should some go away? */
694
static bool too_many_workers(struct worker_pool *pool)
695
{
696
	bool managing = mutex_is_locked(&pool->manager_arb);
697 698
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
699

700 701 702 703 704 705 706
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

707
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
708 709
}

710
/*
711 712 713
 * Wake up functions.
 */

714
/* Return the first worker.  Safe with preemption disabled */
715
static struct worker *first_worker(struct worker_pool *pool)
716
{
717
	if (unlikely(list_empty(&pool->idle_list)))
718 719
		return NULL;

720
	return list_first_entry(&pool->idle_list, struct worker, entry);
721 722 723 724
}

/**
 * wake_up_worker - wake up an idle worker
725
 * @pool: worker pool to wake worker from
726
 *
727
 * Wake up the first idle worker of @pool.
728 729
 *
 * CONTEXT:
730
 * spin_lock_irq(pool->lock).
731
 */
732
static void wake_up_worker(struct worker_pool *pool)
733
{
734
	struct worker *worker = first_worker(pool);
735 736 737 738 739

	if (likely(worker))
		wake_up_process(worker->task);
}

740
/**
741 742 743 744 745 746 747 748 749 750
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
751
void wq_worker_waking_up(struct task_struct *task, int cpu)
752 753 754
{
	struct worker *worker = kthread_data(task);

755
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
756
		WARN_ON_ONCE(worker->pool->cpu != cpu);
757
		atomic_inc(&worker->pool->nr_running);
758
	}
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
776
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
777 778
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
779
	struct worker_pool *pool;
780

781 782 783 784 785
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
786
	if (worker->flags & WORKER_NOT_RUNNING)
787 788
		return NULL;

789 790
	pool = worker->pool;

791
	/* this can only happen on the local cpu */
792 793
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
794 795 796 797 798 799

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
800 801 802
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
803
	 * manipulating idle_list, so dereferencing idle_list without pool
804
	 * lock is safe.
805
	 */
806 807
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
808
		to_wakeup = first_worker(pool);
809 810 811 812 813
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
814
 * @worker: self
815 816 817
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
818 819 820
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
821
 *
822
 * CONTEXT:
823
 * spin_lock_irq(pool->lock)
824 825 826 827
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
828
	struct worker_pool *pool = worker->pool;
829

830 831
	WARN_ON_ONCE(worker->task != current);

832 833 834 835 836 837 838 839
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
840
			if (atomic_dec_and_test(&pool->nr_running) &&
841
			    !list_empty(&pool->worklist))
842
				wake_up_worker(pool);
843
		} else
844
			atomic_dec(&pool->nr_running);
845 846
	}

847 848 849 850
	worker->flags |= flags;
}

/**
851
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
852
 * @worker: self
853 854
 * @flags: flags to clear
 *
855
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
856
 *
857
 * CONTEXT:
858
 * spin_lock_irq(pool->lock)
859 860 861
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
862
	struct worker_pool *pool = worker->pool;
863 864
	unsigned int oflags = worker->flags;

865 866
	WARN_ON_ONCE(worker->task != current);

867
	worker->flags &= ~flags;
868

869 870 871 872 873
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
874 875
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
876
			atomic_inc(&pool->nr_running);
877 878
}

879 880
/**
 * find_worker_executing_work - find worker which is executing a work
881
 * @pool: pool of interest
882 883
 * @work: work to find worker for
 *
884 885
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
886 887 888 889 890 891 892 893 894 895 896 897
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
898 899 900 901 902 903
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
904 905
 *
 * CONTEXT:
906
 * spin_lock_irq(pool->lock).
907 908 909 910
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
911
 */
912
static struct worker *find_worker_executing_work(struct worker_pool *pool,
913
						 struct work_struct *work)
914
{
915 916
	struct worker *worker;

917
	hash_for_each_possible(pool->busy_hash, worker, hentry,
918 919 920
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
921 922 923
			return worker;

	return NULL;
924 925
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
941
 * spin_lock_irq(pool->lock).
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1006
static void pwq_activate_delayed_work(struct work_struct *work)
1007
{
1008
	struct pool_workqueue *pwq = get_work_pwq(work);
1009 1010

	trace_workqueue_activate_work(work);
1011
	move_linked_works(work, &pwq->pool->worklist, NULL);
1012
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1013
	pwq->nr_active++;
1014 1015
}

1016
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1017
{
1018
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1019 1020
						    struct work_struct, entry);

1021
	pwq_activate_delayed_work(work);
1022 1023
}

1024
/**
1025 1026
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1027 1028 1029
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1030
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1031 1032
 *
 * CONTEXT:
1033
 * spin_lock_irq(pool->lock).
1034
 */
1035
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1036
{
T
Tejun Heo 已提交
1037
	/* uncolored work items don't participate in flushing or nr_active */
1038
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1039
		goto out_put;
1040

1041
	pwq->nr_in_flight[color]--;
1042

1043 1044
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1045
		/* one down, submit a delayed one */
1046 1047
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1048 1049 1050
	}

	/* is flush in progress and are we at the flushing tip? */
1051
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1052
		goto out_put;
1053 1054

	/* are there still in-flight works? */
1055
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1056
		goto out_put;
1057

1058 1059
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1060 1061

	/*
1062
	 * If this was the last pwq, wake up the first flusher.  It
1063 1064
	 * will handle the rest.
	 */
1065 1066
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1067 1068
out_put:
	put_pwq(pwq);
1069 1070
}

1071
/**
1072
 * try_to_grab_pending - steal work item from worklist and disable irq
1073 1074
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1075
 * @flags: place to store irq state
1076 1077 1078 1079 1080 1081 1082
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1083 1084
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1085
 *
1086
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1087 1088 1089
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1090 1091 1092 1093
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1094
 * This function is safe to call from any context including IRQ handler.
1095
 */
1096 1097
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1098
{
1099
	struct worker_pool *pool;
1100
	struct pool_workqueue *pwq;
1101

1102 1103
	local_irq_save(*flags);

1104 1105 1106 1107
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1108 1109 1110 1111 1112
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1113 1114 1115 1116 1117
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1118 1119 1120 1121 1122 1123 1124
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1125 1126
	pool = get_work_pool(work);
	if (!pool)
1127
		goto fail;
1128

1129
	spin_lock(&pool->lock);
1130
	/*
1131 1132 1133 1134 1135
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1136 1137
	 * item is currently queued on that pool.
	 */
1138 1139
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1140 1141 1142 1143 1144
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1145
		 * on the delayed_list, will confuse pwq->nr_active
1146 1147 1148 1149
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1150
			pwq_activate_delayed_work(work);
1151 1152

		list_del_init(&work->entry);
1153
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1154

1155
		/* work->data points to pwq iff queued, point to pool */
1156 1157 1158 1159
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1160
	}
1161
	spin_unlock(&pool->lock);
1162 1163 1164 1165 1166
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1167
	return -EAGAIN;
1168 1169
}

T
Tejun Heo 已提交
1170
/**
1171
 * insert_work - insert a work into a pool
1172
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1173 1174 1175 1176
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1177
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1178
 * work_struct flags.
T
Tejun Heo 已提交
1179 1180
 *
 * CONTEXT:
1181
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1182
 */
1183 1184
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1185
{
1186
	struct worker_pool *pool = pwq->pool;
1187

T
Tejun Heo 已提交
1188
	/* we own @work, set data and link */
1189
	set_work_pwq(work, pwq, extra_flags);
1190
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1191
	get_pwq(pwq);
1192 1193

