workqueue.c 141.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127
 * M: pool->manager_mutex protected.
128
 *
129
 * PL: wq_pool_mutex protected.
130
 *
131
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132
 *
133 134
 * WQ: wq->mutex protected.
 *
135
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136 137
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
138 139
 */

140
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
141

142
struct worker_pool {
143
	spinlock_t		lock;		/* the pool lock */
144
	int			cpu;		/* I: the associated cpu */
145
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
146
	int			id;		/* I: pool ID */
147
	unsigned int		flags;		/* X: flags */
148 149 150

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
151 152

	/* nr_idle includes the ones off idle_list for rebinding */
153 154 155 156 157 158
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

159
	/* a workers is either on busy_hash or idle_list, or the manager */
160 161 162
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

163
	/* see manage_workers() for details on the two manager mutexes */
164
	struct mutex		manager_arb;	/* manager arbitration */
165
	struct mutex		manager_mutex;	/* manager exclusion */
166
	struct idr		worker_idr;	/* M: worker IDs and iteration */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307 308 309
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

310
struct workqueue_struct *system_wq __read_mostly;
311
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_highpri_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_long_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_unbound_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
318
struct workqueue_struct *system_freezable_wq __read_mostly;
319
EXPORT_SYMBOL_GPL(system_freezable_wq);
320 321 322 323
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324

325 326 327 328
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

329 330 331
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

332
#define assert_rcu_or_pool_mutex()					\
333
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 335
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
336

337
#define assert_rcu_or_wq_mutex(wq)					\
338
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339
			   lockdep_is_held(&wq->mutex),			\
340
			   "sched RCU or wq->mutex should be held")
341

342 343 344
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345
	     (pool)++)
346

T
Tejun Heo 已提交
347 348 349
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
350
 * @pi: integer used for iteration
351
 *
352 353 354
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
355 356 357
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
358
 */
359 360
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362
		else
T
Tejun Heo 已提交
363

364 365 366 367 368 369
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
370
 * This must be called with @pool->manager_mutex.
371 372 373 374 375 376
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
377
		if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
378 379
		else

380 381 382 383
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
384
 *
385
 * This must be called either with wq->mutex held or sched RCU read locked.
386 387
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
388 389 390
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
391 392
 */
#define for_each_pwq(pwq, wq)						\
393
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
394
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
395
		else
396

397 398 399 400
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

401 402 403 404 405
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
441
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
477
	.debug_hint	= work_debug_hint,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

508 509 510 511 512 513 514
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

515 516 517 518 519
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

520 521 522 523 524 525 526
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
527 528 529 530
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

531
	lockdep_assert_held(&wq_pool_mutex);
532

533 534
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
535
	if (ret >= 0) {
T
Tejun Heo 已提交
536
		pool->id = ret;
537 538
		return 0;
	}
539
	return ret;
540 541
}

542 543 544 545 546 547 548 549
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
550 551
 *
 * Return: The unbound pool_workqueue for @node.
552 553 554 555 556 557 558 559
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
575

576
/*
577 578
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
579
 * is cleared and the high bits contain OFFQ flags and pool ID.
580
 *
581 582
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
583 584
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
585
 *
586
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
587
 * corresponding to a work.  Pool is available once the work has been
588
 * queued anywhere after initialization until it is sync canceled.  pwq is
589
 * available only while the work item is queued.
590
 *
591 592 593 594
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
595
 */
596 597
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
598
{
599
	WARN_ON_ONCE(!work_pending(work));
600 601
	atomic_long_set(&work->data, data | flags | work_static(work));
}
602

603
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
604 605
			 unsigned long extra_flags)
{
606 607
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
608 609
}

610 611 612 613 614 615 616
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

617 618
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
619
{
620 621 622 623 624 625 626
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
627
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
628
}
629

630
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
631
{
632 633
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
634 635
}

636
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
637
{
638
	unsigned long data = atomic_long_read(&work->data);
639

640
	if (data & WORK_STRUCT_PWQ)
641 642 643
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
644 645
}

646 647 648 649
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
650 651 652
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
653 654 655 656 657
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
658 659
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
660 661
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
662
{
663
	unsigned long data = atomic_long_read(&work->data);
664
	int pool_id;
665

666
	assert_rcu_or_pool_mutex();
667

668 669
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
670
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
671

672 673
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
674 675
		return NULL;

676
	return idr_find(&worker_pool_idr, pool_id);
677 678 679 680 681 682
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
683
 * Return: The worker_pool ID @work was last associated with.
684 685 686 687
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
688 689
	unsigned long data = atomic_long_read(&work->data);

690 691
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
692
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
693

694
	return data >> WORK_OFFQ_POOL_SHIFT;
695 696
}

697 698
static void mark_work_canceling(struct work_struct *work)
{
699
	unsigned long pool_id = get_work_pool_id(work);
700

701 702
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
703 704 705 706 707 708
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

709
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
710 711
}

712
/*
713 714
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
715
 * they're being called with pool->lock held.
716 717
 */

718
static bool __need_more_worker(struct worker_pool *pool)
719
{
720
	return !atomic_read(&pool->nr_running);
721 722
}

723
/*
724 725
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
726 727
 *
 * Note that, because unbound workers never contribute to nr_running, this
728
 * function will always return %true for unbound pools as long as the
729
 * worklist isn't empty.
730
 */
731
static bool need_more_worker(struct worker_pool *pool)
732
{
733
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
734
}
735

736
/* Can I start working?  Called from busy but !running workers. */
737
static bool may_start_working(struct worker_pool *pool)
738
{
739
	return pool->nr_idle;
740 741 742
}

/* Do I need to keep working?  Called from currently running workers. */
743
static bool keep_working(struct worker_pool *pool)
744
{
745 746
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
747 748 749
}

/* Do we need a new worker?  Called from manager. */
750
static bool need_to_create_worker(struct worker_pool *pool)
751
{
752
	return need_more_worker(pool) && !may_start_working(pool);
753
}
754

755
/* Do I need to be the manager? */
756
static bool need_to_manage_workers(struct worker_pool *pool)
757
{
758
	return need_to_create_worker(pool) ||
759
		(pool->flags & POOL_MANAGE_WORKERS);
760 761 762
}

/* Do we have too many workers and should some go away? */
763
static bool too_many_workers(struct worker_pool *pool)
764
{
765
	bool managing = mutex_is_locked(&pool->manager_arb);
766 767
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
768

769 770 771 772 773 774 775
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

776
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
777 778
}

779
/*
780 781 782
 * Wake up functions.
 */

783
/* Return the first worker.  Safe with preemption disabled */
784
static struct worker *first_worker(struct worker_pool *pool)
785
{
786
	if (unlikely(list_empty(&pool->idle_list)))
787 788
		return NULL;

789
	return list_first_entry(&pool->idle_list, struct worker, entry);
790 791 792 793
}

/**
 * wake_up_worker - wake up an idle worker
794
 * @pool: worker pool to wake worker from
795
 *
796
 * Wake up the first idle worker of @pool.
797 798
 *
 * CONTEXT:
799
 * spin_lock_irq(pool->lock).
800
 */
801
static void wake_up_worker(struct worker_pool *pool)
802
{
803
	struct worker *worker = first_worker(pool);
804 805 806 807 808

	if (likely(worker))
		wake_up_process(worker->task);
}

809
/**
810 811 812 813 814 815 816 817 818 819
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
820
void wq_worker_waking_up(struct task_struct *task, int cpu)
821 822 823
{
	struct worker *worker = kthread_data(task);

824
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
825
		WARN_ON_ONCE(worker->pool->cpu != cpu);
826
		atomic_inc(&worker->pool->nr_running);
827
	}
828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
842
 * Return:
843 844
 * Worker task on @cpu to wake up, %NULL if none.
 */
845
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
846 847
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
848
	struct worker_pool *pool;
849

850 851 852 853 854
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
855
	if (worker->flags & WORKER_NOT_RUNNING)
856 857
		return NULL;

858 859
	pool = worker->pool;

860
	/* this can only happen on the local cpu */
861 862
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
863 864 865 866 867 868

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
869 870 871
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
872
	 * manipulating idle_list, so dereferencing idle_list without pool
873
	 * lock is safe.
874
	 */
875 876
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
877
		to_wakeup = first_worker(pool);
878 879 880 881 882
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
883
 * @worker: self
884 885 886
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
887 888 889
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
890
 *
891
 * CONTEXT:
892
 * spin_lock_irq(pool->lock)
893 894 895 896
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
897
	struct worker_pool *pool = worker->pool;
898

