workqueue.c 137.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131
 * WQ: wq->mutex protected.
 *
132
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133 134
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
135 136
 */

137
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
138

139
struct worker_pool {
140
	spinlock_t		lock;		/* the pool lock */
141
	int			cpu;		/* I: the associated cpu */
142
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
143
	int			id;		/* I: pool ID */
144
	unsigned int		flags;		/* X: flags */
145 146 147

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
148 149

	/* nr_idle includes the ones off idle_list for rebinding */
150 151 152 153 154 155
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

156
	/* a workers is either on busy_hash or idle_list, or the manager */
157 158 159
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

160
	/* see manage_workers() for details on the two manager mutexes */
161
	struct mutex		manager_arb;	/* manager arbitration */
162 163
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
164
	struct completion	*detach_completion; /* all workers detached */
165

166
	struct ida		worker_ida;	/* worker IDs for task name */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
369
 * This must be called with @pool->attach_mutex.
370 371 372 373
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
374 375
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
376
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 378
		else

379 380 381 382
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
383
 *
384
 * This must be called either with wq->mutex held or sched RCU read locked.
385 386
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
390 391
 */
#define for_each_pwq(pwq, wq)						\
392
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394
		else
395

396 397 398 399
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

400 401 402 403 404
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
440
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
476
	.debug_hint	= work_debug_hint,
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

507 508 509 510 511 512 513
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

514 515 516 517 518
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

519 520 521 522 523 524 525
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
526 527 528 529
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

530
	lockdep_assert_held(&wq_pool_mutex);
531

532 533
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
534
	if (ret >= 0) {
T
Tejun Heo 已提交
535
		pool->id = ret;
536 537
		return 0;
	}
538
	return ret;
539 540
}

541 542 543 544 545 546 547 548
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
549 550
 *
 * Return: The unbound pool_workqueue for @node.
551 552 553 554 555 556 557 558
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
574

575
/*
576 577
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
578
 * is cleared and the high bits contain OFFQ flags and pool ID.
579
 *
580 581
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
582 583
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
584
 *
585
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586
 * corresponding to a work.  Pool is available once the work has been
587
 * queued anywhere after initialization until it is sync canceled.  pwq is
588
 * available only while the work item is queued.
589
 *
590 591 592 593
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
594
 */
595 596
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
597
{
598
	WARN_ON_ONCE(!work_pending(work));
599 600
	atomic_long_set(&work->data, data | flags | work_static(work));
}
601

602
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 604
			 unsigned long extra_flags)
{
605 606
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 608
}

609 610 611 612 613 614 615
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

616 617
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
618
{
619 620 621 622 623 624 625
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
626
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627
}
628

629
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
630
{
631 632
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
633 634
}

635
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636
{
637
	unsigned long data = atomic_long_read(&work->data);
638

639
	if (data & WORK_STRUCT_PWQ)
640 641 642
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
643 644
}

645 646 647 648
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
649 650 651
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
652 653 654 655 656
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
657 658
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
659 660
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
661
{
662
	unsigned long data = atomic_long_read(&work->data);
663
	int pool_id;
664

665
	assert_rcu_or_pool_mutex();
666

667 668
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
669
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670

671 672
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
673 674
		return NULL;

675
	return idr_find(&worker_pool_idr, pool_id);
676 677 678 679 680 681
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
682
 * Return: The worker_pool ID @work was last associated with.
683 684 685 686
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
687 688
	unsigned long data = atomic_long_read(&work->data);

689 690
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
691
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692

693
	return data >> WORK_OFFQ_POOL_SHIFT;
694 695
}

696 697
static void mark_work_canceling(struct work_struct *work)
{
698
	unsigned long pool_id = get_work_pool_id(work);
699

700 701
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 703 704 705 706 707
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

708
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 710
}

711
/*
712 713
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
714
 * they're being called with pool->lock held.
715 716
 */

717
static bool __need_more_worker(struct worker_pool *pool)
718
{
719
	return !atomic_read(&pool->nr_running);
720 721
}

722
/*
723 724
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
725 726
 *
 * Note that, because unbound workers never contribute to nr_running, this
727
 * function will always return %true for unbound pools as long as the
728
 * worklist isn't empty.
729
 */
730
static bool need_more_worker(struct worker_pool *pool)
731
{
732
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733
}
734

735
/* Can I start working?  Called from busy but !running workers. */
736
static bool may_start_working(struct worker_pool *pool)
737
{
738
	return pool->nr_idle;
739 740 741
}

/* Do I need to keep working?  Called from currently running workers. */
742
static bool keep_working(struct worker_pool *pool)
743
{
744 745
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
746 747 748
}

/* Do we need a new worker?  Called from manager. */
749
static bool need_to_create_worker(struct worker_pool *pool)
750
{
751
	return need_more_worker(pool) && !may_start_working(pool);
752
}
753

754
/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760 761

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 763
}

764
/*
765 766 767
 * Wake up functions.
 */

768 769
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
770
{
771
	if (unlikely(list_empty(&pool->idle_list)))
772 773
		return NULL;

774
	return list_first_entry(&pool->idle_list, struct worker, entry);
775 776 777 778
}

/**
 * wake_up_worker - wake up an idle worker
779
 * @pool: worker pool to wake worker from
780
 *
781
 * Wake up the first idle worker of @pool.
782 783
 *
 * CONTEXT:
784
 * spin_lock_irq(pool->lock).
785
 */
786
static void wake_up_worker(struct worker_pool *pool)
787
{
788
	struct worker *worker = first_idle_worker(pool);
789 790 791 792 793

	if (likely(worker))
		wake_up_process(worker->task);
}

794
/**
795 796 797 798 799 800 801 802 803 804
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
805
void wq_worker_waking_up(struct task_struct *task, int cpu)
806 807 808
{
	struct worker *worker = kthread_data(task);

809
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
810
		WARN_ON_ONCE(worker->pool->cpu != cpu);
811
		atomic_inc(&worker->pool->nr_running);
812
	}
813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
827
 * Return:
828 829
 * Worker task on @cpu to wake up, %NULL if none.
 */
830
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 832
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833
	struct worker_pool *pool;
834

835 836 837 838 839
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
840
	if (worker->flags & WORKER_NOT_RUNNING)
841 842
		return NULL;

843 844
	pool = worker->pool;

845
	/* this can only happen on the local cpu */
846 847
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
848 849 850 851 852 853

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
854 855 856
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
857
	 * manipulating idle_list, so dereferencing idle_list without pool
858
	 * lock is safe.
859
	 */
860 861
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
862
		to_wakeup = first_idle_worker(pool);
863 864 865 866 867
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
868
 * @worker: self
869 870 871
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
872 873 874
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
875
 *
876
 * CONTEXT:
877
 * spin_lock_irq(pool->lock)
878 879 880 881
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
882
	struct worker_pool *pool = worker->pool;
883

884 885
	WARN_ON_ONCE(worker->task != current);

886 887 888 889 890 891 892 893
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
894
			if (atomic_dec_and_test(&pool->nr_running) &&
895
			    !list_empty(&pool->worklist))
896
				wake_up_worker(pool);
897
		} else
898
			atomic_dec(&pool->nr_running);
899 900
	}

901 902 903 904
	worker->flags |= flags;
}

/**
905
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
906
 * @worker: self
907 908
 * @flags: flags to clear
 *
909
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
910
 *
911
 * CONTEXT:
912
 * spin_lock_irq(pool->lock)
913 914 915
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
916
	struct worker_pool *pool = worker->pool;
917 918
	unsigned int oflags = worker->flags;

919 920
	WARN_ON_ONCE(worker->task != current);

921
	worker->flags &= ~flags;
922

923 924 925 926 927
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
928 929
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
930
			atomic_inc(&pool->nr_running);
931 932
}