	/*
1194 1195 1196
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1197 1198 1199
	 */
	smp_mb();

1200 1201
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1202 1203
}

1204 1205
/*
 * Test whether @work is being queued from another work executing on the
1206
 * same workqueue.
1207 1208 1209
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1210 1211 1212 1213 1214 1215 1216
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1217
	return worker && worker->current_pwq->wq == wq;
1218 1219
}

1220
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1221 1222
			 struct work_struct *work)
{
1223
	struct pool_workqueue *pwq;
1224
	struct worker_pool *last_pool;
1225
	struct list_head *worklist;
1226
	unsigned int work_flags;
1227
	unsigned int req_cpu = cpu;
1228 1229 1230 1231 1232 1233 1234 1235

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1236

1237
	debug_work_activate(work);
1238

1239
	/* if dying, only works from the same workqueue are allowed */
1240
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1241
	    WARN_ON_ONCE(!is_chained_work(wq)))
1242
		return;
1243
retry:
1244
	/* pwq which will be used unless @work is executing elsewhere */
1245
	if (!(wq->flags & WQ_UNBOUND)) {
1246
		if (cpu == WORK_CPU_UNBOUND)
1247
			cpu = raw_smp_processor_id();
1248
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1249 1250 1251
	} else {
		pwq = first_pwq(wq);
	}
1252

1253 1254 1255 1256 1257 1258 1259 1260
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1261

1262
		spin_lock(&last_pool->lock);
1263

1264
		worker = find_worker_executing_work(last_pool, work);
1265

1266 1267
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1268
		} else {
1269 1270
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1271
			spin_lock(&pwq->pool->lock);
1272
		}
1273
	} else {
1274
		spin_lock(&pwq->pool->lock);
1275 1276
	}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
	 * without another pwq replacing it as the first pwq or while a
	 * work item is executing on it, so the retying is guaranteed to
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1296 1297
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1298

1299
	if (WARN_ON(!list_empty(&work->entry))) {
1300
		spin_unlock(&pwq->pool->lock);
1301 1302
		return;
	}
1303

1304 1305
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1306

1307
	if (likely(pwq->nr_active < pwq->max_active)) {
1308
		trace_workqueue_activate_work(work);
1309 1310
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1311 1312
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1313
		worklist = &pwq->delayed_works;
1314
	}
1315

1316
	insert_work(pwq, work, worklist, work_flags);
1317

1318
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1319 1320
}

1321
/**
1322 1323
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1324 1325 1326
 * @wq: workqueue to use
 * @work: work to queue
 *
1327
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1328
 *
1329 1330
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1331
 */
1332 1333
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1334
{
1335
	bool ret = false;
1336
	unsigned long flags;
1337

1338
	local_irq_save(flags);
1339

1340
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1341
		__queue_work(cpu, wq, work);
1342
		ret = true;
1343
	}
1344

1345
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1346 1347
	return ret;
}
1348
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1349

1350
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1351
{
1352
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1353

1354
	/* should have been called from irqsafe timer with irq already off */
1355
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1356
}
1357
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1358

1359 1360
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1361
{
1362 1363 1364 1365 1366
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1367 1368
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1381
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1382

1383
	dwork->wq = wq;
1384
	dwork->cpu = cpu;
1385 1386 1387 1388 1389 1390
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1391 1392
}

1393 1394 1395 1396
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1397
 * @dwork: work to queue
1398 1399
 * @delay: number of jiffies to wait before queueing
 *
1400 1401 1402
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1403
 */
1404 1405
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1406
{
1407
	struct work_struct *work = &dwork->work;
1408
	bool ret = false;
1409
	unsigned long flags;
1410

1411 1412
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1413

1414
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1415
		__queue_delayed_work(cpu, wq, dwork, delay);
1416
		ret = true;
1417
	}
1418

1419
	local_irq_restore(flags);
1420 1421
	return ret;
}
1422
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1439
 * This function is safe to call from any context including IRQ handler.
1440 1441 1442 1443 1444 1445 1446
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1447

1448 1449 1450
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1451

1452 1453 1454
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1455
	}
1456 1457

	/* -ENOENT from try_to_grab_pending() becomes %true */
1458 1459
	return ret;
}
1460 1461
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1462 1463 1464 1465 1466 1467 1468 1469
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1470
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1471 1472
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1473
{
1474
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1475

1476 1477 1478 1479
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1480

1481 1482
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1483
	pool->nr_idle++;
1484
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1485 1486

	/* idle_list is LIFO */
1487
	list_add(&worker->entry, &pool->idle_list);
1488

1489 1490
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1491

1492
	/*
1493
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1494
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1495 1496
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1497
	 */
1498
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1499
		     pool->nr_workers == pool->nr_idle &&
1500
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1510
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1511 1512 1513
 */
static void worker_leave_idle(struct worker *worker)
{
1514
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1515

1516 1517
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1518
	worker_clr_flags(worker, WORKER_IDLE);
1519
	pool->nr_idle--;
T
Tejun Heo 已提交
1520 1521 1522
	list_del_init(&worker->entry);
}

1523
/**
1524 1525 1526 1527
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1528 1529 1530 1531 1532 1533
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1534
 * This function is to be used by unbound workers and rescuers to bind
1535 1536 1537
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1538
 * verbatim as it's best effort and blocking and pool may be
1539 1540
 * [dis]associated in the meantime.
 *
1541
 * This function tries set_cpus_allowed() and locks pool and verifies the
1542
 * binding against %POOL_DISASSOCIATED which is set during
1543 1544 1545
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1546 1547
 *
 * CONTEXT:
1548
 * Might sleep.  Called without any lock but returns with pool->lock
1549 1550 1551
 * held.
 *
 * RETURNS:
1552
 * %true if the associated pool is online (@worker is successfully
1553 1554
 * bound), %false if offline.
 */
1555
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1556
__acquires(&pool->lock)
1557 1558
{
	while (true) {
1559
		/*
1560 1561 1562
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1563
		 * against POOL_DISASSOCIATED.
1564
		 */
1565
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1566
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1567

1568
		spin_lock_irq(&pool->lock);
1569
		if (pool->flags & POOL_DISASSOCIATED)
1570
			return false;
1571
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1572
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1573
			return true;
1574
		spin_unlock_irq(&pool->lock);
1575

1576 1577 1578 1579 1580 1581
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1582
		cpu_relax();
1583
		cond_resched();
1584 1585 1586
	}
}

1587
/*
1588
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1589
 * list_empty(@worker->entry) before leaving idle and call this function.
1590 1591 1592
 */
static void idle_worker_rebind(struct worker *worker)
{
1593
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1594
	if (worker_maybe_bind_and_lock(worker->pool))
1595
		worker_clr_flags(worker, WORKER_UNBOUND);
1596

1597 1598
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1599
	spin_unlock_irq(&worker->pool->lock);
1600 1601
}

1602
/*
1603
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1604 1605 1606
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1607
 */
1608
static void busy_worker_rebind_fn(struct work_struct *work)
1609 1610 1611
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1612
	if (worker_maybe_bind_and_lock(worker->pool))
1613
		worker_clr_flags(worker, WORKER_UNBOUND);
1614