899 900
	WARN_ON_ONCE(worker->task != current);

901 902 903 904 905 906 907 908
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
909
			if (atomic_dec_and_test(&pool->nr_running) &&
910
			    !list_empty(&pool->worklist))
911
				wake_up_worker(pool);
912
		} else
913
			atomic_dec(&pool->nr_running);
914 915
	}

916 917 918 919
	worker->flags |= flags;
}

/**
920
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
921
 * @worker: self
922 923
 * @flags: flags to clear
 *
924
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
925
 *
926
 * CONTEXT:
927
 * spin_lock_irq(pool->lock)
928 929 930
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
931
	struct worker_pool *pool = worker->pool;
932 933
	unsigned int oflags = worker->flags;

934 935
	WARN_ON_ONCE(worker->task != current);

936
	worker->flags &= ~flags;
937

938 939 940 941 942
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
943 944
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
945
			atomic_inc(&pool->nr_running);
946 947
}

948 949
/**
 * find_worker_executing_work - find worker which is executing a work
950
 * @pool: pool of interest
951 952
 * @work: work to find worker for
 *
953 954
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
955 956 957 958 959 960 961 962 963 964 965 966
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
967 968 969 970 971 972
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
973 974
 *
 * CONTEXT:
975
 * spin_lock_irq(pool->lock).
976
 *
977 978
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
979
 * otherwise.
980
 */
981
static struct worker *find_worker_executing_work(struct worker_pool *pool,
982
						 struct work_struct *work)
983
{
984 985
	struct worker *worker;

986
	hash_for_each_possible(pool->busy_hash, worker, hentry,
987 988 989
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
990 991 992
			return worker;

	return NULL;
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1010
 * spin_lock_irq(pool->lock).
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1094
static void pwq_activate_delayed_work(struct work_struct *work)
1095
{
1096
	struct pool_workqueue *pwq = get_work_pwq(work);
1097 1098

	trace_workqueue_activate_work(work);
1099
	move_linked_works(work, &pwq->pool->worklist, NULL);
1100
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1101
	pwq->nr_active++;
1102 1103
}

1104
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1105
{
1106
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1107 1108
						    struct work_struct, entry);

1109
	pwq_activate_delayed_work(work);
1110 1111
}

1112
/**
1113 1114
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1115 1116 1117
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1118
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1119 1120
 *
 * CONTEXT:
1121
 * spin_lock_irq(pool->lock).
1122
 */
1123
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1124
{
T
Tejun Heo 已提交
1125
	/* uncolored work items don't participate in flushing or nr_active */
1126
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1127
		goto out_put;
1128

1129
	pwq->nr_in_flight[color]--;
1130

1131 1132
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1133
		/* one down, submit a delayed one */
1134 1135
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1136 1137 1138
	}

	/* is flush in progress and are we at the flushing tip? */
1139
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1140
		goto out_put;
1141 1142

	/* are there still in-flight works? */
1143
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1144
		goto out_put;
1145

1146 1147
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1148 1149

	/*
1150
	 * If this was the last pwq, wake up the first flusher.  It
1151 1152
	 * will handle the rest.
	 */
1153 1154
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1155 1156
out_put:
	put_pwq(pwq);
1157 1158
}

1159
/**
1160
 * try_to_grab_pending - steal work item from worklist and disable irq
1161 1162
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1163
 * @flags: place to store irq state
1164 1165
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1166
 * stable state - idle, on timer or on worklist.
1167
 *
1168
 * Return:
1169 1170 1171
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1172 1173
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1174
 *
1175
 * Note:
1176
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1177 1178 1179
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1180 1181 1182 1183
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1184
 * This function is safe to call from any context including IRQ handler.
1185
 */
1186 1187
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1188
{
1189
	struct worker_pool *pool;
1190
	struct pool_workqueue *pwq;
1191

1192 1193
	local_irq_save(*flags);

1194 1195 1196 1197
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1198 1199 1200 1201 1202
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1203 1204 1205 1206 1207
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1208 1209 1210 1211 1212 1213 1214
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1215 1216
	pool = get_work_pool(work);
	if (!pool)
1217
		goto fail;
1218

1219
	spin_lock(&pool->lock);
1220
	/*
1221 1222 1223 1224 1225
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1226 1227
	 * item is currently queued on that pool.
	 */
1228 1229
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1230 1231 1232 1233 1234
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1235
		 * on the delayed_list, will confuse pwq->nr_active
1236 1237 1238 1239
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1240
			pwq_activate_delayed_work(work);
1241 1242

		list_del_init(&work->entry);
1243
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1244

1245
		/* work->data points to pwq iff queued, point to pool */
1246 1247 1248 1249
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1250
	}
1251
	spin_unlock(&pool->lock);
1252 1253 1254 1255 1256
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1257
	return -EAGAIN;
1258 1259
}

T
Tejun Heo 已提交
1260
/**
1261
 * insert_work - insert a work into a pool
1262
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1263 1264 1265 1266
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1267
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1268
 * work_struct flags.
T
Tejun Heo 已提交
1269 1270
 *
 * CONTEXT:
1271
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1272
 */
1273 1274
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1275
{
1276
	struct worker_pool *pool = pwq->pool;
1277

T
Tejun Heo 已提交
1278
	/* we own @work, set data and link */
1279
	set_work_pwq(work, pwq, extra_flags);
1280
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1281
	get_pwq(pwq);
1282 1283

	/*
1284 1285 1286
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1287 1288 1289
	 */
	smp_mb();

1290 1291
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1292 1293
}

1294 1295
/*
 * Test whether @work is being queued from another work executing on the
1296
 * same workqueue.
1297 1298 1299
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1300 1301 1302 1303 1304 1305 1306
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1307
	return worker && worker->current_pwq->wq == wq;
1308 1309
}

1310
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1311 1312
			 struct work_struct *work)
{
1313
	struct pool_workqueue *pwq;
1314
	struct worker_pool *last_pool;
1315
	struct list_head *worklist;
1316
	unsigned int work_flags;
1317
	unsigned int req_cpu = cpu;
1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1326

1327
	debug_work_activate(work);
1328

1329
	/* if draining, only works from the same workqueue are allowed */
1330
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1331
	    WARN_ON_ONCE(!is_chained_work(wq)))
1332
		return;
1333
retry:
1334 1335 1336
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1337
	/* pwq which will be used unless @work is executing elsewhere */
1338
	if (!(wq->flags & WQ_UNBOUND))
1339
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1340 1341
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1342

1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1351

1352
		spin_lock(&last_pool->lock);
1353

1354
		worker = find_worker_executing_work(last_pool, work);
1355

1356 1357
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1358
		} else {
1359 1360
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1361
			spin_lock(&pwq->pool->lock);
1362
		}
1363
	} else {
1364
		spin_lock(&pwq->pool->lock);
1365 1366
	}

1367 1368 1369 1370
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1371 1372
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1386 1387
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1388

1389
	if (WARN_ON(!list_empty(&work->entry))) {
1390
		spin_unlock(&pwq->pool->lock);
1391 1392
		return;
	}
1393

1394 1395
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1396

1397
	if (likely(pwq->nr_active < pwq->max_active)) {
1398
		trace_workqueue_activate_work(work);
1399 1400
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1401 1402
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1403
		worklist = &pwq->delayed_works;
1404
	}
1405

1406
	insert_work(pwq, work, worklist, work_flags);
1407

1408
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1409 1410
}

1411
/**
1412 1413
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1414 1415 1416
 * @wq: workqueue to use
 * @work: work to queue
 *
1417 1418
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1419 1420
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1421
 */
1422 1423
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1424
{
1425
	bool ret = false;
1426
	unsigned long flags;
1427

1428
	local_irq_save(flags);
1429

1430
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1431
		__queue_work(cpu, wq, work);
1432
		ret = true;
1433
	}
1434

1435
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1436 1437
	return ret;
}
1438
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1439

1440
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1441
{
1442
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1443

1444
	/* should have been called from irqsafe timer with irq already off */
1445
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1446
}
1447
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1448

1449 1450
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1451
{
1452 1453 1454 1455 1456
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1457 1458
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1471
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1472

1473
	dwork->wq = wq;
1474
	dwork->cpu = cpu;
1475 1476 1477 1478 1479 1480
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1481 1482
}

1483 1484 1485 1486
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1487
 * @dwork: work to queue
1488 1489
 * @delay: number of jiffies to wait before queueing
 *
1490
 * Return: %false if @work was already on a queue, %true otherwise.  If
1491 1492
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1493
 */
1494 1495
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1496
{
1497
	struct work_struct *work = &dwork->work;
1498
	bool ret = false;
1499
	unsigned long flags;
1500