933 934
/**
 * find_worker_executing_work - find worker which is executing a work
935
 * @pool: pool of interest
936 937
 * @work: work to find worker for
 *
938 939
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
940 941 942 943 944 945 946 947 948 949 950 951
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
952 953 954 955 956 957
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
958 959
 *
 * CONTEXT:
960
 * spin_lock_irq(pool->lock).
961
 *
962 963
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
964
 * otherwise.
965
 */
966
static struct worker *find_worker_executing_work(struct worker_pool *pool,
967
						 struct work_struct *work)
968
{
969 970
	struct worker *worker;

971
	hash_for_each_possible(pool->busy_hash, worker, hentry,
972 973 974
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
975 976 977
			return worker;

	return NULL;
978 979
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
995
 * spin_lock_irq(pool->lock).
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1079
static void pwq_activate_delayed_work(struct work_struct *work)
1080
{
1081
	struct pool_workqueue *pwq = get_work_pwq(work);
1082 1083

	trace_workqueue_activate_work(work);
1084
	move_linked_works(work, &pwq->pool->worklist, NULL);
1085
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1086
	pwq->nr_active++;
1087 1088
}

1089
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1090
{
1091
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1092 1093
						    struct work_struct, entry);

1094
	pwq_activate_delayed_work(work);
1095 1096
}

1097
/**
1098 1099
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1100 1101 1102
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1103
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1104 1105
 *
 * CONTEXT:
1106
 * spin_lock_irq(pool->lock).
1107
 */
1108
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1109
{
T
Tejun Heo 已提交
1110
	/* uncolored work items don't participate in flushing or nr_active */
1111
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1112
		goto out_put;
1113

1114
	pwq->nr_in_flight[color]--;
1115

1116 1117
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1118
		/* one down, submit a delayed one */
1119 1120
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1121 1122 1123
	}

	/* is flush in progress and are we at the flushing tip? */
1124
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1125
		goto out_put;
1126 1127

	/* are there still in-flight works? */
1128
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1129
		goto out_put;
1130

1131 1132
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1133 1134

	/*
1135
	 * If this was the last pwq, wake up the first flusher.  It
1136 1137
	 * will handle the rest.
	 */
1138 1139
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1140 1141
out_put:
	put_pwq(pwq);
1142 1143
}

1144
/**
1145
 * try_to_grab_pending - steal work item from worklist and disable irq
1146 1147
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1148
 * @flags: place to store irq state
1149 1150
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1151
 * stable state - idle, on timer or on worklist.
1152
 *
1153
 * Return:
1154 1155 1156
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1157 1158
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1159
 *
1160
 * Note:
1161
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1162 1163 1164
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1165 1166 1167 1168
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1169
 * This function is safe to call from any context including IRQ handler.
1170
 */
1171 1172
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1173
{
1174
	struct worker_pool *pool;
1175
	struct pool_workqueue *pwq;
1176

1177 1178
	local_irq_save(*flags);

1179 1180 1181 1182
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1183 1184 1185 1186 1187
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1188 1189 1190 1191 1192
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1193 1194 1195 1196 1197 1198 1199
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1200 1201
	pool = get_work_pool(work);
	if (!pool)
1202
		goto fail;
1203

1204
	spin_lock(&pool->lock);
1205
	/*
1206 1207 1208 1209 1210
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1211 1212
	 * item is currently queued on that pool.
	 */
1213 1214
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1215 1216 1217 1218 1219
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1220
		 * on the delayed_list, will confuse pwq->nr_active
1221 1222 1223 1224
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1225
			pwq_activate_delayed_work(work);
1226 1227

		list_del_init(&work->entry);
1228
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1229

1230
		/* work->data points to pwq iff queued, point to pool */
1231 1232 1233 1234
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1235
	}
1236
	spin_unlock(&pool->lock);
1237 1238 1239 1240 1241
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1242
	return -EAGAIN;
1243 1244
}

T
Tejun Heo 已提交
1245
/**
1246
 * insert_work - insert a work into a pool
1247
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1248 1249 1250 1251
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1252
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1253
 * work_struct flags.
T
Tejun Heo 已提交
1254 1255
 *
 * CONTEXT:
1256
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1257
 */
1258 1259
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1260
{
1261
	struct worker_pool *pool = pwq->pool;
1262

T
Tejun Heo 已提交
1263
	/* we own @work, set data and link */
1264
	set_work_pwq(work, pwq, extra_flags);
1265
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1266
	get_pwq(pwq);
1267 1268

	/*
1269 1270 1271
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1272 1273 1274
	 */
	smp_mb();

1275 1276
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1277 1278
}

1279 1280
/*
 * Test whether @work is being queued from another work executing on the
1281
 * same workqueue.
1282 1283 1284
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1285 1286 1287 1288 1289 1290 1291
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1292
	return worker && worker->current_pwq->wq == wq;
1293 1294
}

1295
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1296 1297
			 struct work_struct *work)
{
1298
	struct pool_workqueue *pwq;
1299
	struct worker_pool *last_pool;
1300
	struct list_head *worklist;
1301
	unsigned int work_flags;
1302
	unsigned int req_cpu = cpu;
1303 1304 1305 1306 1307 1308 1309 1310

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1311

1312
	debug_work_activate(work);
1313

1314
	/* if draining, only works from the same workqueue are allowed */
1315
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1316
	    WARN_ON_ONCE(!is_chained_work(wq)))
1317
		return;
1318
retry:
1319 1320 1321
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1322
	/* pwq which will be used unless @work is executing elsewhere */
1323
	if (!(wq->flags & WQ_UNBOUND))
1324
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1325 1326
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1327

1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1336

1337
		spin_lock(&last_pool->lock);
1338

1339
		worker = find_worker_executing_work(last_pool, work);
1340

1341 1342
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1343
		} else {
1344 1345
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1346
			spin_lock(&pwq->pool->lock);
1347
		}
1348
	} else {
1349
		spin_lock(&pwq->pool->lock);
1350 1351
	}

1352 1353 1354 1355
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1356 1357
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1371 1372
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1373

1374
	if (WARN_ON(!list_empty(&work->entry))) {
1375
		spin_unlock(&pwq->pool->lock);
1376 1377
		return;
	}
1378

1379 1380
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1381

1382
	if (likely(pwq->nr_active < pwq->max_active)) {
1383
		trace_workqueue_activate_work(work);
1384 1385
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1386 1387
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1388
		worklist = &pwq->delayed_works;
1389
	}
1390

1391
	insert_work(pwq, work, worklist, work_flags);
1392

1393
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1394 1395
}

1396
/**
1397 1398
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1399 1400 1401
 * @wq: workqueue to use
 * @work: work to queue
 *
1402 1403
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1404 1405
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1406
 */
1407 1408
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1409
{
1410
	bool ret = false;
1411
	unsigned long flags;
1412

1413
	local_irq_save(flags);
1414

1415
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1416
		__queue_work(cpu, wq, work);
1417
		ret = true;
1418
	}
1419

1420
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1421 1422
	return ret;
}
1423
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1424

1425
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1426
{
1427
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1428

1429
	/* should have been called from irqsafe timer with irq already off */
1430
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1431
}
1432
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1433

1434 1435
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1436
{
1437 1438 1439 1440 1441
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1442 1443
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1456
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1457

1458
	dwork->wq = wq;
1459
	dwork->cpu = cpu;
1460 1461 1462 1463 1464 1465
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1466 1467
}

1468 1469 1470 1471
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1472
 * @dwork: work to queue
1473 1474
 * @delay: number of jiffies to wait before queueing
 *
1475
 * Return: %false if @work was already on a queue, %true otherwise.  If
1476 1477
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1478
 */
1479 1480
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1481
{
1482
	struct work_struct *work = &dwork->work;
1483
	bool ret = false;
1484
	unsigned long flags;
1485

1486 1487
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1488

1489
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1490
		__queue_delayed_work(cpu, wq, dwork, delay);
1491
		ret = true;
1492
	}
1493