1615
	spin_unlock_irq(&worker->pool->lock);
1616 1617
}

1618
/**
1619 1620
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1621
 *
1622
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1623 1624
 * is different for idle and busy ones.
 *
1625 1626 1627 1628
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1629
 *
1630 1631 1632 1633
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1634
 *
1635 1636 1637 1638
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1639
 */
1640
static void rebind_workers(struct worker_pool *pool)
1641
{
1642
	struct worker *worker, *n;
1643 1644
	int i;

1645
	lockdep_assert_held(&pool->manager_mutex);
1646
	lockdep_assert_held(&pool->lock);
1647

1648
	/* dequeue and kick idle ones */
1649 1650 1651 1652 1653 1654
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1655

1656 1657 1658 1659 1660 1661
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1662

1663
	/* rebind busy workers */
1664
	for_each_busy_worker(worker, i, pool) {
1665 1666
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1667

1668 1669 1670
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1671

1672
		debug_work_activate(rebind_work);
1673

1674 1675
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1676
		 * and @pwq->pool consistent for sanity.
1677
		 */
T
Tejun Heo 已提交
1678
		if (worker->pool->attrs->nice < 0)
1679 1680 1681 1682
			wq = system_highpri_wq;
		else
			wq = system_wq;

1683
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1684 1685
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1686
	}
1687 1688
}

T
Tejun Heo 已提交
1689 1690 1691 1692 1693
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1694 1695
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1696
		INIT_LIST_HEAD(&worker->scheduled);
1697
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1698 1699
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1700
	}
T
Tejun Heo 已提交
1701 1702 1703 1704 1705
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1706
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1707
 *
1708
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1718
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1719
{
T
Tejun Heo 已提交
1720
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1721
	struct worker *worker = NULL;
1722
	int id = -1;
T
Tejun Heo 已提交
1723

1724 1725
	lockdep_assert_held(&pool->manager_mutex);

1726
	spin_lock_irq(&pool->lock);
1727
	while (ida_get_new(&pool->worker_ida, &id)) {
1728
		spin_unlock_irq(&pool->lock);
1729
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1730
			goto fail;
1731
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1732
	}
1733
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1734 1735 1736 1737 1738

	worker = alloc_worker();
	if (!worker)
		goto fail;

1739
	worker->pool = pool;
T
Tejun Heo 已提交
1740 1741
	worker->id = id;

1742
	if (pool->cpu >= 0)
1743
		worker->task = kthread_create_on_node(worker_thread,
1744
					worker, cpu_to_node(pool->cpu),
1745
					"kworker/%d:%d%s", pool->cpu, id, pri);
1746 1747
	else
		worker->task = kthread_create(worker_thread, worker,
1748 1749
					      "kworker/u%d:%d%s",
					      pool->id, id, pri);
T
Tejun Heo 已提交
1750 1751 1752
	if (IS_ERR(worker->task))
		goto fail;

1753 1754 1755 1756
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1757 1758
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759

1760
	/*
T
Tejun Heo 已提交
1761 1762 1763
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1764
	 */
T
Tejun Heo 已提交
1765 1766 1767 1768 1769 1770 1771 1772
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1773
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1774 1775 1776 1777

	return worker;
fail:
	if (id >= 0) {
1778
		spin_lock_irq(&pool->lock);
1779
		ida_remove(&pool->worker_ida, id);
1780
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1790
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1791 1792
 *
 * CONTEXT:
1793
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1794 1795 1796
 */
static void start_worker(struct worker *worker)
{
1797
	worker->flags |= WORKER_STARTED;
1798
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1799
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1800 1801 1802
	wake_up_process(worker->task);
}

1803 1804 1805 1806
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1807
 * Grab the managership of @pool and create and start a new worker for it.
1808 1809 1810 1811 1812
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1813 1814
	mutex_lock(&pool->manager_mutex);

1815 1816 1817 1818 1819 1820 1821
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1822 1823
	mutex_unlock(&pool->manager_mutex);

1824 1825 1826
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1827 1828 1829 1830
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1831
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1832 1833
 *
 * CONTEXT:
1834
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1835 1836 1837
 */
static void destroy_worker(struct worker *worker)
{
1838
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1839 1840
	int id = worker->id;

1841 1842 1843
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1844
	/* sanity check frenzy */
1845 1846 1847
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1848

T
Tejun Heo 已提交
1849
	if (worker->flags & WORKER_STARTED)
1850
		pool->nr_workers--;
T
Tejun Heo 已提交
1851
	if (worker->flags & WORKER_IDLE)
1852
		pool->nr_idle--;
T
Tejun Heo 已提交
1853 1854

	list_del_init(&worker->entry);
1855
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1856

1857
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1858

T
Tejun Heo 已提交
1859 1860 1861
	kthread_stop(worker->task);
	kfree(worker);

1862
	spin_lock_irq(&pool->lock);
1863
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1864 1865
}

1866
static void idle_worker_timeout(unsigned long __pool)
1867
{
1868
	struct worker_pool *pool = (void *)__pool;
1869

1870
	spin_lock_irq(&pool->lock);
1871

1872
	if (too_many_workers(pool)) {
1873 1874 1875 1876
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1877
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1878 1879 1880
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1881
			mod_timer(&pool->idle_timer, expires);
1882 1883
		else {
			/* it's been idle for too long, wake up manager */
1884
			pool->flags |= POOL_MANAGE_WORKERS;
1885
			wake_up_worker(pool);
1886
		}
1887 1888
	}

1889
	spin_unlock_irq(&pool->lock);
1890
}
1891

1892
static void send_mayday(struct work_struct *work)
1893
{
1894 1895
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1896 1897

	lockdep_assert_held(&workqueue_lock);
1898

1899
	if (!wq->rescuer)
1900
		return;
1901 1902

	/* mayday mayday mayday */
1903 1904
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1905
		wake_up_process(wq->rescuer->task);
1906
	}
1907 1908
}

1909
static void pool_mayday_timeout(unsigned long __pool)
1910
{
1911
	struct worker_pool *pool = (void *)__pool;
1912 1913
	struct work_struct *work;

1914 1915
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1916

1917
	if (need_to_create_worker(pool)) {
1918 1919 1920 1921 1922 1923
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1924
		list_for_each_entry(work, &pool->worklist, entry)
1925
			send_mayday(work);
L
Linus Torvalds 已提交
1926
	}
1927

1928 1929
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1930

1931
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1932 1933
}

1934 1935
/**
 * maybe_create_worker - create a new worker if necessary
1936
 * @pool: pool to create a new worker for
1937
 *
1938
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1939 1940
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1941
 * sent to all rescuers with works scheduled on @pool to resolve
1942 1943
 * possible allocation deadlock.
 *
1944 1945
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1946 1947
 *
 * LOCKING:
1948
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1949 1950 1951 1952
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1953
 * %false if no action was taken and pool->lock stayed locked, %true
1954 1955
 * otherwise.
 */
1956
static bool maybe_create_worker(struct worker_pool *pool)
1957 1958
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1959
{
1960
	if (!need_to_create_worker(pool))
1961 1962
		return false;
restart:
1963
	spin_unlock_irq(&pool->lock);
1964

1965
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1966
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1967 1968 1969 1970

	while (true) {
		struct worker *worker;

1971
		worker = create_worker(pool);
1972
		if (worker) {
1973
			del_timer_sync(&pool->mayday_timer);
1974
			spin_lock_irq(&pool->lock);
1975
			start_worker(worker);
1976 1977
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1978 1979 1980
			return true;
		}