1501 1502
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1503

1504
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1505
		__queue_delayed_work(cpu, wq, dwork, delay);
1506
		ret = true;
1507
	}
1508

1509
	local_irq_restore(flags);
1510 1511
	return ret;
}
1512
EXPORT_SYMBOL(queue_delayed_work_on);
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1526
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1527 1528
 * pending and its timer was modified.
 *
1529
 * This function is safe to call from any context including IRQ handler.
1530 1531 1532 1533 1534 1535 1536
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1537

1538 1539 1540
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1541

1542 1543 1544
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1545
	}
1546 1547

	/* -ENOENT from try_to_grab_pending() becomes %true */
1548 1549
	return ret;
}
1550 1551
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1552 1553 1554 1555 1556 1557 1558 1559
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1560
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1561 1562
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1563
{
1564
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1565

1566 1567 1568 1569
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1570

1571 1572
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1573
	pool->nr_idle++;
1574
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1575 1576

	/* idle_list is LIFO */
1577
	list_add(&worker->entry, &pool->idle_list);
1578

1579 1580
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1581

1582
	/*
1583
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1584
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1585 1586
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1587
	 */
1588
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1589
		     pool->nr_workers == pool->nr_idle &&
1590
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1600
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1601 1602 1603
 */
static void worker_leave_idle(struct worker *worker)
{
1604
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1605

1606 1607
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1608
	worker_clr_flags(worker, WORKER_IDLE);
1609
	pool->nr_idle--;
T
Tejun Heo 已提交
1610 1611 1612
	list_del_init(&worker->entry);
}

1613
/**
1614 1615 1616 1617
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1618 1619 1620 1621 1622 1623
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1624
 * This function is to be used by unbound workers and rescuers to bind
1625 1626 1627
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1628
 * verbatim as it's best effort and blocking and pool may be
1629 1630
 * [dis]associated in the meantime.
 *
1631
 * This function tries set_cpus_allowed() and locks pool and verifies the
1632
 * binding against %POOL_DISASSOCIATED which is set during
1633 1634 1635
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1636 1637
 *
 * CONTEXT:
1638
 * Might sleep.  Called without any lock but returns with pool->lock
1639 1640
 * held.
 *
1641
 * Return:
1642
 * %true if the associated pool is online (@worker is successfully
1643 1644
 * bound), %false if offline.
 */
1645
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1646
__acquires(&pool->lock)
1647 1648
{
	while (true) {
1649
		/*
1650 1651 1652
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1653
		 * against POOL_DISASSOCIATED.
1654
		 */
1655
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1656
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1657

1658
		spin_lock_irq(&pool->lock);
1659
		if (pool->flags & POOL_DISASSOCIATED)
1660
			return false;
1661
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1662
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1663
			return true;
1664
		spin_unlock_irq(&pool->lock);
1665

1666 1667 1668 1669 1670 1671
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1672
		cpu_relax();
1673
		cond_resched();
1674 1675 1676
	}
}

T
Tejun Heo 已提交
1677 1678 1679 1680 1681
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1682 1683
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1684
		INIT_LIST_HEAD(&worker->scheduled);
1685 1686
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1687
	}
T
Tejun Heo 已提交
1688 1689 1690 1691 1692
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1693
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1694
 *
1695
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1696 1697 1698 1699 1700 1701
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1702
 * Return:
T
Tejun Heo 已提交
1703 1704
 * Pointer to the newly created worker.
 */
1705
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1706 1707
{
	struct worker *worker = NULL;
1708
	int id = -1;
1709
	char id_buf[16];
T
Tejun Heo 已提交
1710

1711 1712
	lockdep_assert_held(&pool->manager_mutex);

1713 1714 1715 1716
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
1717
	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
1718 1719
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1720 1721 1722 1723 1724

	worker = alloc_worker();
	if (!worker)
		goto fail;

1725
	worker->pool = pool;
T
Tejun Heo 已提交
1726 1727
	worker->id = id;

1728
	if (pool->cpu >= 0)
1729 1730
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1731
	else
1732 1733
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1734
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1735
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1736 1737 1738
	if (IS_ERR(worker->task))
		goto fail;

1739 1740 1741 1742 1743
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1744 1745 1746 1747
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1748
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1749

T
Tejun Heo 已提交
1750 1751 1752 1753 1754 1755
	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1756
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1757

1758 1759 1760
	/* successful, commit the pointer to idr */
	idr_replace(&pool->worker_idr, worker, worker->id);

T
Tejun Heo 已提交
1761
	return worker;
1762

T
Tejun Heo 已提交
1763
fail:
1764
	if (id >= 0)
1765
		idr_remove(&pool->worker_idr, id);
T
Tejun Heo 已提交
1766 1767 1768 1769 1770 1771 1772 1773
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1774
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1775 1776
 *
 * CONTEXT:
1777
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1778 1779 1780
 */
static void start_worker(struct worker *worker)
{
1781
	worker->flags |= WORKER_STARTED;
1782
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1783
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1784 1785 1786
	wake_up_process(worker->task);
}

1787 1788 1789 1790
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1791
 * Grab the managership of @pool and create and start a new worker for it.
1792 1793
 *
 * Return: 0 on success. A negative error code otherwise.
1794 1795 1796 1797 1798
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1799 1800
	mutex_lock(&pool->manager_mutex);

1801 1802 1803 1804 1805 1806 1807
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1808 1809
	mutex_unlock(&pool->manager_mutex);

1810 1811 1812
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1813 1814 1815 1816
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1817
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1818 1819
 *
 * CONTEXT:
1820
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1821 1822 1823
 */
static void destroy_worker(struct worker *worker)
{
1824
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1825

1826 1827 1828
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1829
	/* sanity check frenzy */
1830 1831 1832
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1833

T
Tejun Heo 已提交
1834
	if (worker->flags & WORKER_STARTED)
1835
		pool->nr_workers--;
T
Tejun Heo 已提交
1836
	if (worker->flags & WORKER_IDLE)
1837
		pool->nr_idle--;
T
Tejun Heo 已提交
1838

1839 1840 1841 1842 1843 1844
	/*
	 * Once WORKER_DIE is set, the kworker may destroy itself at any
	 * point.  Pin to ensure the task stays until we're done with it.
	 */
	get_task_struct(worker->task);

T
Tejun Heo 已提交
1845
	list_del_init(&worker->entry);
1846
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1847

1848 1849
	idr_remove(&pool->worker_idr, worker->id);

1850
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1851

T
Tejun Heo 已提交
1852
	kthread_stop(worker->task);
1853
	put_task_struct(worker->task);
T
Tejun Heo 已提交
1854 1855
	kfree(worker);

1856
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1857 1858
}

1859
static void idle_worker_timeout(unsigned long __pool)
1860
{
1861
	struct worker_pool *pool = (void *)__pool;
1862

1863
	spin_lock_irq(&pool->lock);
1864

1865
	if (too_many_workers(pool)) {
1866 1867 1868 1869
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1870
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1871 1872 1873
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1874
			mod_timer(&pool->idle_timer, expires);
1875 1876
		else {
			/* it's been idle for too long, wake up manager */
1877
			pool->flags |= POOL_MANAGE_WORKERS;
1878
			wake_up_worker(pool);
1879
		}
1880 1881
	}

1882
	spin_unlock_irq(&pool->lock);
1883
}
1884

1885
static void send_mayday(struct work_struct *work)
1886
{
1887 1888
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1889

1890
	lockdep_assert_held(&wq_mayday_lock);
1891

1892
	if (!wq->rescuer)
1893
		return;
1894 1895

	/* mayday mayday mayday */
1896
	if (list_empty(&pwq->mayday_node)) {
1897 1898 1899 1900 1901 1902
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1903
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1904
		wake_up_process(wq->rescuer->task);
1905
	}
1906 1907
}

1908
static void pool_mayday_timeout(unsigned long __pool)
1909
{
1910
	struct worker_pool *pool = (void *)__pool;
1911 1912
	struct work_struct *work;

1913
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1914
	spin_lock(&pool->lock);
1915

1916
	if (need_to_create_worker(pool)) {
1917 1918 1919 1920 1921 1922
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1923
		list_for_each_entry(work, &pool->worklist, entry)
1924
			send_mayday(work);
L
Linus Torvalds 已提交
1925
	}
1926