1494
	local_irq_restore(flags);
1495 1496
	return ret;
}
1497
EXPORT_SYMBOL(queue_delayed_work_on);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1511
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1512 1513
 * pending and its timer was modified.
 *
1514
 * This function is safe to call from any context including IRQ handler.
1515 1516 1517 1518 1519 1520 1521
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1522

1523 1524 1525
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1526

1527 1528 1529
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1530
	}
1531 1532

	/* -ENOENT from try_to_grab_pending() becomes %true */
1533 1534
	return ret;
}
1535 1536
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1537 1538 1539 1540 1541 1542 1543 1544
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1545
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1546 1547
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1548
{
1549
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1550

1551 1552 1553 1554
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1555

1556 1557
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1558
	pool->nr_idle++;
1559
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1560 1561

	/* idle_list is LIFO */
1562
	list_add(&worker->entry, &pool->idle_list);
1563

1564 1565
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1566

1567
	/*
1568
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1569
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1570 1571
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1572
	 */
1573
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1574
		     pool->nr_workers == pool->nr_idle &&
1575
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1585
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1586 1587 1588
 */
static void worker_leave_idle(struct worker *worker)
{
1589
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1590

1591 1592
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1593
	worker_clr_flags(worker, WORKER_IDLE);
1594
	pool->nr_idle--;
T
Tejun Heo 已提交
1595 1596 1597
	list_del_init(&worker->entry);
}

T
Tejun Heo 已提交
1598 1599 1600 1601 1602
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1603 1604
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1605
		INIT_LIST_HEAD(&worker->scheduled);
1606
		INIT_LIST_HEAD(&worker->node);
1607 1608
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1609
	}
T
Tejun Heo 已提交
1610 1611 1612
	return worker;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1646 1647 1648 1649 1650
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1651 1652 1653
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1654 1655 1656 1657 1658 1659
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1660
	mutex_lock(&pool->attach_mutex);
1661 1662
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1663
		detach_completion = pool->detach_completion;
1664
	mutex_unlock(&pool->attach_mutex);
1665 1666 1667 1668 1669

	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1670 1671
/**
 * create_worker - create a new workqueue worker
1672
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1673
 *
1674 1675
 * Create a new worker which is attached to @pool.  The new worker must be
 * started by start_worker().
T
Tejun Heo 已提交
1676 1677 1678 1679
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1680
 * Return:
T
Tejun Heo 已提交
1681 1682
 * Pointer to the newly created worker.
 */
1683
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1684 1685
{
	struct worker *worker = NULL;
1686
	int id = -1;
1687
	char id_buf[16];
T
Tejun Heo 已提交
1688

1689 1690
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1691 1692
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1693 1694 1695 1696 1697

	worker = alloc_worker();
	if (!worker)
		goto fail;

1698
	worker->pool = pool;
T
Tejun Heo 已提交
1699 1700
	worker->id = id;

1701
	if (pool->cpu >= 0)
1702 1703
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1704
	else
1705 1706
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1707
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1708
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1709 1710 1711
	if (IS_ERR(worker->task))
		goto fail;

1712 1713 1714 1715 1716
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1717
	/* successful, attach the worker to the pool */
1718
	worker_attach_to_pool(worker, pool);
1719

T
Tejun Heo 已提交
1720
	return worker;
1721

T
Tejun Heo 已提交
1722
fail:
1723
	if (id >= 0)
1724
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1725 1726 1727 1728 1729 1730 1731 1732
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1733
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1734 1735
 *
 * CONTEXT:
1736
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1737 1738 1739
 */
static void start_worker(struct worker *worker)
{
1740
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1741
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1742 1743 1744
	wake_up_process(worker->task);
}

1745 1746 1747 1748
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1749
 * Grab the managership of @pool and create and start a new worker for it.
1750 1751
 *
 * Return: 0 on success. A negative error code otherwise.
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1767 1768 1769 1770
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1771 1772
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1773 1774
 *
 * CONTEXT:
1775
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1776 1777 1778
 */
static void destroy_worker(struct worker *worker)
{
1779
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1780

1781 1782
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1783
	/* sanity check frenzy */
1784
	if (WARN_ON(worker->current_work) ||
1785 1786
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1787
		return;
T
Tejun Heo 已提交
1788

1789 1790
	pool->nr_workers--;
	pool->nr_idle--;
1791

T
Tejun Heo 已提交
1792
	list_del_init(&worker->entry);
1793
	worker->flags |= WORKER_DIE;
1794
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1795 1796
}

1797
static void idle_worker_timeout(unsigned long __pool)
1798
{
1799
	struct worker_pool *pool = (void *)__pool;
1800

1801
	spin_lock_irq(&pool->lock);
1802

1803
	while (too_many_workers(pool)) {
1804 1805 1806 1807
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1808
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1809 1810
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1811
		if (time_before(jiffies, expires)) {
1812
			mod_timer(&pool->idle_timer, expires);
1813
			break;
1814
		}
1815 1816

		destroy_worker(worker);
1817 1818
	}

1819
	spin_unlock_irq(&pool->lock);
1820
}
1821

1822
static void send_mayday(struct work_struct *work)
1823
{
1824 1825
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1826

1827
	lockdep_assert_held(&wq_mayday_lock);
1828

1829
	if (!wq->rescuer)
1830
		return;
1831 1832

	/* mayday mayday mayday */
1833
	if (list_empty(&pwq->mayday_node)) {
1834 1835 1836 1837 1838 1839
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1840
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1841
		wake_up_process(wq->rescuer->task);
1842
	}
1843 1844
}

1845
static void pool_mayday_timeout(unsigned long __pool)
1846
{
1847
	struct worker_pool *pool = (void *)__pool;
1848 1849
	struct work_struct *work;

1850
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1851
	spin_lock(&pool->lock);
1852

1853
	if (need_to_create_worker(pool)) {
1854 1855 1856 1857 1858 1859
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1860
		list_for_each_entry(work, &pool->worklist, entry)
1861
			send_mayday(work);
L
Linus Torvalds 已提交
1862
	}
1863

1864
	spin_unlock(&pool->lock);
1865
	spin_unlock_irq(&wq_mayday_lock);
1866

1867
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1868 1869
}

1870 1871
/**
 * maybe_create_worker - create a new worker if necessary
1872
 * @pool: pool to create a new worker for
1873
 *
1874
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1875 1876
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1877
 * sent to all rescuers with works scheduled on @pool to resolve
1878 1879
 * possible allocation deadlock.
 *
1880 1881
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1882 1883
 *
 * LOCKING:
1884
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1885 1886 1887
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1888
 * Return:
1889
 * %false if no action was taken and pool->lock stayed locked, %true
1890 1891
 * otherwise.
 */
1892
static bool maybe_create_worker(struct worker_pool *pool)
1893 1894
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1895
{
1896
	if (!need_to_create_worker(pool))
1897 1898
		return false;
restart:
1899
	spin_unlock_irq(&pool->lock);
1900

1901
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1902
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1903 1904 1905 1906

	while (true) {
		struct worker *worker;

1907
		worker = create_worker(pool);
1908
		if (worker) {
1909
			del_timer_sync(&pool->mayday_timer);
1910
			spin_lock_irq(&pool->lock);
1911
			start_worker(worker);
1912 1913
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1914 1915 1916
			return true;
		}

1917
		if (!need_to_create_worker(pool))
1918
			break;
L
Linus Torvalds 已提交
1919

1920 1921
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1922

1923
		if (!need_to_create_worker(pool))
1924 1925 1926
			break;
	}

1927
	del_timer_sync(&pool->mayday_timer);
1928
	spin_lock_irq(&pool->lock);
1929
	if (need_to_create_worker(pool))
1930 1931 1932 1933
		goto restart;
	return true;
}