1981
		if (!need_to_create_worker(pool))
1982
			break;
L
Linus Torvalds 已提交
1983

1984 1985
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1986

1987
		if (!need_to_create_worker(pool))
1988 1989 1990
			break;
	}

1991
	del_timer_sync(&pool->mayday_timer);
1992
	spin_lock_irq(&pool->lock);
1993
	if (need_to_create_worker(pool))
1994 1995 1996 1997 1998 1999
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2000
 * @pool: pool to destroy workers for
2001
 *
2002
 * Destroy @pool workers which have been idle for longer than
2003 2004 2005
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2006
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2007 2008 2009
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2010
 * %false if no action was taken and pool->lock stayed locked, %true
2011 2012
 * otherwise.
 */
2013
static bool maybe_destroy_workers(struct worker_pool *pool)
2014 2015
{
	bool ret = false;
L
Linus Torvalds 已提交
2016

2017
	while (too_many_workers(pool)) {
2018 2019
		struct worker *worker;
		unsigned long expires;
2020

2021
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2022
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2023

2024
		if (time_before(jiffies, expires)) {
2025
			mod_timer(&pool->idle_timer, expires);
2026
			break;
2027
		}
L
Linus Torvalds 已提交
2028

2029 2030
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2031
	}
2032

2033
	return ret;
2034 2035
}

2036
/**
2037 2038
 * manage_workers - manage worker pool
 * @worker: self
2039
 *
2040
 * Assume the manager role and manage the worker pool @worker belongs
2041
 * to.  At any given time, there can be only zero or one manager per
2042
 * pool.  The exclusion is handled automatically by this function.
2043 2044 2045 2046
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2047 2048
 *
 * CONTEXT:
2049
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2050 2051 2052
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2053 2054
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2055
 */
2056
static bool manage_workers(struct worker *worker)
2057
{
2058
	struct worker_pool *pool = worker->pool;
2059
	bool ret = false;
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2082
	if (!mutex_trylock(&pool->manager_arb))
2083
		return ret;
2084

2085
	/*
2086 2087
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2088
	 */
2089
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2090
		spin_unlock_irq(&pool->lock);
2091
		mutex_lock(&pool->manager_mutex);
2092 2093
		/*
		 * CPU hotplug could have happened while we were waiting
2094
		 * for assoc_mutex.  Hotplug itself can't handle us
2095
		 * because manager isn't either on idle or busy list, and
2096
		 * @pool's state and ours could have deviated.
2097
		 *
2098
		 * As hotplug is now excluded via manager_mutex, we can
2099
		 * simply try to bind.  It will succeed or fail depending
2100
		 * on @pool's current state.  Try it and adjust
2101 2102
		 * %WORKER_UNBOUND accordingly.
		 */
2103
		if (worker_maybe_bind_and_lock(pool))
2104 2105 2106
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2107

2108 2109
		ret = true;
	}
2110

2111
	pool->flags &= ~POOL_MANAGE_WORKERS;
2112 2113

	/*
2114 2115
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2116
	 */
2117 2118
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2119

2120
	mutex_unlock(&pool->manager_mutex);
2121
	mutex_unlock(&pool->manager_arb);
2122
	return ret;
2123 2124
}

2125 2126
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2127
 * @worker: self
2128 2129 2130 2131 2132 2133 2134 2135 2136
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2137
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2138
 */
T
Tejun Heo 已提交
2139
static void process_one_work(struct worker *worker, struct work_struct *work)
2140 2141
__releases(&pool->lock)
__acquires(&pool->lock)
2142
{
2143
	struct pool_workqueue *pwq = get_work_pwq(work);
2144
	struct worker_pool *pool = worker->pool;
2145
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2146
	int work_color;
2147
	struct worker *collision;
2148 2149 2150 2151 2152 2153 2154 2155
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2156 2157 2158
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2159
#endif
2160 2161 2162
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2163
	 * unbound or a disassociated pool.
2164
	 */
2165
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2166
		     !(pool->flags & POOL_DISASSOCIATED) &&
2167
		     raw_smp_processor_id() != pool->cpu);
2168

2169 2170 2171 2172 2173 2174
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2175
	collision = find_worker_executing_work(pool, work);
2176 2177 2178 2179 2180
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2181
	/* claim and dequeue */
2182
	debug_work_deactivate(work);
2183
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2184
	worker->current_work = work;
2185
	worker->current_func = work->func;
2186
	worker->current_pwq = pwq;
2187
	work_color = get_work_color(work);
2188

2189 2190
	list_del_init(&work->entry);

2191 2192 2193 2194 2195 2196 2197
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2198
	/*
2199
	 * Unbound pool isn't concurrency managed and work items should be
2200 2201
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2202 2203
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2204

2205
	/*
2206
	 * Record the last pool and clear PENDING which should be the last
2207
	 * update to @work.  Also, do this inside @pool->lock so that
2208 2209
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2210
	 */
2211
	set_work_pool_and_clear_pending(work, pool->id);
2212

2213
	spin_unlock_irq(&pool->lock);
2214

2215
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2216
	lock_map_acquire(&lockdep_map);
2217
	trace_workqueue_execute_start(work);
2218
	worker->current_func(work);
2219 2220 2221 2222 2223
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2224
	lock_map_release(&lockdep_map);
2225
	lock_map_release(&pwq->wq->lockdep_map);
2226 2227

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2228 2229
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2230 2231
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2232 2233 2234 2235
		debug_show_held_locks(current);
		dump_stack();
	}

2236
	spin_lock_irq(&pool->lock);
2237

2238 2239 2240 2241
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2242
	/* we're done with it, release */
2243
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2244
	worker->current_work = NULL;
2245
	worker->current_func = NULL;
2246 2247
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2259
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2260 2261 2262
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2263
{
2264 2265
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2266
						struct work_struct, entry);
T
Tejun Heo 已提交
2267
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2268 2269 2270
	}
}

T
Tejun Heo 已提交
2271 2272
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2273
 * @__worker: self
T
Tejun Heo 已提交
2274
 *
2275 2276 2277 2278 2279
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2280
 */
T
Tejun Heo 已提交
2281
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2282
{
T
Tejun Heo 已提交
2283
	struct worker *worker = __worker;
2284
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2285

2286 2287
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2288
woke_up:
2289
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2290

2291 2292
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2293
		spin_unlock_irq(&pool->lock);
2294

2295
		/* if DIE is set, destruction is requested */
2296 2297 2298 2299 2300
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2301
		/* otherwise, rebind */
2302 2303
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2304
	}
2305

T
Tejun Heo 已提交
2306
	worker_leave_idle(worker);
2307
recheck:
2308
	/* no more worker necessary? */
2309
	if (!need_more_worker(pool))
2310 2311 2312
		goto sleep;

	/* do we need to manage? */
2313
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2314 2315
		goto recheck;

T
Tejun Heo 已提交
2316 2317 2318 2319 2320
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2321
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2322

2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2331
		struct work_struct *work =
2332
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2333 2334 2335 2336 2337 2338
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2339
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2340 2341 2342
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2343
		}
2344
	} while (keep_working(pool));
2345 2346

	worker_set_flags(worker, WORKER_PREP, false);
2347
sleep:
2348
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2349
		goto recheck;
2350

T
Tejun Heo 已提交
2351
	/*
2352 2353 2354 2355 2356
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2357 2358 2359
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2360
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2361 2362
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2363 2364
}