1927
	spin_unlock(&pool->lock);
1928
	spin_unlock_irq(&wq_mayday_lock);
1929

1930
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1931 1932
}

1933 1934
/**
 * maybe_create_worker - create a new worker if necessary
1935
 * @pool: pool to create a new worker for
1936
 *
1937
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1938 1939
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940
 * sent to all rescuers with works scheduled on @pool to resolve
1941 1942
 * possible allocation deadlock.
 *
1943 1944
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1945 1946
 *
 * LOCKING:
1947
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 1949 1950
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
1951
 * Return:
1952
 * %false if no action was taken and pool->lock stayed locked, %true
1953 1954
 * otherwise.
 */
1955
static bool maybe_create_worker(struct worker_pool *pool)
1956 1957
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1958
{
1959
	if (!need_to_create_worker(pool))
1960 1961
		return false;
restart:
1962
	spin_unlock_irq(&pool->lock);
1963

1964
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1965
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1966 1967 1968 1969

	while (true) {
		struct worker *worker;

1970
		worker = create_worker(pool);
1971
		if (worker) {
1972
			del_timer_sync(&pool->mayday_timer);
1973
			spin_lock_irq(&pool->lock);
1974
			start_worker(worker);
1975 1976
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1977 1978 1979
			return true;
		}

1980
		if (!need_to_create_worker(pool))
1981
			break;
L
Linus Torvalds 已提交
1982

1983 1984
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1985

1986
		if (!need_to_create_worker(pool))
1987 1988 1989
			break;
	}

1990
	del_timer_sync(&pool->mayday_timer);
1991
	spin_lock_irq(&pool->lock);
1992
	if (need_to_create_worker(pool))
1993 1994 1995 1996 1997 1998
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1999
 * @pool: pool to destroy workers for
2000
 *
2001
 * Destroy @pool workers which have been idle for longer than
2002 2003 2004
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2005
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2006 2007
 * multiple times.  Called only from manager.
 *
2008
 * Return:
2009
 * %false if no action was taken and pool->lock stayed locked, %true
2010 2011
 * otherwise.
 */
2012
static bool maybe_destroy_workers(struct worker_pool *pool)
2013 2014
{
	bool ret = false;
L
Linus Torvalds 已提交
2015

2016
	while (too_many_workers(pool)) {
2017 2018
		struct worker *worker;
		unsigned long expires;
2019

2020
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2021
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2022

2023
		if (time_before(jiffies, expires)) {
2024
			mod_timer(&pool->idle_timer, expires);
2025
			break;
2026
		}
L
Linus Torvalds 已提交
2027

2028 2029
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2030
	}
2031

2032
	return ret;
2033 2034
}

2035
/**
2036 2037
 * manage_workers - manage worker pool
 * @worker: self
2038
 *
2039
 * Assume the manager role and manage the worker pool @worker belongs
2040
 * to.  At any given time, there can be only zero or one manager per
2041
 * pool.  The exclusion is handled automatically by this function.
2042 2043 2044 2045
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2046 2047
 *
 * CONTEXT:
2048
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2049 2050
 * multiple times.  Does GFP_KERNEL allocations.
 *
2051
 * Return:
2052 2053 2054 2055 2056
 * %false if the pool don't need management and the caller can safely start
 * processing works, %true indicates that the function released pool->lock
 * and reacquired it to perform some management function and that the
 * conditions that the caller verified while holding the lock before
 * calling the function might no longer be true.
2057
 */
2058
static bool manage_workers(struct worker *worker)
2059
{
2060
	struct worker_pool *pool = worker->pool;
2061
	bool ret = false;
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2084
	if (!mutex_trylock(&pool->manager_arb))
2085
		return ret;
2086

2087
	/*
2088 2089
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2090
	 */
2091
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2092
		spin_unlock_irq(&pool->lock);
2093
		mutex_lock(&pool->manager_mutex);
2094
		spin_lock_irq(&pool->lock);
2095 2096
		ret = true;
	}
2097

2098
	pool->flags &= ~POOL_MANAGE_WORKERS;
2099 2100

	/*
2101 2102
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2103
	 */
2104 2105
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2106

2107
	mutex_unlock(&pool->manager_mutex);
2108
	mutex_unlock(&pool->manager_arb);
2109
	return ret;
2110 2111
}

2112 2113
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2114
 * @worker: self
2115 2116 2117 2118 2119 2120 2121 2122 2123
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2124
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2125
 */
T
Tejun Heo 已提交
2126
static void process_one_work(struct worker *worker, struct work_struct *work)
2127 2128
__releases(&pool->lock)
__acquires(&pool->lock)
2129
{
2130
	struct pool_workqueue *pwq = get_work_pwq(work);
2131
	struct worker_pool *pool = worker->pool;
2132
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2133
	int work_color;
2134
	struct worker *collision;
2135 2136 2137 2138 2139 2140 2141 2142
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2143 2144 2145
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2146
#endif
2147 2148 2149
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2150
	 * unbound or a disassociated pool.
2151
	 */
2152
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2153
		     !(pool->flags & POOL_DISASSOCIATED) &&
2154
		     raw_smp_processor_id() != pool->cpu);
2155

2156 2157 2158 2159 2160 2161
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2162
	collision = find_worker_executing_work(pool, work);
2163 2164 2165 2166 2167
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2168
	/* claim and dequeue */
2169
	debug_work_deactivate(work);
2170
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2171
	worker->current_work = work;
2172
	worker->current_func = work->func;
2173
	worker->current_pwq = pwq;
2174
	work_color = get_work_color(work);
2175

2176 2177
	list_del_init(&work->entry);

2178 2179 2180 2181 2182 2183 2184
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2185
	/*
2186
	 * Unbound pool isn't concurrency managed and work items should be
2187 2188
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2189 2190
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2191

2192
	/*
2193
	 * Record the last pool and clear PENDING which should be the last
2194
	 * update to @work.  Also, do this inside @pool->lock so that
2195 2196
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2197
	 */
2198
	set_work_pool_and_clear_pending(work, pool->id);
2199

2200
	spin_unlock_irq(&pool->lock);
2201

2202
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2203
	lock_map_acquire(&lockdep_map);
2204
	trace_workqueue_execute_start(work);
2205
	worker->current_func(work);
2206 2207 2208 2209 2210
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2211
	lock_map_release(&lockdep_map);
2212
	lock_map_release(&pwq->wq->lockdep_map);
2213 2214

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2215 2216
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2217 2218
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2219 2220 2221 2222
		debug_show_held_locks(current);
		dump_stack();
	}

2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2232
	spin_lock_irq(&pool->lock);
2233

2234 2235 2236 2237
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2238
	/* we're done with it, release */
2239
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2240
	worker->current_work = NULL;
2241
	worker->current_func = NULL;
2242
	worker->current_pwq = NULL;
2243
	worker->desc_valid = false;
2244
	pwq_dec_nr_in_flight(pwq, work_color);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2256
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2257 2258 2259
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2260
{
2261 2262
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2263
						struct work_struct, entry);
T
Tejun Heo 已提交
2264
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2265 2266 2267
	}
}

T
Tejun Heo 已提交
2268 2269
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2270
 * @__worker: self
T
Tejun Heo 已提交
2271
 *
2272 2273 2274 2275 2276
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2277 2278
 *
 * Return: 0
T
Tejun Heo 已提交
2279
 */
T
Tejun Heo 已提交
2280
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2281
{
T
Tejun Heo 已提交
2282
	struct worker *worker = __worker;
2283
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2284

2285 2286
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2287
woke_up:
2288
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2289

2290 2291
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2292
		spin_unlock_irq(&pool->lock);
2293 2294 2295
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2296
	}
2297

T
Tejun Heo 已提交
2298
	worker_leave_idle(worker);
2299
recheck:
2300
	/* no more worker necessary? */
2301
	if (!need_more_worker(pool))
2302 2303 2304
		goto sleep;

	/* do we need to manage? */
2305
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2306 2307
		goto recheck;

T
Tejun Heo 已提交
2308 2309 2310 2311 2312
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2313
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2314

2315
	/*
2316 2317 2318 2319 2320
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2321
	 */
2322
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2323 2324

	do {
T
Tejun Heo 已提交
2325
		struct work_struct *work =
2326
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2327 2328 2329 2330 2331 2332
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2333
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2334 2335 2336
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2337
		}
2338
	} while (keep_working(pool));
2339 2340

	worker_set_flags(worker, WORKER_PREP, false);
2341
sleep:
2342
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2343
		goto recheck;
2344