1934
/**
1935 1936
 * manage_workers - manage worker pool
 * @worker: self
1937
 *
1938
 * Assume the manager role and manage the worker pool @worker belongs
1939
 * to.  At any given time, there can be only zero or one manager per
1940
 * pool.  The exclusion is handled automatically by this function.
1941 1942 1943 1944
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1945 1946
 *
 * CONTEXT:
1947
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 1949
 * multiple times.  Does GFP_KERNEL allocations.
 *
1950
 * Return:
1951 1952 1953 1954 1955
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
1956
 */
1957
static bool manage_workers(struct worker *worker)
1958
{
1959
	struct worker_pool *pool = worker->pool;
1960
	bool ret = false;
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1972
	if (!mutex_trylock(&pool->manager_arb))
1973
		return ret;
1974

1975
	ret |= maybe_create_worker(pool);
1976

1977
	mutex_unlock(&pool->manager_arb);
1978
	return ret;
1979 1980
}

1981 1982
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1983
 * @worker: self
1984 1985 1986 1987 1988 1989 1990 1991 1992
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1993
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1994
 */
T
Tejun Heo 已提交
1995
static void process_one_work(struct worker *worker, struct work_struct *work)
1996 1997
__releases(&pool->lock)
__acquires(&pool->lock)
1998
{
1999
	struct pool_workqueue *pwq = get_work_pwq(work);
2000
	struct worker_pool *pool = worker->pool;
2001
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2002
	int work_color;
2003
	struct worker *collision;
2004 2005 2006 2007 2008 2009 2010 2011
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2012 2013 2014
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2015
#endif
2016 2017 2018
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2019
	 * unbound or a disassociated pool.
2020
	 */
2021
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2022
		     !(pool->flags & POOL_DISASSOCIATED) &&
2023
		     raw_smp_processor_id() != pool->cpu);
2024

2025 2026 2027 2028 2029 2030
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2031
	collision = find_worker_executing_work(pool, work);
2032 2033 2034 2035 2036
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2037
	/* claim and dequeue */
2038
	debug_work_deactivate(work);
2039
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2040
	worker->current_work = work;
2041
	worker->current_func = work->func;
2042
	worker->current_pwq = pwq;
2043
	work_color = get_work_color(work);
2044

2045 2046
	list_del_init(&work->entry);

2047 2048 2049 2050 2051 2052 2053
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2054
	/*
2055
	 * Unbound pool isn't concurrency managed and work items should be
2056 2057
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2058 2059
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2060

2061
	/*
2062
	 * Record the last pool and clear PENDING which should be the last
2063
	 * update to @work.  Also, do this inside @pool->lock so that
2064 2065
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2066
	 */
2067
	set_work_pool_and_clear_pending(work, pool->id);
2068

2069
	spin_unlock_irq(&pool->lock);
2070

2071
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2072
	lock_map_acquire(&lockdep_map);
2073
	trace_workqueue_execute_start(work);
2074
	worker->current_func(work);
2075 2076 2077 2078 2079
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2080
	lock_map_release(&lockdep_map);
2081
	lock_map_release(&pwq->wq->lockdep_map);
2082 2083

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2084 2085
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2086 2087
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2088 2089 2090 2091
		debug_show_held_locks(current);
		dump_stack();
	}

2092 2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2101
	spin_lock_irq(&pool->lock);
2102

2103 2104 2105 2106
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2107
	/* we're done with it, release */
2108
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2109
	worker->current_work = NULL;
2110
	worker->current_func = NULL;
2111
	worker->current_pwq = NULL;
2112
	worker->desc_valid = false;
2113
	pwq_dec_nr_in_flight(pwq, work_color);
2114 2115
}

2116 2117 2118 2119 2120 2121 2122 2123 2124
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2125
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2126 2127 2128
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2129
{
2130 2131
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2132
						struct work_struct, entry);
T
Tejun Heo 已提交
2133
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2134 2135 2136
	}
}

T
Tejun Heo 已提交
2137 2138
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2139
 * @__worker: self
T
Tejun Heo 已提交
2140
 *
2141 2142 2143 2144 2145
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2146 2147
 *
 * Return: 0
T
Tejun Heo 已提交
2148
 */
T
Tejun Heo 已提交
2149
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2150
{
T
Tejun Heo 已提交
2151
	struct worker *worker = __worker;
2152
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2153

2154 2155
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2156
woke_up:
2157
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2158

2159 2160
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2161
		spin_unlock_irq(&pool->lock);
2162 2163
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2164 2165

		set_task_comm(worker->task, "kworker/dying");
2166
		ida_simple_remove(&pool->worker_ida, worker->id);
2167 2168
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2169
		return 0;
T
Tejun Heo 已提交
2170
	}
2171

T
Tejun Heo 已提交
2172
	worker_leave_idle(worker);
2173
recheck:
2174
	/* no more worker necessary? */
2175
	if (!need_more_worker(pool))
2176 2177 2178
		goto sleep;

	/* do we need to manage? */
2179
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2180 2181
		goto recheck;

T
Tejun Heo 已提交
2182 2183 2184 2185 2186
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2187
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2188

2189
	/*
2190 2191 2192 2193 2194
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2195
	 */
2196
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2197 2198

	do {
T
Tejun Heo 已提交
2199
		struct work_struct *work =
2200
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2201 2202 2203 2204 2205 2206
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2207
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2208 2209 2210
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2211
		}
2212
	} while (keep_working(pool));
2213 2214

	worker_set_flags(worker, WORKER_PREP, false);
2215
sleep:
T
Tejun Heo 已提交
2216
	/*
2217 2218 2219 2220 2221
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2222 2223 2224
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2225
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2226 2227
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2228 2229
}

2230 2231
/**
 * rescuer_thread - the rescuer thread function
2232
 * @__rescuer: self
2233 2234
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2235
 * workqueue which has WQ_MEM_RECLAIM set.
2236
 *
2237
 * Regular work processing on a pool may block trying to create a new
2238 2239 2240 2241 2242
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2243 2244
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2245 2246 2247
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2248 2249
 *
 * Return: 0
2250
 */
2251
static int rescuer_thread(void *__rescuer)
2252
{
2253 2254
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2255
	struct list_head *scheduled = &rescuer->scheduled;
2256
	bool should_stop;
2257 2258

	set_user_nice(current, RESCUER_NICE_LEVEL);
2259 2260 2261 2262 2263 2264

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2265 2266 2267
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2268 2269 2270 2271 2272 2273 2274 2275 2276
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2277

2278
	/* see whether any pwq is asking for help */
2279
	spin_lock_irq(&wq_mayday_lock);
2280 2281 2282 2283

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2284
		struct worker_pool *pool = pwq->pool;
2285 2286 2287
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2288 2289
		list_del_init(&pwq->mayday_node);

2290
		spin_unlock_irq(&wq_mayday_lock);
2291

2292 2293 2294
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2295
		rescuer->pool = pool;
2296 2297 2298 2299 2300

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2301
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2302
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2303
			if (get_work_pwq(work) == pwq)
2304 2305 2306
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2307 2308 2309 2310 2311
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2312

2313 2314 2315 2316 2317 2318
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2319
		/*
2320
		 * Leave this pool.  If keep_working() is %true, notify a
2321 2322 2323
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2324 2325
		if (keep_working(pool))
			wake_up_worker(pool);
2326

2327
		rescuer->pool = NULL;
2328
		spin_unlock(&pool->lock);
2329
		spin_lock(&wq_mayday_lock);
2330 2331
	}

2332
	spin_unlock_irq(&wq_mayday_lock);
2333

2334 2335 2336 2337 2338 2339
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2340 2341
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2342 2343
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2344 2345
}

O
Oleg Nesterov 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2357 2358
/**
 * insert_wq_barrier - insert a barrier work
2359
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2360
 * @barr: wq_barrier to insert
2361 2362
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2363
 *
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2376
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2377 2378
 *
 * CONTEXT:
2379
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2380
 */
2381
static void insert_wq_barrier(struct pool_workqueue *pwq,
2382 2383
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2384
{
2385 2386 2387
	struct list_head *head;
	unsigned int linked = 0;