2365 2366
/**
 * rescuer_thread - the rescuer thread function
2367
 * @__rescuer: self
2368 2369
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2370
 * workqueue which has WQ_MEM_RECLAIM set.
2371
 *
2372
 * Regular work processing on a pool may block trying to create a new
2373 2374 2375 2376 2377
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2378 2379
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2380 2381 2382 2383
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2384
static int rescuer_thread(void *__rescuer)
2385
{
2386 2387
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2388 2389 2390
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2391 2392 2393 2394 2395 2396

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2397 2398 2399
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2400 2401
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2402
		rescuer->task->flags &= ~PF_WQ_WORKER;
2403
		return 0;
2404
	}
2405

2406 2407 2408 2409 2410 2411
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2412
		struct worker_pool *pool = pwq->pool;
2413 2414 2415
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2416 2417 2418
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2419 2420

		/* migrate to the target cpu if possible */
2421
		worker_maybe_bind_and_lock(pool);
2422
		rescuer->pool = pool;
2423 2424 2425 2426 2427

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2428
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2429
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2430
			if (get_work_pwq(work) == pwq)
2431 2432 2433
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2434 2435

		/*
2436
		 * Leave this pool.  If keep_working() is %true, notify a
2437 2438 2439
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2440 2441
		if (keep_working(pool))
			wake_up_worker(pool);
2442

2443
		rescuer->pool = NULL;
2444 2445
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2446 2447
	}

2448 2449
	spin_unlock_irq(&workqueue_lock);

2450 2451
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2452 2453
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2454 2455
}

O
Oleg Nesterov 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2467 2468
/**
 * insert_wq_barrier - insert a barrier work
2469
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2470
 * @barr: wq_barrier to insert
2471 2472
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2473
 *
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2486
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2487 2488
 *
 * CONTEXT:
2489
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2490
 */
2491
static void insert_wq_barrier(struct pool_workqueue *pwq,
2492 2493
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2494
{
2495 2496 2497
	struct list_head *head;
	unsigned int linked = 0;

2498
	/*
2499
	 * debugobject calls are safe here even with pool->lock locked
2500 2501 2502 2503
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2504
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2505
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2506
	init_completion(&barr->done);
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2523
	debug_work_activate(&barr->work);
2524
	insert_work(pwq, &barr->work, head,
2525
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2526 2527
}

2528
/**
2529
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2530 2531 2532 2533
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2534
 * Prepare pwqs for workqueue flushing.
2535
 *
2536 2537 2538 2539 2540
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2541 2542 2543 2544 2545 2546 2547
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2548
 * If @work_color is non-negative, all pwqs should have the same
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2559
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2560
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2561
{
2562
	bool wait = false;
2563
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2564

2565
	if (flush_color >= 0) {
2566
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2567
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2568
	}
2569

2570 2571
	local_irq_disable();

2572
	for_each_pwq(pwq, wq) {
2573
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2574

2575
		spin_lock(&pool->lock);
2576

2577
		if (flush_color >= 0) {
2578
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2579

2580 2581 2582
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2583 2584 2585
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2586

2587
		if (work_color >= 0) {
2588
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2589
			pwq->work_color = work_color;
2590
		}
L
Linus Torvalds 已提交
2591

2592
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2593
	}
2594

2595 2596
	local_irq_enable();

2597
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2598
		complete(&wq->first_flusher->done);
2599

2600
	return wait;
L
Linus Torvalds 已提交
2601 2602
}

2603
/**
L
Linus Torvalds 已提交
2604
 * flush_workqueue - ensure that any scheduled work has run to completion.
2605
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2606
 *
2607 2608
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2609
 */
2610
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2611
{
2612 2613 2614 2615 2616 2617
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2618

2619 2620
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2635
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2636 2637 2638 2639 2640
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2641
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2642 2643 2644

			wq->first_flusher = &this_flusher;

2645
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2646 2647 2648 2649 2650 2651 2652 2653
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2654
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2655
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2656
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2682 2683 2684 2685
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2686 2687
	wq->first_flusher = NULL;

2688 2689
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2702 2703
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2723
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2724 2725 2726
		}

		if (list_empty(&wq->flusher_queue)) {
2727
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2728 2729 2730 2731 2732
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2733
		 * the new first flusher and arm pwqs.
2734
		 */
2735 2736
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2737 2738 2739 2740

		list_del_init(&next->list);
		wq->first_flusher = next;

2741
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2753
}
2754
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2755

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2770
	struct pool_workqueue *pwq;
2771 2772 2773 2774

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2775
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2776
	 */
2777
	mutex_lock(&wq_mutex);
2778
	if (!wq->nr_drainers++)
2779
		wq->flags |= __WQ_DRAINING;
2780
	mutex_unlock(&wq_mutex);
2781 2782 2783
reflush:
	flush_workqueue(wq);

2784 2785
	local_irq_disable();

2786
	for_each_pwq(pwq, wq) {
2787
		bool drained;
2788

2789
		spin_lock(&pwq->pool->lock);
2790
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2791
		spin_unlock(&pwq->pool->lock);
2792 2793

		if (drained)
2794 2795 2796 2797
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2798
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2799
				wq->name, flush_cnt);
2800 2801

		local_irq_enable();
2802 2803 2804
		goto reflush;
	}

2805 2806 2807
	local_irq_enable();

	mutex_lock(&wq_mutex);
2808
	if (!--wq->nr_drainers)
2809
		wq->flags &= ~__WQ_DRAINING;
2810
	mutex_unlock(&wq_mutex);
2811 2812 2813
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2814
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2815
{
2816
	struct worker *worker = NULL;
2817
	struct worker_pool *pool;
2818
	struct pool_workqueue *pwq;
2819 2820

	might_sleep();
2821 2822

	local_irq_disable();
2823
	pool = get_work_pool(work);
2824 2825
	if (!pool) {
		local_irq_enable();
2826
		return false;
2827
	}
2828

2829
	spin_lock(&pool->lock);
2830
	/* see the comment in try_to_grab_pending() with the same code */
2831 2832 2833
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2834
			goto already_gone;
2835
	} else {
2836
		worker = find_worker_executing_work(pool, work);
2837
		if (!worker)
T
Tejun Heo 已提交
2838
			goto already_gone;
2839
		pwq = worker->current_pwq;
2840
	}
2841

2842
	insert_wq_barrier(pwq, barr, work, worker);
2843
	spin_unlock_irq(&pool->lock);
2844

2845 2846 2847 2848 2849 2850
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2851
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2852
		lock_map_acquire(&pwq->wq->lockdep_map);
2853
	else
2854 2855
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2856

2857
	return true;
T
Tejun Heo 已提交
2858
already_gone:
2859
	spin_unlock_irq(&pool->lock);
2860
	return false;
2861
}
2862 2863 2864 2865 2866

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2867 2868
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2869 2870 2871 2872 2873 2874 2875 2876 2877
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2878 2879 2880
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2881
	if (start_flush_work(work, &barr)) {
2882 2883 2884
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2885
	} else {
2886
		return false;
2887 2888
	}
}
2889
EXPORT_SYMBOL_GPL(flush_work);
2890

2891
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2892
{
2893
	unsigned long flags;
2894 2895 2896
	int ret;

	do {
2897 2898 2899 2900 2901 2902
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2903
			flush_work(work);
2904 2905
	} while (unlikely(ret < 0));