T
Tejun Heo 已提交
2345
	/*
2346 2347 2348 2349 2350
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2351 2352 2353
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2354
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2355 2356
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2357 2358
}

2359 2360
/**
 * rescuer_thread - the rescuer thread function
2361
 * @__rescuer: self
2362 2363
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2364
 * workqueue which has WQ_MEM_RECLAIM set.
2365
 *
2366
 * Regular work processing on a pool may block trying to create a new
2367 2368 2369 2370 2371
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2372 2373
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2374 2375 2376
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2377 2378
 *
 * Return: 0
2379
 */
2380
static int rescuer_thread(void *__rescuer)
2381
{
2382 2383
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2384
	struct list_head *scheduled = &rescuer->scheduled;
2385
	bool should_stop;
2386 2387

	set_user_nice(current, RESCUER_NICE_LEVEL);
2388 2389 2390 2391 2392 2393

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2394 2395 2396
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2406

2407
	/* see whether any pwq is asking for help */
2408
	spin_lock_irq(&wq_mayday_lock);
2409 2410 2411 2412

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2413
		struct worker_pool *pool = pwq->pool;
2414 2415 2416
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2417 2418
		list_del_init(&pwq->mayday_node);

2419
		spin_unlock_irq(&wq_mayday_lock);
2420 2421

		/* migrate to the target cpu if possible */
2422
		worker_maybe_bind_and_lock(pool);
2423
		rescuer->pool = pool;
2424 2425 2426 2427 2428

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2429
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2430
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2431
			if (get_work_pwq(work) == pwq)
2432 2433 2434
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2435

2436 2437 2438 2439 2440 2441
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
		 * go away while we're holding its lock.
		 */
		put_pwq(pwq);

2442
		/*
2443
		 * Leave this pool.  If keep_working() is %true, notify a
2444 2445 2446
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2447 2448
		if (keep_working(pool))
			wake_up_worker(pool);
2449

2450
		rescuer->pool = NULL;
2451
		spin_unlock(&pool->lock);
2452
		spin_lock(&wq_mayday_lock);
2453 2454
	}

2455
	spin_unlock_irq(&wq_mayday_lock);
2456

2457 2458 2459 2460 2461 2462
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2463 2464
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2465 2466
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2467 2468
}

O
Oleg Nesterov 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2480 2481
/**
 * insert_wq_barrier - insert a barrier work
2482
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2483
 * @barr: wq_barrier to insert
2484 2485
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2486
 *
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2499
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2500 2501
 *
 * CONTEXT:
2502
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2503
 */
2504
static void insert_wq_barrier(struct pool_workqueue *pwq,
2505 2506
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2507
{
2508 2509 2510
	struct list_head *head;
	unsigned int linked = 0;

2511
	/*
2512
	 * debugobject calls are safe here even with pool->lock locked
2513 2514 2515 2516
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2517
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2518
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2519
	init_completion(&barr->done);
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2536
	debug_work_activate(&barr->work);
2537
	insert_work(pwq, &barr->work, head,
2538
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2539 2540
}

2541
/**
2542
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2543 2544 2545 2546
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2547
 * Prepare pwqs for workqueue flushing.
2548
 *
2549 2550 2551 2552 2553
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2554 2555 2556 2557 2558 2559 2560
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2561
 * If @work_color is non-negative, all pwqs should have the same
2562 2563 2564 2565
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2566
 * mutex_lock(wq->mutex).
2567
 *
2568
 * Return:
2569 2570 2571
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2572
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2573
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2574
{
2575
	bool wait = false;
2576
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2577

2578
	if (flush_color >= 0) {
2579
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2580
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2581
	}
2582

2583
	for_each_pwq(pwq, wq) {
2584
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2585

2586
		spin_lock_irq(&pool->lock);
2587

2588
		if (flush_color >= 0) {
2589
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2590

2591 2592 2593
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2594 2595 2596
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2597

2598
		if (work_color >= 0) {
2599
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2600
			pwq->work_color = work_color;
2601
		}
L
Linus Torvalds 已提交
2602

2603
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2604
	}
2605

2606
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2607
		complete(&wq->first_flusher->done);
2608

2609
	return wait;
L
Linus Torvalds 已提交
2610 2611
}

2612
/**
L
Linus Torvalds 已提交
2613
 * flush_workqueue - ensure that any scheduled work has run to completion.
2614
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2615
 *
2616 2617
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2618
 */
2619
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2620
{
2621 2622 2623 2624 2625 2626
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2627

2628 2629
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2630

2631
	mutex_lock(&wq->mutex);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2644
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2645 2646 2647 2648 2649
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2650
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2651 2652 2653

			wq->first_flusher = &this_flusher;

2654
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2655 2656 2657 2658 2659 2660 2661 2662
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2663
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2664
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2665
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2676
	mutex_unlock(&wq->mutex);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2689
	mutex_lock(&wq->mutex);
2690

2691 2692 2693 2694
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2695 2696
	wq->first_flusher = NULL;

2697 2698
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2711 2712
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2732
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2733 2734 2735
		}

		if (list_empty(&wq->flusher_queue)) {
2736
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2737 2738 2739 2740 2741
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2742
		 * the new first flusher and arm pwqs.
2743
		 */
2744 2745
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2746 2747 2748 2749

		list_del_init(&next->list);
		wq->first_flusher = next;

2750
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2761
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2762
}
2763
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2764

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2779
	struct pool_workqueue *pwq;
2780 2781 2782 2783

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2784
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2785
	 */
2786
	mutex_lock(&wq->mutex);
2787
	if (!wq->nr_drainers++)
2788
		wq->flags |= __WQ_DRAINING;
2789
	mutex_unlock(&wq->mutex);
2790 2791 2792
reflush:
	flush_workqueue(wq);

2793
	mutex_lock(&wq->mutex);
2794

2795
	for_each_pwq(pwq, wq) {
2796
		bool drained;
2797

2798
		spin_lock_irq(&pwq->pool->lock);
2799
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2800
		spin_unlock_irq(&pwq->pool->lock);
2801 2802

		if (drained)
2803 2804 2805 2806
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2807
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2808
				wq->name, flush_cnt);
2809

2810
		mutex_unlock(&wq->mutex);
2811 2812 2813 2814
		goto reflush;
	}

	if (!--wq->nr_drainers)
2815
		wq->flags &= ~__WQ_DRAINING;
2816
	mutex_unlock(&wq->mutex);
2817 2818 2819
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2820
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2821
{
2822
	struct worker *worker = NULL;
2823
	struct worker_pool *pool;
2824
	struct pool_workqueue *pwq;
2825 2826

	might_sleep();
2827 2828

	local_irq_disable();
2829
	pool = get_work_pool(work);
2830 2831
	if (!pool) {
		local_irq_enable();
2832
		return false;
2833
	}
2834

2835
	spin_lock(&pool->lock);
2836
	/* see the comment in try_to_grab_pending() with the same code */
2837 2838 2839
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2840
			goto already_gone;
2841
	} else {
2842
		worker = find_worker_executing_work(pool, work);
2843
		if (!worker)
T
Tejun Heo 已提交
2844
			goto already_gone;
2845
		pwq = worker->current_pwq;
2846
	}
2847

2848
	insert_wq_barrier(pwq, barr, work, worker);
2849
	spin_unlock_irq(&pool->lock);
2850

2851 2852 2853 2854 2855 2856
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2857
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2858
		lock_map_acquire(&pwq->wq->lockdep_map);
2859
	else
2860 2861
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2862

2863
	return true;
T
Tejun Heo 已提交
2864
already_gone:
2865
	spin_unlock_irq(&pool->lock);
2866
	return false;
2867
}
2868 2869 2870 2871 2872

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2873 2874
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2875
 *
2876
 * Return:
2877 2878 2879 2880 2881
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2882 2883
	struct wq_barrier barr;

2884 2885 2886
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2887 2888 2889 2890 2891 2892 2893
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2894
}
2895
EXPORT_SYMBOL_GPL(flush_work);
2896

2897
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2898
{
2899
	unsigned long flags;
2900 2901 2902
	int ret;

	do {
2903 2904 2905 2906 2907 2908
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2909
			flush_work(work);
2910 2911
	} while (unlikely(ret < 0));

2912 2913 2914 2915
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2916
	flush_work(work);
2917
	clear_work_data(work);
2918 2919 2920
	return ret;
}