2388
	/*
2389
	 * debugobject calls are safe here even with pool->lock locked
2390 2391 2392 2393
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2394
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2395
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2396
	init_completion(&barr->done);
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2413
	debug_work_activate(&barr->work);
2414
	insert_work(pwq, &barr->work, head,
2415
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2416 2417
}

2418
/**
2419
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2420 2421 2422 2423
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2424
 * Prepare pwqs for workqueue flushing.
2425
 *
2426 2427 2428 2429 2430
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2431 2432 2433 2434 2435 2436 2437
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2438
 * If @work_color is non-negative, all pwqs should have the same
2439 2440 2441 2442
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2443
 * mutex_lock(wq->mutex).
2444
 *
2445
 * Return:
2446 2447 2448
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2449
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2450
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2451
{
2452
	bool wait = false;
2453
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2454

2455
	if (flush_color >= 0) {
2456
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2457
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2458
	}
2459

2460
	for_each_pwq(pwq, wq) {
2461
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2462

2463
		spin_lock_irq(&pool->lock);
2464

2465
		if (flush_color >= 0) {
2466
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2467

2468 2469 2470
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2471 2472 2473
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2474

2475
		if (work_color >= 0) {
2476
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2477
			pwq->work_color = work_color;
2478
		}
L
Linus Torvalds 已提交
2479

2480
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2481
	}
2482

2483
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2484
		complete(&wq->first_flusher->done);
2485

2486
	return wait;
L
Linus Torvalds 已提交
2487 2488
}

2489
/**
L
Linus Torvalds 已提交
2490
 * flush_workqueue - ensure that any scheduled work has run to completion.
2491
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2492
 *
2493 2494
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2495
 */
2496
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2497
{
2498 2499 2500 2501 2502 2503
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2504

2505 2506
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2507

2508
	mutex_lock(&wq->mutex);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2521
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2522 2523 2524 2525 2526
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2527
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2528 2529 2530

			wq->first_flusher = &this_flusher;

2531
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2532 2533 2534 2535 2536 2537 2538 2539
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2540
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2541
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2542
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2553
	mutex_unlock(&wq->mutex);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2566
	mutex_lock(&wq->mutex);
2567

2568 2569 2570 2571
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2572 2573
	wq->first_flusher = NULL;

2574 2575
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2588 2589
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2609
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2610 2611 2612
		}

		if (list_empty(&wq->flusher_queue)) {
2613
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2614 2615 2616 2617 2618
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2619
		 * the new first flusher and arm pwqs.
2620
		 */
2621 2622
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2623 2624 2625 2626

		list_del_init(&next->list);
		wq->first_flusher = next;

2627
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2638
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2639
}
2640
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2656
	struct pool_workqueue *pwq;
2657 2658 2659 2660

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2661
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2662
	 */
2663
	mutex_lock(&wq->mutex);
2664
	if (!wq->nr_drainers++)
2665
		wq->flags |= __WQ_DRAINING;
2666
	mutex_unlock(&wq->mutex);
2667 2668 2669
reflush:
	flush_workqueue(wq);

2670
	mutex_lock(&wq->mutex);
2671

2672
	for_each_pwq(pwq, wq) {
2673
		bool drained;
2674

2675
		spin_lock_irq(&pwq->pool->lock);
2676
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2677
		spin_unlock_irq(&pwq->pool->lock);
2678 2679

		if (drained)
2680 2681 2682 2683
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2684
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2685
				wq->name, flush_cnt);
2686

2687
		mutex_unlock(&wq->mutex);
2688 2689 2690 2691
		goto reflush;
	}

	if (!--wq->nr_drainers)
2692
		wq->flags &= ~__WQ_DRAINING;
2693
	mutex_unlock(&wq->mutex);
2694 2695 2696
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2697
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2698
{
2699
	struct worker *worker = NULL;
2700
	struct worker_pool *pool;
2701
	struct pool_workqueue *pwq;
2702 2703

	might_sleep();
2704 2705

	local_irq_disable();
2706
	pool = get_work_pool(work);
2707 2708
	if (!pool) {
		local_irq_enable();
2709
		return false;
2710
	}
2711

2712
	spin_lock(&pool->lock);
2713
	/* see the comment in try_to_grab_pending() with the same code */
2714 2715 2716
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2717
			goto already_gone;
2718
	} else {
2719
		worker = find_worker_executing_work(pool, work);
2720
		if (!worker)
T
Tejun Heo 已提交
2721
			goto already_gone;
2722
		pwq = worker->current_pwq;
2723
	}
2724

2725
	insert_wq_barrier(pwq, barr, work, worker);
2726
	spin_unlock_irq(&pool->lock);
2727

2728 2729 2730 2731 2732 2733
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2734
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2735
		lock_map_acquire(&pwq->wq->lockdep_map);
2736
	else
2737 2738
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2739

2740
	return true;
T
Tejun Heo 已提交
2741
already_gone:
2742
	spin_unlock_irq(&pool->lock);
2743
	return false;
2744
}
2745 2746 2747 2748 2749

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2750 2751
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2752
 *
2753
 * Return:
2754 2755 2756 2757 2758
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2759 2760
	struct wq_barrier barr;

2761 2762 2763
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2764 2765 2766 2767 2768 2769 2770
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2771
}
2772
EXPORT_SYMBOL_GPL(flush_work);
2773

2774
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2775
{
2776
	unsigned long flags;
2777 2778 2779
	int ret;

	do {
2780 2781 2782 2783 2784 2785
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2786
			flush_work(work);
2787 2788
	} while (unlikely(ret < 0));

2789 2790 2791 2792
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2793
	flush_work(work);
2794
	clear_work_data(work);
2795 2796 2797
	return ret;
}

2798
/**
2799 2800
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2801
 *
2802 2803 2804 2805
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2806
 *
2807 2808
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2809
 *
2810
 * The caller must ensure that the workqueue on which @work was last
2811
 * queued can't be destroyed before this function returns.
2812
 *
2813
 * Return:
2814
 * %true if @work was pending, %false otherwise.
2815
 */
2816
bool cancel_work_sync(struct work_struct *work)
2817
{
2818
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2819
}
2820
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2821

2822
/**
2823 2824
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2825
 *
2826 2827 2828
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2829
 *
2830
 * Return:
2831 2832
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2833
 */
2834 2835
bool flush_delayed_work(struct delayed_work *dwork)
{
2836
	local_irq_disable();
2837
	if (del_timer_sync(&dwork->timer))
2838
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2839
	local_irq_enable();
2840 2841 2842 2843
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2844
/**
2845 2846
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2847
 *
2848 2849 2850 2851 2852 2853 2854 2855 2856
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2857
 *
2858
 * This function is safe to call from any context including IRQ handler.
2859
 */
2860
bool cancel_delayed_work(struct delayed_work *dwork)
2861
{
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2872 2873
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2874
	local_irq_restore(flags);
2875
	return ret;
2876
}
2877
EXPORT_SYMBOL(cancel_delayed_work);
2878

2879 2880 2881 2882 2883 2884
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2885
 * Return:
2886 2887 2888
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2889
{
2890
	return __cancel_work_timer(&dwork->work, true);
2891
}
2892
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2893

2894
/**
2895
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2896 2897
 * @func: the function to call
 *
2898 2899
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2900
 * schedule_on_each_cpu() is very slow.
2901
 *
2902
 * Return:
2903
 * 0 on success, -errno on failure.
2904
 */
2905
int schedule_on_each_cpu(work_func_t func)
2906 2907
{
	int cpu;
2908
	struct work_struct __percpu *works;
2909

2910 2911
	works = alloc_percpu(struct work_struct);
	if (!works)
2912
		return -ENOMEM;
2913

2914 2915
	get_online_cpus();

2916
	for_each_online_cpu(cpu) {
2917 2918 2919
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2920
		schedule_work_on(cpu, work);
2921
	}
2922 2923 2924 2925