2906 2907 2908 2909
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2910
	flush_work(work);
2911
	clear_work_data(work);
2912 2913 2914
	return ret;
}

2915
/**
2916 2917
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2918
 *
2919 2920 2921 2922
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2923
 *
2924 2925
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2926
 *
2927
 * The caller must ensure that the workqueue on which @work was last
2928
 * queued can't be destroyed before this function returns.
2929 2930 2931
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2932
 */
2933
bool cancel_work_sync(struct work_struct *work)
2934
{
2935
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2936
}
2937
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2938

2939
/**
2940 2941
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2942
 *
2943 2944 2945
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2946
 *
2947 2948 2949
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2950
 */
2951 2952
bool flush_delayed_work(struct delayed_work *dwork)
{
2953
	local_irq_disable();
2954
	if (del_timer_sync(&dwork->timer))
2955
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2956
	local_irq_enable();
2957 2958 2959 2960
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2961
/**
2962 2963
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2964
 *
2965 2966 2967 2968 2969
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2970
 *
2971
 * This function is safe to call from any context including IRQ handler.
2972
 */
2973
bool cancel_delayed_work(struct delayed_work *dwork)
2974
{
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2985 2986
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2987
	local_irq_restore(flags);
2988
	return ret;
2989
}
2990
EXPORT_SYMBOL(cancel_delayed_work);
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3002
{
3003
	return __cancel_work_timer(&dwork->work, true);
3004
}
3005
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3006

3007
/**
3008
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3009 3010
 * @func: the function to call
 *
3011 3012
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3013
 * schedule_on_each_cpu() is very slow.
3014 3015 3016
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3017
 */
3018
int schedule_on_each_cpu(work_func_t func)
3019 3020
{
	int cpu;
3021
	struct work_struct __percpu *works;
3022

3023 3024
	works = alloc_percpu(struct work_struct);
	if (!works)
3025
		return -ENOMEM;
3026

3027 3028
	get_online_cpus();

3029
	for_each_online_cpu(cpu) {
3030 3031 3032
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3033
		schedule_work_on(cpu, work);
3034
	}
3035 3036 3037 3038

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3039
	put_online_cpus();
3040
	free_percpu(works);
3041 3042 3043
	return 0;
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3068 3069
void flush_scheduled_work(void)
{
3070
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3071
}
3072
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3086
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3087 3088
{
	if (!in_interrupt()) {
3089
		fn(&ew->work);
3090 3091 3092
		return 0;
	}

3093
	INIT_WORK(&ew->work, fn);
3094 3095 3096 3097 3098 3099
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

static ssize_t wq_pool_id_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct worker_pool *pool;
	int written;

	rcu_read_lock_sched();
	pool = first_pwq(wq)->pool;
	written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    first_pwq(wq)->pool->attrs->nice);
	rcu_read_unlock_sched();

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	rcu_read_lock_sched();
	copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
	rcu_read_unlock_sched();
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	rcu_read_lock_sched();
	written = cpumask_scnprintf(buf, PAGE_SIZE,
				    first_pwq(wq)->pool->attrs->cpumask);
	rcu_read_unlock_sched();

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_id, 0444, wq_pool_id_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3461 3462 3463 3464 3465
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3466 3467 3468
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3469 3470
 */
static int init_worker_pool(struct worker_pool *pool)
3471 3472
{
	spin_lock_init(&pool->lock);
3473 3474
	pool->id = -1;
	pool->cpu = -1;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3488
	mutex_init(&pool->manager_mutex);
3489
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3490

3491 3492 3493 3494
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3495 3496 3497 3498
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3499 3500
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3515 3516 3517
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3518 3519 3520 3521 3522
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3523
	mutex_lock(&wq_mutex);
3524
	if (--pool->refcnt) {
3525
		mutex_unlock(&wq_mutex);
3526 3527 3528 3529 3530 3531
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
3532
		mutex_unlock(&wq_mutex);
3533 3534 3535 3536 3537 3538 3539 3540
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3541
	mutex_unlock(&wq_mutex);
3542

3543 3544 3545 3546 3547
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3548
	mutex_lock(&pool->manager_arb);
3549
	mutex_lock(&pool->manager_mutex);
3550 3551 3552 3553 3554 3555 3556
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3557
	mutex_unlock(&pool->manager_mutex);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;

3582
	mutex_lock(&wq_mutex);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3597
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3598 3599 3600 3601 3602 3603
	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3604
	if (create_and_start_worker(pool) < 0)
3605 3606 3607 3608 3609
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
3610
	mutex_unlock(&wq_mutex);
3611 3612
	return pool;
fail:
3613
	mutex_unlock(&wq_mutex);
3614 3615 3616 3617 3618
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3639 3640 3641 3642 3643 3644
	/*
	 * Unlink @pwq.  Synchronization against flush_mutex isn't strictly
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
	mutex_lock(&wq->flush_mutex);
3645
	spin_lock_irq(&pwq_lock);
T
Tejun Heo 已提交
3646
	list_del_rcu(&pwq->pwqs_node);
3647
	spin_unlock_irq(&pwq_lock);
3648
	mutex_unlock(&wq->flush_mutex);
T
Tejun Heo 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

	put_unbound_pool(pool);
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
	if (list_empty(&wq->pwqs))
		kfree(wq);
}

3661
/**
3662
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3663 3664
 * @pwq: target pool_workqueue
 *
3665 3666 3667
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3668
 */
3669
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3670
{
3671 3672 3673 3674
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3675
	lockdep_assert_held(&pwq_lock);
3676 3677 3678 3679 3680 3681 3682 3683 3684

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

	spin_lock(&pwq->pool->lock);

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3685

3686 3687 3688 3689 3690 3691 3692 3693
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
	} else {
		pwq->max_active = 0;
	}

	spin_unlock(&pwq->pool->lock);
3694 3695
}

3696 3697
static void init_and_link_pwq(struct pool_workqueue *pwq,
			      struct workqueue_struct *wq,
3698 3699
			      struct worker_pool *pool,
			      struct pool_workqueue **p_last_pwq)
3700 3701 3702 3703 3704 3705
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3706
	pwq->refcnt = 1;
3707 3708
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3709
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3710

3711
	mutex_lock(&wq->flush_mutex);
3712
	spin_lock_irq(&pwq_lock);
3713

3714 3715 3716 3717
	/*
	 * Set the matching work_color.  This is synchronized with
	 * flush_mutex to avoid confusing flush_workqueue().
	 */
3718 3719
	if (p_last_pwq)
		*p_last_pwq = first_pwq(wq);
3720
	pwq->work_color = wq->work_color;
3721 3722 3723 3724 3725

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3726
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3727

3728
	spin_unlock_irq(&pwq_lock);
3729
	mutex_unlock(&wq->flush_mutex);
3730 3731
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  If @attrs doesn't match the
 * current attributes, a new pwq is created and made the first pwq which
 * will serve all new work items.  Older pwqs are released as in-flight
 * work items finish.  Note that a work item which repeatedly requeues
 * itself back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	struct pool_workqueue *pwq, *last_pwq;
	struct worker_pool *pool;