2921
/**
2922 2923
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2924
 *
2925 2926 2927 2928
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2929
 *
2930 2931
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2932
 *
2933
 * The caller must ensure that the workqueue on which @work was last
2934
 * queued can't be destroyed before this function returns.
2935
 *
2936
 * Return:
2937
 * %true if @work was pending, %false otherwise.
2938
 */
2939
bool cancel_work_sync(struct work_struct *work)
2940
{
2941
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2942
}
2943
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2944

2945
/**
2946 2947
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2948
 *
2949 2950 2951
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2952
 *
2953
 * Return:
2954 2955
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2956
 */
2957 2958
bool flush_delayed_work(struct delayed_work *dwork)
{
2959
	local_irq_disable();
2960
	if (del_timer_sync(&dwork->timer))
2961
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2962
	local_irq_enable();
2963 2964 2965 2966
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2967
/**
2968 2969
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2970
 *
2971 2972 2973 2974 2975 2976 2977 2978 2979
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2980
 *
2981
 * This function is safe to call from any context including IRQ handler.
2982
 */
2983
bool cancel_delayed_work(struct delayed_work *dwork)
2984
{
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2995 2996
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2997
	local_irq_restore(flags);
2998
	return ret;
2999
}
3000
EXPORT_SYMBOL(cancel_delayed_work);
3001

3002 3003 3004 3005 3006 3007
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3008
 * Return:
3009 3010 3011
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3012
{
3013
	return __cancel_work_timer(&dwork->work, true);
3014
}
3015
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3016

3017
/**
3018
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3019 3020
 * @func: the function to call
 *
3021 3022
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3023
 * schedule_on_each_cpu() is very slow.
3024
 *
3025
 * Return:
3026
 * 0 on success, -errno on failure.
3027
 */
3028
int schedule_on_each_cpu(work_func_t func)
3029 3030
{
	int cpu;
3031
	struct work_struct __percpu *works;
3032

3033 3034
	works = alloc_percpu(struct work_struct);
	if (!works)
3035
		return -ENOMEM;
3036

3037 3038
	get_online_cpus();

3039
	for_each_online_cpu(cpu) {
3040 3041 3042
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3043
		schedule_work_on(cpu, work);
3044
	}
3045 3046 3047 3048

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3049
	put_online_cpus();
3050
	free_percpu(works);
3051 3052 3053
	return 0;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3078 3079
void flush_scheduled_work(void)
{
3080
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3081
}
3082
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3093
 * Return:	0 - function was executed
3094 3095
 *		1 - function was scheduled for execution
 */
3096
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3097 3098
{
	if (!in_interrupt()) {
3099
		fn(&ew->work);
3100 3101 3102
		return 0;
	}

3103
	INIT_WORK(&ew->work, fn);
3104 3105 3106 3107 3108 3109
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

3137 3138
static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
3139 3140 3141 3142 3143
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
3144
static DEVICE_ATTR_RO(per_cpu);
3145

3146 3147
static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
3148 3149 3150 3151 3152 3153
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

3154 3155 3156
static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
3167
static DEVICE_ATTR_RW(max_active);
3168

3169 3170 3171 3172
static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
3173
};
3174
ATTRIBUTE_GROUPS(wq_sysfs);
3175

3176 3177
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3178 3179
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3180 3181
	const char *delim = "";
	int node, written = 0;
3182 3183

	rcu_read_lock_sched();
3184 3185 3186 3187 3188 3189 3190
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3202 3203 3204
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3218 3219 3220
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3236
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3251 3252 3253
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3314
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3315
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3316 3317
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3318
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3319 3320 3321 3322 3323
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
3324
	.dev_groups			= wq_sysfs_groups,
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
3353
 * Return: 0 on success, -errno on failure.
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
3446 3447 3448
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
T
Tejun Heo 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3460
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3461 3462 3463 3464 3465 3466
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3467 3468 3469 3470 3471
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3472 3473 3474 3475 3476 3477
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3478 3479 3480 3481 3482 3483 3484 3485
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3486 3487
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3502 3503 3504 3505 3506
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3507 3508
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3509 3510
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3511 3512
 */
static int init_worker_pool(struct worker_pool *pool)
3513 3514
{
	spin_lock_init(&pool->lock);
3515 3516
	pool->id = -1;
	pool->cpu = -1;
3517
	pool->node = NUMA_NO_NODE;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3531
	mutex_init(&pool->manager_mutex);
3532
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3533

3534 3535 3536 3537
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3538 3539 3540 3541
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3542 3543
}

3544 3545 3546 3547
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3548
	idr_destroy(&pool->worker_idr);
3549 3550 3551 3552 3553 3554 3555 3556 3557
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3558 3559 3560
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3561 3562
 *
 * Should be called with wq_pool_mutex held.
3563 3564 3565 3566 3567
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3568 3569 3570
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3571 3572 3573 3574
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3575
	    WARN_ON(!list_empty(&pool->worklist)))
3576 3577 3578 3579 3580 3581 3582
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3583 3584 3585 3586 3587
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3588
	mutex_lock(&pool->manager_arb);
3589
	mutex_lock(&pool->manager_mutex);
3590 3591 3592 3593 3594 3595 3596
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3597
	mutex_unlock(&pool->manager_mutex);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
3615
 * create a new one.
3616 3617
 *
 * Should be called with wq_pool_mutex held.
3618 3619 3620
 *
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3621 3622 3623 3624 3625
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3626
	int node;
3627

3628
	lockdep_assert_held(&wq_pool_mutex);
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3643 3644 3645
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3646
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3647 3648
	copy_workqueue_attrs(pool->attrs, attrs);

3649 3650 3651 3652 3653 3654
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3666 3667 3668 3669
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3670
	if (create_and_start_worker(pool) < 0)
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3699
	bool is_last;
T
Tejun Heo 已提交
3700 3701 3702 3703

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3704
	/*
3705
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3706 3707 3708
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3709
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3710
	list_del_rcu(&pwq->pwqs_node);
3711
	is_last = list_empty(&wq->pwqs);
3712
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3713

3714
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3715
	put_unbound_pool(pool);
3716 3717
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3718 3719 3720 3721 3722 3723
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3724 3725
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3726
		kfree(wq);
3727
	}
T
Tejun Heo 已提交
3728 3729
}

3730
/**
3731
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3732 3733
 * @pwq: target pool_workqueue
 *
3734 3735 3736
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3737
 */
3738
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3739
{
3740 3741 3742 3743
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3744
	lockdep_assert_held(&wq->mutex);
3745 3746 3747 3748 3749

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3750
	spin_lock_irq(&pwq->pool->lock);
3751 3752 3753

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3754

3755 3756 3757
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3758 3759 3760 3761 3762 3763

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3764 3765 3766 3767
	} else {
		pwq->max_active = 0;
	}

3768
	spin_unlock_irq(&pwq->pool->lock);
3769 3770
}

3771
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3772 3773
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3774 3775 3776
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3777 3778
	memset(pwq, 0, sizeof(*pwq));

3779 3780 3781
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3782
	pwq->refcnt = 1;
3783
	INIT_LIST_HEAD(&pwq->delayed_works);
3784
	INIT_LIST_HEAD(&pwq->pwqs_node);
3785
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3786
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3787
}
3788

3789
/* sync @pwq with the current state of its associated wq and link it */
3790
static void link_pwq(struct pool_workqueue *pwq)
3791 3792 3793 3794
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3795

3796 3797 3798 3799
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3800 3801
	/*
	 * Set the matching work_color.  This is synchronized with
3802
	 * wq->mutex to avoid confusing flush_workqueue().
3803
	 */
3804
	pwq->work_color = wq->work_color;
3805 3806 3807 3808 3809

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3810
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3811
}
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3826
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3827 3828 3829
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3830
	}
3831

3832 3833
	init_pwq(pwq, wq, pool);
	return pwq;
3834 3835
}

3836 3837 3838 3839 3840 3841 3842
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3843
		kmem_cache_free(pwq_cache, pwq);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
3856
 * calculation.  The result is stored in @cpumask.
3857 3858 3859 3860 3861 3862 3863 3864
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
3865 3866 3867
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3868 3869 3870 3871
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3872
	if (!wq_numa_enabled || attrs->no_numa)
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3909 3910 3911 3912 3913
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3914 3915 3916 3917 3918 3919
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3920
 *
3921 3922 3923
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
3924 3925 3926 3927
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3928 3929
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3930
	int node, ret;
3931

3932
	/* only unbound workqueues can change attributes */
3933 3934 3935
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3936 3937 3938 3939
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3940
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3941
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3942 3943
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3944 3945
		goto enomem;