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2926
	put_online_cpus();
2927
	free_percpu(works);
2928 2929 2930
	return 0;
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
2955 2956
void flush_scheduled_work(void)
{
2957
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
2958
}
2959
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2970
 * Return:	0 - function was executed
2971 2972
 *		1 - function was scheduled for execution
 */
2973
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2974 2975
{
	if (!in_interrupt()) {
2976
		fn(&ew->work);
2977 2978 2979
		return 0;
	}

2980
	INIT_WORK(&ew->work, fn);
2981 2982 2983 2984 2985 2986
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3014 3015
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3016 3017 3018 3019 3020
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3021
static DEVICE_ATTR_RO(per_cpu);
3022

3023 3024
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3025 3026 3027 3028 3029 3030
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3031 3032 3033
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3044
static DEVICE_ATTR_RW(max_active);
3045

3046 3047 3048 3049
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3050
};
3051
ATTRIBUTE_GROUPS(wq_sysfs);
3052

3053 3054
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3055 3056
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3057 3058
	const char *delim = "";
	int node, written = 0;
3059 3060

	rcu_read_lock_sched();
3061 3062 3063 3064 3065 3066 3067
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3079 3080 3081
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3095 3096 3097
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3113
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3128 3129 3130
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3191
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3192
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3193 3194
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3195
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3196 3197 3198 3199 3200
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3201
	.dev_groups			= wq_sysfs_groups,
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3230
 * Return: 0 on success, -errno on failure.
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3323 3324 3325
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3337
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3338 3339 3340 3341 3342 3343
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3344 3345 3346 3347 3348
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3349 3350 3351 3352 3353 3354
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3355 3356 3357 3358 3359 3360 3361 3362
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3363 3364
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3379 3380 3381 3382 3383
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3384 3385
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3386 3387
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3388 3389
 */
static int init_worker_pool(struct worker_pool *pool)
3390 3391
{
	spin_lock_init(&pool->lock);
3392 3393
	pool->id = -1;
	pool->cpu = -1;
3394
	pool->node = NUMA_NO_NODE;
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3408
	mutex_init(&pool->attach_mutex);
3409
	INIT_LIST_HEAD(&pool->workers);
T
Tejun Heo 已提交
3410

3411
	ida_init(&pool->worker_ida);
3412 3413 3414 3415
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3416 3417 3418 3419
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3420 3421
}

3422 3423 3424 3425
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3426
	ida_destroy(&pool->worker_ida);
3427 3428 3429 3430 3431 3432 3433 3434 3435
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3436 3437 3438
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3439 3440
 *
 * Should be called with wq_pool_mutex held.
3441 3442 3443
 */
static void put_unbound_pool(struct worker_pool *pool)
{
3444
	DECLARE_COMPLETION_ONSTACK(detach_completion);
3445 3446
	struct worker *worker;

3447 3448 3449
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3450 3451 3452
		return;

	/* sanity checks */
3453
	if (WARN_ON(!(pool->cpu < 0)) ||
3454
	    WARN_ON(!list_empty(&pool->worklist)))
3455 3456 3457 3458 3459 3460 3461
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3462 3463 3464
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
3465
	 * attach_mutex.
3466
	 */
3467 3468
	mutex_lock(&pool->manager_arb);

3469
	spin_lock_irq(&pool->lock);
3470
	while ((worker = first_idle_worker(pool)))
3471 3472 3473
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3474

3475
	mutex_lock(&pool->attach_mutex);
3476
	if (!list_empty(&pool->workers))
3477
		pool->detach_completion = &detach_completion;
3478
	mutex_unlock(&pool->attach_mutex);
3479 3480 3481 3482

	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3500
 * create a new one.
3501 3502
 *
 * Should be called with wq_pool_mutex held.
3503 3504 3505
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3506 3507 3508 3509 3510
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3511
	int node;
3512

3513
	lockdep_assert_held(&wq_pool_mutex);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

T
Tejun Heo 已提交
3528
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3529 3530
	copy_workqueue_attrs(pool->attrs, attrs);

3531 3532 3533 3534 3535 3536
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3548 3549 3550 3551
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3552
	if (create_and_start_worker(pool) < 0)
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3581
	bool is_last;
T
Tejun Heo 已提交
3582 3583 3584 3585

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3586
	/*
3587
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3588 3589 3590
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3591
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3592
	list_del_rcu(&pwq->pwqs_node);
3593
	is_last = list_empty(&wq->pwqs);
3594
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3595

3596
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3597
	put_unbound_pool(pool);
3598 3599
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3600 3601 3602 3603 3604 3605
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3606 3607
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3608
		kfree(wq);
3609
	}
T
Tejun Heo 已提交
3610 3611
}

3612
/**
3613
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3614 3615
 * @pwq: target pool_workqueue
 *
3616 3617 3618
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3619
 */
3620
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3621
{
3622 3623 3624 3625
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3626
	lockdep_assert_held(&wq->mutex);
3627 3628 3629 3630 3631

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3632
	spin_lock_irq(&pwq->pool->lock);
3633

3634 3635 3636 3637 3638 3639
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
3640
		pwq->max_active = wq->saved_max_active;
3641

3642 3643 3644
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3645 3646 3647 3648 3649 3650

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3651 3652 3653 3654
	} else {
		pwq->max_active = 0;
	}

3655
	spin_unlock_irq(&pwq->pool->lock);
3656 3657
}

3658
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3659 3660
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3661 3662 3663
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3664 3665
	memset(pwq, 0, sizeof(*pwq));

3666 3667 3668
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3669
	pwq->refcnt = 1;
3670
	INIT_LIST_HEAD(&pwq->delayed_works);
3671
	INIT_LIST_HEAD(&pwq->pwqs_node);
3672
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3673
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3674
}
3675

3676
/* sync @pwq with the current state of its associated wq and link it */
3677
static void link_pwq(struct pool_workqueue *pwq)
3678 3679 3680 3681
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3682

3683 3684 3685 3686
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3687 3688
	/*
	 * Set the matching work_color.  This is synchronized with
3689
	 * wq->mutex to avoid confusing flush_workqueue().
3690
	 */
3691
	pwq->work_color = wq->work_color;
3692 3693 3694 3695 3696

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3697
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3698
}
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3713
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3714 3715 3716
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3717
	}
3718

3719 3720
	init_pwq(pwq, wq, pool);
	return pwq;
3721 3722
}

3723 3724 3725 3726 3727 3728 3729
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3730
		kmem_cache_free(pwq_cache, pwq);
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3743
 * calculation.  The result is stored in @cpumask.
3744 3745 3746 3747 3748 3749 3750 3751
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3752 3753 3754
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3755 3756 3757 3758
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3759
	if (!wq_numa_enabled || attrs->no_numa)
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3796 3797 3798 3799 3800
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3801 3802 3803 3804 3805 3806
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3807
 *
3808 3809 3810
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3811 3812 3813 3814
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3815 3816
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3817
	int node, ret;
3818

3819
	/* only unbound workqueues can change attributes */
3820 3821 3822
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3823 3824 3825 3826
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3827
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3828
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3829 3830
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3831 3832
		goto enomem;

3833
	/* make a copy of @attrs and sanitize it */
3834 3835 3836
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3851
	mutex_lock(&wq_pool_mutex);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3873
	mutex_unlock(&wq_pool_mutex);
3874

3875
	/* all pwqs have been created successfully, let's install'em */
3876
	mutex_lock(&wq->mutex);
3877

3878
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3879 3880

	/* save the previous pwq and install the new one */
3881
	for_each_node(node)
3882 3883 3884 3885 3886
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3887 3888

	mutex_unlock(&wq->mutex);
3889

3890 3891 3892 3893 3894 3895
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3896 3897 3898
	ret = 0;
	/* fall through */
out_free:
3899
	free_workqueue_attrs(tmp_attrs);
3900
	free_workqueue_attrs(new_attrs);
3901
	kfree(pwq_tbl);
3902
	return ret;
3903