3752
	/* only unbound workqueues can change attributes */
3753 3754 3755
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3756 3757 3758 3759
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
	if (!pwq)
		return -ENOMEM;

	pool = get_unbound_pool(attrs);
	if (!pool) {
		kmem_cache_free(pwq_cache, pwq);
		return -ENOMEM;
	}

	init_and_link_pwq(pwq, wq, pool, &last_pwq);
	if (last_pwq) {
		spin_lock_irq(&last_pwq->pool->lock);
		put_pwq(last_pwq);
		spin_unlock_irq(&last_pwq->pool->lock);
	}

	return 0;
}

3780
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3781
{
3782
	bool highpri = wq->flags & WQ_HIGHPRI;
3783 3784 3785
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3786 3787
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3788 3789 3790
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3791 3792
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3793
			struct worker_pool *cpu_pools =
3794
				per_cpu(cpu_worker_pools, cpu);
3795

3796
			init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3797
		}
3798
		return 0;
3799
	} else {
3800
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3801
	}
T
Tejun Heo 已提交
3802 3803
}

3804 3805
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3806
{
3807 3808 3809
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3810 3811
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3812

3813
	return clamp_val(max_active, 1, lim);
3814 3815
}

3816
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3817 3818 3819
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3820
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3821
{
3822
	va_list args, args1;
L
Linus Torvalds 已提交
3823
	struct workqueue_struct *wq;
3824
	struct pool_workqueue *pwq;
3825 3826 3827 3828 3829 3830 3831 3832 3833
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
3834
		return NULL;
3835 3836 3837 3838

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3839

3840
	max_active = max_active ?: WQ_DFL_ACTIVE;
3841
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3842

3843
	/* init wq */
3844
	wq->flags = flags;
3845
	wq->saved_max_active = max_active;
3846
	mutex_init(&wq->flush_mutex);
3847
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3848
	INIT_LIST_HEAD(&wq->pwqs);
3849 3850
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3851
	INIT_LIST_HEAD(&wq->maydays);
3852

3853
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3854
	INIT_LIST_HEAD(&wq->list);
3855

3856
	if (alloc_and_link_pwqs(wq) < 0)
3857
		goto err_free_wq;
T
Tejun Heo 已提交
3858

3859 3860 3861 3862 3863
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3864 3865
		struct worker *rescuer;

3866
		rescuer = alloc_worker();
3867
		if (!rescuer)
3868
			goto err_destroy;
3869

3870 3871
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3872
					       wq->name);
3873 3874 3875 3876
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3877

3878
		wq->rescuer = rescuer;
3879 3880
		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3881 3882
	}

3883 3884 3885
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3886
	/*
3887 3888
	 * wq_mutex protects global freeze state and workqueues list.  Grab
	 * it, adjust max_active and add the new @wq to workqueues list.
3889
	 */
3890
	mutex_lock(&wq_mutex);
3891

3892
	spin_lock_irq(&pwq_lock);
3893 3894
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3895
	spin_unlock_irq(&pwq_lock);
3896

T
Tejun Heo 已提交
3897
	list_add(&wq->list, &workqueues);
3898

3899
	mutex_unlock(&wq_mutex);
T
Tejun Heo 已提交
3900

3901
	return wq;
3902 3903 3904 3905 3906 3907

err_free_wq:
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3908
	return NULL;
3909
}
3910
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3911

3912 3913 3914 3915 3916 3917 3918 3919
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3920
	struct pool_workqueue *pwq;
3921

3922 3923
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3924

3925
	/* sanity checks */
3926
	spin_lock_irq(&pwq_lock);
3927
	for_each_pwq(pwq, wq) {
3928 3929
		int i;

3930 3931
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3932
				spin_unlock_irq(&pwq_lock);
3933
				return;
3934 3935 3936
			}
		}

T
Tejun Heo 已提交
3937 3938
		if (WARN_ON(pwq->refcnt > 1) ||
		    WARN_ON(pwq->nr_active) ||
3939
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3940
			spin_unlock_irq(&pwq_lock);
3941
			return;
3942
		}
3943
	}
3944
	spin_unlock_irq(&pwq_lock);
3945

3946 3947 3948 3949
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3950
	mutex_lock(&wq_mutex);
3951
	list_del_init(&wq->list);
3952
	mutex_unlock(&wq_mutex);
3953

3954 3955
	workqueue_sysfs_unregister(wq);

3956
	if (wq->rescuer) {
3957
		kthread_stop(wq->rescuer->task);
3958
		kfree(wq->rescuer);
3959
		wq->rescuer = NULL;
3960 3961
	}

T
Tejun Heo 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
		 * access the first pwq and put the base ref.  As both pwqs
		 * and pools are sched-RCU protected, the lock operations
		 * are safe.  @wq will be freed when the last pwq is
		 * released.
		 */
3977 3978
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
T
Tejun Heo 已提交
3979 3980 3981
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
3982
	}
3983 3984 3985
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3998
	struct pool_workqueue *pwq;
3999

4000 4001 4002 4003
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4004
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4005

4006
	spin_lock_irq(&pwq_lock);
4007 4008 4009

	wq->saved_max_active = max_active;

4010 4011
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4012

4013
	spin_unlock_irq(&pwq_lock);
4014
}
4015
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

	return worker && worker == worker->current_pwq->wq->rescuer;
}

4030
/**
4031 4032 4033
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4034
 *
4035 4036 4037
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4038
 *
4039 4040
 * RETURNS:
 * %true if congested, %false otherwise.
4041
 */
4042
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4043
{
4044
	struct pool_workqueue *pwq;
4045 4046 4047
	bool ret;

	preempt_disable();
4048 4049 4050 4051 4052

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
4053

4054 4055 4056 4057
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
4058
}
4059
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4060

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4073
{
4074
	struct worker_pool *pool;
4075 4076
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4077

4078 4079
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4080

4081 4082
	local_irq_save(flags);
	pool = get_work_pool(work);
4083
	if (pool) {
4084
		spin_lock(&pool->lock);
4085 4086
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4087
		spin_unlock(&pool->lock);
4088
	}
4089
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4090

4091
	return ret;
L
Linus Torvalds 已提交
4092
}
4093
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4094

4095 4096 4097
/*
 * CPU hotplug.
 *
4098
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4099
 * are a lot of assumptions on strong associations among work, pwq and
4100
 * pool which make migrating pending and scheduled works very
4101
 * difficult to implement without impacting hot paths.  Secondly,
4102
 * worker pools serve mix of short, long and very long running works making
4103 4104
 * blocked draining impractical.
 *
4105
 * This is solved by allowing the pools to be disassociated from the CPU
4106 4107
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4108
 */
L
Linus Torvalds 已提交
4109

4110
static void wq_unbind_fn(struct work_struct *work)
4111
{
4112
	int cpu = smp_processor_id();
4113
	struct worker_pool *pool;
4114 4115
	struct worker *worker;
	int i;
4116

4117
	for_each_cpu_worker_pool(pool, cpu) {
4118
		WARN_ON_ONCE(cpu != smp_processor_id());
4119

4120
		mutex_lock(&pool->manager_mutex);
4121
		spin_lock_irq(&pool->lock);
4122

4123
		/*
4124
		 * We've blocked all manager operations.  Make all workers
4125 4126 4127 4128 4129
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4130
		list_for_each_entry(worker, &pool->idle_list, entry)
4131
			worker->flags |= WORKER_UNBOUND;
4132

4133
		for_each_busy_worker(worker, i, pool)
4134
			worker->flags |= WORKER_UNBOUND;
4135

4136
		pool->flags |= POOL_DISASSOCIATED;
4137

4138
		spin_unlock_irq(&pool->lock);
4139
		mutex_unlock(&pool->manager_mutex);
4140
	}
4141