3946
	/* make a copy of @attrs and sanitize it */
3947 3948 3949
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3964
	mutex_lock(&wq_pool_mutex);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3986
	mutex_unlock(&wq_pool_mutex);
3987

3988
	/* all pwqs have been created successfully, let's install'em */
3989
	mutex_lock(&wq->mutex);
3990

3991
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3992 3993

	/* save the previous pwq and install the new one */
3994
	for_each_node(node)
3995 3996 3997 3998 3999
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
4000 4001

	mutex_unlock(&wq->mutex);
4002

4003 4004 4005 4006 4007 4008
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
4009 4010 4011
	ret = 0;
	/* fall through */
out_free:
4012
	free_workqueue_attrs(tmp_attrs);
4013
	free_workqueue_attrs(new_attrs);
4014
	kfree(pwq_tbl);
4015
	return ret;
4016

4017 4018 4019 4020 4021 4022 4023
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
4024
enomem:
4025 4026
	ret = -ENOMEM;
	goto out_free;
4027 4028
}

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4074 4075
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4076 4077 4078 4079 4080 4081 4082 4083

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
4084
	 * wq's, the default pwq should be used.
4085 4086 4087 4088 4089
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
4090
		goto use_dfl_pwq;
4091 4092 4093 4094 4095 4096 4097
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
4098 4099
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
4100 4101
		mutex_lock(&wq->mutex);
		goto use_dfl_pwq;
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4124
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4125
{
4126
	bool highpri = wq->flags & WQ_HIGHPRI;
4127
	int cpu, ret;
4128 4129

	if (!(wq->flags & WQ_UNBOUND)) {
4130 4131
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4132 4133 4134
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4135 4136
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4137
			struct worker_pool *cpu_pools =
4138
				per_cpu(cpu_worker_pools, cpu);
4139

4140 4141 4142
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4143
			link_pwq(pwq);
4144
			mutex_unlock(&wq->mutex);
4145
		}
4146
		return 0;
4147 4148 4149 4150 4151 4152 4153
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
4154
	} else {
4155
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4156
	}
T
Tejun Heo 已提交
4157 4158
}

4159 4160
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4161
{
4162 4163 4164
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4165 4166
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4167

4168
	return clamp_val(max_active, 1, lim);
4169 4170
}

4171
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4172 4173 4174
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4175
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4176
{
4177
	size_t tbl_size = 0;
4178
	va_list args;
L
Linus Torvalds 已提交
4179
	struct workqueue_struct *wq;
4180
	struct pool_workqueue *pwq;
4181

4182 4183 4184 4185
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4186
	/* allocate wq and format name */
4187 4188 4189 4190
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4191
	if (!wq)
4192
		return NULL;
4193

4194 4195 4196 4197 4198 4199
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4200 4201
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4202
	va_end(args);
L
Linus Torvalds 已提交
4203

4204
	max_active = max_active ?: WQ_DFL_ACTIVE;
4205
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4206

4207
	/* init wq */
4208
	wq->flags = flags;
4209
	wq->saved_max_active = max_active;
4210
	mutex_init(&wq->mutex);
4211
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4212
	INIT_LIST_HEAD(&wq->pwqs);
4213 4214
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4215
	INIT_LIST_HEAD(&wq->maydays);
4216

4217
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4218
	INIT_LIST_HEAD(&wq->list);
4219

4220
	if (alloc_and_link_pwqs(wq) < 0)
4221
		goto err_free_wq;
T
Tejun Heo 已提交
4222

4223 4224 4225 4226 4227
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4228 4229
		struct worker *rescuer;

4230
		rescuer = alloc_worker();
4231
		if (!rescuer)
4232
			goto err_destroy;
4233

4234 4235
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4236
					       wq->name);
4237 4238 4239 4240
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4241

4242
		wq->rescuer = rescuer;
4243
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4244
		wake_up_process(rescuer->task);
4245 4246
	}

4247 4248 4249
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4250
	/*
4251 4252 4253
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4254
	 */
4255
	mutex_lock(&wq_pool_mutex);
4256

4257
	mutex_lock(&wq->mutex);
4258 4259
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4260
	mutex_unlock(&wq->mutex);
4261

T
Tejun Heo 已提交
4262
	list_add(&wq->list, &workqueues);
4263

4264
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4265

4266
	return wq;
4267 4268

err_free_wq:
4269
	free_workqueue_attrs(wq->unbound_attrs);
4270 4271 4272 4273
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4274
	return NULL;
4275
}
4276
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4277

4278 4279 4280 4281 4282 4283 4284 4285
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4286
	struct pool_workqueue *pwq;
4287
	int node;
4288

4289 4290
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4291

4292
	/* sanity checks */
4293
	mutex_lock(&wq->mutex);
4294
	for_each_pwq(pwq, wq) {
4295 4296
		int i;

4297 4298
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4299
				mutex_unlock(&wq->mutex);
4300
				return;
4301 4302 4303
			}
		}

4304
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4305
		    WARN_ON(pwq->nr_active) ||
4306
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4307
			mutex_unlock(&wq->mutex);
4308
			return;
4309
		}
4310
	}
4311
	mutex_unlock(&wq->mutex);
4312

4313 4314 4315 4316
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4317
	mutex_lock(&wq_pool_mutex);
4318
	list_del_init(&wq->list);
4319
	mutex_unlock(&wq_pool_mutex);
4320

4321 4322
	workqueue_sysfs_unregister(wq);

4323
	if (wq->rescuer) {
4324
		kthread_stop(wq->rescuer->task);
4325
		kfree(wq->rescuer);
4326
		wq->rescuer = NULL;
4327 4328
	}

T
Tejun Heo 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4339 4340
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4341
		 */
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4354
		put_pwq_unlocked(pwq);
4355
	}
4356 4357 4358
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4371
	struct pool_workqueue *pwq;
4372

4373 4374 4375 4376
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4377
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4378

4379
	mutex_lock(&wq->mutex);
4380 4381 4382

	wq->saved_max_active = max_active;

4383 4384
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4385

4386
	mutex_unlock(&wq->mutex);
4387
}
4388
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4389

4390 4391 4392 4393 4394
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4395 4396
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4397 4398 4399 4400 4401
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4402
	return worker && worker->rescue_wq;
4403 4404
}

4405
/**
4406 4407 4408
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4409
 *
4410 4411 4412
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4413
 *
4414 4415 4416 4417 4418 4419
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4420
 * Return:
4421
 * %true if congested, %false otherwise.
4422
 */
4423
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4424
{
4425
	struct pool_workqueue *pwq;
4426 4427
	bool ret;

4428
	rcu_read_lock_sched();
4429

4430 4431 4432
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4433 4434 4435
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4436
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4437

4438
	ret = !list_empty(&pwq->delayed_works);
4439
	rcu_read_unlock_sched();
4440 4441

	return ret;
L
Linus Torvalds 已提交
4442
}
4443
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4444

4445 4446 4447 4448 4449 4450 4451 4452
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4453
 * Return:
4454 4455 4456
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4457
{
4458
	struct worker_pool *pool;
4459 4460
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4461

4462 4463
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4464

4465 4466
	local_irq_save(flags);
	pool = get_work_pool(work);
4467
	if (pool) {
4468
		spin_lock(&pool->lock);
4469 4470
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4471
		spin_unlock(&pool->lock);
4472
	}
4473
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4474

4475
	return ret;
L
Linus Torvalds 已提交
4476
}
4477
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4478

4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
4549
		pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
4550 4551 4552 4553 4554 4555
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4556 4557 4558
/*
 * CPU hotplug.
 *
4559
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4560
 * are a lot of assumptions on strong associations among work, pwq and
4561
 * pool which make migrating pending and scheduled works very
4562
 * difficult to implement without impacting hot paths.  Secondly,
4563
 * worker pools serve mix of short, long and very long running works making
4564 4565
 * blocked draining impractical.
 *
4566
 * This is solved by allowing the pools to be disassociated from the CPU
4567 4568
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4569
 */
L
Linus Torvalds 已提交
4570

4571
static void wq_unbind_fn(struct work_struct *work)
4572
{
4573
	int cpu = smp_processor_id();
4574
	struct worker_pool *pool;
4575
	struct worker *worker;
4576
	int wi;
4577

4578
	for_each_cpu_worker_pool(pool, cpu) {
4579
		WARN_ON_ONCE(cpu != smp_processor_id());
4580