3904 3905 3906 3907 3908 3909 3910
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3911
enomem:
3912 3913
	ret = -ENOMEM;
	goto out_free;
3914 3915
}

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3961 3962
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
3963 3964 3965 3966 3967 3968 3969 3970

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
3971
	 * wq's, the default pwq should be used.
3972 3973 3974 3975 3976
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
3977
		goto use_dfl_pwq;
3978 3979 3980 3981 3982 3983 3984
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3985 3986
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3987 3988
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4011
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4012
{
4013
	bool highpri = wq->flags & WQ_HIGHPRI;
4014
	int cpu, ret;
4015 4016

	if (!(wq->flags & WQ_UNBOUND)) {
4017 4018
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4019 4020 4021
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4022 4023
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4024
			struct worker_pool *cpu_pools =
4025
				per_cpu(cpu_worker_pools, cpu);
4026

4027 4028 4029
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4030
			link_pwq(pwq);
4031
			mutex_unlock(&wq->mutex);
4032
		}
4033
		return 0;
4034 4035 4036 4037 4038 4039 4040
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4041
	} else {
4042
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4043
	}
T
Tejun Heo 已提交
4044 4045
}

4046 4047
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4048
{
4049 4050 4051
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4052 4053
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4054

4055
	return clamp_val(max_active, 1, lim);
4056 4057
}

4058
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4059 4060 4061
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4062
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4063
{
4064
	size_t tbl_size = 0;
4065
	va_list args;
L
Linus Torvalds 已提交
4066
	struct workqueue_struct *wq;
4067
	struct pool_workqueue *pwq;
4068

4069 4070 4071 4072
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4073
	/* allocate wq and format name */
4074 4075 4076 4077
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4078
	if (!wq)
4079
		return NULL;
4080

4081 4082 4083 4084 4085 4086
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4087 4088
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4089
	va_end(args);
L
Linus Torvalds 已提交
4090

4091
	max_active = max_active ?: WQ_DFL_ACTIVE;
4092
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4093

4094
	/* init wq */
4095
	wq->flags = flags;
4096
	wq->saved_max_active = max_active;
4097
	mutex_init(&wq->mutex);
4098
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4099
	INIT_LIST_HEAD(&wq->pwqs);
4100 4101
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4102
	INIT_LIST_HEAD(&wq->maydays);
4103

4104
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4105
	INIT_LIST_HEAD(&wq->list);
4106

4107
	if (alloc_and_link_pwqs(wq) < 0)
4108
		goto err_free_wq;
T
Tejun Heo 已提交
4109

4110 4111 4112 4113 4114
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4115 4116
		struct worker *rescuer;

4117
		rescuer = alloc_worker();
4118
		if (!rescuer)
4119
			goto err_destroy;
4120

4121 4122
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4123
					       wq->name);
4124 4125 4126 4127
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4128

4129
		wq->rescuer = rescuer;
4130
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4131
		wake_up_process(rescuer->task);
4132 4133
	}

4134 4135 4136
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4137
	/*
4138 4139 4140
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4141
	 */
4142
	mutex_lock(&wq_pool_mutex);
4143

4144
	mutex_lock(&wq->mutex);
4145 4146
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4147
	mutex_unlock(&wq->mutex);
4148

T
Tejun Heo 已提交
4149
	list_add(&wq->list, &workqueues);
4150

4151
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4152

4153
	return wq;
4154 4155

err_free_wq:
4156
	free_workqueue_attrs(wq->unbound_attrs);
4157 4158 4159 4160
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4161
	return NULL;
4162
}
4163
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4164

4165 4166 4167 4168 4169 4170 4171 4172
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4173
	struct pool_workqueue *pwq;
4174
	int node;
4175

4176 4177
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4178

4179
	/* sanity checks */
4180
	mutex_lock(&wq->mutex);
4181
	for_each_pwq(pwq, wq) {
4182 4183
		int i;

4184 4185
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4186
				mutex_unlock(&wq->mutex);
4187
				return;
4188 4189 4190
			}
		}

4191
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4192
		    WARN_ON(pwq->nr_active) ||
4193
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4194
			mutex_unlock(&wq->mutex);
4195
			return;
4196
		}
4197
	}
4198
	mutex_unlock(&wq->mutex);
4199

4200 4201 4202 4203
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4204
	mutex_lock(&wq_pool_mutex);
4205
	list_del_init(&wq->list);
4206
	mutex_unlock(&wq_pool_mutex);
4207

4208 4209
	workqueue_sysfs_unregister(wq);

4210
	if (wq->rescuer) {
4211
		kthread_stop(wq->rescuer->task);
4212
		kfree(wq->rescuer);
4213
		wq->rescuer = NULL;
4214 4215
	}

T
Tejun Heo 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4226 4227
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4228
		 */
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4241
		put_pwq_unlocked(pwq);
4242
	}
4243 4244 4245
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4258
	struct pool_workqueue *pwq;
4259

4260 4261 4262 4263
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4264
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4265

4266
	mutex_lock(&wq->mutex);
4267 4268 4269

	wq->saved_max_active = max_active;

4270 4271
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4272

4273
	mutex_unlock(&wq->mutex);
4274
}
4275
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4276

4277 4278 4279 4280 4281
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4282 4283
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4284 4285 4286 4287 4288
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4289
	return worker && worker->rescue_wq;
4290 4291
}

4292
/**
4293 4294 4295
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4296
 *
4297 4298 4299
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4300
 *
4301 4302 4303 4304 4305 4306
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4307
 * Return:
4308
 * %true if congested, %false otherwise.
4309
 */
4310
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4311
{
4312
	struct pool_workqueue *pwq;
4313 4314
	bool ret;

4315
	rcu_read_lock_sched();
4316

4317 4318 4319
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4320 4321 4322
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4323
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4324

4325
	ret = !list_empty(&pwq->delayed_works);
4326
	rcu_read_unlock_sched();
4327 4328

	return ret;
L
Linus Torvalds 已提交
4329
}
4330
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4331

4332 4333 4334 4335 4336 4337 4338 4339
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4340
 * Return:
4341 4342 4343
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4344
{
4345
	struct worker_pool *pool;
4346 4347
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4348

4349 4350
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4351

4352 4353
	local_irq_save(flags);
	pool = get_work_pool(work);
4354
	if (pool) {
4355
		spin_lock(&pool->lock);
4356 4357
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4358
		spin_unlock(&pool->lock);
4359
	}
4360
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4361

4362
	return ret;
L
Linus Torvalds 已提交
4363
}
4364
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4443 4444 4445
/*
 * CPU hotplug.
 *
4446
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4447
 * are a lot of assumptions on strong associations among work, pwq and
4448
 * pool which make migrating pending and scheduled works very
4449
 * difficult to implement without impacting hot paths.  Secondly,
4450
 * worker pools serve mix of short, long and very long running works making
4451 4452
 * blocked draining impractical.
 *
4453
 * This is solved by allowing the pools to be disassociated from the CPU
4454 4455
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4456
 */
L
Linus Torvalds 已提交
4457

4458
static void wq_unbind_fn(struct work_struct *work)
4459
{
4460
	int cpu = smp_processor_id();
4461
	struct worker_pool *pool;
4462
	struct worker *worker;
4463

4464
	for_each_cpu_worker_pool(pool, cpu) {
4465
		WARN_ON_ONCE(cpu != smp_processor_id());
4466

4467
		mutex_lock(&pool->attach_mutex);
4468
		spin_lock_irq(&pool->lock);
4469

4470
		/*
4471
		 * We've blocked all attach/detach operations. Make all workers
4472 4473 4474 4475 4476
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4477
		for_each_pool_worker(worker, pool)
4478
			worker->flags |= WORKER_UNBOUND;
4479

4480
		pool->flags |= POOL_DISASSOCIATED;
4481

4482
		spin_unlock_irq(&pool->lock);
4483
		mutex_unlock(&pool->attach_mutex);
4484