4142
	/*
4143
	 * Call schedule() so that we cross rq->lock and thus can guarantee
4144 4145
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
4146 4147
	 */
	schedule();
4148

4149
	/*
4150 4151
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
4152 4153 4154
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
4155 4156 4157 4158
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
4159
	 */
4160
	for_each_cpu_worker_pool(pool, cpu)
4161
		atomic_set(&pool->nr_running, 0);
4162 4163
}

T
Tejun Heo 已提交
4164 4165 4166 4167
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4168
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4169 4170
					       unsigned long action,
					       void *hcpu)
4171
{
4172
	int cpu = (unsigned long)hcpu;
4173
	struct worker_pool *pool;
4174

T
Tejun Heo 已提交
4175
	switch (action & ~CPU_TASKS_FROZEN) {
4176
	case CPU_UP_PREPARE:
4177
		for_each_cpu_worker_pool(pool, cpu) {
4178 4179
			if (pool->nr_workers)
				continue;
4180
			if (create_and_start_worker(pool) < 0)
4181
				return NOTIFY_BAD;
4182
		}
T
Tejun Heo 已提交
4183
		break;
4184

4185 4186
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4187
		for_each_cpu_worker_pool(pool, cpu) {
4188
			mutex_lock(&pool->manager_mutex);
4189 4190
			spin_lock_irq(&pool->lock);

4191
			pool->flags &= ~POOL_DISASSOCIATED;
4192 4193 4194
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
4195
			mutex_unlock(&pool->manager_mutex);
4196
		}
4197
		break;
4198
	}
4199 4200 4201 4202 4203 4204 4205
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4206
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4207 4208 4209
						 unsigned long action,
						 void *hcpu)
{
4210
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4211 4212
	struct work_struct unbind_work;

4213 4214
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
4215
		/* unbinding should happen on the local CPU */
4216
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4217
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
4218 4219
		flush_work(&unbind_work);
		break;
4220 4221 4222 4223
	}
	return NOTIFY_OK;
}

4224
#ifdef CONFIG_SMP
4225

4226
struct work_for_cpu {
4227
	struct work_struct work;
4228 4229 4230 4231 4232
	long (*fn)(void *);
	void *arg;
	long ret;
};

4233
static void work_for_cpu_fn(struct work_struct *work)
4234
{
4235 4236
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4237 4238 4239 4240 4241 4242 4243 4244 4245
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4246 4247
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4248
 * The caller must not hold any locks which would prevent @fn from completing.
4249
 */
4250
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4251
{
4252
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4253

4254 4255 4256
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4257 4258 4259 4260 4261
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4262 4263 4264 4265 4266
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4267
 * Start freezing workqueues.  After this function returns, all freezable
4268
 * workqueues will queue new works to their delayed_works list instead of
4269
 * pool->worklist.
4270 4271
 *
 * CONTEXT:
4272
 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4273 4274 4275
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4276
	struct worker_pool *pool;
4277 4278
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4279
	int pi;
4280

4281
	mutex_lock(&wq_mutex);
4282

4283
	WARN_ON_ONCE(workqueue_freezing);
4284 4285
	workqueue_freezing = true;

4286
	/* set FREEZING */
4287
	for_each_pool(pool, pi) {
4288
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4289 4290
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4291
		spin_unlock_irq(&pool->lock);
4292
	}
4293

4294
	/* suppress further executions by setting max_active to zero */
4295
	spin_lock_irq(&pwq_lock);
4296
	list_for_each_entry(wq, &workqueues, list) {
4297 4298
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4299
	}
4300
	spin_unlock_irq(&pwq_lock);
4301 4302

	mutex_unlock(&wq_mutex);
4303 4304 4305
}

/**
4306
 * freeze_workqueues_busy - are freezable workqueues still busy?
4307 4308 4309 4310 4311
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4312
 * Grabs and releases wq_mutex.
4313 4314
 *
 * RETURNS:
4315 4316
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4317 4318 4319 4320
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4321 4322
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4323

4324
	mutex_lock(&wq_mutex);
4325

4326
	WARN_ON_ONCE(!workqueue_freezing);
4327

4328 4329 4330
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4331 4332 4333 4334
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4335
		preempt_disable();
4336
		for_each_pwq(pwq, wq) {
4337
			WARN_ON_ONCE(pwq->nr_active < 0);
4338
			if (pwq->nr_active) {
4339
				busy = true;
4340
				preempt_enable();
4341 4342 4343
				goto out_unlock;
			}
		}
4344
		preempt_enable();
4345 4346
	}
out_unlock:
4347
	mutex_unlock(&wq_mutex);
4348 4349 4350 4351 4352 4353 4354
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4355
 * frozen works are transferred to their respective pool worklists.
4356 4357
 *
 * CONTEXT:
4358
 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4359 4360 4361
 */
void thaw_workqueues(void)
{
4362 4363 4364
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4365
	int pi;
4366

4367
	mutex_lock(&wq_mutex);
4368 4369 4370 4371

	if (!workqueue_freezing)
		goto out_unlock;

4372
	/* clear FREEZING */
4373
	for_each_pool(pool, pi) {
4374
		spin_lock_irq(&pool->lock);
4375 4376
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4377
		spin_unlock_irq(&pool->lock);
4378
	}
4379

4380
	/* restore max_active and repopulate worklist */
4381
	spin_lock_irq(&pwq_lock);
4382
	list_for_each_entry(wq, &workqueues, list) {
4383 4384
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4385
	}
4386
	spin_unlock_irq(&pwq_lock);
4387

4388
	/* kick workers */
4389
	for_each_pool(pool, pi) {
4390
		spin_lock_irq(&pool->lock);
4391
		wake_up_worker(pool);
4392
		spin_unlock_irq(&pool->lock);
4393 4394
	}

4395 4396
	workqueue_freezing = false;
out_unlock:
4397
	mutex_unlock(&wq_mutex);
4398 4399 4400
}
#endif /* CONFIG_FREEZER */

4401
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4402
{
T
Tejun Heo 已提交
4403 4404
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4405

4406 4407
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4408
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4409

4410 4411 4412 4413
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4414
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4415
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4416

4417
	/* initialize CPU pools */
4418
	for_each_possible_cpu(cpu) {
4419
		struct worker_pool *pool;
4420

T
Tejun Heo 已提交
4421
		i = 0;
4422
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4423
			BUG_ON(init_worker_pool(pool));
4424
			pool->cpu = cpu;
4425
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4426 4427
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4428
			/* alloc pool ID */
4429
			mutex_lock(&wq_mutex);
T
Tejun Heo 已提交
4430
			BUG_ON(worker_pool_assign_id(pool));
4431
			mutex_unlock(&wq_mutex);
4432
		}
4433 4434
	}

4435
	/* create the initial worker */
4436
	for_each_online_cpu(cpu) {
4437
		struct worker_pool *pool;
4438

4439
		for_each_cpu_worker_pool(pool, cpu) {
4440
			pool->flags &= ~POOL_DISASSOCIATED;
4441
			BUG_ON(create_and_start_worker(pool) < 0);
4442
		}
4443 4444
	}

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4457
	system_wq = alloc_workqueue("events", 0, 0);
4458
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4459
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4460 4461
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4462 4463
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4464
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4465
	       !system_unbound_wq || !system_freezable_wq);
4466
	return 0;
L
Linus Torvalds 已提交
4467
}
4468
early_initcall(init_workqueues);