4581
		mutex_lock(&pool->manager_mutex);
4582
		spin_lock_irq(&pool->lock);
4583

4584
		/*
4585
		 * We've blocked all manager operations.  Make all workers
4586 4587 4588 4589 4590
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4591
		for_each_pool_worker(worker, wi, pool)
4592
			worker->flags |= WORKER_UNBOUND;
4593

4594
		pool->flags |= POOL_DISASSOCIATED;
4595

4596
		spin_unlock_irq(&pool->lock);
4597
		mutex_unlock(&pool->manager_mutex);
4598

4599 4600 4601 4602 4603 4604 4605
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4606

4607 4608 4609 4610 4611 4612 4613 4614
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4615
		atomic_set(&pool->nr_running, 0);
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4626 4627
}

T
Tejun Heo 已提交
4628 4629 4630 4631
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4632
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4633 4634 4635
 */
static void rebind_workers(struct worker_pool *pool)
{
4636 4637
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4638 4639 4640

	lockdep_assert_held(&pool->manager_mutex);

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4651

4652
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4653

4654 4655
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4656 4657

		/*
4658 4659 4660 4661 4662 4663
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4664
		 */
4665 4666
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4687
	}
4688 4689

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4690 4691
}

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4725 4726 4727 4728
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4729
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4730 4731
					       unsigned long action,
					       void *hcpu)
4732
{
4733
	int cpu = (unsigned long)hcpu;
4734
	struct worker_pool *pool;
4735
	struct workqueue_struct *wq;
4736
	int pi;
4737

T
Tejun Heo 已提交
4738
	switch (action & ~CPU_TASKS_FROZEN) {
4739
	case CPU_UP_PREPARE:
4740
		for_each_cpu_worker_pool(pool, cpu) {
4741 4742
			if (pool->nr_workers)
				continue;
4743
			if (create_and_start_worker(pool) < 0)
4744
				return NOTIFY_BAD;
4745
		}
T
Tejun Heo 已提交
4746
		break;
4747

4748 4749
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4750
		mutex_lock(&wq_pool_mutex);
4751 4752

		for_each_pool(pool, pi) {
4753
			mutex_lock(&pool->manager_mutex);
4754

4755 4756 4757 4758
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4759

4760 4761 4762 4763
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4764

4765
			mutex_unlock(&pool->manager_mutex);
4766
		}
4767

4768 4769 4770 4771
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4772
		mutex_unlock(&wq_pool_mutex);
4773
		break;
4774
	}
4775 4776 4777 4778 4779 4780 4781
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4782
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4783 4784 4785
						 unsigned long action,
						 void *hcpu)
{
4786
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4787
	struct work_struct unbind_work;
4788
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4789

4790 4791
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4792
		/* unbinding per-cpu workers should happen on the local CPU */
4793
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4794
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4795 4796 4797 4798 4799 4800 4801 4802

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4803
		flush_work(&unbind_work);
4804
		destroy_work_on_stack(&unbind_work);
T
Tejun Heo 已提交
4805
		break;
4806 4807 4808 4809
	}
	return NOTIFY_OK;
}

4810
#ifdef CONFIG_SMP
4811

4812
struct work_for_cpu {
4813
	struct work_struct work;
4814 4815 4816 4817 4818
	long (*fn)(void *);
	void *arg;
	long ret;
};

4819
static void work_for_cpu_fn(struct work_struct *work)
4820
{
4821 4822
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4823 4824 4825 4826 4827 4828 4829 4830 4831
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4832
 * It is up to the caller to ensure that the cpu doesn't go offline.
4833
 * The caller must not hold any locks which would prevent @fn from completing.
4834 4835
 *
 * Return: The value @fn returns.
4836
 */
4837
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4838
{
4839
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4840

4841 4842
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4843
	flush_work(&wfc.work);
4844
	destroy_work_on_stack(&wfc.work);
4845 4846 4847 4848 4849
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4850 4851 4852 4853 4854
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4855
 * Start freezing workqueues.  After this function returns, all freezable
4856
 * workqueues will queue new works to their delayed_works list instead of
4857
 * pool->worklist.
4858 4859
 *
 * CONTEXT:
4860
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4861 4862 4863
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4864
	struct worker_pool *pool;
4865 4866
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4867
	int pi;
4868

4869
	mutex_lock(&wq_pool_mutex);
4870

4871
	WARN_ON_ONCE(workqueue_freezing);
4872 4873
	workqueue_freezing = true;

4874
	/* set FREEZING */
4875
	for_each_pool(pool, pi) {
4876
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4877 4878
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4879
		spin_unlock_irq(&pool->lock);
4880
	}
4881

4882
	list_for_each_entry(wq, &workqueues, list) {
4883
		mutex_lock(&wq->mutex);
4884 4885
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4886
		mutex_unlock(&wq->mutex);
4887
	}
4888

4889
	mutex_unlock(&wq_pool_mutex);
4890 4891 4892
}

/**
4893
 * freeze_workqueues_busy - are freezable workqueues still busy?
4894 4895 4896 4897 4898
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4899
 * Grabs and releases wq_pool_mutex.
4900
 *
4901
 * Return:
4902 4903
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4904 4905 4906 4907
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4908 4909
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4910

4911
	mutex_lock(&wq_pool_mutex);
4912

4913
	WARN_ON_ONCE(!workqueue_freezing);
4914

4915 4916 4917
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4918 4919 4920 4921
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4922
		rcu_read_lock_sched();
4923
		for_each_pwq(pwq, wq) {
4924
			WARN_ON_ONCE(pwq->nr_active < 0);
4925
			if (pwq->nr_active) {
4926
				busy = true;
4927
				rcu_read_unlock_sched();
4928 4929 4930
				goto out_unlock;
			}
		}
4931
		rcu_read_unlock_sched();
4932 4933
	}
out_unlock:
4934
	mutex_unlock(&wq_pool_mutex);
4935 4936 4937 4938 4939 4940 4941
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4942
 * frozen works are transferred to their respective pool worklists.
4943 4944
 *
 * CONTEXT:
4945
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4946 4947 4948
 */
void thaw_workqueues(void)
{
4949 4950 4951
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4952
	int pi;
4953

4954
	mutex_lock(&wq_pool_mutex);
4955 4956 4957 4958

	if (!workqueue_freezing)
		goto out_unlock;

4959
	/* clear FREEZING */
4960
	for_each_pool(pool, pi) {
4961
		spin_lock_irq(&pool->lock);
4962 4963
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4964
		spin_unlock_irq(&pool->lock);
4965
	}
4966

4967 4968
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4969
		mutex_lock(&wq->mutex);
4970 4971
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4972
		mutex_unlock(&wq->mutex);
4973 4974 4975 4976
	}

	workqueue_freezing = false;
out_unlock:
4977
	mutex_unlock(&wq_pool_mutex);
4978 4979 4980
}
#endif /* CONFIG_FREEZER */

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4993 4994 4995 4996 4997
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4998 4999 5000
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5001 5002 5003 5004 5005 5006 5007 5008 5009
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
5010 5011
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5027
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5028
{
T
Tejun Heo 已提交
5029 5030
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5031

5032 5033 5034 5035
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5036
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5037
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5038

5039 5040
	wq_numa_init();

5041
	/* initialize CPU pools */
5042
	for_each_possible_cpu(cpu) {
5043
		struct worker_pool *pool;
5044

T
Tejun Heo 已提交
5045
		i = 0;
5046
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5047
			BUG_ON(init_worker_pool(pool));
5048
			pool->cpu = cpu;
5049
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5050
			pool->attrs->nice = std_nice[i++];
5051
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5052

T
Tejun Heo 已提交
5053
			/* alloc pool ID */
5054
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5055
			BUG_ON(worker_pool_assign_id(pool));
5056
			mutex_unlock(&wq_pool_mutex);
5057
		}
5058 5059
	}

5060
	/* create the initial worker */
5061
	for_each_online_cpu(cpu) {
5062
		struct worker_pool *pool;
5063

5064
		for_each_cpu_worker_pool(pool, cpu) {
5065
			pool->flags &= ~POOL_DISASSOCIATED;
5066
			BUG_ON(create_and_start_worker(pool) < 0);
5067
		}
5068 5069
	}

5070
	/* create default unbound and ordered wq attrs */
5071 5072 5073 5074 5075 5076
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5087 5088
	}

5089
	system_wq = alloc_workqueue("events", 0, 0);
5090
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5091
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5092 5093
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5094 5095
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5096 5097 5098 5099 5100
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5101
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5102 5103 5104
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5105
	return 0;
L
Linus Torvalds 已提交
5106
}
5107
early_initcall(init_workqueues);