4485 4486 4487 4488 4489 4490 4491
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4492

4493 4494 4495 4496 4497 4498 4499 4500
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4501
		atomic_set(&pool->nr_running, 0);
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4512 4513
}

T
Tejun Heo 已提交
4514 4515 4516 4517
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4518
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4519 4520 4521
 */
static void rebind_workers(struct worker_pool *pool)
{
4522
	struct worker *worker;
T
Tejun Heo 已提交
4523

4524
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4525

4526 4527 4528 4529 4530 4531 4532
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4533
	for_each_pool_worker(worker, pool)
4534 4535
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4536

4537
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4538

4539
	for_each_pool_worker(worker, pool) {
4540
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4541 4542

		/*
4543 4544 4545 4546 4547 4548
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4549
		 */
4550 4551
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4552

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4572
	}
4573 4574

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4592
	lockdep_assert_held(&pool->attach_mutex);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4604
	for_each_pool_worker(worker, pool)
4605 4606 4607 4608
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4609 4610 4611 4612
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4613
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4614 4615
					       unsigned long action,
					       void *hcpu)
4616
{
4617
	int cpu = (unsigned long)hcpu;
4618
	struct worker_pool *pool;
4619
	struct workqueue_struct *wq;
4620
	int pi;
4621

T
Tejun Heo 已提交
4622
	switch (action & ~CPU_TASKS_FROZEN) {
4623
	case CPU_UP_PREPARE:
4624
		for_each_cpu_worker_pool(pool, cpu) {
4625 4626
			if (pool->nr_workers)
				continue;
4627
			if (create_and_start_worker(pool) < 0)
4628
				return NOTIFY_BAD;
4629
		}
T
Tejun Heo 已提交
4630
		break;
4631

4632 4633
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4634
		mutex_lock(&wq_pool_mutex);
4635 4636

		for_each_pool(pool, pi) {
4637
			mutex_lock(&pool->attach_mutex);
4638

4639 4640 4641 4642
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4643

4644 4645 4646 4647
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4648

4649
			mutex_unlock(&pool->attach_mutex);
4650
		}
4651

4652 4653 4654 4655
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4656
		mutex_unlock(&wq_pool_mutex);
4657
		break;
4658
	}
4659 4660 4661 4662 4663 4664 4665
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4666
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4667 4668 4669
						 unsigned long action,
						 void *hcpu)
{
4670
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4671
	struct work_struct unbind_work;
4672
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4673

4674 4675
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4676
		/* unbinding per-cpu workers should happen on the local CPU */
4677
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4678
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4679 4680 4681 4682 4683 4684 4685 4686

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4687
		flush_work(&unbind_work);
4688
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4689
		break;
4690 4691 4692 4693
	}
	return NOTIFY_OK;
}

4694
#ifdef CONFIG_SMP
4695

4696
struct work_for_cpu {
4697
	struct work_struct work;
4698 4699 4700 4701 4702
	long (*fn)(void *);
	void *arg;
	long ret;
};

4703
static void work_for_cpu_fn(struct work_struct *work)
4704
{
4705 4706
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4707 4708 4709 4710 4711 4712 4713 4714 4715
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4716
 * It is up to the caller to ensure that the cpu doesn't go offline.
4717
 * The caller must not hold any locks which would prevent @fn from completing.
4718 4719
 *
 * Return: The value @fn returns.
4720
 */
4721
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4722
{
4723
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4724

4725 4726
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4727
	flush_work(&wfc.work);
4728
	destroy_work_on_stack(&wfc.work);
4729 4730 4731 4732 4733
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4734 4735 4736 4737 4738
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4739
 * Start freezing workqueues.  After this function returns, all freezable
4740
 * workqueues will queue new works to their delayed_works list instead of
4741
 * pool->worklist.
4742 4743
 *
 * CONTEXT:
4744
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4745 4746 4747
 */
void freeze_workqueues_begin(void)
{
4748 4749
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4750

4751
	mutex_lock(&wq_pool_mutex);
4752

4753
	WARN_ON_ONCE(workqueue_freezing);
4754 4755
	workqueue_freezing = true;

4756
	list_for_each_entry(wq, &workqueues, list) {
4757
		mutex_lock(&wq->mutex);
4758 4759
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4760
		mutex_unlock(&wq->mutex);
4761
	}
4762

4763
	mutex_unlock(&wq_pool_mutex);
4764 4765 4766
}

/**
4767
 * freeze_workqueues_busy - are freezable workqueues still busy?
4768 4769 4770 4771 4772
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4773
 * Grabs and releases wq_pool_mutex.
4774
 *
4775
 * Return:
4776 4777
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4778 4779 4780 4781
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4782 4783
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4784

4785
	mutex_lock(&wq_pool_mutex);
4786

4787
	WARN_ON_ONCE(!workqueue_freezing);
4788

4789 4790 4791
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4792 4793 4794 4795
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4796
		rcu_read_lock_sched();
4797
		for_each_pwq(pwq, wq) {
4798
			WARN_ON_ONCE(pwq->nr_active < 0);
4799
			if (pwq->nr_active) {
4800
				busy = true;
4801
				rcu_read_unlock_sched();
4802 4803 4804
				goto out_unlock;
			}
		}
4805
		rcu_read_unlock_sched();
4806 4807
	}
out_unlock:
4808
	mutex_unlock(&wq_pool_mutex);
4809 4810 4811 4812 4813 4814 4815
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4816
 * frozen works are transferred to their respective pool worklists.
4817 4818
 *
 * CONTEXT:
4819
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4820 4821 4822
 */
void thaw_workqueues(void)
{
4823 4824
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4825

4826
	mutex_lock(&wq_pool_mutex);
4827 4828 4829 4830

	if (!workqueue_freezing)
		goto out_unlock;

4831
	workqueue_freezing = false;
4832

4833 4834
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4835
		mutex_lock(&wq->mutex);
4836 4837
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4838
		mutex_unlock(&wq->mutex);
4839 4840 4841
	}

out_unlock:
4842
	mutex_unlock(&wq_pool_mutex);
4843 4844 4845
}
#endif /* CONFIG_FREEZER */

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4858 4859 4860 4861 4862
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4863 4864 4865
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4866 4867 4868 4869 4870 4871 4872 4873 4874
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4875 4876
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4892
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4893
{
T
Tejun Heo 已提交
4894 4895
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4896

4897 4898 4899 4900
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4901
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4902
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4903

4904 4905
	wq_numa_init();

4906
	/* initialize CPU pools */
4907
	for_each_possible_cpu(cpu) {
4908
		struct worker_pool *pool;
4909

T
Tejun Heo 已提交
4910
		i = 0;
4911
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4912
			BUG_ON(init_worker_pool(pool));
4913
			pool->cpu = cpu;
4914
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4915
			pool->attrs->nice = std_nice[i++];
4916
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4917

T
Tejun Heo 已提交
4918
			/* alloc pool ID */
4919
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4920
			BUG_ON(worker_pool_assign_id(pool));
4921
			mutex_unlock(&wq_pool_mutex);
4922
		}
4923 4924
	}

4925
	/* create the initial worker */
4926
	for_each_online_cpu(cpu) {
4927
		struct worker_pool *pool;
4928

4929
		for_each_cpu_worker_pool(pool, cpu) {
4930
			pool->flags &= ~POOL_DISASSOCIATED;
4931
			BUG_ON(create_and_start_worker(pool) < 0);
4932
		}
4933 4934
	}

4935
	/* create default unbound and ordered wq attrs */
4936 4937 4938 4939 4940 4941
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
4952 4953
	}

4954
	system_wq = alloc_workqueue("events", 0, 0);
4955
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4956
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4957 4958
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4959 4960
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4961 4962 4963 4964 4965
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
4966
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4967 4968 4969
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
4970
	return 0;
L
Linus Torvalds 已提交
4971
}
4972
early_initcall(init_workqueues);